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ON THE FUNCTIONAL EQUATION /»=&+•••+<!?* AND

RIGIDITY THEOREMS FOR HOLOMORPHIC CURVES

BY YOJI NODA

Introduction and statement of results

For each positive integer N we set

EN={epι+ ••• +ep™ P^eCM, degP^N 0=1, - , m), m^N}.

In 1929 J. F. Ritt [4] showed the following theorem.

THEOREM A. Let g0, glf ••• , gn be elements of Eί and f be a holomorphic
function on {z\ ωl<argz<ω2} (α>2— o>ι>π) satisfying gnf

n+gn-Jn~l+
Then

It seems to be natural to ask whether Theorem A is valid with E1 replaced
by EN C/V^2). However, if gnφl9 the function /(*) = sin(7Γ22)/sin πz gives a
negative answer to the above question.

Let g: C-+Pm be a holomorphic curve of finite order, D0, D\, '" > Dm-ι be
hyperplanes and Dm be a hypersurfac of degree n (^2) satisfying D0nc
Γ\Dm — 0, g(C}Γ\(Do\j ••• \jDm}—0. We ask whether the image of g is con-
tained in the intersection of hypersurfaces of Pm. This problem is related to
the functional equation fn+gn-Jn~l+ ••• +£0=

Z0 (#0, ••• , gn-ι^EN) for an entire
function /. M. Green [1] treated the first non-trivial case f*=e*φι+e***+ ez<fs

(φίf ψt, φ^C\_z]) and showed that / is a linear combination of eψl, eφz, eφs. He
also showed that, if g : C->P2 is a holomorphic curve of finite order omitting the
two lines {Z0=Q} and {Z^Q} and the conic {Z0

2-fZ1

2+Z2

2^0}, then the image
of g lies in a line or a conic ([!]).

In this paper we shall show the following results.

THEOREM 1. Let Plt ••• , Pm be polynomials, N=maxdegPj, N^2, A3—

PfN:>(0)/N\(j=l, ~ ,m), n (^2) be an integer and f be a holomorphic function
on {z;ω1<argz<ωz} (ω^—ω^π/N). Assume that #{j A3—v, /=!, ••• , m}— 1
for every vertex v of the convex hull of {As}^lt and that fn=ePί+ ••• -\-ePm

on {z; ωι<aτgz<ωz}. Then f is an element of EN.
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THEOREM 2. Let f be an entire function, n(^2) be an integer and Pίf •••, P4

be polynomials satisfying that ^epJ^Q for every subset Ja {1, •••, 4} zwίΛ JΦ0

and that Pj—PkΦconst. for some j^k. Assume that fn=epι+ ••• +ep*. Then
there are the following two possibilities:

(1) n=2, 3 and f—ep-\-eQ, where P, Q are polynomials.
(2) n=2 and f=epR(e®), where P, Q are polynomials and R(w)=w2+

\/2σw — σ2 with σφΰ.

In Theorem 2 the vertices of the convex hull of {A/}J=ι do not necessarily
satisfy the assumption of Theorem 1. For example, Alf •••, At can be on the
line segment [a+x(β—a) Q^x<>l} and satisfy #{/; Aj=a}=l, #{/; Aj- β}
—2. In this case, however, it is verified that, if A3—Ak, then Pj—Pk=ιconst..
In Section 2 we prove a more general result (Theorem 5). From Theorem 2
we obtain the following theorems.

THEOREM 3. Let g: C-*P2 be a holomorphic curve of finite order, DQ) Dί
be distinct lines and D2 be a conic. Assume that DQΓ^D1Γ\D2=0, g(C)Γ\
(DQ^jDι\jD2)=^0. Then there is a homogeneous polynomial Q(w0, wίf w2) of
degree at most three satisfying g(C)d{Q(wQ, wίf w2)=Q}.

THEOREM 4. Let g: C-^P3 be a nonconstant holomorphic curve of finite
order satisfying g(C)r^({wQ=0}^J{wl=Q}U{w2=Q}^J{w0

n-\- ••• +1^=0})= 0,
where n (2^2) is an integer. Then there are homogeneous polynomials QI(WQ, •••, w8),
^2(^0, •••, ^3) which are relatively prime to each other and satisfy l^degQι^2,
l^deg Q2^4 and g(C}c.({Ql(wϋ, •••, W3)=Q}Γ\{Q2(wo, •••, w^)—0}). Further if
n^4, then g has the reduced representation (gQ, g^ g2, gs) such that {gj}j=Q—
{GO, fli, 02, ep} or {gj\j*=o={aQ, alf a2e

p, a*ep}, where α/s are constants and P is
a polynomial.

The order p of a holomorphic curve g: C-^Pm is defined by p =
limsup (log T(r, g)/log r), where T(r, g) is the characteristic function of g. (Let

(go, gι, •" , gm) be a reduced representation of g. Then we define T(r, g}—

(l/2ττ) flog (max | gj(reίθ) \)dθ- log (max | ̂ (0) |).)
JO 3 J

Remark. In Theorem 3 we cannot conclude that the degree of Q(wQ, wlf w2]
is at most two, since the curve (1, ez, (l-\-ez)ez'2) satisfies the assumption of
Theorem 3 with DQ={wQ=Q}, Dl={wl=ϋ\ί D2={w2

2-wQwί-2wί

2=0\. (In this
case Q(wQ, Wι, w2)~w2

2wQ—(wQ-\-wl)
2Wι and the image lies neither in a line nor

in a conic.)

1. Proof of Theorem 1.

For each Θ<=R and αeC, the polynomials P1(eiθz)+azN

f • - - , Pm(eiθz)+azN

satisfy the hypotheses of Theorem 1 with / replaced by f(eiθz)e<ialn:>zN. There-
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fore we may assume that α>ι<0<α>2 and that the following condition (A) is
satisfied.

(A) n(|^2) is an integer, Pίt ••• , Pm are polynomials, Pj—PkΦconst. (JΦK),
ΛΓ=maxdegP,, N^2, A,=Pj<>N\ϋ)/N\ (/=!, -,ro), U is the convex hull of

{Aίf •••, Am}> {Aίf -" , At] is the set of the vertices of U, ί^2, argO^— c)<
arg(A2-c)< <arg(At-c)<arg(Aί-c)+2π for all c e (£7— {Aίf ••• , At\),
Re^!=ReΛ, lmAt>lmAl and

For each ve {1, •••, ί}, let {p»tj}3 be the set of polynomials of degree at
most N definedd by

(1.1)

exp (Py/n)(l+ Σ
\ ;=ι (exp(P,-ft)y)s Σexp (/>„,),

Pv.j-pv.kTt const. Im(/>Viχθ))e[0, 2π),

where 1+ is the Taylor expansion of

(1-2)

«= {2 arg

(l.o)

*Sι= ̂  arg (( !̂-

(see Figure 1 and 2).

