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ON THE FUNCTIONAL EQUATION f"=ef1+ -+ +efm» AND
RIGIDITY THEOREMS FOR HOLOMORPHIC CURVES

BY Yoj1 NODA

Introduction and statement of results
For each positive integer N we set
Exy={ef14+ ¢+ 4¢Pn P,eC[z], deg P,<NO=1, - , m), mEN}.
In 1929 J. F. Ritt [4] showed the following theorem.

THEOREM A. Let g,, g1, -, 8n be elements of E, and f be a holomorphic
function on {z; ,<arg z<w,} (@;—w,>7) satisfying gnf"+&n-1f" "'+ +80=0.
Then f<E,.

It seems to be natural to ask whether Theorem A is valid with E, replaced
by Ex (N=2). However, if g,#1, the function f(z)=sin (xz%/sin 7z gives a
negative answer to the above question.

Let g: C—P, be a holomorphic curve of finite order, Do, Dy, =-> Dm_1 be
hyperplanes and D, be a hypersurfac of degree n (=2) satisfying DyN -
NDw— @, g(CYN(DyJ*** UD,)=@. We ask whether the image of g is con-
tained in the intersection of hypersurfaces of P,. This problem is related to
the functional equation f®+g-1f"*++++ +g,=0 (go, *** , gn-1EEn)for an entire
function /. M. Green [I] treated the first non-trivial case f2=e®/1+4¢??2+ ¢?¢3
(@1, @2, @3=C[z])and showed that / is a linear combination of e?:, e*2, e¢?s. He
also showed that, if g: C— P, is a holomorphic curve of finite order omitting the
two lines {Z,=0}and {Z,=0} and the conic {Z2+Z,*+Z,*=0}, then the image
of g lies in a line or a conic ([1]).

In this paper we shall show the following results.

THEOREM 1. Let Py, ---, P, be polynomials, N=n}axdegP,, N=2, A,=

PM0)/NI(G=1,-, m), n (=2) be an integer and f be a holomorphic function
on {z; w,<arg z<w,} (@Ws—w,>n/N). Assume that #{j A,=v, j=1, -, m}=1
for every vertex v of the convex hull of {A;}7,, and that fr=eF1+4 +++ fefm
on {z;w,<argz<w.}. Then [ is an element of Ey.
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THEOREM 2. Let f be an entire function, n(=2) be an integer and P,, ---, P,
be polynomials satisfying that jZJ ef1£0 for every subset J< {1, -+, 4} with J#@
(=

and that P;—P,+#const. for some j+k. Assume that fr=e 1+ «++ +eP1, Then
there are the following two possibilities:

(1) n=2, 3 and f=eP+-e?, where P, Q are polynomials.

Q) n=2 and f=eFR(e?), where P, Q are polynomials and R(w)=w?+
V2ew— 6® with ¢+#0.

In Theorem 2 the vertices of the convex hull of {A;}5-; do not necessarily
satisfy the assumption of Theorem 1. For example, A,, -+, A, can be on the
line segment {a+x(8—a) 0<x<1} and satisfy #{j; A,=a}=1, #{j; A,=B}
=2. In this case, however, it is verified that, if A,=A,, then P,—P,=const..
In Section 2 we prove a more general result (Theorem 5). From Theorem 2
we obtain the following theorems.

THEOREM 3. Let g: C—P; be a holomorphic curve of finite order, D,, D,
be distinct lines and D, be a conic.  Assume that D,N\D.N\D,=@, g(C)N
(DJDNJD)=@. Then there is a homogeneous polynomial Q(w,, w,, ws) of
degree at most three satisfying g(C)C {Q(w,, w,, wy)=0}.

THEOREM 4. Let g: C—P; be a nonconstant holomorphic curve of finite
order satisfying g(C)N({w,=0} U {w,=0} U{w,=0} U{w,"+ ++ +w;"=0})= 0,
where n (=2) is an integer. Then there are homogeneous polynomials Q,(w,, ***, ws),
Q2(wo, -, ws) which are relatively prime to each other and satisfy 1<deg Q,<2,
I1=deg Q:<4 and g(C)=({Q:(w,, ***, w)=0}N\{Q:(wo, -+, w)=0}). Further if
n=4, then g has the reduced representation (go, 81, 82 8s) Such that {g;}3=e=
{ao, fli, a,, e} or {g;}i-0=/{ao,a,, a.e®, ase®}, where a,s are constants and P is
a polynomial.

The order p of a holomorphic curve g: C—P, is defined by p =
limsup (log 7(r, g)/log r), where T(r, g is the characteristic function of g. (Let

(80, &1, ', &m) be a reduced representation of g Then we define T(r, &)=
2n ;
(1/27) | "log (max | g,(r¢*))d6 —log (max | ,(0) 1))

Remark. 1In Theorem 3 we cannot conclude that the degree of Q(w,, w,,w,)
is at most two, since the curve (1, ¢, (14e%)e*’?) satisfies the assumption of
Theorem 3 with Dy={w,=0}, D,={w,=0}, D= {w.*—w,w,—2w,*=0}. (In this
case Q(w,, Wy, ws)=wstwo—(w,+w,)?*w,and the image lies neither in a line nor
in a conic.)

1. Proof of Theorem 1.

For each =R and a=C, the polynomials Py(e!?z)+az", -, Pn(e'?2)+az¥
satisfy the hypotheses of Theorem 1 with / replaced by f(et’z)e®/™="  There-
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fore we may assume that ©;<0<w, and that the following condition (A) is
satisfied.

(A) n(=2) s an integer, P,, --- , P, are polynomials, P;—P,+const. (j# k),
sz?x deg P,, N=2, A,=P;*"0)/N! (j=1, ---, m), U is the convex hull of

{Ay, -, A}, {Ay,-, A} is the set of the vertices of U, t=2, arg (A,—c)<
arg (A,—c) < <arg (A;—c)<arg (A,—c)+2afor all c € (£7— {Ay,, Ad),
Re A,=Re 4,, Im A,>Im Aiand Uc{z; Re z<Re A,}.

For each ve {1, -, t}, let {p,;},be the set of polynomials of degree at
most N definedd by

exp P/m(I+ B B exp(Pu—P)Y)= Texp(hu.y),

(1, m)—o(

(L.D)
Du,i— Dur#const. (J#k), Im (p,,;00)<[0, 27),

where H,é 7;w’ is the Taylor expansion of (1+w)'" (Jw|<1). Put

(1.2) @y, ,=Du,¥(0)/N!,
Sv={z arg (Aps,—Ay)/n)<arg (z—(A,/n))<arg (As-1— Ay)/m)} U{A,/n}
- (A=A, v=1, -, t—1),
Si=A{z arg (Ai—A)/n)<arg (z—(A,/n))<arg (A,-1—A)/m)}P\U{A/n}
(see Figure 1 and 2).

\

As/n
Az/n s/ \ Az/n

Sy S

v Ay/n Ay/n
Ae/n /
/'/

Fig. 1. Fig. 2.

Put
H,={; Rez<0}\UiR*, ft=}z Re z<0}UiR~,

where iR*={ix ;x>0}, iR-={ix ;x<0}. For (0, n/2) and d>0, we set
G0, d)={z;0<arg z<0, Im z>d},
G0, d)={z;0>argz>—0, Imz<—d}.
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Further we denote by

C(p)

the leading coefficient of a polynomial p. Note that C(p)=0if and only if
»=0.

