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THE HADAMARD VARIATIONAL FORMULA FOR THE
GROUND STATE VALUE OF —4u=2ul?"'u

By TATsuzo OsAwA

1. Introduction. This article is divided into three parts. In every part
we study the Hadamard variational formula for the (non-trivial) ground state
value of the semi-linear equation —Au=2A|u|? ‘u.

Let 2 be a bounded domain in RY (N=2) with smooth boundary 2. Let
o be a smooth function on d2. We denote v(x) as the exterior unit normal
vector at x<df2. If ¢ is small enough, we have a new domain £. bounded by

0. ={x+ep(x)u(x); x=d}.

Let p be a fixed number satisfying 1<p<oo for N=2, 1<p<(N+2)/(N—2)
for N=3.
We consider the minimizing problem

(LD r=int |, [Vpldx,

where
X={peHy2.), ¢=0, |@lipriceo=1}.

For the sake of simplicity we write || [|zp+1c0,0 @S || lpsre. It is well known
that there exists at least one solution u.=C®*%(Q.) satisfying ||u.|p+1,.=1, and

—Au(x)=2Aul(x) x€L,.
u(x)=0 xs0R.,

and u.>0 in Q..
The author calls 4. as the Dirichlet ground state value on £. and u. as the

Dirichlet ground state solution.
In this note we would like to consider e-dependence of A., u.. One of the
main result of this paper is the following: Here A,=21, u,=u.

THEOREM 1. Assume that the number of positive solution u which minimize
(1.1), is unique. Assume that Ker (A+2pu?=)={0}. Then, we have the follow-
ing limit.
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(1.2) 0A=lim e (4. —24)

Z—Sag( g:f: )2‘0(x)dg’ ’

Here 0/0v, denotes deriwative along the exterior normal direction. Under the
same assumption as above, we have the limit

5u:l€i_r}3 e (ue—u)

exists and it satisfies

(1.3 (=A—ApuP~")ou(x)=0Au”(x) in £
Eu(x)z—p(x)gTux(x) on 0R.

Remark. When £ is a ball the assumption that the number of positive
solution is unique is satisfied. See Gidas-Ni-Nirenberg [8]. See also p. 152 of
Dancer [4]. The assumption of uniqueness of u can not be satisfied always.
Brezis-Nirenberg [3] shows a counter example for uniqueness for £=annulus.

In section 2, we prove the Lipschitz continuity with respect to ¢ of ground
state value. In section 3 we prove (1.2) under some assumption of Lipschitz
continuity of solutions. In section 4 we give a condition by which we have
Lipschitz continuity of solutions. In section 5 we study du under the assump-
tion that Ker(A+2pu?~)={0}.

The Robin problem.
We consider the minimizing problem
J— 2 2
(1.4) A=int (SO Vol dx—l—kgmega da.),

where
X.={pcH'(Q.), l¢lp =1, ¢=0}

Here k>0 is a positive constant. We see that there exists at least one solution
of u.=X. such that it satisfies

(1.5) —Aue(x):leusp(x)» ue(x)>0 xEQE
v,,ai*ua(x)_;_k u(x)=0 xs08..

x

We write Ao=24, u(x)=u(x). We call A, as the ground state value and u. as the
ground state solution of (1.4)..

THEOREM 2. Assume that u is unique. And we assume that

Ker (A+2pu?-)={0}.
Then,
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(1.6) 0A= lirrox e (A.—A)

exists and is equal to

(1.7) Sag(IV:ul2—(22/(Z>+1))u”“—(kz-—(N—l)ka)uz)pddx,

where N, denotes the gradient on the tangential plane at x€08. Here H, denotes
the mean curvature at x<d2 with respect to the interior normal direction.
Under the same assumption as above we get

(1.8) du(x)=lim e~ (u.(x)—u(x)) m Q
=—0AA(p—1))""u
——Sag{vtl’(x, WWVu(y)—1I'(x, y)Au(y)?
+(kEP—(N—1DEH (y))u(y)} p(3)d 2

where I'=1"(x, y) 1s the Green function of —A—ApuP-! under the Robin condition
on the boundary 08.

Remark. As far as the author concerns, the semilinear problem (1.5) did
not discuss in other articles.