( |u;|<l). Put

-!-^v)/n)} \J {Av/n}

(At=At, v=ί, -,ί-D

Fig. 1.

Put

H,= {z Re 2<0} \JiR+ , ft=}z Re z<0] \JiR~ ,

where iR+={ix; x>0}, iR~={ix; x<Q}. For 0e(0, π/2) and ίί>0, we set

, d)={z;Q>argz>-θ, \mz<-d}.



FUNCTIONAL EQUATION fn = e

Pl + - +ep™ AND RIGIDITY THEOREMS 93

Further we denote by

C(P)

the leading coefficient of a polynomial p. Note that C(p)=0 if and only if
0=0.

LEMMA 1.1. Let pίf ••• , ρm be polynomials satisfying C(pj)(=Hι (/=!, •••, m)
or C(pj)^H2 (/—I, ••• , m) and λ l f ••• , ΛTO be positive numbers. Then
••• +^ι/>m)=maxdeg/>,, and C(λ^+ ••• +Λm/>m)e#1 or C^/)^ ••• +

respectively.

proof. Assume that C(p^Hl (/— 1, ••• , m). Put D=maxdeg0j, / —

{/; degpj=D, /=!, ••• , m}, c= Σ ΛjC(/>>). Then we have ce/Λ. Further
.;&/•

^ι/>ι+ ••• +^mίm=C2Z)+^(2), where ^ is a polynomial of degree at most D—l.
Thus degW1/>1+ - +Λ1Λpm)=D=maxdegpj, 0(2^+ ••• +Λmpm)

Let pe {1,2} be fixed. When polynomials p, q satisfy C(p—q)^Hv, we
write 0<v#. Then, by Lemma 1.1, (CM, <„) is an ordered set. Further, if
p*q, then ρ<vq or o<vp. Therefore (CM, <ί), (CM, <2) are totally ordered
sets. Hence we have the following

LEMMA 1.2. Lei 77 (^0) be a finite subset of CM. TTz^m f/zere are />j, pz

e77 SMC/? /to C(p-p1)^Hί for every p^Π-{pl] and that C(p-p2)(=H2 for
every

LEMMA 1.3. Let p be a polynomial of degree Λf(^l).
(1) // Re CO)<0, then there are positive numbers K, θ, R such that

Izn on (z; |argz|<0, \z\>R}.

(2) // C(p)^iR+, then there are positive numbers Kf ', θ' ', άr such that

|exρX2)|<exp(-/fΊImz I^Γ'1) on G1(θ/

f df) .

(3) // C(p}^iR~, then there are positive numbers K", θ" , d" , such that

A"* \mz\ z \ N ~ l ) on G2(θ», d») .

Proof. We shall prove only (2). Put C(p)=iA (A>0), q(z)=p(z)-iAz".
Then for ζe(0, π/4) we have

\ ~ l ) o n

where B is a positive constant and z—x+iy. Thus we have the desired result.
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LEMMA 1.4. Let m be a positive integer and Δ(Φ 0) be a subset of (N\J {0})m.
Then there exist aly -- , aτ<^Δ (τ<oo) such that Δc: {ctj+β; j— 1, ••• , r, /3e

Proof. By induction on m. For al9 ••• , ap<=(Nu{Q\)q (p9 q^N) we set

<al9 -,apy={aj+β; J=19 - , p,

Further for α^C^, •••, ^)e(7V\j{0})9 and Λ e W u f O } , we denote by («, Λ) the
element (Λi, ••• , λq, λ) of (ΛΓu{0})β+1. It is easily seen that Lemma 1.4 holds
for m=l. Assume that Lemma 1.4 holds for m=u. Let J be a subset of
(N\J {O})1"*"1 satisfying the assumption with m replaced by v+1. Put

Then, by the induction assumption, there exist άί9 ••• , ap^2 (p^N) such that

Jc<ά1, ... , α^) .

Let

λ<*>=mm{λv+1 9(a}, λv+l}^Δ] (; = 1, .-, |θ),

M^max i^ ,
j

J<o= {yb ... , )̂ (̂ , ... , ,̂ σ)e J} (σ ̂ O, 1, - , M) .

Then, for every σe {0, 1, - , M}, there exist a['\ •••, α^eJ(^ (
such that

>, •••,<;> (σ=0,l, -, Af).

Let α=(ίι, ••• , Λ+ι)eJ. Then y^ •• ,^)e2. Thus for some j we have
tfi, •••, ^)e<άj>. Therefore, if JUi^Af, then αe<fe ^0))>. If ^+ι^Af, then
( !̂, ..., ^v)eJc^+i}. Thus for some j we have (λlt ••• , ^e^j^+i^. There-
fore αe=<(α^+ι>, ^+1)>. Put

αffi,=(α^, (j) 0=1, - , ?*, ^=0, - , M).

Then α^e J 0=1. " , P)> <*°,j^A 0=1, ••• , i°</, <y=0, ••• , M) and

Δa(aι9 " , α^, αβ.ι, " , <*M, PM> .

Lemma 1.4 is thus proved.

LEMMA 1.5. Assume that (A) Λ0Ws. T/iβn {aVtj}jC:Sv (v=l, ••• , ί) Further
if #{/; AV—A3, /=!, ••• , m}=l, ί/zβw {a v,j}j Λαs wo ^wite accumulotion point.

Proof. We shall give the proof only for v=l. From (1. !)-(!. 3) we have
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{aί,J}ja{(A1/n)+ Σλ^Aj-Aύ;

Further if #{j; A1=AJ9 j=l, •••, m}=l, then Aj—A^Q for any j&l. Thus
{ a l t j } j has no finite accumulation point (see Figure 1 and 2).

For each polynomial q, we put

/ι={/; Re C(£w- <7)>0, /h,,— 4^ const.},

/2={; Re C(p*.j-q)>Q, pι.}-qΦ const.},

J'2={j; C(p2tί-q)t=iR+, p2,j-

= Σ exp(/)1>,-), SjM= Σ exp(j&1§>), T1M= Σ exp(/>w),
e/i e^Ί e /'Ί

= Σ exp(/>2iι/), S2M= Σ exp(ρ2i>), T2[0]= Σ

exp(/>! y(0)— ̂ (0)) if pi j—q— const, for some /,

0 if PI.J- ̂ ^const. for all 7,

exp(/>2 XO)— <?(0)) if />2 ^ — g^const. for some /,

0 if pz.j—q=£const. for all j.
Then

Σ exp (j&2,^)=
J

We see that bι(q)=l if and only if q^{pιtj}j and that b2(q)—l if and only if
q ^ { p * . j } j . Thus, if ^({^.^^-{^^^({^^^{ίi.yJΛ then b

LEMMA 1.6. Let q be a polynomial of degree at most N. Assume that (A)
holds. If #{j; A^Aj, /=!, ••• , m}=l or #{j A2=Aj, j=l, ••- , m}=l,

or S2[^]eEΛτ respectively.