LEMMA L11. Let py, -+, pm be polynomials satisfyingC(p;)e H,(j=1, **+, m)
or C(pEH(j=1, -+, m) and A,, ---, An be positive numbers. Then deg (A:p,+
see +2m1)m)=n}ax deg P;, and C(lex'*" o +lmpm)€H1 or C(lll)l‘*‘ tee +lmpm)EH2

respectively.

proof. Assume that C(ppeH, (=1, ---, m). Put D:m?xdeg Dy /—
{7; deg p,=D,j=1, -, m}, c=€§2,C(pj). Then we have c¢=H, Further
J

Aipi+ + oo +2npn=cz’+q(z), where ¢ is a polynomial of degree at most D—1.
Thus deg (4:p:+ - +1m}>m)=D=m]aX deg p,,C(A:pi+ +* +Anpun)=c=H,.

Let ve {1, 2} be fixed. When polynomials p, g satisfy C(p—qg)H,, we
write p<,g. Then, by Lemma 1.1, (C[z], <,) is an ordered set. Further, if
p#q, then p<,q or ¢g<,p. Therefore (CM, <,), (CM, <,) are totally ordered
sets. Hence we have the following

LEMMA 1.2. Let IT (@) be a finite subset of CM. Then there are p., p.
eIl such that C(p—p)sH for every p=Il—{p} and that C(p— p.)= H,for
every pell—{p,}.

LEMMA 13. Let p be a polynomial of degree N(=1).
(1) // Re C(p)<0, then there are positive numbers K, 6, R such that

lexp p(z)| <exp(—K'|z|Y) on {z;largz| <6, |z|>R}.
(2) // C(p)siR*, then there are positive numbers K'', 8’ ', d’ such that
lexp p(z)| <exp(—K’|Imz |z|V") on G6’,d").
3) // C(p)siR~, then there are positive numbers K", 6”, d”, such that
lexp p(2)| <exp(—K” Imz| z|¥ ) on G807, d”) .

Proof. We shall prove only (2). Put C(p)=iA(A>0), qz2)=p(z)—iAzZ".
Then for {0, n/4) we have

lexp (p(2))| = lexp(GAzY +¢(2)) | = |exp GAx Y +iNyx V=14 . +(Gy)¥)+q(2))]
<exp(—ANyx"'(1+0(y/x)+B|z|"Y) on {|arg z| <},

where B is a positive constant and z=x+:zy. Thus we have the desired result.
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LEMMA 14. Let m be a positive integer and A(+0) be a subset of (N\U{0})™.
Then there exist ay, -+, a.:€4 (t<oo) such that Ac {a;+Bj=1, -, 7, BE
(Nu{ohH™}.

Proof. By induction on m. For a,, -, a,&(NU{0})2(p, g=N) we set
lay, -, app=A{a;+B;/=1, -, p, Be(NU{0})}.

Further for a=(,, -+, A)=@®U{0})? and A= NU {0}, we denote by (a, 2) the
element (4, .-+, A5, A) of (N\U{0})?*'. It is easily seen that Lemma 14 holds
for m=1. Assume that Lemma 14 holds for m=v. Let J be a subset of
(NU{0})¥*! satisfying the assumption with m replaced by v+1. Put

ZZ {(21’ Tty '212); ('21; Ty 2V+1)EA}°
Then, by the induction assumption, there exist @&, ‘-, d,,efl (peN)such that

dclay, .oy @, .
Let
AP=min{A.; (&, A€ (G=1, =, 0),

M=max 19,
7
A(U): {(le ty zv) (21) ) lv; G)EA} (0=0, 13 ) M) .

Then, for every o= {0, 1, - , M}, there exist a{”, -, ai? <4 (p,=NU{0})
such that
A9claf’>, -, al?> (6=0,1, -, M).

Let =4, -, As+)€Ed. Then (A, -- , A)ed. Thus for some j we have
tfi, -+, A,)E<a,>. Therefore, if A,., =M, then as<(a,, A))>. If A4,.,.<M, then
(A4, -, A)ed¥+0, Thus for some j we have (4, -+, A)E<ai*+>, There-
fore ac{(ai**+?, A,,1)). Put

a,=(a, A7) (=1, -, o),
e, ,=(af, 0)  0=I1, -, ps, 0=0, - | M).
Then a;€4 0=1. - , p), a;,;€40=1, -+, ps, 6=0, -+, M) and
dclay, -, @p, Qo+, Car, oy

Lemma 14 is thus proved.

LEMMA 1.5. Assume that (A) holds. Then {a,, ;},=S(v=1, ---, t) Further
if #17;A=A,, j=1, -, m}=1, then {a, ;}, has no finite accumulotion point.

Proof. We shall give the proof only for y=1. From (1.1)-(1.3) we have
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{a;};c {(Ax/n)'l-#lz A(A—A) ENU{0 S, .

Further if #{j A,=A4,7=1, ---,m}=1, then A;—A,#0 for anyj+1. Thus
{a.,;},has no finite accumulation point (see Figure 1 and 2).

For each polynomial ¢, we put
Ji=1{7; Re C(p1,;—@)>0, py,;—g+#const.},
J=17; C(p.,j—q)EiR", p, ;—q+const.},
J"n=17; C(pr.;—9@EH,, p1,;—gF+const.},
J:=1{; Re C(p2,;—9)>0,p,,;—q+ const.},
J'2=A{j; C(po,s—QEiR*, po ;—q7const.},
"y=A{j; C(pe,;—q)EHs, ps,;—g#const.},

Ri[¢gl= X exp(p.y), Silgl= X exp(p,y), Tilgl= X exp(py,y),
eJ; (AR [SRAST

1€J"y

R.[q]= % exp(ps ), S:Lgl= ; exp(pay), Telgl= X exp(ps,),
JEJS 2 IEJ 9

{ exp (p, ;(0)— q(0)) if p, j—q= const. for some J,
b(g9)=
' 0 if p..;—g#const. for all 7,

exp(p, 0)—¢@©)  if p. ,—g=const. for some 7,
ba(g)=

if p,, j—g#const. for allj.

Then
; exp (P1.7)=b1(0)€q+R1[l]]+51[C]]+T1[(]] s

ZJ exp (pe, )=ba(g)e?+R.[q]+S:[q]+T.[q] .

We see that b,(¢)=1 if and only if g={p,, ;} and that b,(¢)=1 if and only if
g={p2. s}, Thus, if ¢€Upuiti— b2 4 DUUbe sti—{P15}5), then bi(@)#b:(q).

LEMMA 1.6. Let q be a polynomial of degree at most N. Assume that (A)
holds. If #{j A=A, j=1, -, m}=l or #{j Ay=A,j=1, -, m}=1, then
we have S\[¢1€Exy or S,[qg]€Enx respectively.

Proof. Put
ay=q"0)/N!,

L,=8N{z; Re z=Re a,, Im z<Im a,},
L:=8,N{z Rez=Rea,, Imz=Im a,}.

Then by the definitions of J’;, J’»
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{a., jelitcL,, {az,J;J.Ejlz}C-fz-

Further r,, _r, are compact sets (see Figure 3 and 4). Therefore, if #{7; A
=A,, j=1, -, m}=1, then by Lemma 15 we have #{a.,; €J"1} <. Thus
S\[g1€Ey. Similarly, if #{j; A;=A,, 7=1, -, m}=1, then we have S:Lg]1EEw.
Lemma 1.6 is thus proved.

Az/n
i
0 a
Ay/n
Fig. 3
A7
Az/n
L
20!
0O
Ay/n
Fig. 4.

LEMMA 1.7. Let q be a polynomial of degree at most N. Assume that (A)
holds and that S\[qleEy, S:[¢g]€Ex. Then there exist positive constants 0'(q),
d’(q), hi, hs such that

le"2S,[q](z) | <exp(—hi|lmz])  on G.(8'(9), d'(g)),
le18,[q](z)| <exp(—h,|Imz|)  on Gx(6'(g), d'(9)).

Proof. By the definitions of Si[¢], S:[¢] and Lemma 1.3, we easily have
the desired result.

