M. OKA
KODAI MATH. J.
16 (1993), 181—195

FINITENESS OF FUNDAMENTAL GROUP OF
COMPACT CONVEX INTEGRAL POLYHEDRA

By Mutsuo OkKA

§1. Introduction and statement of the result.

Let A,, i=1, ---, k, be given compact convex integral polyhedra in R™. We
consider the following integer “combinatorial connectivity” a(4,, ---, Ax) which
is defined in [Ok6] by

a(d,, -, Ak)———min{dim (%Al)—m STl o, kY, I# @}.

We assume that a(4;, ---, Ax)=0. For any integral covector P, we consider the
restriction Pla, to A, of the corresponding linear function associated with P.
Let A(P; A,) be the face where P|,, takes its minimal value ([OK5, 6]). We
denote the lattice of the integral covectors by N. We define the subgroup
K, -, Ay) of N by

K<Ah ) Ak)=<PEN; (X(A(P; Al)r Ty A(P; Ak))go>'

Here <P=N; P=S) is the subgroup of N which is generated by the covectors
Pin S. We also define I1,(A,, -+, A):= N/K(A,, -+, Ax). We call K(4A,, -, Ap)
(respectively I1,(A,, -+, A,)) the boundary lattice group (resp. the fundamental
group) of the k-ple of polyhedra {A,, ---, A;}. The purpose of this paper is to
prove :

MAIN THEOREM (l1.1). The boundary lattice group K(A,, ---, A,) has rank
m if and only if a4, -, A)=1.

The geometric interpretation is as follows. Let h,(u), ---, h,(u) be Laurent
polynomials such that the respective Newton polygon A(h,) is equal to A,, for
i=1, ---, k. Let us consider the variety:

Z*={usC*™; hy(u)= --- =h,(u)=0}.
We can choose the coefficients of h,, ---, h, so that Z* is a non-degenerate
complete intersection variety in the sense of [Khl, 2, Ok4, 5]. See §4 for the
existence of such Laurent polynomials A,(u), ---, h,(u). Z* is non-empty if and
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only if a(4,, -+, Ay)=0 ([Ok4]). Let X* be a regular simplicial cone subdivi-
sion of the dual Newton diagram I™*(h,, -, hp)=I*(4,, -, As) and let X be
the associated toric compactification of the ambient torus C*™. Let Z be the
compactification (=closure) of Z* in X. Recall that for each vertex P of X*,
there exists a corresponding rational divisor E(P) of X so that X has the
toric stratification

X:C*mHCone(P1.~~~. PHES* E(Pn e, Poy®

where E(P,, -, Py*=Ni, E(P,)—Upﬁl,.‘.,ps E(P). Let E(P)=E®P)NZ. Note
that E(P) is non-empty if and only if a(A(P;A,), -+, A(P; A:))=0 (Proposition
(5.4), [Ok4]). We will see in §2 that the above subgroup K(4,, ---, Az) is
generated by those P<Vertex(X*) such that E(P)+ @ (Assertion (2.4), §2).

Let G be a finite abelian group. We denote by o(G) the minimal number
of generators of G. We say that Z* is full if dim A,=m for each i=1, -, k.
By Lemma (4.1) and Theorem (4.2) of [Ok5], we have:

THEOREM (1.2). (1) Assume that a(4,, -, A,)=0. Then the fundamental
group I (A, -+, Ap) 15 generated by at most k elements. That is, p(Ay, -+, Ay)
<k.

2) If zl(Z*)—em(g*"‘) is isomorphic, II(A,, ---, Ax) s somorphic to the
fundamental group n,(Z). In particular, this 1s the case if Z* is full and m—Fk
=2.

In [Ok6], we have generalized the second assertion for a non-degenerate
complete intersection variety with a(4,, ---, A;)=2 which satisfies the monotone
support condition :

(Mn) dim (3 4.)=dim4, =1, -, k.

Note that any full non-degenerate complete intersection variety with m—£%=2
satisfies the monotone support condition. As an immediate corollary of Theorem
(1.1) and Theorem (1.2), we obtain the following.

THEOREM (1.3). (1) Assume that a(q,, -+, Ay)=1. Then the fundamental
group II,(A,, -+, Ay) s a finite abelian group with o(Il,(A,, -+, Ap))<k.