Proof. Put

J72— cS2Π {2 Re z^

Then by the definitions of /Ί, /X

2
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{*ι., y
7,} cz j:2

Further J^, J72 are compact sets (see Figure 3 and 4). Therefore, if #{/; A
=A, y=l, •••, m}=l, then by Lemma 1.5 we have #{al>3\ 'e/Ί} <oo. Thus
SiMeJStf. Similarly, if #{;; A=A» 7 = 1, •- > ^}=1, then we have
Lemma 1.6 is thus proved.

A2/n

Λι/n

Λ2/n

Λι/n

Fig. 4.

LEMMA 1.7. L^ί q be a polynomial of degree at most N. Assume that (A)
holds and that SiMeJS^, S8[0]€Ξ£tf. Then there exist positive constants θ'(q),

d'(q\ hl9 hz such that

on

on

, d'(q)),

Proof. By the definitions of
the desired result.

, S2[d and Lemma 1.3, we easily have

LEMMA 1.8. Let q be a polynomial of degree at most N. Assume that (A)
holds, C(Pμ-P1)^Hί for every μφl and that C(Pμ-Pύ^H* for every μφ2.
Then there exist positive constants θ(q), d(q\ klt k'lt k2, k\ such that

(1) on Gl(θ(q)ί d(q)) ,
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(2) k-9WT2M(2)|^exp(-^2]Im2|)+exp(-^2|^|) on G2(θ(q},

Proof. We shall prove only (1). We may assume Pj— 0. Then

(1.4) degP^l, C(Pμ)^H1 for every

For each λ=(λ2, Λ3, •••, λm)ς=(N\j {O})™-1 we put

where (l + w)1/n= SΓ^ (I^I<1). Let k be a positive number such that

Then by (1.4) and Lemma 1.3, for suitable θ, d,

\exp(Pμ(z))\<k on Gtf, d) (μ^2, - , m).
Hence

Σ rX Σ exp (Pfl)Y= Σ ίtf) exp (<?u') ,
.7=0 ^/=2

lS Σ \8(X)\ktll<<*>
UII20

on G!(^, rf). Therefore Σexp(/?1 > yfe)) is absolutely convergent and holomorphic

on Gλ(θ, d).
Put

tf^- 4^ const.}.

Then by Lemma 1.4, there exist alt ••• , ατe J satisfying

(1.5)

Put
|+ Σ

Ull^l

Then ΓUo, Λ)<oo for all λ0tΞ(Nv MΓ"1 and all Λe(0, l/(m-l)). By (1.5)

Σ |exp(ί(βί»-9)|Γ(αΛ *) on G,^, d).



98 YOJI NODA

Since C(q^aP—q)<^Hι and q^^—q Φ const., by Lemma 1.3 there exist positive
constants θ(q) «0), d(q) (>d), kι, kΊ such that

.7=1

on Gt(θ(q), d(q)). Thus we have the desired result.

LEMMA 1.9. Let f be a holomorphic function on {z; |arg^|<<y0} (α>0>0).
Assume that (A) holds, #{/; Al—Aj) /=!, ••• , m}=l, #{/; A2—Aj, /=!, ••• , m}
= 1 and that fn=ePί+ ••• +ep™ on {z; | arg z |<α>0} . Then

Proof. Put W=({p^j}ί-{p^J}i)\J({p^}j-{pltί}i) and assume WΦ0.
Then, by Lemma 1.5, {Re aVl); pVlj^W\ is a discrete set which is bounded
from above. Thus there exists a^{aVtJ; pv>j^W] which satisfies

(1.6) Reαr 0

Put

Then, by Lemma 1.5, #W'<<χ>. Thus, by Lemma 1.2, there exists a poly-
nomial Q0 in PFX such that

Re C(p-Qo)<U for every ^e^ .

On the other hand, by (1.6), Re C(pVιj— tf0)=Re (aVtj— α0)^0 for every pv,j^
W-W. Thus we have

(1.7) ReC(£-?o)^0 for every p^W .

We define Jl9 J'l9 J*l9 /„ /'„ /^2 for ^=^β. Then by (1.7) we have
{ίι.j;y^/ι}' rW=0> {/>2.<M/e/8}/ rW=0. Therefore, by the definitions of
Jlt /2 and TΓ, { p l t j /e/J = {/>8i<; /e/2} and {α1(, e/J = {a2,} ;e/2} .
Further, if je/j, then by the definition of /i we have aίtj= a0 or Reα l t ; >
Reα0 Thus by Lemma 1.5

Put ff^cSiΓVSsjΠte; Re^^Reα0}. Since £Γ is a compact set, by Lemma 1.5 we
have #{αι,,; ;e/1}<oo (see Figure 5). Thus Rl=
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Λ3/n
A2/n

Fig. 5.

Let 0(<?o), Θ'(QQ), d(qύ), d'(qo) be positive constants for which Lemma 1.7 and
1.8 hold with q replaced by g0> and let θϋ, d* be positive constants satisfying

d'(q^. Put

Then, by Lemma 1.6, F is a holomorphic function on {|arg z\<ω0} satisfying

}CO on Gι(θQ, dQ),

on G2(00, do)
(1.8)

Therefore, by Lemma 1.7 and 1.8, there are positive constants K\, K2 such that
for every y0>d0 we have

(1.9)

Put Lβ=^βtan"1β0. Then F is bounded on d{z;Rez^L0, l l m ^ l ^ ^ o } and
satisfies \F(z)\ < e x p ( Λ \ z \ N ) on \z Re 2^L0, IIm 21 ^^0} with a positive constant
A Therefore by the Phragmen-Lindelof theorem (see [3; p. 43]) it is verified
that F is a bounded function in {2;Rez^>L 0 , i l m ^ l S ^ o } . Let L (>L0) be
a positive number. Then

(see Figure 6).
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Since F is bounded on {z\ Rez^L0, l l m ^ l ^ v o } , by using (1.9) we have

Since ?0eW, we have b^φb^}. Thus for ;y0 sufficiently large, we have a
contradiction. Thus W=0, namely {pιtί},= {/>2,, },. Lemma 1.9 is thus proved.