LEMMA 18. Let q be a polynomial of degree at most N. Assume that (A)
holds, C(P,—P)cH,for every p+1 and that C(Pu—P)EH: for every p+2.
Then there exist positive constants 8(q), d(q), ki, k', ke, k' such that

(1) 19T [g](z)| <exp(—ki|Im z|)+exp(—kilzl)  on Gu(8(g), d(g)),
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(2) 1e7*®Talq](2)| <exp(—k.|Im z|)+exp(—k’s|z])  on Gu(0(g), d(g).
Proof. We shall prove only (1). We may assume P,=0. Then
(14) deg P.21, C(P,)eH, for every p+l.
For each A=Az, s, -+, Am)=(VU{0})™"! we put

lAll=2:42s+ -+ +2n

At
5(/2):T|11|1§;!'Tilfl,’]:ﬁ’

G=2P 43P+ -+ +2An Py,
where (1+w)'"= g}’ riw’ (Jw|<1). Let k be a positive number such that
(m—Dk<1.
Then by (1.4) and Lemma 1.3, for suitable 6, d,

lexp(Pu(2))| <k on G,6,d) (p=2, -, m).
Hence

37 S exp(P)Y=3 Q) exp (¢),
7=0 p=2 I1A1z0

2 exp(py, 5(2)] gl 3 18D lexp(gP ()] < [B)] k1! < oo

2
PYFY] 121z0

on G,(0, rf). Therefore XJexp(p,, ;(z)) is absolutely convergent and holomorphic
on G.(6, d). ’

Put
A= {2e(NU{0})™; CgP—g e H,, tf*- g+ const.}.
Then by Lemma 14, there exist ay, -, a.= 4 satisfying
(1.5) d<lay, o, a .

Put
T, MY=18) |+ X |64+ | A1,

12zt
Then I'(,, h)<eo for all ,,&(VN\A0})™ *and all he(©, 1/(m—1)). By (1.5)
py leXp(pl,j-q)\gxalﬁ(l)l lexp (‘P —q)|

Jed”y

<3 {eXp((J‘“f’~0)((l5(aj)l+"$31 |8(a;+2)| lexp(g))

J=1

< 3, lexp(¢P—)| Tay, k) on G:(6, d).
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Since C(¢*”?—g)eH, and ¢‘““#?—q+const.,, by Lemma 1.3 there exist positive
constants 8(q) (<8), d(g) >d), ki, k’ysuch that

,i:‘i lexp (¢¢*?(2)—q(2)) | [ (a,, k)<exp(—F,|Im z|)+exp(—k’|z])
on G,(6(g), d(g9)). Thus we have the desired result.

LEMMA 19. Let f be a holomorphic function on {z;|argz|<w,} (@,>0).
Assume that (A) holds, #{j; A,=A; j=1, -, m}=l, #{j; A=A, j=1, -, m}
=] and thatfr=eF14 +++ +efmon {z;|argz|<w,}. Then

{pr. s} =D},

Proof.  Put W=({py};—{be.s} DIUbss};—{brsladd assume W#@.
Then, by Lemma 15, {Rea, ;;p..;€EW} is a discrete set which is bounded
from above. Thus there exists a,E {a,,,;p,;SW} which satisfies

(1.6) Re ay,=max{Re a,,,; p. ;€W}.

Put
W= {py,jEW; av,j=ao} .

Then, by Lemma 1.5, #W’'<c. Thus, by Lemma 1.2, there exists a poly-
nomial ¢, in W’ such that

Re C(p—qo)<0 for every psW’.

On the other hand, by (1.6), Re C(p,,;—tf))=Re(a,, ;—a,)<0 for every p,, ;&
W—W’. Thus we have

(1.7) Re C(p—qy)<0  for every peW.

We define Ji, J'1, J”1, Joo J'oy J”2 for g=gq,. Then by (1.7) we have
{pr,; 7ETINW=@, {ps,; j€EJINW=@. Therefore, by the definitions of
JoJe and W, Ap,, j€Ji} = {p., jEJ} and {a,, €Ji} = {a., jEJ}.
Further, if j&/J,, then by the definition of J, we have a, ,=a, or Re a,,,>
Rea, Thus by Lemma 1.5

{a.,; 7€} (S NS:N{z; Rez=Re a}).

Put fcSiI'VSsjITte; Re z=Re a,}. Since I is a compact set, by Lemma 1.5 we
have #{a,,,; j€J.} < (see Figure 5). Thus R,=R,=Ey.
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JE/‘B"\ As/
o/
% g
0
|

/ Ay/n

2T

Fig. 5.

Let 6(qgo), 6’(q0), d(qo), d’(go) be positive constants for which Lemma 1.7 and
1.8 hold with ¢ replaced by ¢,, and let 8, d, be positive constants satisfying
0<8,< min (@, 6(g0), 0'(g0)), do>max(d(gs), d’(g0)). Put

R=R\[q]=R.:[g.], F=(f—R—Si[ge]—S:[ge]—bs(go)e®)e™% .
Then, by Lemma 1.6, Fis a holomorphic function on {|argz| <w,} satisfying

F(2)=(b:(g0)—b2(q0)) —S2[go](2)e" @ +T1[g](2)e " on G,(f,, do),
(1.8)
F(2)=—S1[¢](@)e 0 +T,[q](2)e™ 2  on G:(f,, do)

Therefore, by Lemma 1.7 and 1.8, there are positive constants K,, K, such that
for every y,>d, we have

[F(x+190)—(b:(g0)—b:(q0)) | Sexp(—Kiyo)+o(l)  (x—+00),

(19
[F(x—iy,)| sexp(—Kzyo)+o(l)  (x—+o0).

Put L,=y,tan"'f,. Then F is bounded on d{z;Rez=L,, |[Imz|<y,} and
satisfies |F(z)|<exp(Al|z|Mon \¢ Re z=L,, |Imz| <y,} with a positive constant
A Therefore by the Phragmén-Lindelof theorem (see [3; p. 43]) it is verified
that F is a bounded function in {z;Rez=L,, {Imz|<y,. Let L (>L,) be
a positive number. Then

5 Fx+lvodx— ; r(x ZVodx
LSO ( ) [ 0 ( )

7 (vo ,
——ES_yoF(La+zy)dy+L

S”“y F(L+iy)dy
~—Yo

(see Figure 6).
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-
G1(6;.d0)
1Yo —
Lo L
0
-1Yq
™~
\\GZ(eo'do)

Fig. 6.

Since Fis bounded on {z;Rez=L,, |Imz|=<y,}, by using (1.9) we have
1b,(g0)—bs(g0) | Sexp(—K,yo)+exp(—K,y)+o(1)+0(1/L)  (L—+e0).

Since go=W, we have bi(go)#b:(¢g0). Thus for y, sufficiently large, we have a
contradiction. Thus W=, namely {p,.;},={p:;},» Lemma 1.9 is thus proved.

From Lemma 15 and 19 we have the following

COROLLARY. Under the hypotheses of Lemma 19, assume that S;N\S; is a
bouuded set.  Then f is an element of Enx.

Now we can complete the proof of Theorem 1. For each polynomial p and
d=R, we set (p)a(2)=p(ze'?). Then (-) : C[z]—C[z] is a linear bijection which
leaves every element of C (=Cf[z]) fixed. Therefore for every ve {1, .-, t}
and =R, we have

exp(Po/m(14 D7 T exp(Po—(P)o)¥ )= exp(pu. ).

pet, , my-(
Let ye={1, -, t} be fixed. Then there exists 8,=(—=/N,x/N]such that
Re (A6 =Re(A,.,¢"%),  Im (A,e'¥?)<Im(A4,.,e*¥%),
Re (A,e'V<Re (A,e¥%)  (p=1,-,m).

