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ON SYSTEMS OF CLAIRAUT TYPE

BY SHYUICHI IZUMIYA AND YASUHIRO KUROKAWA

0. Introduction

About 260 years ago Alex Claude Clairaut [1] studied the following equation which
is called the Clairaut equation now : y = x ^ -f /(^). It is usually taught in the
first or second year course of calculus in the university and treated as one of the typical
examples of non-linear equations that are easily solved. Moreover it has a quite beautiful
geometric structure as follows : There exists a "general solution" that consists of lines
y = t x H- f ( i ) , where t is a parameter and the singular solution is the envelope of such
a family (Fig. 1).
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In this article we consider equations with the same geometric structure as the
Clairaut equation. Here we give another example as follows : y — (^)2 = 0. We can
easily solve this equation: the "general solution" is given by y = \(x -f f)2 , where t is a
parameter. Here, the "singular solution" is given by y — 0 that is the envelope of the
family of graphs of the "general solution". The "general solution" of this equation does
not consist of lines. However, the "singular solution" is the envelope of the graphs of the
"general solution" like as the Clairaut equation (Fig. 2).

We will refer such an equation as a Clairaut-type equation. Our purpose in this note
is to give a characterization of Clairau-type equations and to classify these equation
under a "nice" equaivalence relation.

In this note we will sketch our discussions without proofs. The detailed paper will
be published elswhere soon.

All maps considered here are differentiate of class C°°, unless stated otherwise.
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1. Framework

In this section we give the basic framework to study systems of Clairaut types. A
system of first order differential equation is most naturally interpreted as being a closed
subset of the 1-jet space of functions of n-variables J1(Rn,R). Unless the contrary is
specifically stated, we use the following definition. A system of first order differential
equation (or briefly, an equation) is a submanifold germ (E, ZQ) C (J1(Rn,R), ZQ). Let
θ be the canonical contact form on J1(Rn,R) which is given by θ — dy — Σ™=ιPidxi,
where (#, y,p) are canonical coordinates of Jx(Rn, R). Let π : Jx(Rn, R) —» Rn x R be
the canonical projection. We say that ZQ is a π-singular point if T3nkd(π\E)Zo < n + 1.
We denote the set of τr-singular points by Σπ(E) and π(Σπ(E)) = DE We call the
set DE the discriminant set of the equation (E,ZQ). Since we only consider the local
properties, we adopt the following two kinds of representations:
An equation germ is

(1) a submersion germ F : (J l (R n , R), ZQ) -> (Rd, 0)
or

(2) an immersion germ / : (Rr,0) -» (Jl(Rn> R),z0),
where r = 2n + 1 - d (1 < d < n) and (E, ZQ) = (F~l(Q), ZQ) = (Image /, ZQ).
We use either notations depend on the situations. We define a geometric solution of
(E,ZQ) to be an n-dimensional manifold i : (£,zo) C (J1(Rn,R), ZQ) such that Θ\L = 0
and L C (£,ZQ) (i.e. a Legendrian submanifold which is contained in (E, ZQ)). Let
g : Rn —» R be a smooth function. Then the jet extension jlg : Rn —> J1(Rn,R) is a
Legendrian embedding. Hence, in our terminology, the classical solution of (E,zQ) is a
smooth function germ g such that (jlg(Rn), ZQ) C (J?,zo) On the other hand, we can
show that a geometric solution i is given by (at least locally) a jet extension of a smooth
function if and only if π o i is a non-singular map. We say that ZQ G L is a Legendnan
singular point if ZQ is a singular point of πoi. An equation (£", ZQ) is said to be completely
mtegrable if there exists a foliation by geometric solutions on (£",20). In this case such
a foliation is called a complete solution of (E,zQ). We say that a complete solution is
classical if each leaf of the complete solution is classical (i.e., Legendrian non-singular).

2. Characterization theorems

In this section we give characterizations of equations with classical complete solution.
We adopt the representation by submersions: an equation is a submersion germ F :
(J^R"^),^) -^(Rd,0), where 1 < d < n.

An equation F = 0 is said to be Clairaut type if there exist smooth function germs
BJl,A

i

ik : (^(R^RjZo) -* R for i, j - 1,... ,n, k = 1,... ,cί and i = l , . . . , d s u c h that

UXi

and satisfy that

(i)

(2) Λ_. i ft Λ.. ' Z-^~" Λ— ~ Λ™. ' fκ Λ,. ' Δ^l"ίκ Qpί
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at any z G (JF~1(0),2r0) for i,j,t = 1,... ,n.
We have the following characterization theorem.

THEOREM 2.1. For an equation germ F — 0, tfλe following are equivalent.
(1) F = 0 25 fΛe Clairaut type equation.
(2) F = 0 has a (classical) complete solution.