From Lemma 1.5 and 1.9 we have the following

COROLLARY. Under the hypotheses of Lemma 1.9, assume that <SιΓuS2 is a
bounded set. Then f is an element of EN.

Now we can complete the proof of Theorem 1. For each polynomial p and
Θ(=R, we set (p)θ(z)=p(zeiθ). Then (•)* : CΊ>]-»CΊ>] is a linear bijection which
leaves every element of C (<=£[>]) fixed. Therefore for every ve {1, •••, t]
and Θ<=R, we have

exp((P,Wn)(l+ Σr/ Σ exp((P^-(P^))Λ=Σexp(^0.
\ ^=1 μeu. , τn}-{v} ' S

Let ve{l, ••• , t} be fixed. Then there exists θ^(—π/N, π/N~\ such that

Re (Ave
ίNθ»)=Re (Av+le

iNθ^, Im (Ave
iirθ»)<lm (Av+le

iNΘ»),

Re (^χ^^)^Re (^^ίjv^) (μ=l, - , m) .

Therefore (A) is fulfilled with Plt - , Pm, ^t, Λ2 replaced by (Λ)^, - , (Pm)^,
Aυβ

ίΛΓ<?y, -4v+ιe<Λr^ι; respectively. Thus, if θvE:(ω1J α>2), then by Lemma 1.9
{(^,;)^}^{(ίv+ι,;)^};. Therefore {ίy.y},= {j&p+ι^}j, {av.j},= {av+llj}jc
Let v0e {1, ••• , t} be the integer such that {v, θv^(ωίy o>2)} — {ι>0, ^o+l,
(modi). Then {flpβ.^,= {αvβ +ι.,/}j= ••• = {flpβ+«+wb<=(ΛβΠ^β+ιn •••
(We set av+t,j=av>J, <Sv+t=Sv (ve {1, ••-, ί}) ) Since ωt—ωι>π/N, <
-" Γ\<SVQ+s+ί is a bounded set. Thus {fl^../} > is a finite set Therefore by Lemma
1-5 {pVQ.j}j is so. Thus / is an element of EN. Theorem 1 is thus proved.
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2. Proof of Theorem 2.

We begin with the proof of the following

THEOREMS. Let f be a holomorphic function on {z; \aτgz\<ω0} (ω0>0)
and g be an element of £#-i. Assume that (A) holds, #{/; A1=AJ, /=!, ••• , m]
= 1, #{/; Λ=Λ, 7 = 1, ••• , m}=l and that fn=gepι+ep*-] ----- \-ep™> on {z; \argz\
<ω0} . Then g=hn for some

LEMMA 2.1. Let n(^2) be an integer, Plt •••, P5 be polynomials, Pμ—PvΦ
const, (μφv), C(Pμ—Pl}<^Hl (μ=2, ••• , s) αwcί {r^j be the set of polynomials
defined by

exp(Λ/n)(l+ Σ Tj( Σ exp^-P^Λ-ΣexpCr,),
\ J=l μ=2 / 3

rj-rkΦconst. ( j φ k ) , Im(r/0))e[0, 2π),

w /zere 1+ ΣrX=(l+u;)1/n (|^|<1). Let Π (^0) Z?β α subset of {rj}3. Then
J = l

there exists a polynomial p^Π such that

C(p-pQ)^Hί for every p^Π-{p0}.

Proof. We may assume P^O. Then

degP^l, C(Pμ)^Hί (μ=2, -, s).

For each polynomial p we set

and for each λ=(λ2,

Then (•)*: CM-^CM is a linear mapping. By the definition of \rj\j and
Lemma 1.1, we have

(2.1)

(2.2) deg^^l, Ctoc^)*)e^ for every /3^(0, - , 0).

Put

(2.3) 77*=

Then by (2.2)
77*= {(?<*>)* ;

Further by Lemma 1.4 there exist α1; ••• , ατe J such that
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Put
#={fo<«Λ»)*;.; = l, ..., r,

Then

(2.4) Π*aΠ.

By Lemma 1.2 we may assume

for every q<*J> satisfying (^CαP)*^(^Cαι))*. Note that
C((^+^)*-(^>)*+^ Therefore by
(2.2) and Lemma 1.1

C(/>-(?<βl))*)eΞ/Λ for every

Thus by (2.4)

(2.5) C(p-(g^)^^H1 for every />e/7*- {(?<*!>)*}.

Since a^Δ, by (2.3) there is an element />0 of ^ such that

fo<βι>)*=(/>o)*

If p<=Π-{p0}, then deg(/>-/>0)^l and (j&)*e/7*-{(ί0)*}. Therefore by (2.5)

C(ί-Λ)=C((ί)*^(ίβ)*)=C((ί)*«(^βι>)*)e//1 for every p^Π-{p,}.

Thus we have the desired result.

LEMMA 2.2. Assume that (A) AoWs, {; A^Aj, /=!, — , m} = {l, ί+1, — , s}

exp(Λ)+ Σ exp(Pj)*hn for any
J»t + l

Let {pι.j}j, {p2.j}j be defined by (1.1). Then there exists
( \ P * . j } j - { p ι . j } j ) such that

where /?ι[^0], ^2^0], 5i[^0], 52[^0] are defined in Section 1.

Proof. We may assume

Λ=0,
Then

Λ^-l^degP^l (fi=f+l, ••• , s),

degPμ=N (^e{2, - . - , m}-{ί+l, -, s}).
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Let {Γj}} be the set of polynomials defined by

1+Σr/ Σ exp (/>,))' Ξ=Σexp(r,),
,-1 >»« + ! ^ 3

YJ- r^const. (;=££), Im (r/0))(= [0, 2ττ) ,

where 1+ Σ ΊjW3= (l + w)lln ( |u> |<l) . Then by Lemma 1.1

where av.,=pVt3<>N\ϋ)/N\. Put

By assumption we have ^πι— oo. Since #{;; A2=A}, j—l, ••• , m}=l, by Lemma
1.5 #τr2<oo. Therefore (πl—π2}Φ0. Thus by Lemma 2.1 there exists ^e
(ττι— ττ2) such that

(2.6) C(q—ql)^ΞHl for every #e(πι—π2) — {qj.

Since #(ττ2—πι)<oo, by Lemma 1.2 there exists #2e(;τ2—πi) such that

(2.7) C(q—q2)^Hi for every q^(π2—π1)—{q2\

whenever (π2—πl}Φ0. Note that C(qi—^2)^0. Put

2 if (π2 — π1)^0 and C(ql — q2)^Hί.