Therefore (A) is fulfilled with P, - , Pn, A, A, replaced by (P)g,, - , (Pm)s,,
AtV A, et¥% respectively. Thus, if 6,€(w,, ), then by Lemma 19
{(Pv, Do} s={(Dvsr, o} 5. Therefore {pu.j},= {Dver s}y {an i}, ={ave1 51,CSNSu10).
Let y,= {1, ---, t} be the integer such that {v; 8, (@i, w5)} — {vo, vo+1, -, vo+s}
(mod?#). Then {ayo,j}J:{ayo+l,f}J = e = {av°+s+1.j}jc(’5vom‘svo+lm so msvo+s+1)~
(We set @4t =0y, Svt=3S, (vE{l, -, t})) Since @—0,>71/N,S,/NSyp+1N
“*MSypss+1 is a bounded set. Thus {a,s};is 2™ set Therefore by Lemma

1.5 {py,tss so. Thus / is an element of Ey. Theorem 1 is thus proved.
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2. Proof of Theorem 2.
We begin with the proof of the following

THEOREM 5. Let f be a holomorphic function on {z; |arg z| <} (@,>0)
and g be an element of Ey_,. Assume that (A) holds, #1{j; Ai=A4,, =1, -+, m}
=1, #{j; A:=A,, 7=1, -, m}=1 and thatfr=geF1+e24-——-|em on {z; |arg z|
<wo}. Then g=h" for some heEy_,.

LEMMA 2.1. Let n(=2) be an integer, P, -+, Ps be polynomials, P,—P,#
const. (u#y), C(P,—P)eH,(p=2, ---, s) and {r;}, be the set of polynomials
defined by

exp(P./ n)( 1+ 5 rj(Eexp(Pp —Pl))’)E Zexp(ry),
rj—ry#const. (J#k), Im (r;00)=[0, 2x),
u here H;é raw'=1+w)» (|w|<1). Let IT (+@) be a subset of {ri};,. Then
there exists a polynomial p, Il such that
C(p—poEH, for every p=ll—{p,}.
Proof. We may assume P,=0. Then
deg P,=1, CPyeH, (p=2, -+, 8).
For each polynomial p we set
(D)*(@)=p(2)—p(0),
and for each A=(4, -, 4;)e(NU{0})*"*
g P =P+ - +2A:Ps .

Then (-)*: C[z]—C[z] is a linear mapping. By the definition of {r;},and
Lemma 1.1, we have

(2.1) () e (@) 2e (U {0h 1),

2.2) deg ¢®=1, C((¢*®*)€H, for every B+(0, ---, 0).
Put

(23) *={(p*; pll},  A={4; (@P)*ll*}.

Then by (2.2)
IT*={(q)*; A< 4).

Further by Lemma 1.4 there exist a;, -, a.4 such that
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Ac<al; ) at‘) .

Put .

II={(g*Byx; 1=1, ..., 7, B=(NU{0})*-*}.
Then
(2.4) *ciT.

By Lemma 1.2 we may assume
C(g“*?—g“*v)eH,

for every ¢‘“” satisfying (g¢®”)*=(¢*®v)*. Note that C((g¢@i*P)*—(g@v)*)=
C((qgei*Py*—(q Py (g , Therefore by
(2.2) and Lemma 1.1

C(p—(g»¥)eH, for every pell—{(ge=r)*}.
Thus by (2.4)

2.5) C(p—(g¢*v)*)eH, for every pell*— {(g**r)*}.
Since a;<4, by (2.3) there is an element p, of II such that
fo<"1>)*=(/>0)*
If pIl—{p,}, then deg (p—po)=1 and (p)*<II*—{(po)*}. Therefore by (2.5)
C(p—po)=C((P*—(p)*)=C(py*—(g“*?)*)€H, for every pEIl—{po}.

Thus we have the desired result.

LEMMA 2.2. Assume that (A) holds, {3 Ai=A,,j=1, —, m}={l, t+1, -+, s}
t+1<s<m), #{j; A:=A,, j=1, -, m}=1 and that

exp(P)+ 3 exp(P)#h"  for any heEy.

Let {py,j},, {p=j},be defined by (1.1). Then there exists g ({py,j}i— {ba i} DU
(D, 5} j— b s} ) such  that

Ri[g]=R:[g.]€E, Si[go]EEw, S:[gl]€EEY,
where Ri[q,], R:[q0], Silge], S:[q0] are defined in Section 1.

Proof. We may assume

P,=0, C(PyeH, (p=2, .-, m).
Then
N—1zdeg P,=1 (p=t+1, .-+, s),

deg P,=N (u={2, -+, m}—{t+1, -, s}).
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Let {r;},be the set of polynomials defined by
o 8
1+ 2 L(_Z CXp (P,,,))’EZexp(r,),
J=1 p=t+1 3
rj—rr#const. (J#k), Im (r;(0)< [0, 27),
where 1+ i: 7w =l +w)'™ (lw|<1). Then by Lemma 1.1
J=

{15 ar,=0t={rj},,
where a,,,=p,,,*>0)/N!. Put
I={p.s},, 1L={psi},,
m=1{p1,; ¢:.,=0,  m={ps,; a.,=0}.

By assumption we have #rm,=c. Since #{s; A.=A4,,j=1, -, m}=1, by Lemma
1.5 #m;<co. Therefore (m,—m,)#@. Thus by Lemma 2.1 there exists ¢,
(m,—ms) such that

(2.6) Clg—g)eH, for every q=(m—m:)— {qu}.
Since #(m,—m,)<oo, by Lemma 1.2 there exists g,=(x.—m,) such that
2.7 Clg—g.)eH, for every g=(ms—m)—{gs}
whenever (r,—n,)# @. Note that C(g,—¢.)#0. Put
¢ if (me—w)#D or Clg.—q)EH,,
:{ g2 if (m—r)#=@and Clg—q.)EH,.

Then o= (mi—r)\U(me—n ) <(II,—IT ) UUT,—11,)). When ¢o=¢: and (T2—71)
#@, we have C(g—qo)=C({(g—@s)+(g2—q1). Thus, by (2.7) and Lemma 1.1,

Clg—q)EH, for every g=(m,—m,).

When ¢o=g., we have C(¢—q.)=C((g—g1)+(¢:—¢=)). Thus, by (2.6) and Lemma

1.1,
C(g—gy)€H, for every ¢E(m,—ms).

Therefore, from (2.6), (2.7),
(2.8) Clg—gqieH, for every g&(m,—m2)—{qo},
2.9 Re C(g—qy)<£0 for every g=(m,— )\ JU(ms—my) .

Since deg ¢, <N—1, we have C(p,;—qo)=a,,,(#0), C(ps,;j—go)=as, for p, ;E
(II,—=y), ps, j€(Il,—m5). Note that A,=0, A,€iR*. By Lemma 1.5 and (1.3),
a,,jE(SI—{O})CHl, 02,1682C{2;Re2§0} for pl,jE(n ll'—‘?l'l), pzle(Hg—ﬂ'z).



104 YOJI NODA

Therefore
(2.10) Clg—qnsH, for every ge(l,—n,),
2.11) Re C(g—qo)<0  for every g=(ll,—n,).

Thus, from (2.8)-(2.11), we have
(2.12) Clg—g)eH, for every ge(ll,—(m:N\72)—{qo},
(2.13) Re C(g—q)<0  for every g=(l,\UIl;)—(m:Nws).

We define J,, J',J”1, J2, J'2 J”: for g=¢q, as in Section 1. Then, from (2.13)
and the definitions of [, J,,

{pr, 7€J}=1pe., FE]2} C(mN7o).
Since #(m,Nr,)<oco,we have
Ri[¢]=R:[q]EEN-..
S:[go]€EN .
Further by (2.12) and the definition of J/,

From Lemma 1.6

{br,; 7€T 1 c(miNms).