In Part II, section 6, we examine the continuity property of A.. In section
7 we prove (1.8) under the assumption of Lipschitz continuity of u..

Neumann condition.
We consider the minimizing problem.

—_—1 2
(1.10) 2= inf SQE Vol*dx,
where
Xe={o=H @), Iglpan.=1 |, lpIPpdx=0}.
If we replace X, by Y.={pcH'(R.), ll¢llp+,.=1}. Then, we see that i.=
i}gf S!? Vo|*dx=0, when u.=constant. It is easy to show that 2.>0, and there

exists at least one solution u. of (1.10) which satisfies

(1.11) —Au(x)=2Au|? ulx) x8.
7184_ u(x)=0 x€09..

The author would like to call 4. as the second state value and u. as the second
state solution of (1.10). The condition
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Sg lpl? ' pd x=0

is natural, since

—SQEAue(x)afxz—Sags (3u/0v,)d01=25S0 [ue)P u(x)dx.

&

We write 1,=21, uo=1u.
We have the following

THEOREM 3. We assume that Ker (A+2p|ul?")={0}. We also assume that
u 1s unique up to its signature. Then, we have u. (¢>0) such that

(1.12) = ullcecr=0Ce).
See #i. for the Notation in section 2. Moreover,
(1.13) 0= 133? e (A.—A)
exists and is equal to
(1.14) oa=|_ 119 l*=@0/Gp+ 1) ul?} pdo,

Under the same assumption as above we have
(1.15) ou(x)= 151901 e u(x)—u(x)) x=0
exists and s equal to
(1.16) du(x)=—0Au(x)/(A(p—1))

—| (9L, ) Feul)=alCx, )u()1*u(»)} pdo.

Here I'=I(x, y) is the Green (Neumann) function of —A—2p|ulP~* with respect
to the Neumann condition.
In section 9 we prove the Lipschitz continuity of 2.

Part |

§2. Lipschitz continuity of ground state value.

In this section we prove the following.

PROPOSITION 2.1. There exists a constant C independent of & such that
[A—A|=Ce.

Remark. From this proposition we can deduce |lufcs 2c0p<C. See the
Appendix.
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Proof of Proposition 2.1. First we would like to construct nice C=-diffeo-
morphism between @ and Q.. Let U, be a neighbourhood of 92 in R™ such
that the following holds:

For any x&U, there exists unique x’ such that |x—x’|=dist(x, 02). We
write x’=P(x). Then, P=C=U,, 082). Let v(x) be an exterior normal vector
at x. Then, veC=(0R2, RY).

We construct the following diffeomorphism. Let £’ be (£2” be, respectively)
a bounded domain with boundary 0Q'={x—0v(x); x<dfR} (R"={x—20uv(x);
x<0f2}. Fix a compact set K in 2. Then, KCQ’€Q2'&1 for any sufficiently
small §>0. Fix small ¢=0. Then, take d such that 2’€.. Take p=C=(2, R)
such that 0<¢=1, =0 on 2” ¢=1 on 2\Q’. Then, we set

D.(x)=x xs”
=x~+e@(x)p(P(x))(P(x)) re0\Q".

Then, we can take ¢ such that @, is a bijection 2~2.. We see that @,: 20,
is surjective diffeomorphism. It is easy to see that the following properties
(2.1), (2.2), (2.3) hold.

(2.1) If we put @.(x)=x+¢eS.(x), x= Q.
Then, S.€C>(2, R™), |Scllom@n=<C, (independent of &) for me N\{0}.
Conversely, there is t.=C=(2., R™) such that ||t ¢m g,y < C n (independent
of &) for me NU{0} satisfying @7'(x)=x-+¢t.(x), x=£2..

(2.2) For x=K, sx)=t.(x)=0.

(2.3) If x=(some neighbourhood of 82)N\ @2, then Se(x)=p(P(x))p(P(x)).
If x=(some neighbourhood of 2.)NQ2., then t.(x)=— p(P(x))u(P(x)).

It is an easy exercise that J@.(x)=1+0(¢), where J®.(x) denotes Jacobian.
By using the above @. we can make pull back anq push foward of func-
tions. We put (@.*f)(x)=f(D(x)) for function f on Q..

Notation. 1f p= C%2.), then g=0%¢p
$eCY2), then §=(H¥)¢.
Let A denote the Laplacian. Then, we denote
A= FAD *-
A=@ *1AQ *,
We also write V=0 V0% I=@ *19P *.