(2) Assume that Z* satisfies the monotone support condition and a(4,, -, Ay)
>2. Then the fundamental group wmy(Z) is a finite abelian group and p(n,(f))gk.

The finiteness for the case =1 has been proved by [Okl] and the asser-
tion for the general case has been conjectured in [Ok5, 6]. In §3, we will
construct an algebraic surface whose fundamental group is isomorphic to an
arbitrarily given finite abelian group.
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§2. The proof of Main Theorem (1.1).

We first recall the construction of X ([K-K-M-S], [Khl], [Dn2], [Eh],
[0dl, 2], [Ok4, 5]). Let A=(a,;)=GL(m, Z) with det A==+1. We associate
to A a birational morphism

Ga: C*¥™ —s C*™

which is defined by ¢4(2)=(z7"* -+ zm" ™, =+, 27™' - zm™ ™). The morphism ¢,
satisfies the property: ¢ c¢pp=¢4s. In particular, (¢)'=¢4-1. Assume that
a.,,,=0, i=1, .-, m for some j,. Then ¢, extends to C*"Ul{z;z,,=0, z,#0,
1% Jo}-

The dual Newton diagram ['*(4,, ---, A,) is the polyhedral cone subdivision
of the space of covector which is induced by the equivalence relation: P~Q&
AP; A)=AQ; A), i=1, ---, k. Let X* be a given regular simplicial cone sub-
division of the dual Newton diagram I'*(4,, ---, A;). Let # be the set of m-
dimensional simplicial cones in Y*. For each ¢=Cone(P,, ---, Pn)EM, let C?
be the affine space of dimension m with coordinate y,=(y,.1, **, Yo.m). Here
P, ---, P, are primitive integral covectors which generate ¢ and they are called
the vertices of ¢. Let P,=%(pi,,, -+, Pa.j) for j=1, ---, m. We identify ¢ with
the corresponding unimodular matrix (P, -+, Pn)=(p:,;). The original torus
C*™ is identified with the maximal torus C¥™:= {y,=C?; y,,,#0, i=1, ---, m}
of the coordinate space CJ* through the isomorphism ¢, : C¥"—C*™. X is covered
by the affine coordinate charts {C¥; = M}. Let ¢=Cone(P, -, Pyp), t=
Cone(Q;, -+, Qn)eM. We recall the gluing of these coordinate spaces, as we
use it later. Two points of the different coordinate spaces u,€C? and u.=
C?™ are identified when and only when the birational map ¢,-1.: C*—CT is
well-defined on y.=u.€C? and u,=¢,-1.(u;). Let ¢7't=(4,;). This implies
that

@.1) Q,= é APy

Thus 4,,,=20 for each /=1, -+, m if and only if Q;=¢. This is the case if and
only if Q@,=P, for some /. Changing the ordering of the vertices if necessary,
we can assume that oN\t=Cone(P,, ---, Ps) and Q,=P,, 1</<s. Then the
matrix ¢!t can be written as

I Ay
glt=
0 A,
where I; is the sXs identity matrix and ¢,-i. is well defined precisely on

{y.€C™; y. ., #0, s+1<7<m}. Thus applying the same argument for r~'c, we
can see that

¢a—lt: {yzEC?"; yr,ﬁ&O, 3+1§Z—§m}—>{yoecr; ya.z¢0y S+1§Z§m}
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is biholomorphic. In particular,
@2 Cr—Cr=Crn( ) EP))=1ysSCF; Yo.vos Yo.n=0)

Recall that in the coordinate space C?, E(P,) and E(P,):= ZNE(P,) are defined
by
E(Pl)ﬂC}"’: {yaECZr”; yo‘,1=0}

EPINCP={y,=C7; yd.t:hl.Pl,a(ya)z :hk,Pi.a(yd)zo}
d.(Pj;Aa).

where ha'Pl, a(ya‘) iS deﬁned bY the equality ha.P,;(gbo'(ya)):ha,Pt, a(ya) 'H?fn=1yd]
Here d(P,; 4.) is the minimal value of P;|a,. Note that A(k.,r,)=A(P; A,) and
E(P) is a non-empty divisor if and only if a(A(P; A,), .-+, A(P; A:))=0 by Pro-
position (5.4) of [Ok4].