Si[g]EEN-,.

Thus

Lemma 2.2 is thus proved.

Proof of Theorem 5. We use the notations of Lemma 2.2. Assume that
g#h" for any h€Ey_,. Then by Lemma 2.2 there exists ¢o=({pss};— {pa.s}5)
U({p2.st;—{prst5) such that

Ri[¢]=R:[¢]EEN, Silg]EEN, S:[go]EEN.
Therefore Lemma 1.7 and 1.8 hold for those Si[¢o], S:[g0], T1[ge], T2[ge]. Put
R=R\[q,]=R:[q.], F=(f —R—5[¢o]—S:[g0]—bs(g0)e®)e % .

Then F is a holomorphic function on {|argz|<w,} satisfying (1.8), (1.9), and
by(go)#b:(qs). Thus we have a contradiction as in Section 1. Theorem 5 is
thus proved.

Now we prove Theorem 2. Put N=max deg P;, A,=P;"0)/N@G=1, -, 4).
J

We may assume that #{A;};=2. Then we have the following three cases.
Case 1): #{A;};=2. In this case, from the following Lemma 2.3, we have
a contradiction.

LEMMA 2.3. Let n (=22), N (=1) be integers, A,, A: be distinct constants
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and g, g, be nonzero elements of Ey_,. Then
fr+g(2exp (Aiz¥)+gx(2exp (A:2")

for any entire function f.

Proof. Assume that there exists an entire function / satisfying f™(z)=
g1(2) exp (A2Y)+ga(2exp (4.2Y). Put

F(z)=g.(2) exp (A;—A»)z").
Then T(r, g.)=0(T(r, F)) and
60, F)=06(c0, F)=1, O(—g: F)=z1-(1/n).

Thus by the second fundamental theorem (see [2; p. 47]) we have a contra-
diction.

Case 2): #{A;},=3. Suppose that A, ---, A, do not lie on any streight
line. Then we may assume that

A,=0, A,siR, Re 4,<0, Re A,<0.

Define p,,,, a.,, and S, (v=1, 2) as in Section 1. Then, by Lemma 1.9, {a,;},
={a,,;},. Further from (1.1) we have {(P,/n)(P,—P)+log 7, v&N} < {p,,},.
Therefore, by Lemma 1.5, (SiN\S2)D{ay,;},2{vAs; veN}.Thus (S;NS:NiR)
o {vA, veN}. Since SINS:NiIR={ix 0<x<(Im A,)/n}, this is a contradiction.
Thus A,, :--, A4 lie on a straight line. We assume that A,=A; and A,#A,+ A,
(see Figure 7 and 8).

Fig. 7. Fig. 8.

Subcase 2.1): A,=A,A,. (We denote by af the line segment {a+x(f—a);
0<x<1}.) First we shall show the following

LEMMA 24.

(1) Let Q, -, Qn be polynomials satisfying Q;—Q.+const. (y#k). Then
e o 4 efm=(),

(2) Let P, -+, P, be polynomials. Assume that ef1+ -- +efm=0 and that
jgePJ;kOfor any JSAl, -, m} (J#D). Then (P)*= - =(Pn)*. [/ eFr14ef2=0

or ePit-ePetePs=0, then we always hare (P)*=(Py)* or (P)*=(Py)*=(Py)* re-
spectively. (For each polynomial p we set (p)*(z)= p(z>- p(0).)
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Proof. These are well-known results and immediate consequences of Lemma
1.3. We assume that Q,<;Q:<:- <:Qn,. By Lemma 11, C(Q;—Qnr)EH.
0=1, ---, m—1). Thus, by Lemma 1.3, there exist positive constants 6, d such
that |et@1=@m>+ || 4¢@m-1-8m>| <1/2 on Gy(0, d). Therefore |(e®1+--+e¥m)e=m|
>1/2 on Gy(8, d). Thus (1) is proved. (2) follows from (1).

By Theorem 1 we have feEy. We may assume that A, -, A.eR,
A, <Ay=A;<As and that P,<,P,;. Then we have f=e% ——-—- Fe?n, where @,’s
are polynomials of degree at most N satisfying Q,—@Q,#const. (g#v), Q:<,
Q:<s - <:Qn and Q;M(0)/N!'€[A/1A:/n] =1, -+, m). -

Put (te_|_ +eQm)n= ! n '([11' e !)‘leﬂlQl o @fm@m = exp(Q1)+

g =n
+exp(Q:), where @,’s are polynomials satisiying ¢,— Q,#const. (u#v), @:<.
Q:<s- <,Q It is easily seen that m=2 and

0.=1Q,, Q.=n—1)Q,+Q:; Q1-:1=Qn-1+(n—1Qn, Qr=nQn.

We shall consider the following two cases. -

1) P,—P,=const.. In this case we have f*=eF1+4e"2  +ePi=exp (@) * *
+exp(@k) for some constant ¢. Therefore, by Lemma 2.4, we have k=3,
(n—10Q,+Q:=Qn-,+(n—-1)Qr=P,+c.Thus RE(n—l)(Ql_Qm)_"'(QZ'—Qm—l)zo
If m>2, then Q,<:Qn, Q:<:Qn-; Therefore, by Lemma 1.1, we have R<0.
This is a contradiction. Thus m=2, R=(n—2) (Q,—Q,). If n>2, then R<,0.
This is again a contradiction. Thus m=n=2,f=e% 4%,

2) P,—P,#const.. By Lemma 2.4 we have

(2.14) P=nQ, P=n—1Q:+Q:;, Pi=Qn-,+(n—10Qn, Pi=nQn.
Put B,=Q;*™(0)/N!(j=1, - , m). Then by (2.14)

A=nB,, Ay=n—1B+B,, Ay=Bn-+(n—1)Bn, A=nBn.

Since A,<A,=A;<Ai, we have B,<B,, Bp-1<Bn, B,<B,,;0=1, ---,m—1),
(n—1) (B,—Bn)+(By—Bn-)=0. Therefore we have n=m=2 as in 1). Thus
f:te-FeQz. This implies eP2+eP3=2e(Ql+Q2), P,— P,=const., which contradicts
the assumption.

Subcase 2.2): A,&A,A,. We may assume that Re A,= --- =Re 4,, Im A,>
ImA,>Im A,=Im A,. 1If P,— ft # const., then by Theorem 5 and Lemma 2.3 we
have a contradiction. Thus P,— P;=const.. Therefore this case is reduced to
Subcase 2.1).

Case 3): #{A;},=4. By Theorem 1 it is verified that f€Ey. As in Case
2), we see that A,,---, A, lie on a straight line. We may assume that A,, -,
A,eR, 0=A4,<A;<A;<A,and P,=0. Then f=c,e®4----- Fcme®m, where c,’s
are nonzero constants and @,’s are polynomials such that @;0)=0 (j=1, ---, m),
deg @, =N (j=2, -+, m), Q;*(0)/N!e [0, Ai/n] (=1, -, m) and Q,<,Q:<; -
<:Qn.
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Put (¢,e® + -';—}—cmeQ"L)":exp(Gl) + .- +exp(@k), where @,’s are polynomials
satisfying Q,— @,#const. (p#v), @,<:Q,<, <,Q:. By Lemma 2.4 we have
fe=4 and P,=Q,(j=1, ---, 4). Since P,=0, we have c¢,"e"%1=1. Therefore we
may assume c¢,;=1, @,=0. It is easily seen that ra”2 and

@*=nQ,, @)*=n—1)Q:+Qs @)*=Qmn-1+n—1)Qn, (@)*=1Qn.