Example. If u satisfies —Au.(x)=2u.(x)? x€Q. then, —A#.(x)=2A8.(x)?
in x€90.
For @. the following result hold. We do not give a proof.
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LEMMA 2.2. We have the following properties (i)~ (viii).
(i) 1JO(x)|=14+0(e) uniformly for x< Q.
(ii) | JO.(x)|=140(e) uniformly for x=4..
(i) @.%: C™(2)—C™ (D),
Q¥1: C™(Q)—»C™“(2.),
1S a bounded linear mapping for any me NU{0}, 0<a<1.
(iv) For p=C'(2.), (0p/0v)(x)=(0/0v)p(x+ep(x)v(x)) x=0R.
Here 0/0v denotes the normal derivative at 082.
(v) For p=CH*™(Q,), then
IVu—Vullem, agon=Crell@llciim, aa,
for me NU{0}, 0<a<l.
(vi) For C**™*(.), then
“ASD—ASDHCm,a(Q$)§Cm5”¢“02+m,n(.@e)
for me NU{0}, 0=Za<1.
(vii) For o= C™*(QURL.), Ig—¢lem. a@=Cm.c,,—0 as €-0. And the con-
vergence is uniform for ||¢llem «@og,H,<C.
(viil) For @eC"*™*«(QUR.), then |p—0¢lcn. ad=<Cnel@lcim aaszy for
me NU{0}, 0Za<l.

We give a proof of (vii), (viii) only for n=0, a=0. @¢(1)—¢(x)=¢(P.(x))—
¢(x), where sup|®.(x)—x|<Ce¢ and the continuity implies (vii). @(x)—¢(x)=
oD@ (x)—p(x) < | D(x)— x| V@l cocwoa,, implies (viii).

Now we are in a time to prove Proposition 2.1. We have

Sgewmmmggmm JD.|dx
=S9|wm@£[dx+gg<vu—w><ﬁu+w>ua|dx

:SQIVulzdx+O(s)
=A4+0(e).
On the other hand

[, 1alrrax={ 1u17170. 1z

:SQ lu|?*d x+0(e)

=14+0(¢).
Since z0,=0, a=H£.). Therefore,
A Z24+0(e).

Conversely we also get A<A.+0(¢). Thus, we get the desired result.
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§3. Variational formula for ground State value.
In the present time, we assume that
3.1 lc—ullczcary=Ce

as ¢e—0. Under this assumption we will prove Theorem 1. The validity of the
assumption (3.1) is discussed in sections 4 and 5.

In this section we use an idea of using Whitney’s extension by which the
Hadamard variational formula for linear problem is proved. See Fujiwara-
Ozawa [5].

We can show the following.

LEMMA 3.1. There exists a C® extension i, of u. to R™ such that
(1) Naellesrny =C <40
(ii) [#—ulc2r=Ce.

Proof. (i) is trivial. We have
la.—ullcectr= e —tcllcecr+ || fle—tllc2cs -
Then, by (3.1), ||#.—ullcecy<Ce. We know that #i.=#. in Q. Then,
#e—fiell o2ty =tte— kel cocy = Cell el csarap = Ce

by (viii) of Lemma 2.2.
For the sake of simplicity we put f(#)=[¢|?"'t. Then, f'¢)=pl|t|?"".

LEMMA 3.2. The estimates
(1) I1f(@e)— flcocr=0(e)
(ii) N f(@)— fu)— f'(u)@—u)lcod,=0C(e)
(i) [A#A2. f(@)l|cocay=0C(e)
hold.

Proof. (i) is determined by Lemma 3.1. By the mean value theorem, we
have

f(@a)—fw)=f'(u+0(x)@—u))(@— ).

Then, | f(@.)— fw)— f'w)(@—u)lcod = Il f'(u+0(fh—u))— f'(w))t— )l corr <
0(e)0(L)=0(c).

We want to prove (iii). We have Afi.+A.f(#.)=0in 2. Then, Aa.+A.f(&.)
=A(#.— )+ A(f (#1:)— [ () +(A—A)il.. Since ||#.—iic| o2 =<Ce, we hove ||Az.
—%)llcocdy=0(e) as in the proof of (ii) in Lemma 3.1. Similarly | f(a.)—
f@i)lcocn=0C(e).