Now we prove Main Theorem (1.1). Assume first that a(4,, -+, Az)=0.
There exists a non-empty subset /{1, ---, &} so that dim (3ier A,)—|1]=0.
Take any integral covector P such that a(A(P; A,), -+, A(P; A;))=0. Then we
must have A(P; A,)=A, for any ;= (Proposition (4.1), §4). This implies that
K is orthogonal to the affine subspace generated by >c; A,. Thus rank(K(4,,
<o, Ap)Em—|I{. Now we assume that

2.3 a(dy, -, A2l

We have to show that rank(K(4,, ---, Ax))=m. Let <V be the set of the vertices
P=Vertex (X*) such that a(A(P; A,), -+, A(P; A,))=0. It is obvious that <{P; P
ey Ky, -+, Ap).

ASSERTION (2.4). The boundary lattice group K(4,, -, Ay) is equal to
(P; Pecyy.

Proof. Assume that P is an integral covector such that a(A(P; A,), -,
A(P; A))=0. P is not necessarily a vertex of Y*. Let [P] be the closure of
the equivalence class of P in I™(A,, ---, Ax). It is easy to see that dim [P]=
m—dim (3%, A(P; A,)). Let r=dim [P]. As 3* is a regular simplicial subdivi-
sion of I™(A,, ---, A.), there exists a simplicial cone ¢=Cone(P,, -+, P,) in X*
such that P, .-, P,&[P] (=the closure of [P]). Note that P,ecy for i=lI,
o, v as A(P,; A;)DA(P; 4)), 7=1, ---, k. It is obvious that we can write P=

21, a;P, for some rational numbers a,, ---, a,. We assert that a;Z for i=
1, ---, . Consider a, for instance. Then the assertion follows from the
equality :

Z>det(P,, -, Pr_y, P)=det(Py, -, Py_1, 3 a:P))
1=1

=a,det(Py, -, Pr)=a,

Here det(P,, ---, P,) is the greatest common divisor of the »X»-minors of nX7-
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matrix (P, -+, P,) as in §3 of [Oki]. QE.D.

Let »=rank(K(4,, ---, A;)) and assume that »<m—1. We will show that
this gives a contradiction. Let Krp=K(A,, ---, Ay)QR be the linear subspace of
the real vector space of covectors Np=N@R. Taking a regular subdivision if
necessary, we may assume that the restriction of 2* to K is also a regular
simplicial cone subdivision of K (§3, [Okl]). We consider the subset .’ of
coordinate charts M which is defined by :

t=Cone(Q,, =, Qu)EM & Q:€K(4,, -, &), 1=ZiZr.
ASSERTION (2.5). The subfamily {C™; o= M’} is a covering of Z.

Proof. Take an arbitrary point peZNF\C,’," where o=Cone(P,, -+, Pn).
Changing the ordering if necessary, we may assume that p corresponds to

©, -+, 0, agsr, -, an) With a,#0, t+1<i<m, in this coordinate chart. This
implies that P;e<y for yj<t. In particular t<r. If t=r, oM. Assume that
t<r. We can find a simplicial cone r=Cone(Q,, ---, Q) in M such that

Q,=P, for j=1, -, t. Then we see easily that pZNC™ by (2.2). Q.E.D.

Let ¢=Cone(P,, :--, P,) be a fixed simplicial cone in #’. We consider the
canonical extension of the coordinate function y,,, for r+1<j7<m. They are
rational functions on X. We assert:

LEMLVIA (2.6). For any j, r+1=<j7<m, the restriction of the rational function
Ye,, to Z is holomorphic. In particular, it is constant on each connected com-
ponent of Z.

Proof. Take a coordinate chart C?, t=Cone(Q,, -, Qn)EM, and let
6~ 't=(4,,,). Recall that the rational function y,,, is written in the coordinate
chart C? as y,,,,:yf,’f‘ yf,’,;]". By the assumption, both of {P,, ---, P,} and
{Q,, -+, @} are the basis of K(4,, --, A,). Therefore the matrix ¢ 'r=(4,,,)
takes the following form :

Al,l AI,Z
o lr=
0 As,

Namely A.,=0 for r+1<i<m, 1<j<r. Therefore we have y,,=y2%I
yism, for r+1<j<m. As ZNCPC{ye; 9e,.#0, i=r+1, -+, m}, the above ex-
pression implies that y,, is a holomorphic function on ZNC™. As Z is a
compact complex manifold, the second assertion follows immediately. Q.E.D.