Then q^((πι—πύV(πι—πύ)<^((Πl—Πύ\J(Πt--Πd). When ^0=^ι and (τr8— πO
^0, we have C(q—q0)=C((q—q2)-}-(q2—ql)). Thus, by (2.7) and Lemma 1.1,

C(q—qo)^Hί for every q(=(π2— πj.

When ?o— ?2, we have C(q—qQ)=C((q—ql)-{-(ql—q2)). Thus, by (2.6) and Lemma

1.1,
for every ^e(ττι— ττ 2).

Therefore, from (2.6), (2.7),

(2.8) C(q-q0)^Hί for every

(2.9) ReCO?-?o):£0 for every

Since deg^0^A^— 1, we have C(pl>j—q^=al,J (=£0), C(p2tj—qo)=a2,j for ίι,; e
(Πi—πJ, p2tj^(Π2-π2). Note that ^!=0, A2<=iR+. By Lemma 1.5 and (1.3),

O} for pltίtΞ(Π \-π,\ pz>j^(Πz-π2).
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Therefore

(2.10) C(q-qώ<ΞHι for every

(2.11) ReC(?-?0)^0 for every ?e(/72-7T2).

Thus, from (2.8)-(2.11), we have

(2.12) Cte-flOe/Λ for every

(2.13) Re C(?-?o)^0 for every

We define Jl9 J'ίf J"l9 J2, J't, /"2 for q=q, as in Section 1. Then, from (2.13)
and the definitions of J ί f J2,

{pι.j , J^Ji} = \p2.j /e/8} cL(πιr\π2} .

Since #(πίr\π2)<oof we have

From Lemma 1.6

Further by (2.12) and the definition of /Ί

{ίi.^
Thus

Lemma 2.2 is thus proved.

Proof of Theorem 5. We use the notations of Lemma 2.2. Assume that
gφhn for any h^EN-lt Then by Lemma 2.2 there exists ςo^({pί.j}j—{pz.j}j)

} j - { p i . j } j ) such that

Therefore Lemma 1.7 and 1.8 hold for those Sι[?0], S2[?β],
 TiM, T8[^β]. Put

Then F is a holomorphic function on { | arg z |<α>0} satisfying (1.8), (1.9), and
bι(q^Φb2(q^). Thus we have a contradiction as in Section 1. Theorem 5 is
thus proved.

Now we prove Theorem 2. Put Λf=max deg PJf Aj=Pj^(0)/Nl (/=!, •-, 4).

We may assume that #{Aj}^2. Then we have the following three cases.
Case 1): #{Aj\j=2. In this case, from the following Lemma 2.3, we have

a contradiction.

LEMMA 2.3. Let n (^2), N (^1) be integers, Alt A2 be distinct constants
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and gι, g2 be nonzero elements of EN-^ Then

f(z)n*gι(z) exp (A^+gάz) exp (A2z
N)

for any entire function f.

Proof. Assume that there exists an entire function / satisfying fn(z)—
g,(z) exp (A,zN)-i-g2(z) exp (A2z

N). Put

Then T(r, g2)=o(T(r, F)) and

(9(0, F)=Θ(™, F)=l, Θ(-g2, F)^l-(

Thus by the second fundamental theorem (see [2; p. 47]) we have a contra-
diction.

Case 2): #{Aj}j=%. Suppose that A ί f •••, A^ do not lie on any streight
line. Then we may assume that

Λ=0, A2tΞiR+, Re^3<0, ReΛ<0.

Define pVιJ, aVι} and <SV (v=l, 2) as in Section 1. Then, by Lemma 1.9, { a l t j } j
= {^2.;}^. Further from (1.1) we have {(Pl/n)+ v^-P^+log ̂  veΛ^} c {^lt>7 }^
Therefore, by Lemma 1.5, (Slr\S2}-=>{al>j}J^{vA2\}j^N}. Thus GSιΓuSaΓΛR)
=3 {ι;Λ2 ve^V}. Since S1Γ\S2ί^iR= {ix 0^x^(Im ^42)/w}, this is a contradiction.
Thus !̂, ••• , A4 lie on a straight line. We assume that A2=A3 and
(see Figure 7 and 8).

Subcase 2.1): A^A^. (We denote by αβ the line segment {a+x(β—a);
First we shall show the following

LEMMA 2.4.
(1) Let Qι, '" , Qm /?β polynomials satisfying Qj—Qk^const. (jΦk). Then

(2) Lei P!, ••• , Pm be polynomials. Assume that ePl+ ~ +ep™=Q and that
ep^Q foranyj£{l, >•• , m} (/^0). Then (Λ)*= - =(/'«)*- //

or βpι+^+ep3^0, ί/zew we α/wα ys /zαi e (Pι)*=(P2)* ^r (Pι)*=(P2)*=(P8)*
spectively. (For each polynomial /> we set (p)*(z)=p(z) —
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Proof. These are well-known results and immediate consequences of Lemma
1.3. We assume that (?1<2Q2<2 - <2<3m. By Lemma 1.1, C(Qj-Qm)^H2

0=1, ••• , m— 1). Thus, by Lemma 1.3, there exist positive constants θ, d such
that |β«?ι-βm> + ... +0c<?m-ι-βm>|<ι/2on Ga(0, d). Therefore |(β«ι+.
>l/2 on Ga(0, d). Thus (1) is proved. (2) follows from (1).

By Theorem 1 we have f^EN. We may assume that Aίf

A,<A2=A,<A, and that P2^2PZ. Then we have /=^H ----- h0Qm, where <?/s
are polynomials of degree at most N satisfying Qμ—QvΦ const, (μφv), Qι<z
<?2<2 - <2<?m and Qf^(ΰ)/N\^AJn9 AJn\ (; = 1, ••• , m).

Put
^, where φ/s are polynomials satisίying Q^— Q^const. (μφv), Qι<z

Qz<2"- <zQk It is easily seen that m^2 and

Qι=nQl9 0«=(n-l)g1+<?2, 0*-i=0m-i+(n-l)(?w, Qk = nQm.

We shall consider the following two cases.
1) P2-P3=:const.. In this case we have fn=epι+ep*+c+ep*=exp(Qί)+ •••

+exρ(Q^) for some constant c. Therefore, by Lemma 2.4, we have ^=3,
(n-l)Ql+Qz=Qm.,+(n-l)Qm=P2+c. Thus /?s(n-l)(01-Om)+(Q,-<?m-1)=0.
If m>2, then Qι<zQm, Qz^zQm-i Therefore, by Lemma 1.1, we have #<20.
This is a contradiction. Thus m=2, Λ=(n-2) (Oι-Q2). If w>2, then 7?<20.
This is again a contradiction. Thus m=n~2f f=eQί+eQz.