We know that |A.|<C. Therefore, as in the Appendix ||#.]l¢s@ < C, which
implies [|(A—A)ic]lcocdr=0(e).
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We prove the following.

LEMMA 3.3. The equality

o()

ko3t

€0392) =
holds.

Proof. We put x€df. Then, 0=u.(x+ep(x)v(x))=a.(x+¢o(x)(x)).

the other hand
O=a.(x+ep(x)(x)= ﬁe(x)—i—ep(x)aa—y #e(x)+o(e).

Here o(¢) is uniform with respect to x<0f. Then,

|

+o(e)

c0@2

0
ue—l—ep—a%

C0wo2)
=Cel@t.—ullcram+o(e).
By Lemma 3.1 we get the desired result.

The following Lemma 3.4 is easy to see. Thus, we omit its proof.

LEMMA 3.4. For given o=C'(Q.\J2). Then,

Sge (pdx—gggodx=sgaggopda+o(e)

and o(e) is uniform with respect to ¢ satisfying |olciamm<C.

265

On

The following Lemma is used in the proof of variational formula for the

ground state value.
LEMMA 3.5. The equation

[, f@—wdx=—(/p+ D)  1u17* pdo-+o(e)
holds.

COROLLARY 3.6. The equation

SQ fu)(ite—u)d x=0(e)

is valid.

Proof of Lemma 3.5. We have

32 @+ f@—wdx={ uro@—wds+{ fm—udx.
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Here we used uf’(u)=pf(u). (3.2) is equal to

:SQ z?ef’(u)(iis—u)dx—gg Fu)(@—u)dx
+SQf(u)ﬁde—gg fw)udx
={ @ E—w—(f@)— fu)ndz

—Sg f’(u)(ﬁe—u)zdx—i—gg f(ﬁe)ﬁedx—gg Fwudx.
The first term in the right hand side of (3.2) is o(¢) by Lemma 3.2 (ii). The

second term in the right hand side of (3.2) is O(¢?) by Lemma 3.1 (ii).
We see that

Sgef(ﬂe)ﬁedx=ﬁgf(u)udx=1.
Thus, the third and the fourth term in the right hand side of (3.2) is equal to

[ f@ndx+( f@yndr=—s] f@ia.pdo+o

=~—egagf(u)upda+o(a)=——sgag |17 pda+o(e) .
Here we used Corollary 3.6 and Lemma 3.1, (ii), Lemma 3.2 (i).
We are now in a position to prove Theorem 1. By the Green formula and
u|30=0, we have
(3.3) Sq(Au-ﬁi—uAag)dngm(au/av)aeda.
We have
SQAu : ﬁedx:—lgg Fwiadx.
On the other hand,

S uAﬁedx_—:S uAuedx+g uli.dx
Q € N2,

&

- ~xegweu f(us)dx——lsgg\geu f(ae>dx+§g\gsu(AaeHEf(as))d x

=——25§Qu f(as)dx—kgg\g w(ATe+ 2 f(71))d x

=(3.4)
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The second term in the right hand side of (3.4) satisfies
LN ullcod|Adte+Ae f(#e) | cocy=O(e?)
by Lemma 3.2 (iii). Thus,
SQ ubitod x= —zsgg uf(@)dx+o(e).

Therefore, the left hand side of (3.3) is equal to

—1S9 f(u)ﬁsdx+legg wf(@)d x+oe)
== us@)dx+ [ (F@ou— famdx-+oe)
= 2= 2= D) u( (@)~ fw)d x
+2p =D, f @~ w)dx+ s+ o),
using Sgu f(w)dx=1, where

1= (F@u— fa—(p—Dfuxa.—~u)dx.

Since A.—A=0(¢), || f(ue)— f(w)llcody=0(e), we have estimated a term in the above
formula. The integrand in I, satisfies

I f(@)u—f(uwa.—(p—1) f(u)@—wllcoa>
= f(@au— fwue—uf'(w)— fW)(@—wllcod,
= f(@ou— fwu—uf' ua—u)lcoa
=u(f(@)— f(u)— f'w)@e—u)llcod=0(e)

by Lemma 3.2 (ii).
Summing up these facts we get by Lemma 3.5

<3.3>=zs—z—e<p—1)/(p+1>z§m lu]?* pdo-+o(e)
=A.—A+o0(e).