Now we are ready to finish the proof of Theorem (1.1). We assume that
r<m. (Recall that r=rank(K(4,, ---, A;)).) By Assertion (2.6), the restriction
Ye.m|% is constant on each connected component of Z. Let {8, -, 8,} be the
values of yomlz. Let hgeni(Ws) i = Yo, m—0 for 60C. We can choose 0 so that
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0+0,, -, 0; and the subvariety of Z*

V*:i={ysEC3™; hioyo)= -+ =hu,ols)=his1,6(Yo)=0}

is a non-degenerate complete intersection variety. See the Appendix in §4 for
the existence of such a 4. By the assumption 8+#46,, ---, d;, V* is empty. Let
Ai=A(h,,,) for i=1, -, k+1. The assumption (2.3) implies that a(4], ---, Ap)=1.
We assert that a(Af, ---, Ak)=0. In fact, for any subset /{1, ---, k+1}, we
have

>1  if k1l
dim(z}A;)—|1| >0 if k+lel, |11=2
iel
=0 if I={k+1}.

Thus again by Proposition (5.4) in [Ok4], V* is non-empty. This is a contra-
diction to the emptiness V*=@. This completes the proof of Theorem (1.1).

§3. Construction of an algebraic surface with
a given fundamental group.

In this section, we will construct an algebraic surface which has an arbi-
trary given fundamental group. We first give several basic properties of the
boundary lattice group K(4,, ---, A,) and the fuudamental group I7,(4,, -+, Ay).

3.1) Let A, A}, 7=1, ---, b, be compact convex integral polyhedra. We
say that {A,, ---, Az} and {A], -, At} are similar if there exist integral vectors
A, -, A, and positive rational numbers 7,, ---, 7, so that Ai=r;A;+ A, i=1,
o, by and we write {A;, -+, A} ~{AL -, AY.  Assume that {A,, -, Ay~
{A], -+, Az}, Then it is immediate from the definition that

(3'1'1) K(Ab Tty Ak)":K(A;! R Allz)y ”1(Al’ Tty Ak)znl(A;) Tty Al’e)

(3.2) There is a canonical action of the unimodular matrices SL(m; Z) to
the set of compact convex integral polyhedra. Let & be a unimodular matrix
and let A be a compact convex integral polyhedron. We denote the image of
A by the action of & by A®. Then we have canonical isomorphisms which are
induced by the equality A(EP; A)=A(P; A%)

(3.2.1) K@, -, ADSKWQS, -, AD, 11,4, -, A=A, -, A,
EeSLm; Z)

(3.3) Let I={i,, ~-, 45} be a subset of {1, .-, 2}. Then we have the
canonical inclusion: K(4,, -, Ap)cK(4,,, -+, 4A,,). This gives the canonical
surjective homomorphism :
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@.3.1) L, -, &) —> 1Ay, -+, A,) —> 0

(3.4) Let us consider the case: A,= -~ =A,=A. The corresponding variety
is called a strictly similar complete intersection variety ([Ok5, 6]). By the de-
finition, K(4, ---, A) is generated by the (m—k)-skeleton of the dual Newton
diagram I"'*(A). Thus the calculation of K(4, ---, A) and II,(4, ---, A) is easy.

Let G be an arbitrary finite abelian group. Now we construct an algebraic
surface M such that =, (M)=G.

Example (3.5). We first consider the case ~p(G)=1. Then we can write
G=Z/nZ. We consider the algebraic surface M, which is the compactifica-
tion of

Mi={(x, y, 2€C*; h(x, y, 2)=x""2"+y*"2"+2+1=0}

and let A, := A(h). The dual Newton diagram is generated by four vertices:

1 0 -1 2
rels) e=(s) m=GE ()
0 0 2n —b6n

Thus K(A,) is generated by integral covectors in Cone (P,, P)), 1<i<j<4. Let
{Cone (P,, P;)>z be the subgroup which is generated by the integral covectors
in Cone(P,, P;). Note that <Cone(P,, P;)>; is generated by P, and P, if and
only if det (P,, P;)=1. Otherwise (Cone(P,, P;)>z=<P,, T) where T is an inte-
gral covector TCone(P,, P;) such that det(P,, T)=1. See the proof of Asser-
tion (2.4). In our case, {(Cone(P,, P;))z=<P, P,> for (7, )=, 2), 2,3). As
det(Py, P;) =2, det(P,, P,)=3 and det(P, P)=2, <Cone(P,, Py))yz=<P, T,
{Cone (Py, P)yz=<P,, S) and <{Cone (P,;, P,)>z=<{P,R)> where