2) P2— P3^const.. By Lemma 2.4 we have

(2.14) Λ=nθ!, P,=(n-l)

Put B,=QΐN\ϋ)/N\ (y=l, - , m). Then by (2.14)

Since ^1<Λ=:^3<Λ, we have B^B*, 5w_i<5m, B3^BJ+l 0 = 1, •••, m— 1),
(w-1) (#!-£ m)+(52— jBm_1)=0. Therefore we have n=m=2 as in 1). Thus
/=ββι+eβ2. This implies gp2+ep3— 2gc«ι+«2)? p2—pz— const., which contradicts
the assumption.

Subcase 2.2): A2^Ά^A4. We may assume that Re^U= •-• =Re-A4, Im^l^
Im Λ>Im τ42— Im ̂ 3. If P2— ft ̂  const., then by Theorem 5 and Lemma 2.3 we
have a contradiction. Thus P2— P3— const.. Therefore this case is reduced to
Subcase 2.1).

Case 3): #{^},,=4. By Theorem 1 it is verified that f^EN. As in Case
2), we see that Aίf ~- , A4 lie on a straight line. We may assume that Alf ••• ,
ΛeΛ, 0=Λ<Λ<48<Λ and P^O. Then f=Cle

Q^ ----- \-cmeQ™, where c/s
are nonzero constants and ζ?/s are polynomials such that (?/0)=0 0—1, ••• , m),

[0, Λ/n] 0-1, - , m) and Q1<,Q1<2..
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+ »• +exp(Q*), where Q/s are polynomials
satisfying Qμ—^ p^const. (μ^y), Qι<2Q2<2 <2Q*. By Lemma 2.4 we have
fe=4 and P}=Qj O'=l, ••• , 4). Since Pι=0, we have dnenei=l. Therefore we
may assume Cι=l, Qι=0. It is easily seen that ra^2 and

Thus

0=(Λ)*=Oι,
(2.15)

Put Bj=QSN>(ΰ)/N\ (; = 1, - , m). Then

(2.16)

Further by (2.15)

(2.17) 0=Λι

Since y41<^2<^L3<Λ, we have B^<B2> 5m

Assume m^3. Let p be the integer such that B2=B^= ••• =BP<BP+1.
Then

= {(n, 0, •• ,0)}U{(M-1, 0, - , 0, 1, 0, -,0);w=0,
V

Therefore (Qj)*=Q> 0=1, ••• , |θ) If P^3, then

Therefore, by Lemma 2.4, (P2)*=(Q2)*^g2, (P8)*=(§8)*=<?8. Thus Λ2=B2)

Λ3=BZ. Hence A2=A3. This is a contradiction. Thus£2<£3. Similarly βm_ 2

<Bm-ι. Therefore, if m^3, then

(2.18) 0=1

LEMMA 2.5. There exist positive integers λj 0=2, •••, m) such that

(2.19) Qj=λjQ2 0=2, -, m).

Proof. By induction on 7. For each polynomial Q we set

Put
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U={Q;
C/Ί. .

Vt={Q ,Q='ΣμiQ» n=Σμ}, μj<=Nu{0}} (v=2, ••• ,m).
.7 = 1 J = l

Then by (2.15) ί/= {(Λ)*, - , (P4)*} - {0, Q2, Qn-ι+(n-ΐ)Qn, nQm} . (2.19) holds
trivially for /=2. Assume that (2.19) holds for /— 2, ••• , v (ι><nϊ). Further assume
Qv+ί&Vv. If (μlt •••, μm)^μ(Qv+1)) then there exists an integer p^H-l such

m m (0 — l m

that μ^O. Since Qv+1= Σ #A= Σ μ&j, we have Qv+ι-μpQp = Σ + Σ
;=ι j=2 j=2 ;=/o +

By Lemma 1.1 0^2(Σ + Σ μjQd, (Qv+ι-μpQp)£*Q. Therefore μz= -

=0, /ι,+1= - =^m=0, Qv+ι^μPQP. Hence ^=1, /o=v+l. Thus

v+ι)= {(n-1, O , 1, 0, - , 0)} .

Therefore #μ(Qv+l)=l. Thus Qv+l^U. On the other hand, by (2.16) and (2.18),
we have B2<Bs<^B»+l, Bv+1<>Bm, 0<5m_1. (We assume m^3.) Therefore
0<52<5t;+1<(5m_1+(n-l)jBm)<n5w. Hence QV+1&U. This is a contradiction.
Thus Qv+ί^Vv. By the induction assumption we have Vva{λQ2; λ^N\j{Q}}.
Hence there is a positive integer λv+1 such that

V v + l — Λ y + l ζ / 2

Lemma 2.5 is thus proved.

By Lemma 2.5 there are polynomials £P, 31 satisfying that

/=2>(exp (Q,)), /Λ - Λ (exp (Q2)) .

By Lemma 2.5 Bm-Bm-l=λ(B2-Bί) with ^=^m-^TO_1. Similarly B2-B,=
λ'(Bm-Bm-J with a positive integer λ' '. Thus 5a— Bi=BTO— 5TO-i. Therefore
from (2.17) we have A^—A^=Bm—Bm-l=B^—Bl=A^-Al. This implies that,
if ί>3, then ^^>(0)=0 (p=2, - , f-2). Therefore
where ί^3 and rfy's are nonzero constants.

LEMMA 2.6. L#ί S*, 31 be polynomials and w(^2) &# αw integer such that

(2.20) S>n=.&,

where ί^3 αnc/ rf^^O /or ei er^ v. Then there are the following two possibilities:
(1) n— 3 ana &(ιv)=p(w — σ) with p, σ^Q.

(2) n=2 and ^w^p'^+V^σ'w-σ'*) with p' , σ'Φΰ.

Proof. Let a be a zero of 5>. Then ^(α)=^7(α)=0, This yields
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Therefore £P has at most two distinct zeros aίf az.
Case 1): α1= «2. Put <τ— tfj— «2. In this case &(w)n=τ(w — σ)*n — Sί(w),

where τ is a constant and s— deg£P. From (2.20) we have t — sn=3. Thus
s=l, 72=3. Therefore we have the desired result.