By Lemma 3.3, the right hand side of (3.3) is equal to

—sgm(@u/ay)zpd0+o(e) .
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Therefore, L—Z:—egag(au/au)zpda—l—o(e), which implies Theorem 1.

§4. Variational formula for ground state solution.
In this section we assume the following.
4.1) Ker (A+2pu?~)={0}.

And we will show the following important result.

PROPOSITION 4.1. Assume that the minimizer of (1.1) is unique. Assume that
(4.1) holds. Then, we have (3.1).

Remark. The condition (4.1) will be closely related to bifurcation phenomena.

Proof of Proposition 4.1. By the regularity theorem (in the Appendix)
luclles, adp=<C. Thus, [|#lcse=<C. We take 0<a’<a. Then, C*%(2)c,
C*«(9) is a compact embedding. Thus, K given by K={#.; 0<e«1} is com-
pact in C**(2). As a corollary of this compactness result, we get the follow-
ing :

Assume that the ground state solution on £ is unique, then for any ground
state solution on 2. (¢>0), u., we have #.—u strongly in C**(2). Thus,
l&—ullcscar—0. _

We have (A+2Aplul|? Y b.—u)=QA+Af" (w)(#.—u)=(QA—A)i.—A.—A) f(#:)—
A f(i)— fu)— f'(w)(@i.—u))=g.. Here we used Afi.+A.f(#.)=0. Also #.=u=0
on 04.

Thus, by the assumption and (4.1)

4.2) lite—ullce, e @ =Cllgellcarci .

Here
1A—A)ilellcar > < Cellit]| g2, ar e (Lemma 2.2 (vi))
|A.—2]=Ce.

Thus,
I/ (@)= f(u)— ' (u)(fEe—wlcar y=0(ll#c—ullcar 2))

without any use of ||#.—ufc22<Ce. We have

ldellez.arcr=C,  |If(f)lcarr<C.
Then,
I fellcarcnr=Ce+o(|tic—ulicar )
Then, by (4.2)
lEc—ullcs,ar cn=Ce+o(|fi.—ulces ar ).
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Therefore, we get the desired result.

5. Explicit representation of Ju.

Assume that the ground state solution in 2 is unique. Assume that
Ker(A+2pu?~')={0}. Then, we want to show that

ou(x)= li_{l;l e Y u(x)—u(x))

exists and which is equal to
—@/ap-yuw+{, T au<y> o)ia,
Yy

Here I'(x, y) is the Green function of the operator —(A+2p|u[”") under the
Dirichlet condition.

Proof. We put f()=[t|?"%, f'®)=plt|?*. We use the same notation as
before. By the Green formula we have

#e(x)—u(x)=—<LAy+Af " W' (x, ¥), @(y)—u(y),

[, T, 9@+ 37 W@~ u()dy

[ o )= utondo,

I'(x, )

o
+Sa{1 Oy,
Sgl’(A—i—l Fr)) i —u)d y

Suga #eda,

=—)i—J..
We fix x€£2. Then, 107"/0v,lclw@e,<C. Thus, by Lemma 3.3.
S o' du

14 a.oma—yy pday-{—O(e).

]2:' -
We examine J,.

Jl:SQ\Q;F(A+lf,(u))ﬁ8dX+SQnQEF(A+ZfI(u))ﬂsdx

—SQ TA+Af W)udx
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=Sg\g ['(Aﬁé+15f(ﬁe)+lf/(u)ﬁa)dx
Plsf(ﬁe)dx

( LAf(@)+Af (w)a.)d x

o
o
| T ar+araoudx
={ [ f@+as wmyds
o

F(Aﬁs-i—lsf(ﬁg))dx
| L=as@+aswwdz
:-(,L—Z)Sgl’f(u)dx
~ = T @)~ fa)dx
=3, T @)= fw)— £ @ —u)dx

+SQ\9£F(AaE+zs Fla)dx

=—A—=A]s— 1]5 ]e

We have (A+2pf ' (w)u/(Ap—1)=f(u) in £ and u/(A(p—1))=0 on 02. There-
fore, Js=—u/(A(p—1)). For a’>0, || [illcz.ar @ =C|A—Al f(Bhe)— f(W)|car cy=0(¢)
by Lemma 3.1 (ii). We see that J;—=o(¢) by Lemma 3.2 (ii). We have

| Js] =meas (N2 Il coap |Aue+ A f(ue)l cocs
=o0(e)

by Lemma 3.2, (iii).
Summing up these facts, we get J,=(ed4/(A(p—1)))u+o(e), which implies

fi—u=e( —dau/(A(p— 1))+§ng gﬁ‘ pda,)+o(e).
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Part II
6. Continuity of Robin ground state value.