0 1 1
T:=(P1+P3)/2=(—1), S:=(P4+P1)/3=( %), R:=(P4+P2)/2=( 2 )

n —un —3n

Thus K(A,) is generated by covectors P, -, P,, T, S, R and we can easily
see that

cn

K(A,,):{( Z ); a,b, cez}, I,A)=nM)=Z/nZ

Remark (3.6). To construct an explicit algebraic surface with fundamental
group Z/nZ whose topological Euler characteristic or geometric genus is as
small as possible, the above example is not the best for n relatively coprime
to 6. Let

Ni={(x, y, 2€C*; x"2*+y"2*+z+1}.

Then we have n,(ﬁ,,):z/n’Z where n’=n/ged{n, 6). This series contains
many interesting surfaces. For example, N, is called an Enriques surface and
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r(N)=2Z/2Z. N; has the fundamental group Z/5Z and it is called a Godeaux
surface. We have studied these cases in [Ok3, Ok2].

Example (3.7). Let I, n be a given positive integer. We consider the case
that G=Z/nZPZ/nlZ. We consider a strictly similar non-degenerate complete
intersection variety M¥ ;= {us C**; h,(u)= h,(u)=0} whose dual Newton diagram
is generated by five vertices:

1 0 -1 —1 1

0 1 -1 —2 3
Pl"‘ 0 » P2“" 0 H Ps—- n » PA— ——271 ’ PG_‘ 3n

0 0 0 2in —6in

For example, we can take
hiw)y=a,, us™ufud+ta;, ui " ufuil+a,, uiui’+a, ui+1,  i=1,2.

Let A, 1=A(h;@)). Asdet(P, P,)=2, det(P,, P;)=3 and det (P;, P;)=2, we have
{Cone (Py, P,)>z=<Py, T>, <Cone (P,, P;)>z=<P;, S;> and <{Cone (P;, Ps))z;=<Ps, R>
where T=(P,+P,)/2=40, —1, —n, In), S=(P:+2P))/3=*{1, 1, n, —2In) and R=
(Ps+Py)/2=40, 1, 2n, —3In). Thus K(A,.;, A,,)) is generated by those vertices
and we have

K(An'l, An_z): cn ; a, b, c, deZ ,

din
(A1, An,)=m:(M,, ) =Z/nZBZ/InZ.

Now we consider K(A,,1). As K(A,,,) is generated by 3-skeleton of 1'*(4,,,),
we have to add <{Cone(P, P,, P.))z to K(A, i, A, ;). First we have E;:=
(Py+Py+Py)/n=%0,0,1,0=Cone (P,, P,, P;). Secondly —FE,:=(P,+3P,+2P,)/6in
=0, 0, 0, —1). Thus we have K(4, ;)=N and IT,(A,, ;)=0.

Example (3.8). Let n, m, [ be given positive integers and assume that G=
Z/nZPZ/nmZPDZ/nmlZ. We consider an algebraic surface M, , which is
the compactification of the non-degenerate complete intersection variety

M, 1= {us C*¥*; hy(u)= ho(u)=hy(u)=0}

whose dual Newton diagram is generated by six vertices



FUNDAMENTAL GROUP OF COMPACT CONVEX INTEGRAL POLYHEDRA 189

1 0 -1 —1
0 1 -1 —2
P1= 0, P2=0, P3= n | P4= _Zn,
0 0 0 2nm
0 0 0 0
-1 1
-3 4
Pi=| —3n |, Py= 8n
—6nm 12nm
6nml —24nml

For example, we can take
h«i(u):a@, 1(“7}”3)238"‘[“:321“224"‘az, 2(u72lu3)200mlu200lu200
+a., (uiu) ' ul"+a,, (uius)+a,, su3*+1, =1, 2, 3.