Case 2): a^az. In this case

(2.21) St(wY=τf(w-al}
nu(w-a^=3ί(w) ,

where r' is a constant and w, t> are positive integers. On the other hand, from
(2.20), we have

(2.22) ^(wϊ^ζiv'-^w-η)

with ζ, η=£θ. Assume n^4, then raw-2^2 and nv-2^2. From (2.21), (2.22)
we have a contradiction. Thus n^3. Similarly we have w = l or v=l. Assume
that M=l, v^2. Then, from (2.21) and (2.22), we obtain n + nv=ί, nv— 2=f— 3.
Thus n=l. This is a contradiction. Similarly w — 1 whenever v=l. Thus
u=v=l. If n=3 and w=t;=l, then from (2.21) we have ί=6. On the other
hand (2.21) and (2.22) imply f=4. This is a contradiction. Thus w=2, M=V=!
and £— 4. Therefore

where p' is a nonzero constant. Since ί=4, from (2.20) and (2.21), the co-
efficcient of w;2 of £P(w;2) is equal to 0. Thus (α1+«2)

2+2α1α2=0. Hence

&(w)=p'(w2+V2 σ'w-σ'2),

where a' is a nonzero constant. Lemma 2.6 is thus proved.

Lemma 2.5 and 2.6 complete the proof of Theorem 2.

3. Proof of Theorem 3.

Let g—(go, gίt g2*), where g/s are entire functions without common zeros.
We may assume that DQ— {w<>~0}, D1={wl=0\. Let P(w0, wίr w2) be a homo-
geneous polynomial of degree two such that D2= {P(w0, w ί f w2}—ΰ}. Then, by
the assumption, for suitable polynomials q0, qlf q

Since D0Γ\DίΓ\D2=0> there exist constants α0, fli, «2 (02^=0), ί?0, ^υ ^2 such that
P(WQ, MI, w2)=:(aQWQ-i-a1WιJra2W2)2—(bQW0

2'\-b1w]

z-\-b2WQWί). Since D2 is not a
line, we have (bύ, bl9 W^ίO, 0, 0). Put

Then
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(3.1) G2=M25o+6ι025l+^(

If Qύ—q1= const., then gQ=cgι with a nonzero constant c. Thus, in what
follows, we assume that q*—q\ =£ const.. Further we may assume, without loss
of generality, that

deg tfo^

If ftβ=ft1=o, ^2^0, then from (3.1) G2=b2e
q<>+qι+eq. Thus by Lemma 2.3 we

have G2=ceq«+qι with a constant c (Φb2). Thus

Similarly, if b0=b2=Q, b^Q, then Gz=bίe
2q^+eq. Thus G*=c'e**ι, c'Φb^ There-

fore

2= Vc'gi, c'Φbi .

If ft1==ft2=o, 60=£θ, then G*=bte**+e*. Thus G*=c"e**', c"^bQ. Therefore

Thus, in what follows, we assume that #{/; fty=0, — 0, 1, 2}^1.

LEMMA 3.1. Lβί

Assume that there exists a subset J of {0, 1, 2, 3} satisfying #/^2 and Σ 0>>=0.
j(=j

Then there are the following three possibilities

2)

3)

Proof. We may assume that ^^0 for all e/. We shall consider the
following three cases.

1) #J—2. Put /— {/a, /3}. Then by Lemma 2.4 0>,8/0>,8=const.. If ;2, h
e{0, 1, 2}, then QO—QI= const.. This is a contradiction. Thus we have
Let /o, Ί be integers such that {/0, y j^fO, 1, 2}— /. Then from (3.1) ^
—0, G2=y>y0+p i7l. If ^0^0 and ψ}lΦQt then by Lemma 2.3
Thus ^0— ̂ ι=const.. This is a contradiction. Thus ^0=0 or ^=0. There-
fore one of the following three cases holds: G2— ̂ o2 O^O), G2=bίg1

2

G2=b2g0gί (btΦϋ). Thus we have the desired result.
2) #/= 3. Since #({0, 1, 2}Π/)^2, by Lemma 2.4 we have ^/f>4

for some /, k<={0, 1, 2}. Thus q^—q\— const.. This is a contradiction.
3) #/=4. We may assume, without loss of generality, that Σ^^O for
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any /'£/ (/'=£0). Since #({0, 1, 2}Π/)^2, by Lemma 2.4 we have a contra-
diction as above.

In what follows, we assume that

(3.2) Σ^O for any /c={0, 1, 2, 3} satisfying #/^2.

By Lemma 2.3 and (3.2), we have deg#0— deg<7ι^deg<?. Put

Then AtΦAt, Λ=G4ι+Λ)/2. Therefore #{Aj}*Jssl=3 or 4.
Case 1) : bobιbzφQ. In this case, we shall consider the following two sub-

cases.
Subcase 1.1): #{Aj}$=ι=3. There are the following three possibilities.
1) Ai=Alf In this case, by Theorem 2, Gt=ce^+b1e^+bz^^ with a

constant c (Φb<>). By (3.2) we have c^O. Therefore, by Theorem 2, G —

Vc~eq*+Vίheqι. Thus

2) Ai=A2. In this case we have G2^^250^^231^-^0^1 with a constant

^Φ {0, &J. Therefore, by Theorem 2, G= VMβo+ Vc7"^1. Thus

(GO- V57)^o+(flι- VθSι+αa£2=0 , ^x ̂  {0, b,\ .

3) ^4=Λ3. In this case we have G2=b0e
2q»J

Γb1e
2qι + c"eq<>+qι with a constant

{O, ^2}. Therefore, by Theorem 2, G=V57^°+ VM*1. Thus

(GO— VW^β+(αι— V57)5Γι + α2^2=0.

1.2): #{^}J=1=4. In this case, by Theorem 2, G=ep(e*Q+

—σz) with polynomials P, 0 and a nonzero constant σ. Thus, by Lemma
2.4 and (3.1), we have [Alf •••, At} = {2a, 2a+β, 2a+Zβ, 2α+4|8}, where α=
PCΛΓ)(0)/Λ^!, β=Q<N>(0)/N\. This contradicts Λ ̂  Λ, Λ = (Λ+Λ)/2 (see
Figure 9).

Fig. 9.

In this case
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(3.3) G8=M

By Lemma 2.3 and (3.2), we have A^ΦA^ΦA^ Therefore, by Theorem 2, we
see that there are the following three possibilities.

1) G= <Vlheqι + deq'z (</<= {±1}). We have (G- VM'1)8^. Therefore by

(3.3) 2V^G-2M9l-&2e9o=0. Thus

2) G=VMW β + β l ) / 8+rf /eβ / 8 (d7e{±l}). Since M29l=2<rVMC9o+gi+9)/2, we
have ee=(ft1

2/(468))e8i-ie. Therefore, from (3.3), G^M^
.gββi-ίo. Thus GVβ=((

e?ι. Therefore

3) G=VM9l+VMC9o+9i)/2. We have (G-Vheqy=b2e
q«+qι. Thus

Case 3): ^2=0, bob^O. In this case

There are the following three possibilities as above.