In this case, z/Σπ(F~1(0)) ^ 0, *Λen Σ7Γ(F"1(0)) zs a geometric solution (i.e. the
singular solution) of F — 0 anrf tf/te discriminant set Z)p-i(o) 25 tfΛe envelope of the family
of graphs of the complete solution.

We now give two examples which describe the above assertion.

Examples 2.2. 1) The following equation is a generalization of the classical Clairaut
equation:

Fi(pι, .. ,pn) = 0 (i = 1, . . . , d - 1), Fd(x, y,p) = y - j^ A'«t - /(PI, ,Pn) = 0,

where Ft, / are function germ.
Since F = (Fi, . . . , Fd) is a submersion, we have rank (f:^) = d — 1 Then the

set F~l(0) is locally parametrized by an immersion a(t) = (αι(t),... ,αn(ί)), where
ί = (<ι,. . . ,^-rf+ι). It follows that we can get a classical complete solution

n

2/ — / a,i(t)xi + /(αι(t),..., (Zn(v)
2=1

We can easily check that

ΘFi dFi _

on F~1(0). This means that we can choose Bij = 0.
2) Consider the following equation : Fι = pf — ?/ = 0, F2 = p2 = 0 (n = 2).

Then we have
dFi dFi

Λ - ~ > Λ -δxi dy dx2 dy
and

_ 0 ι _ 2 _ 2 _ 1
— ^jPl ) "7^ — U , 0 — U , -r — I .r\ — ) " — , 0 — , -

dpi dp2 dpi dpi

It follows that
dFi dFi 1 dFl Λ δfi Λ
^ + Pi-TΓ1 = - 5 -a-1 + 0 - — -i + 0 - F! + 0 - F2,

dF2
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+ . . .
8x2 dy dpi dp2

The complete solution is given by y = \(x\ -f 1)2.
We can also characterize equations with (classical) complete solutions that consist

of hyperplanes.

THEOREM 2.3. For an equation F : (J1(Rn,R),3?0) -+ (Rd,0) with
0, fλe following are equivalent.

(1) There exist smooth function germs A\k : (J1(Rn,R), ZQ) — > R swc/i

(2) There exists a classical complete solution of F = 0 swcΛ ώαί α// members are
hyperplanes.

(3) ΓΛere eziέfo α submersion germ G : (Rn,po) — > (Rd>0) and a function germ

f : (Rn,j>o) -» R sαcλ *Λα*
n

F-^O) = {(x, y,p)|G(pι, . . . ,pn) = 0 αn<* y = Σ xWi ~ /(PI, >ί>n)}.
ι=l

We call the equation in the above theorem a Clairaut system.

3. Holonomic systems of Clairaut type

In this section we consider the classification problem among systems of Clairaut type
under the equivalence relation induced by the group of point transformations in the sense
of Sop bus Lie. We stick to holonomic systems and adopt the following representation.
A holonomic system of first order differential equation germ (or, briefly, a holonomic
system) is defined to be an immersion germ / : (Rn+1, 0) — »• J1(Rn, R). We introduce an
equivalence relation among systems under the group of point transformations of Rn x R.
A point transformation φ on Rn x R is, by definition, a diffeomorphism of Rn x R onto
itself.

To define a lift of φ, we give a contact manifold which is a fiberwίse compactification
of Jl(Rn, R). Let 7Γ : PT*(Rn x R) -> Rn x R be a projective cotangent bundle over
Rn x R which contains π : J1 (Rn , R) — >• Rn x R as an affine part. Then we have a canon-
ical contact lift φ : PT*(Rn xR) -» PT*(Rn xR) oΐφ. Let /, g : (Rn+1, 0) -> J^R", R)
be equation germs. Following Lie, we say that / and g are equivalent as equations if there
exist a diffeomorphism germ φ : (Rn+1,0) — > (Rn+1,0) and a point transformation

φ : (Rn x R, τr(zo)) -+ (Rn x R, ίr(^ι)) such tn^t the lift <^ of φ satisfies that φ(zQ) = zi
and <^ o / — g o ̂ , where ^o = /(O) and zi = ^(0). By the definition of complete integra-
bility and Frobenius' theorem we may define as follows. We say that / is completely mte-

grable if there exists a submersion germ μ : (Rn+1,0) — > R such that (dμ)εu D (f*θ)εu,
where εu is the ring of smooth function germs on (Rn+1, 0) and its unique maximal ideal
is denoted by 9Jlw. Here, u — (uι, . . . ,wn+ι) are canonical coordinates of (Rn+1,0). We
call μ a complete integral off and the pair (μ,/) : (Rn+1,0) -̂  R x J^R"^) is called
α holonomic system with complete integral. Here, we can observe that π o f(μ~1(t))
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is the graph of the solution in Rn x R. If π o f\μ~~l(t) are non-singular map germs
for any t G (R, μ(0)), then {π o f(μ~1(t))}t€fi is the family of graphs of a classical
complete solution (cf. §2). We call such a system a holonomic system of Clairaui type.
These situation lead us to the following definition. Let (μ,g) be a pair of a map germ
g : (Rn+1,0) -> (Rn x R,0) and a submersion germ μ : (Rn+1,0) -» (R,0). Then the
diagram