Let A=A(h,). As det(P, P)=2, det(P,, P;)=3, det(P,, P;)=4, det(Ps, P;)=2,
det(Ps, P)=3 and det(P,, P;)=2, we have

{Cone (P, P,)>z=<Py, P>, {Cone (P, Py)>z=<P, P>,
{Cone (P, Pe)>z=<{Py, P, o), {Cone (Py, P5)>z=<{Ps, P35,
{Cone (Py, Pg)yz=<Ps, P3¢, {Cone (P,, Pg)yz=<P,, Py &>

and <Cone (P,, P;)>z=<P,, P, for other (i, j) as det(P,, P;)=1. Here P4, -+, Py
are defined by
P, ,=(P+P)/2=*0, —1, —n, nm, 0)

P, s=(P,+P;)/3=%0, —1, —n, —2nm, 2nml)

P, =Q@P,+Py)/4="(1, 1, 2n, 3nm, —6nml)

Py s=(Py+-Py)/2=4—1, —2, —n, —3nm, 3nml)

P, =(P;+P;)/3=%0, 1, 3n, 4nm, —8nml)

P, o=(P,+P;)/2=%0, 1, 3n, Tnm, —12nml).
Thus we can easily conclude that

a

b
K, A A=3| ¢n |;a,b,¢c,d, eeZ} and
dnm
enml

A, A, A=1,Mnn )=2Z/ 0 ZDZ/ nmZDZ/nmiZ .

Now we consider K(A, A) and K(A). As generators of K(A, A) (respectively of
K(A)) we need to add {Cone(P,, P,, P;)>z (resp. <Cone(P,, P,, P,, P,)>z). For
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brevity, we assume that m%0 modulo 2, 3 and /%0 modulo 3. In addition to
the generators of K(A, A, A), we have the following in K(4, 4):

Py, 3:=%0,0, 1,0, 0)=(P,+P+Py)/n

Pis . :=%0, —1, =2+n, m, 0)=(P,+@2n—2)P;+@2n—1)P,)/2n

Py, o:=4—1, —1, n, 3, —4)=(Pe+3P,+(6nm—2)Py)/6nm

Pios:=40, =1, —14n, —m, ml)=(Ps+(6n—3)P:+(6n—2)P,)/6n

P, 5:= 40, —1, n, —3+4nm, 21)=(Ps+(3nm—3)P,, .+ Py)/3nm

and the following is also contained in K(A):

Y0, —1, n, 0, —1)=(Ps+(12nml—12n+4)P,

+(12nmi—12n+-3)P,+120P; 4, 5)/12nmi .

Thus IT(A, A)=Z/IZ and II,(A)=0. We leave the details for the calculation
of this assertion to the reader.

Example (3.9). A polynomial h(u) is called strongly full if for any subset
Ic{1, -, k}, the restriction h?:= h|.s is not constantly zero and dim (A(h7))
=|I| ([Ok6]). We also call A(h) a strongly full polyhedron. Assume that A,,
.+, A, are strongly full and m—k=2. Then it is easy to see that F,:=

-

‘(0,~~-,1’, -,0) is in K(4,, ---, A,) for any 7=1, ---, m. Therefore we have that
K(A,, -, Ay)=N and II,(A,, ---, Ay)=0. In particular, any non-degenerate
strongly full complete intersection variety of dimension m—£%=2 is always
simply-connected. The simply connectedness of a smooth complete intersection
variety, with dimension greater than 1, in the projective space P™ can be re-
duced to this criterion.

General Case (3.10). Let n,, ---, n, be given positive integers. We will
construct an algebraic surface whose fundamental group is isomorphic to Z/n,Z
b ---PZ/nsZ. Probably we can construct such a surface as a strongly similar
non-degenerate complete intersection variety as we have constructed in the case
of s<3 in Example (3.6), (3.7) and (3.8). However to give a uniform series at
a time seems fairly complicated as is already the case in Example (3.8). We
propose a slightly different point of view. We start from the product variety
of dimension 2s

W*:Mﬁ;lx XM;fs:{(uh v, u)eC* s hi(u)=0, i=1, -, s}

where u,=(x,, y,, z,) and h(u,)=x"zi+y?"z2 2. +1. The sgrface M3 =
{u,eC**; hy(u,)=0} is studied in Example (3.6). The surfaces N, in Remark
(3.6) can be equally used for the following construction. Let A,=A(k,). It is
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easy to see that
K(Al, Tty As)sz(Al)X XKa(As)’ F*(Ab Tty A,)-——P’;‘(A,)X XF::';(As)

where K;(A,) and I'%(A,) are the boundary lattice group and the dual Newton
diagram of A, as a polyhedron in R®. Taking the product compactification X=
X X -+ XX, associated with a product regular simplicial cone subdivision X*=
IX - XZs of T¥ADX - XI'%(As), We can see that the compactification W of
W* is nothing but the product M, X - ><A7Ins. Therefore

(3.10.1) n(N=I 4y, -, A)=Z/mZD - DZ/n.Z .