Thus

0=(P)*=0Q,, (P)*=(n—1)Q:1+Q.=Qs,
2.15)
(PS)*ZQm—lJf'(n_'l)Qm; (P4)*=an-

Put B,=Q;*™0)/N!(43=1, -, m). Then

(2.16) 0=<B,<B,u<AJn (=1, -, m—1).

Further by (2.15)

2.17) 0=A=B,, A,=B:;, A;=Bnp+(n—1)Bn, A;=nBn.

Since A;<A,<A;<As, we have B,<B;, Bpn-1<Bn.
Assume m=>=3. Let p be the integer such that B;=B;= *++ =B,<B,..
Then

{(sy = ptm) 5 é uB,=Bs, é‘{ t=n, p;<NU{0}}
={(n, 0, -, O} U{(n—1, 0, .0, 1,0, 0); v=0, -+, p—2}.
Therefore (@)*=Q,(j=1, -, p) If p=3, then
fr=14-ePr+tePstePi=1+n(c.e+cse®+ - +cpe%)+ - +cpte™dm,

Therefore, by Lemma 2.4, (P)*=(Q.)*=0Q,, (P)*=(09*=Q,. Thus A,=B,,
As;=B,. Hence A,=A,. Thisisacontradiction. Thus B:<B;. Similarly Bmn-2
<Bny-1. Therefore, if m=3, then

(2.18) 0=8,<B,<B;, Bn-2<Bn-1<Bn.
LEMMA 2.5.  There exist positive integers 2, (=2, ---, m) such that
(2.19) Q=40 (=2, -, m).
Proof. By induction on ;. For each polynomial Q we set
M@= (s, rm)s Q= 3 Qs 1= 33 1y =NV O}

Put
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U={0Q; > (1 (pat e pm et - cmm 0},

(B1s . mIELE@
V=G Q= 3 pQun= 3 o, ;seNUOH (v=2, +++, m).

Then by (2.15) U={(P)*, -, (P)*} = {0, @z, Qu-1+(n—1)Qn,nQx}. (2.19) holds
trivially for y/=2. Assume that (2.19) holds for j=2, ---, v (v<m). Further assume
Quar &V, If (py, -, )= p(Qy+1), then there exists an integer p=y-+1 such

m m p-1 m
that g,#0. Since Q,..= 2 #;Q,= Z p;Q,, we have Qus1—p,Q,= Z + X p;Q,.
J=1 7=2

1=2 j=p+1
p-1 m
By Lemma 1.1 0=4(X + = £iQ3), (Que1—ppQ,)=:0. Therefore fa= - =fo-1
=t y=p+
=0, tps1= - =pn=0, Qus.,=p,0,. Hence pg,=1, p=v+1. Thus
ﬂ(Qv+l): {(n"—ly 0 ’ 1; O; ] 0)} "
v—1

Therefore #u(Qy+1)=1. Thus Q,.,€U. On the other hand, by (2.16) and (2.18),
we have B;<Bs<B,.;, B,s/<Bn, 0<Bn-;. (We assume m=3.) Therefore
0<B;<Bys;<(Bm-1+(n—1)Bn)<nB,. Hence @,,,«U. Thisis a contradiction.
Thus @..;€V,. By the induction assumption we have V,c{2Q,;A=NU{0}}.
Hence there is a positive integer 4,., such that

Wor1—Avr1Qs
Lemma 2.5 is thus proved.

By Lemma 2.5 there are polynomials &, R satisfying that

f=@Exp(Q), ["=R(exp(Q).

By Lemma 2.5 B,—Bn-,=A(B;—B,) with A=A,—An-,. Similarly B,—B,=
A'(Bm—Bmn-1)with a positive integer 2’ . Thus B:— B,=Bm— Bmn-:. Therefore
from (2.17) we have A,—As=Bn—Bn-1.=B,—B,=A,—A,. This implies that,
if >3, then RK®(0)=0 (v=2, - , t—2). Therefore R(w)=dw'+d;w''+d,w+1,
where ¢=3 and rfs are nonzero constants.

LEMMA 2.6. Let @, R be polynomials and n(=2) be an integer such that

(2.20) Pr=R, RKRw)=dw'+dsw*'+d,w+1,

where t=3 and if*"O for erery v. Then there are the following two possibilities :
(1) n=3 and P(w)=p(w— a) with p, a+0.
(2) n=2 and Pw)=p (W*++/2 0" w—a"with p’, ¢’ #0.
Proof. Let a be a zero of ¢. Then R(aw)=R'(a)=0, This yields

(t—1)d4d20{2+((t—2)d3d2+td4)a+(l‘—l)d3=0 .
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Therefore ¢ has at most two distinct zeros a;, a,.

Case 1);: a;=a,. Put o=tfi—a,. In this case Pw)"=r(w— 0)""— R(w),
where 7 is a constant and s=deg <. From (2.20) we have t—sn=3. Thus
s=1, n=3. Therefore we have the desired result.

Case 2): a,;#a,. In this case

(2.21) Pw)"=t"(w—a)""(w—a)"’= R(w)

where 7’ is a constant and u, v are positive integers. On the other hand, from
(2.20), we have

(2.22) R"(w)=Cw**(w—7)

with ¢, #+#0. Assume #=4, then raw-2"2 and n#y—2=2. From (2.21), (2.22)
we have a contradiction. Thus n<3. Similarly we have =1 or v=L Assume
that u=1, v=2. Then, from (2.21) and (2.22), we obtain n+nv=t, nv—2=t—3.
Thus n=1. This is a contradiction. Similarly #—1 whenever v=1. Thus
u=v=1. If n=3 and u=v=1, then from (2.21) we have t=6. On the other
hand (2.21) and (2.22) imply t=4. This is a contradiction. Thus n=2, u=v=1
and ¢=4. Therefore

P(w)=p'(W—(a+a)w+a,a,),

where p' is a nonzero constant. Since ¢=4, from (2.20) and (2.21), the co-
efficcient of w® of P(w? is equal to 0. Thus (a;,+as)?*+2a,a,=0. Hence

Pw)y=p’ (W?++2 d’'w—0'?,
where ¢’ is a nonzero constant. Lemma 2.6 is thus proved.

Lemma 2.5 and 2.6 complete the proof of Theorem 2.

3. Proof of Theorem 3.

Let g=(g,, g1, £2), Where g,’s are entire functions without common zeros.
We may assume that D,= {w,=0}, D,={w,=0}. Let P(w,, w,, w;) be a homo-
geneous polynomial of degree two such that D,= {P(w,, w,, w2)=0}. Then, by
the assumption, for suitable polynomials g,, ¢i, ¢

go=2e, g1=e%, P(go, g1, g2)=¢".

Since D,N\D,N\D,=@@, there exist constants a,, fli, a; (a:#0), b, by, bs such that
P(w,, wy, wa)=(a,we+a w4 asws):—(bywo+b,w*+b,w,w,).Since D, is not a
line, we have (b, by, b)#(0, 0, 0). Put

G=a,80+a:8:11 282 .
Then
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If go—¢,=const., then g,=cg, with a nonzero constant c¢. Thus, in what
follows, we assume that g,—g¢,#const.. Further we may assume, without loss
of generality, that

degtfordeg g,  C(go)#C(qy).

If ftﬁ=ft,:0, b,#0, then from (3.1) G®=b,e®*%14-¢? Thus by Lemma 2.3 we
have G*=ce®*% with a constant ¢ (#b,). Thus

(@080t a:8:1+a:8:)'=cgog:,  ¢#bs.

Similarly, if by=b,=0, b,;#0, then G®=b,e*11+¢? Thus G®*=c’e*, ¢’+#b,. There-
fore
080+ .81+ a,82= /c'g,, '#b.