(R, 0) +£- (Rn+1 , 0) -1+ (Rn x R, 0)

or briefly (μ,<?), is called a (holonomic) integral diagram if there exists a holonomic
system / : (Rn+1,0) — » J1(Rn,R) such that (//,/) is an equation germ with complete
integral and π o / = g, and we say that the integral diagram (μ,g) is induced by f. If
/ is a system of Clairaut type, then (μ,ττ o /) is called of Clairaui type. Furthermore
we introduce an equivalence relation among integral diagrams. Let (μ,</) and (μ', #') be
integral diagrams. Then (μ,0) and (μ' ',#') are equivalent (respectively, strictly equivalent)
if the diagram

(R,0) ^— (Rn+1,0) — ̂  (Rn x R,0)

4
(R,0) < - (Rn+1,0) - > (Rn x R,0)

μ' 9'

commutes for some diffeomorphism germs K, φ and φ (respectively, /c =
In [3] it has been shown the following theorem.

THEOREM 3.1. Let (μ,/) and (μ',/') : (Rn+1,0) -» (R x ^(R^R^O x υ) δe
holonomic system with complete integral such that the set of critical points of π o f and
π o f are closed sets without interior points. Then the followings are equivalent:

(1) / and f are equivalent as equations.
(2) (μ, 7Γ o /) and (μ', π o /') are equivalent as integral diagrams.

Moreover, it has been given generic classifications of holonomic integral diagrams
by the strict equivalence in the case when 1 < n < 3. For general n, by the technical
reason it is very hard to give classification. However, we can give a generic classification of
holonomic systems of Clairaut type. We describe the meaning of genericity in the sequel.
We briefly review the theory of one-parameter Legendrian unfoldings in [3,4]. We now
consider the 1-jet bundle JX(R x Rn,R) and the canonical 1-form θ on the space. Let

(ί,xι, . . . ,xn) be the canonical coordinate on R x Rn and (ί,a?ι, . . . ,x n ,2/, 9,pι, ,/>n)
be the corresponding coordinate on JX(R x Rn, R). Then the canonical 1-form is given
by θ — dy — X^=1 Pidxi — qdt — θ — qdt. We also have the natural projection

Π J^R x Rn, R) -> (R x Rn) x R

defined by Π(tf, x, y > q , p ) — (t,xyy). We call the above 1-jet bundle an unfolded l-jet
bundle. Let (μ,/) be a holonomic system with complete integral. Then there exists a
unique element h G Br such that t*θ = h dμ, where £r is the ring of function germs of
r- variables at the origin. Define a map germ
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by

Then we can easily show that £ ( μ j ) is a Legendrian immersion germ. We call t-(μj) «
complete Legendrian unfolding associated with (μ,/). By the aid of the notion of Legen-
drian unfoldings, holonomic systems of Clairaut type are characterized as follows :

PROPOSITION 3.2. Let (μ,/) : (Rn+1,0) -* R x J^R^R) be a holonomic system
with complete integral. Then (μ,/) is a holonomic system of Clairaut type if and only if
i(μj) is Legendrian non-singular.

A complete Legendrian unfolding £ ( μ j ) associated with (μ,/) is called a Legendrian
unfolding of Clairaut type if i(μj) is a holonomic system of Clairaut type.

Returning to the study of equations with complete integral, we now establish the
notion of the genericity.

Let U C Rn+1 be an open set. We denote by Int(Z7, Rx J^R", R)) the set of systems
with complete integral (μ, /) : ί/ -+ R x Jl(Rn,R). We also define L(Z7, JX(R x Rn, R))
to be the set of complete Legendrian unfoldings l(μj) ' U —>• Jl(H x Rn, R).

These sets are topological spaces equipped with the Whitney C°° -topology. A subset
of either spaces is said to be generic if it is an open dense subset in the space.

The genericity of a property of germs are defined as follows. Let P be a property of
equation germs with complete integral (μ, /) : (Rn+1,0) — » Rx J1(Rn,R) (respectively,
Legendrian unfoldings t(μj) : (Rn+1,0) -> Jl(R x Rn,R)). For an open set U C Rr,
we define P(U) to be the' set of (μ,/) G Int(f7,R x J^R^R)) (respectively, ί(μj) G
L(U, J1(R x Rn,R))) such that the germ at x whose representative is given by (μ,/)
(respectively, £ ( μ j ) ) has property P for any x G U.