Let #=A,+ -+ +A;. Note that §=A,X --- XA, if we consider A;CR® and that
dim £=3s. Now we consider the following non-degenerate complete intersection
variety of dimension 2 (= a surface) which is given as an iterated admissible
hypersurface section of W* in the sense of [Ok6]:

M*={ueC**; k)=0, j=1, -, 3s—2}

where kju)=hyu;) for j=1, -, s and {ks. (W), -+, kss_o(u)} are generic poly-
nomials with A(k;))=25, for j, s+1<7<3s—2. Let M be the corresponding com-
pactification. The following lemma and Theorem (1.2) implies that =,(M)=
z/mZD - PZ/nsZ. Thus M is a surface which we are looking for.

LEMMA (3.11). We have K(A,, -+, As, &, -+, E)=K(4,, -, As). (Here there
are (2s—2)-copies of 5 in the left side.) Therefore

HI(AD ) AS) E, ) E)ZHI(AI) Tty A3)=Z/nlz® @Z/nsz-

Proof. We have seen that K(4,, -+, A, &, -+, B)cK(4,, -+, A;) in (3.3).
We have to show the opposite inclusion. Let N, be the lattice of covectors
corresponding to the variable u, and let p,: N—N, be the canonical projection
and let ¢,: N;)—»N be the canonical inclusion. Then ¢: NoN,@D - @N; is an
isomorphism where ¢=3_, p;, and ¢~ '=33%_,¢,. Let PEN and let P,=p,(P).
Then we have that

a(A(P; Ay), -, A(P; A))20 & dim (A(P,; A)=1 .

Assume that PEN satisfies a(A(P; 4y), -+, A(P; As))=0. Let P,eN, be as above
and let P;=¢,(P,)N. Note that p,(P;)=0 for j#¢ and p,(P;)=PF;. Thus it is
easy to see that
A,, J#i
A(P;; Ap))= and
AP 4),  j=i

A(PL; B)=AP; A+ 32 4,.

J#1

Thus dim A(P;; 5)=3s—2 and it is easy to see that
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a(A(P;; Ay), -, AP &), AP 5D, -, AP E)=0.

This implies that Pie K(4,, -+, A, &, -+, &). Thus P=3_, P! is also contained
in K@, -, 4, 8, -, 8). As {PEN; a(A(P; Ay, -, A(P; A))=0} generate
the boundary lattice group K(4,, ---, A,), this shows the opposite inclusion:
K@y, -, A)cK(A,, -+, Ay, &, -+, B). This completes the proof.

§4. Appendix.

We consider arbitrary integral convex polyhedra A, -+, A, in R™ An
integral point A of a convex polyhedron A is called a vertex of A if A is not
on any face of A of dimension greater than 0. Let {4, ,, -, A,;} be the
vertices of A, and let {A, ¢, -, 4. q,} be the other integral points of A, for
i=1, ---, k. Put

d
hi(u’ tl)=h‘l, gi(u)-_—' 2‘ tt, juA"J
7=1

where ¢,=(t,,s, -+, t,,4,). For each t=(t,, -, t,)eC**"+%, we define
Zt={usC*™; h(u, t,)= - =h,(u, t,)=0}
Wi={ucsC*™; h(u, t,)= - =h,_,(u, t;)=0}.

Let us consider the subset U:= wU(4,, ---, A;) of the parameter space C%1X ---
X C*k which is defined by ¢=(,, ---, ;)€ if and only if

(1) (Stability of Newton Polyhedra) A(h,, e )=A,, i=1, -+, k and

(2) (Non-degeneracy) Z¥ is a non-degenerate complete intersection variety.
(1) is equivalent to ¢, ,#0 for 1<j<e, 1<i<Fk. Let P be an integral covector.
We say that P is trwial on {A,, -+, A} if A(P; A)=A, for each i=1, -, k.
In other words, P is trivial on {A,, ---, A,} if and only if P is a constant func-
tion on A+ --- +A,. Thus

PROPOSITION (4.1). If P is non-trivial on {A,, -+, A}, we have the inequality :
. k . k
dim ( SAP; A))<dim po| A,).