1) G=V5iΓegβ+\/Mβl. We have

2) G^VM9o+ί/^/2 (de{±l}). We have (

e*!. Thus 2^Geq*=2b0e
Zq<>+ble

Zqι. Therefore

3) G=V5Γeίl + d/eβ/8 (d7e{±l}). We have

Case 4): &ι=0, b0b2^Q. In this case there are the following three possi-
bilities as in Case 2).

1) G=Vh*'+d4l/* (de{±l}). We have

2) G=VMc g o + ί l > / 8+dV/2 (d7e{±l}). We have
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3) G=VMQo-f x/M«o+ei>/». We have

Theorem 3 is thus proved.

4. Proof of Theorem 4.

Let g=(go, gι, gz, gs), where g/s are entire functions without common zeros.
Then, for suitable polynomials #0, Qi, q*, q,

Thus

(4.1) gsn = βq

Put

q-ι

Then

(4.2) g*n =
J = -l

LEMMA 4.1. ^4sswm^ that there exists a subset ] (=£0) 0/ { — 1,0,1,2}

g /zαs the reduced representation (Λ0, /i!, /ι2, Λ3) swc/i ίΛαί {/i^j^o— { G O ^ fli, «2, ^p

6>r {Λy}J= 0 ={flo, 0ι» «2^p, fls^p}, where a/s are constants and P is a polynomial.

Proof. Since #/^2, we shall consider the following three cases.
1) #/= 2. Put /={/_!, ;0}. Let ;\, ;2 be integers such that { Ί, /2}

{-1, 0, 1, 2}-/. Then from (4.2)

Then by Lemma 2.3 and 2.4

(q^=(q^> te.1)*=(^2)*, §*=c exp

where (p)*(z)=p(z) — p(Q) for each polynomial />, and c is a constant. Since g
is not a constant, (qj-d*=£(qj^*. Thus we have the desired result.

2) #/=3. Put /={;-ι, ;0, /ι} Let ;2 be an integer such that {;2}^
{-1, 0, 1, 2}-J. Then from (4.2)
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Thus by Lemma 2.4

toO*=(fco)*=foι>*> 8*=c eχP fo

with a constant c. Since # is not a constant, (Qj.^Φ(qj^. Thus we have
the desired result.

3) #/=4. In this case we may assume, without loss of generality, that
Σ exp(nfc)=£θ for any /'£{-!, 0, 1, 2} (/'=£0). Then from (4.2)

Thus by Lemma 2.4

(?,-!)*= •"=(?/,)*> 5T.=0.

Thus £ is a constant. This is a contradiction. Lemma 4.1 is thus proved.

If n^4, then by Theorem 2 Σ exp(n^)=0 for some /c { — 1, 0, 1, 2} (Jφ 0).

Therefore, in this case, Theorem 4 follows from Lemma 4.1. Thus, in what
follows, we assume that w^3 and

(4.3) Σexp(?2^)^0 for any /c{-l, 0, 1, 2}, JΦ0.

Since g is not a constant, Qj—Qk^ const, for some /, j f e e { — 1, 0, 1, 2} with y^ j fe .
We have the following two cases.

Case 1): 0y—0*=const. for some y, &e{ — 1, 0, 1, 2} with y = £ j S > . In this
case, by Theorem 2, we have n—2. We shall consider the following two sub-
cases.

Subcase 1.1): q-l— ftβ=const. for some y0e{0, 1, 2}. Let Ί, ;2 be integers
such that { Ί, y2} = {0, 1, 2} — {y0}. From (4.1) we have

with a constant b(Φ — l). By (4.3) we have b^O. Then, by Theorem 2, there
are the following three possibilities.

1) £3= V6"exp(ft0)+M exp (̂ ) (rfe {±1}). In this case we have -exp(2^2)

" ) . Thus

0, -1}.

2) ^8= VFexpfe0)+/ί/' exp(^2) (rf'e { + !}). In this case we have -exp(2^1)

" ^ a ) . Thus
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gs=0
δ£{0, -1}.

3) gί=idffexp(qyι)+idlffexp(q^ (d* , d'"<= { + !}). In this case we have
b exp (2<?,0)=-2d/"d'" exp 0^+^). Thus

2

fteMO, -1}.
Al£,2=0,

Subcase 1.2): ^0— ̂ j=const. for some /„, /^{O, 1, 2} with J0^j\. Let /2

be an integer such that {y2} = {0, 1, 2} — {/„, 7ι} Then — exp(2#,0) — exp (2^)=
£ exp (20^) with a constant c(Φ— 1). By (4.3) we have c^O. Thus ^0 =

V— 1 — cg3l. Further from (4.1)

Thus, by Case 3) in Section 3, there are the following three possibilities:

g^Q
cS{0, -1},

2) , _ cS{0, -1},
ί^o-V-1-^^-0,

2 V:rϊ^2^3-^1

2

3)

2): ^—ί?*^ const, for every /, &e{— 1, 0, 1, 2} with /=£&. In this
case, by Theorem 2, we have n— 2, 3.

Subcase 2.1): n— 2. In this case we have

By Theorem 2

where P, Q are polynomials and σ is a nonzero constant. Thus by Lemma 2.4

2p+ρ, σ VF} .

We may assume e3^e2Q+4p or 6?rr2vT<T^p+SQ. Let ( Ό, j l f ;2) be the per-
mutation of (0, 1, 2) which satisfies

We may assume gJo=i. Then σ*e2p=l. Put
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p^Q-\og σ .

Then

where d 3e{±l}. Now we have the following two cases.

1) e

q=e*p. In this case we have -exp(2^2)=2V2Vp. Thus

where dίf d2<^{±l). Therefore

2) eq=2V^esp. In this case we have -exρ(2?;2)=e4p. Thus

where d l f d2<^{±!}. Therefore

Subcase 2.2): n=3. In this case we have

g^=e*— e3*o—e*<iι — e

By Theorem 2

*,=*p(l + *β)

with polynomials P, Q. Thus by Lemma 2.4

We may assume e«=e8p+8e or e5=3e3p+2ρ. Let (;0, Ί, ;a) be the permutation of
(0, 1, 2) which satisfies

We may assume ̂ Ξ — 1. Then e3p=l and
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where α>8e{l, β

±ί2π/3}. We have the following two cases.
1) e

q=e3Q. In this case -exp(3^ί)=3βί«. Thus

where α^, ω2e{— 1, e± t ? r/3}. Thus

2) β*=3β2<2. In this case -exp(3^2)=e3Q. Thus

^β=-l, ^-VTω^/3, ^E=a>,e«,

where ω,, ω2e {-I, β±t; r/3} . Thus

Theorem 4 is this proved.
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