If ft,__ft, 0, be#0, then G*=b,e*®+4-¢? Thus G*=c¢”e®, ¢”+b,. Therefore

==

0080+ 0,81+ as8e=~"C"g,,  ¢"#b,.
Thus, in what follows, we assume that #{;; ft=0, —0, 1, 2} <1.
LEMMA 3.1.  Let
Po=b,e*, ¢1=be*1, Pr=bye®* %, ps=e?.

Assume that there exists a subset J of {0, 1, 2, 3} satisfying#]=2 and EZJ ¢,;=0.
J
Then there are the following three possibilities

D (@080 + 0,821+ 028:)°=b:808:, b.#0,
2) aogo+alg1+azg2=\/b—ogo, by#0,
3) aog0+algl+a2g2:\/b_l_gl: b,#0.

Proof. We may assume that ¢,#0 for all «J. We shall consider the
following three cases.

1) #J=2. Put J={j, js}. Then by Lemma 2.4 ¢,,/¢,,=const.. If 7, 7,
{0, 1, 2}, then ¢g,—g,=const.. This is a contradiction. Thus we have J=3.
Let 7o, *, be integers such that {j,, ji}=1{0, 1, 2}—/. Then from (3.1) ¢,,+¢,,
=0, G*=¢;,+¢,. If ¢, #0 and ¢, #0, then by Lemma 2.3 ¢, /¢, =const..
Thus ¢g,—g,=const.. This is a contradiction. Thus ¢, =0 or ¢, =0. There-
fore one of the following three cases holds: G®=b,g,* (b,#0), G*=b,g,% (b,+#0),
G*=bygog: (b:#0). Thus we have the desired result.

2) #J=3. Since #({0, 1, 2}N\J)=2, by Lemma 2.4 we have ¢;/¢,=const.
for some j, k{0, 1, 2}. Thus ¢,—¢,=const.. This is a contradiction.

3) #J/=4. We may assume, without loss of generality, that X ¢,#0 for

jed’
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any J'SJ (J'#®). Since #({0, 1, 2} "\J)=2, by Lemma 2.4 we have a contra-
diction as above.

In what follows, we assume that

(3.2) > e;#0 for any J< {0, 1, 2, 3} satisfying #J=2.
JeJ
By Lemma 2.3 and (3.2), we have deg ¢,=deg ¢,=deg ¢. Put

N=deg ¢,=deg ¢, ,
A,=2¢,""0)/N1, Ay=2¢,""(0)/N!,
As=(go+q)™0)/N?, A=q(0)/N!.

Then A,#A,, As=(A,+A:)/2. Therefore #{A;}}-,=3or 4.

Case 1)1 beb,b,#0. In this case, we shall consider the following two sub-
cases.

Subcase 1.1): #{A;};=1=3. There are the following three possibilities.

1) A,=A, In this case, by Theorem 2, G*=ce*®+b,e*1+be®*% with a
constant ¢ (#b,). By (3.2) we have c¢#0. Therefore, by Theorem 2, G—

Veew+ /b e, Thus
(@o—Ve)gotH(a1—Vb)gi+a.8:=0,  c&{0, b}.
2) A,=A,. In this case we have Gzzboegq‘)—i-c’ezqw;bze%*‘h with a constant
¢’&1{0, b,}. Therefore, by Theorem 2, G=+/b,e%++/c’e. Thus
(@e—bo)go+(a—Ve')gi+a:g:=0, ¢’ & {0, bi}.
3) A,=A,. In this case we have G*=bye*®+b et c”e%*% with a constant

¢ & {0, by}. Therefore, by Theorem 2, G=+/b,e®+~/b,e®. Thus
(ao“\/bo)go+(al_\/b—1)g1+dzgz:()-

Subcase 1.2): #{Aj};-=;=4. In this case, by Theorem 2, G=ef(e*?+
/2 ge? —g® with polynomials P, @ and a nonzero constant ¢. Thus, by Lemma
24 and (3.1), we have {A, -, A} ={2a, 2a+8, 2a+3B, 2a+4B}, where a=
PMQO)/N!, B=Q(0)/N!. This contradicts A, # A,, As=(A+A4,)/2 (see
Figure 9).

2a  2a+8 2a+38 2a+4p8

Fig. 9.

Case 2): by=0, b,b,#0. In this case
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3.3) Gr=b,021 + h,e0+90 4 o0 |

By Lemma 2.3 and (3.2), we have A,# As;# As. Therefore, by Theorem 2, we
see that there are the following three possibilities.

1) G=+bet+de?? (de {+1}). We have (G—~/b,e)*=e?, Therefore by
(3.3) 24/b, G—2b,e% —b,e®=0. Thus

(2«/an—bz)go-l-Z(«/Eal—bl)g;+2\/Eazgz=0 .

2) G=wb,ew* 244’2 (d'={+1}). Since b,e*1=2d" /b, e @ uP12 we
have e'=(b,%/(4b,))e*1~%. Therefore, from (3.3), G®*=b,e*1+bye@*14(b,2/(4b,))
-0, Thus G?e0=((h,%/(4b,))e*t1+b,e @0+ + b,e*0)et1=((h,/(2+/by ))e?1+ /b, €%)?
e, Therefore

40,80(a0Z0+ 181+ a280)"=(2b:go+0121)°8: -
3) G=+/b et + /b e+ w2, We have (G— /b, e%)t=h,e%+%, Thus
(@0go+(a1— vb1)g1+a:8:) = b0 -
Case 3): b,=0, byb,#0. In this case
G*=b,e*0+4-b,e*14-¢? .

There are the following three possibilities as above.
1) G=+be+~/b,e". We have

(@o—Vby)go+(a1—/by)g1+a:8:=0.

2) G=+/bye+det* (d={+1}). We have (G—vboe®)?=e?=G2—bye™0—
be®. Thus 2+/b, Ge®=2b,e"04p,e*1. Therefore

2Vby 8o(a0Qo+ a:181+ a282)=2bygo+b1g:% .
3) G=4/ben1+d’e?? (d’c{+1}). We have
2\/1;8”1((108”04'alg1+azg2)=bogoz+2b1g12-

Case 4): b,=0, byb,#0. In this case there are the following three possi-
bilities as in Case 2).
1) G=+/bye%+de??(d={+1}). We have

Z(Vgao—bo)go‘l'(z\/b:a1—b2)g1+2\/lzazg2=0-
2) G=+/bye* w24 4’e1? (4’ {+1}). We have
4bg:(aogo+a:18:1+a280) = (bogo+2b:8:) 8, .
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3)  G=+/b, ¢+, ez, We have

((@o—~bo) 8o+ 0181+ a28:)"=0:808: .

Theorem 3 is thus proved.

4. Proof of Theorem 4.

Let g2=(g,, 21, g2, &3), Where g,’s are entire functions without common zeros.
Then, for suitable polynomials ¢, g1, g2, g,

go=e®, giy=eh,  Z=e", g "+g"+ g "+ g ="

Thus
“4.1) gs" =el—emi0—pnl1 ™2
Put
q-1=(q+im)/n .
Then
2
4.2) gs" =— X exp(ng;).

J=-1

LEMMA 4.1. Assume that there exists a subset | (+@) of {—1,0,1, 2}
satisfying
> exp(ng;)=0.

=04

Then g has the reduced representation (hy, hy, hy, hs) such that {h;}3_,={a,, fli, a,, %}
or {h}i—o=1{ao, a\, a.e®, fIs*"}, where a,’s are constants and P is a polynomial.