The property P is said to be generic if for some neighbourhood U of 0 in Rr , the set
P(U) is a generic subset in Int(l/,R x J1(Rn,R)) (respectively, L(U, Jl(R x Rn,R)).

By the construction, we have a well-defined continuous mapping

(Πi)* : L(U, Jl(ΈL x Rn, R)) -* Int(i7,R x J^R"^))

defined by (Πi)*^,,)) = HI ot(μj) = (μ,/), where Πi : Jl(R x Rn,R) -> Jl(Rn,Έί)
is the canonical, projection. Then it has been shown that the following fundamental
theorem.

THEOREM 3.3. The continuous map

(Πi), : L(U, JX(R x Rn,R)) -^Int(l7,R x Jl(Έin,R))

is a homeomorphism.

Of course, the set of holonomic systems of Clairaut type is open by Porposition 3.2.
We use the notion of generic properties of holonomic systems of Clairaut type in the
set of all holonomic systems of Clairaut type adopting the relative topology as an open
subset of Int(ί/,R x Jrl(Rn,R)).

THEOREM 3.4. For a generic holonomic system of Clairaut type

(A ί,/):(R"+ 1,0)-,RxJ1(Rn

>R),
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the integral diagram (μ,τro/) is strictly equivalent to one of germs in the following list
DA,

μ =

g = (tiι,...,tιn+ι).

DA2

1
-tlι,

+1

(3 < I < n + 1)

μ =

= (tiι,...,tιn,tι*+ 1).

DAn+2 i

μ<x ~ Mn+i + α o g /or α G

0 = (til , . - , MnX+ϊ

This theorem gives a generic classification of integral diagrams of Clairaut type
under the strict equivalence. However, our purpose is to classify these subjects by the
equivalence. We remark that each germs of types DAi (2 < £ < n+1) and DAn+2 are
not equivalent. Thus the problem is reduced to classify germs which are contained in
the family DAn+ϊ by the equivalence. This family is parametrized by function germs α
which are called functional moduli. We shall characterize functional moduli relative to
the equivalence. For the purpose, we now adopt coordinates (#ι, . . . ,arn, y) of Rn x R
and define Vn = {(xlt . . . ,xn,y) G Rn x R|F = f£ = = ?̂ = 0 for some t},
where F(t, xi, . . . , xn, y) — tn+2 + x\t + + xnt

n — y- Then we have the following
characterization theorem.

THEOREM 3.5. Let (μa,9) be an integral diagram of DAn+ϊ. Then for any α, there
exists a function germ a! : (Rn+1,0) — » (R, 0) such that

(1) (μa,g) is equivalent to (μa',g).
(2) a'\T>n = 0.

This theorem is a generalization of Dufour's result in [2]. He has also shown that
the uniqueness of functional moduli relative to the equivalence, so that we now consider
a generalization of his uniqueness result. Define

Δ = {(χι , . . . , xn, y) G Rn x R|The (n + 2)-degree algebraic equation

F ( X l ) . . . ) X n j y ) ( t ) = 0 has (n + 2)-real roots with multiplicity},

where F ( X ί ) . . . ) X n t y ) ( t ) = F(t, x\, . . . , a?n, y). We say that α and OL are equivalent as moduli
if there exists α G R — {0} such that αα(a?ι, . . . ,xn,2/) = α;(αn+1a?ι, αna?2, . . ., a2xn,
αn+2t/) for any (a?ι, . . . ,xn,2/) G Δ. We remark that this definition of the equivalence
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among functional moduli is slightly different from Dufour's definition of it in [2]. If
we adopt his definition, we cannot assert the necessity of the condition that functional
moduli are equivalent. Then we correct the definition as the above.

THEOREM 3.6. Let (//<*>#) ana (μa',9) be integral diagrams of DAn+2 such that
a\Dn = af\T>n = 0. Then (μaίg) and (μa'>9) <*>re equivalent if and only if a and a' are
equivalent as moduli.

We emphasize that this theorem asserts that the equivalence classes of functional
moduli a with a\T>n = 0 are the complete invariants for generic classifications of holo-
nomic systems of Clairaut type under the equivalence relation given by the group of
point transformations.

We define 9Jt(£>n) = {a G Wl(x>y)\a\τ>n = 0} and M(DAn+2) = W(Dn)/ ~, where
~ denotes the equivalence relation as moduli. The above theorem asserts that the moduli
space for generic holonomic systems of Clairaut type is M(DAn+ 2).
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