This is obvious from the general equality : 3%, A(P; A,)=A(P; 2*_, A,). For a
non-trivial integral covector P, we define

Z¥P):={ucC*™; hy p(u, t)= - =hs s, t:)=0}

where h, p(1, £)34, eap;apl., Uit o,

Let a=(a,, -+, a;) be a fixed parameter which satisfies the stability condi-
tion (1) and take and fix an/, 1<I<d,. Putt(t)=(a, -, @iy, as(r) and a,(z)
=(@x1, 5 @r1t+7, v, Gra,). We consider the line in the parameter space
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L,(a) which is defined by L,(a)={t(r); r=C}.

THEOREM (4.2). Assume that we have chosen the coefficients t;=a,=(a,,,, *,
@.,q;) of h, for i=1, -, k so that W¥ and Z*(P) are non-degenerate complete
intersection varieties for any non-trwial covector P on {A,, -+, Az}. Then for
any fixed |, 1<I<d;, Li(a)—UNL(a) is a finite set where L,(a) is the complex
line as above.

COROLLARY (4.2.1). U s a non-empty Zarisk: open set.

Proof of Theorem (4.2). Let m’=dim(3%.,A,). By a change of Laurent
coordinates if necessary, we can assume that m=m’. We fix a regular sim-
plicial cone subdivision X* of I'*(4,, ---, A:) and let X be the corresponding
compactification of the torus C*™. As we have assumed m=m’, P is non-trivial
for {A,, ---, A,} if and only if P is a non-zero covector. Assume that the co-
efficients {t,,,=a, ,;1=<j<d,, 1<i<k} are given so that W} and Z¥P) are
non-degenerate complete intersection varieties for any non-zero covector. We
take an arbitrary [, 1<I<d,, and we consider the one-dimensional family
{Z~,<,);reC} of the divisors in W,,. Recall that
4.2.2) Zt(r)—Z;km: U Et(r)(P)

PeVertex(2*)
where Ei(P):= E(P)Y"\Zy. The base point locus of this family is the union
of the divisors E.(P) such that A, &A(P; A,). The assumption that Z¥(P) is
non-degenerate implies that E;q,(P)=E,(P) is also non-singular for any vertex
PeVertex(X*). Applying Bertini’s theorem ([G-HJ]) or Curve Selection Lemma
([M]), we conclude that {Z~;"(,)} are smooth except a finite number of exceptions
=1y, -, Tp. Q.E.D.

Proof of Corollary (4.2.1). By a change of Laurent coordinates if necessary,
we can assume that m=m’. Let w: C%—{0} X -+ XC%%*— {0} »>P%171x ... X P!
be the canonical projection and let U==n(VU). As U=zr"(T), it suffices to
show that U is a non-empty Zariski open set. Let

Z¥={(u, z0)EC** X (P17 X - X PN hy(u, )= =hi(u, t;)=0}.

We fix a regular simplicial cone subdivision X* of I™(4,, ---, A;) and let X be
the corresponding compactification of the torus C*™. Let X=XXP% X --- X
Per! and let p: X—Po X ... X P! be the projection. Let & be the com-
pactification (=closure in ¥) of 2* in %. For each vertex P, let &(P)=E(P)
X P41y .. x P4 and let &(P)=2N&(P). Let S(P) be the set of singular
points of &(P) as a complete intersection variety in &(P)and let S be the union
Upevertexcso S(P).  Let D=p(S) and D'=\U%,\USL,{t,;=0}. By the proper
mapping theorem ([Re]), p(&)and D are analytic subsets of P%1-!x ... x P¢r71,
Thus they are also algebraic by Chow’s theorem. If a(4,, ---, Ax)<0 and Z*
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is non-degenerate, Z*(P)=@ for any covector P. Thus U=P%-1x ... X P¢*~!
—p(@). If a(A,, -, Ay)=0 and Z* is non-degenerate, Z*+ @ (Proposition (5.4),
mMD.TMmME@=M%—WUD%.Mmmth@¢®.TMnmeum&
versality argument shows that U is an open set in the strong topology. Thus
if U+@ and a(q,, -, A)=0, p(E)=P%4 1X .- X P! ag Pl 1x ... X Pért
is irreducible. Thus in any case U is a Zariski open set. Therefore it suffices
to show that U+ @. Now the non-emptiness U +# @ follows easily from Theo-
rem (4.2) using the induction on £ and m'.
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