Proof. Since #J=2, we shall consider the following three cases.
1) #J=2. Put J={j_,, 7o}. Let j, 7, be integers such that {',, j,} =
{—1,0, 1, 2} —J. Then from (4.2)
exp(ng,_,)+exp(ng,)=0,
gs"=—exp(ng,)—exp(ng,,).
Then by Lemma 2.3 and 2.4

(i-)*=(g:0)*,  te.)*=(")*,  &=cexp(y,),

where (p)*(z)=p(z-p(0) for each polynomial p, and ¢ is a constant. Since g
is not a constant, (¢g,_)*#(g,)*. Thus we have the desired result.

2) #/=3. Put J={7-1, Jo, /i} Let 7, be an integer such that f{7.}=
{—1,0, 1, 2} —J. Then from (4.2)
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exp(ng,_)+exp(ng;)+exp(ng,)=0,  g"=—exp(ng,,).
Thus by Lemma 2.4

toO*=(fco)*=for>*> §s=¢ €XP f,)

with a constant ¢. Since g is not a constant, (g,_)*#(g,,)*. Thus we have

the desired result.
3) #J=4. In this case we may assume, without loss of generality, that

> exp(ng)#0 for any J'S{—1, 0, 1, 2} (J’#@). Then from (4.2)

ser
exp(ng,_)+ -+ +exp(ng;)=0,  g"=0.
Thus by Lemma 2.4
(g, *= - =(gs)*, &:=0.

Thus g is a constant. This is a contradiction. Lemma 4.1 is thus proved.

If n=4, then by Theorem 2 X exp(ng;)=0 for some J< {—1, 0, 1, 2} (J+0).
et

Therefore, in this case, Theorem 4 follows from Lemma 4.1. Thus, in what
follows, we assume that #<3 and

4.3) Sexp(ng)#0 for any Jo{—1,0, 1,2}, J+@.
Jed

Since g is not a constant, g;—¢,#const. for some j, ke{—1,0, 1, 2} with j#£.
We have the following two cases.

Case 1): gj—qr=const. for some j, ke{—1,0, 1, 2} with j#k,. In this
case, by Theorem 2, we have n=2. We shall consider the following two sub-

cases.
Subcase 1.1): q-,— ft,=const. for some 70={0, 1, 2}. Let ', 7, be integers
such that {'}, 7.} =1{0, 1, 2} — {j,}. From (4.1) we have

8s*=b exp(2q,,) —exp (2g,,)—exp (2¢,,)

with a constant b(=—1). By (4.3) we have b+#0. Then, by Theorem 2, there
are the following three possibilities.

1) g=+bexp(g;)+idexp (g;) (d€{+1}). In this case we have —exp(2g,,)
=2id /b exp(g;,+9¢,,). Thus

\/Bg/o‘i'idgyl_gs:—o
) _ be {0, —1}.
ig;,*—2d /b g,,8,,=0,

2) g=vbexp(g;)+id exp(g,) (d’{+1}). In this case we have —exp(2g,,)
=2id’v/b exp(q,,+¢,,). Thus



FUNCTIONAL EQUATION f"=eP1+ . 4¢Pm AND RIGIDITY THEOREMS

\/b_gfo'*”’d,gjg'—ga:o
) _ be {0, —1}.
zg,12—2d/\/b £1,85,=0,
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3) gs=id” exp(q,,)+7d" exp (g(d”, d"={+1}). In this case we have
bexp (2¢,)=—2d"d" exp (¢;,*+4¢,,). Thus

id"g;,+1d"g,,—&s=0
\ . fteMO,—1}.
bg]o +2dl,d gllgfz':oy

Subcase 1.2): q,,—gs;.=const. for some j,, /;€1{0, 1, 2} with j,#/,. Let j,

be an integer such that {j2}=1{0, 1, 2} —{j,, 7} Then —exp(2g,,)—exp (2¢;)=
cexp (2g,,) with a constant c(#—1). By (43) we have ¢#0. Thus g,, =
V—1—cg,,. Further from (4.1)

gs"=c exp(2q,)—exp(2q,,)+exp(g) .

Thus, by Case 3) in Section 3, there are the following three possibilities:

—d?g,,— \/:‘—lgaz‘{‘ga:o
D ce {0, —1},
gfo_'\/—l_Cgll'__O’
[ 2cg,8:—2c8,°+&,'=
2) ) S CQE{Ov _1})
l 85,— «/-—l—cgh:O,
2V —1g,,8:—cg,*+2g,,°=0
3) o ce {0, —1}.
g,o—\/“l—Cgh:O,
Case 2):

g;i—qr#const. for every j, ke{—1,0, 1, 2} with j#k. In this
case, by Theorem 2, we have n=2, 3.

Subcase 2.1): n=2. In this case we have

gt=el—eM0— M1 g%z

By Theorem 2

ge=0F (e 4/2 ge?—g?),
where P, Q are polynomials and ¢ is a nonzero constant. Thus by Lemma 2.4
{eq —e2q°, __equ’ _ezqz}___{eZPwiQ’ 2\/70@2”*3@, _2\/70.3921’»()’ 0.4e2P} .

We may assume ¢?=¢*®**F or ¢?=2+/2 ge****®. Let (o, 74, j2) be the per-
mutation of (0, 1, 2) which satisfies

—eXp(Zq,°)=o4e2P, —eXp(Zq,l)‘—:—Z\/fose?P*Q .

We may assume g,,=i. Then ¢‘¢*’=1. Put
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p=Q—log o .
Then
ge=dy(e®*+/2e7—1),  {e%, —exp(2q,)} ={e*?, 24/ 27},
—exp(2¢;)=—2+/2¢?,

where d;={+1}. Now we have the following two cases.
1) e?=¢*?. In this case we have —exp(2¢,)=2+/2¢*?, Thus

g,=t,  g,=d.2+/2)"%"",
85, =1d:,2V2)1%P,  gy=dy(e’+ V2 e"—1),
where d,,d.={+1}. Therefore
2728, V28 +i 2/ 2dsg,,8:—1d,dg,,8,,=0
{ g, —i vV2d\d2gs,°82,=0.
2) ¢'=2+/2¢%". In this case we have —exp(2g,,)=e'?. Thus
2,=1,  8,=0d,2~2)%"",
g15,=ids0®®,  gi=dy(e**+~/2e7—1),
where d,, d,={+1}. Therefore
2,48, —1d:g,,8,,+7 2d3g,,8,=0
{ g;,'—8d.g,.°8,,=0.
Subcase 2.2): n=3. In this case we have

gl =el— M —g¥— g%

By Theorem 2
gs=e"(1+e9)

with polynomials P, @. Thus by Lemma 2.4
{eq’ _esqo’ ___esql’ _e3q2}= {esP-x 3Q’ 393P+2Q, 383P+Q’ QSP}.

We may assume e?=e*7+*¢ or ¢2=3¢°7*2Q, Let (3,, ,, J») be the permutation of
(0, 1, 2) which satisfies

—exp(3g;)=e*”,  —exp(3g,)=3e""+?.
We may assume g,,=—1. Then ¢*’=1 and

gs=wy(1+e%), {e?, —exp(3g,)} ={e*, 3¢*}, —exp(3¢;)=3e?,
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where w;< {1, e**27/3}, We have the following two cases.
1) e*=e’? In this case —exp(3¢,,)=3e*?. Thus

glo:_ly 81,= Q/?wltes’gh: szewls, gs=wy(1+¢9),

where w;, w.={— 1, e***/*}. Thus

{ V?wxwzgj°2+ nglwzwszgjog3+g;1g,2:0
©,0:8,,°— g/?;g:ogig:o .

2) ¢*=3¢*?. In this case —exp(3¢,,)=¢’?. Thus

g,=—1, gh:g/?wer”, 81,=w:e", gs=ws(1+e9),

where w;, w,€ {—1, e***/*}, Thus

{ wzgjo_gjz'f'wzwazga:()
w2g113+3g1.,2g12=0 .

Theorem 4 is this proved.
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