PROPOSITION 6.1. There exists a constant C independent of e such that
|A:— A1 =Ce¢ holas. Moreover, |uclcs a@,=<C.

Proof. By the same argument as in the proof of Proposition 2.1, we have

SQE IVﬁlzdngg |V |2d x4+0(e)

SQ 12|71 d x=1+0(e)
for ac HY(2.). Also, we have
Sagekﬂzdazzgagkuzj(x)doz,

where J(x) is a Jacobian of x—x4¢ep(x)u(x). It is easy to see that J(x)=1+0(e).
Therefore, S kiﬁdozg ku*da+0(e). Thus, S |va|2dx+g ra*da=2+0(s).
22, a0 2 22,
Summing up these facts 2. <2+0(¢). We also have the inverse relations
A= 2.40().

We get the desired result.

PROPOSITION 6.2. Assume that the ground state solution of (1.4) 1s umque.
Then, @#i.—u strongly in C**'(82).

Proof. This is an easy consequence of regularity of solution and compact

embedding C**'(2)CC**(2) for a<a’.

7. Variational formula for the ground state value.

In this section we assume that ||#.—ullc22=0(e). This is proved in the
later section.

PROPOSITION 7.1. Under the above condition
52=S,g{lvzu|2—(22/(p+1))u”“—(k2—(N—1)kH,)u2},oda.

Here H,=H,(x) 1s the first mean curvature at x<082 with respect to the inner
normal vector. Here N, denotes the gradient on the tangent plane.

Proof of Proposition 7.1 goes as similar as stated before. We need some
Lemmas which are characteristic to Robin problem.
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LEMMA 7.2. The equality

“ ou 0*u

+k us —kpo=— o Pa +V,th‘o) =o(e).

‘ 0oy
holds.

Proof. v(x+ep(x)(x)=0(x)—eV,p(x))(1+e*|V.p0|*)"/2. Thus,
%ﬁe(x+ep(x)v(x)):Vﬁe(x+ep(x)v(x))-us(x-i-spu(x))

=(14e*|V;p|*)*Va(x+epu(x))- (v—eV:p)
=(1+O(62))(Vﬁe(x+5pv(x))-(v—evtp)

=(140(e SR () o)+ Va(x+epv) Tip)

A 0*#
az: +eo—=5 P —eVu-Vyp+-o(e).

On the other hand #.(x+epv)=1i.+¢p@i:/dv)+o(c). Then, 0=((0/0ve)+k)i(x
+20v)=(0/0v)+ k)it —e(—k p(0a./0v)— p(0*/0v*) .+ u -V, p)+0(e). Thus, |&.—
U c2cy—0 implies our Lemma 7.2. Here it should be noticed that [lu.—u|ce)
<Ce does not used here.

LEMMA 7.3. The equality

G+

Proof. For x€d82, (0/0v)ii(x)=(0/0v)u.(x+ep(x)(x))=(8/0v.)u.(x+epv)+
O(g). Then,

=0(¢)

“lice, aw)

holds.

0= (~3—+k) <x+ep»>—— (%) +O0(e)+ kil(x).

We are now in a position to prove Theorem 2, (1.7). By the Green formula
and ((0/0v)+k)u|s0=0,

7.1) gg(Au-ﬁs—uAﬁs)dxz-—Sagu<%+k)z‘¢eda.

As in the proof of theorem for the ground state value of Dirichlet condition
we have

(7. )=2—A—e((p— D/ p+ 03] ur*oda-+o(e),

On the other hand the right hand side of (7.1) is equal to
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ou ’u
sgag(ku-ggp+u797p—uvtu-v¢p)da+o(s)

Il

=<, (ku 1V |+ (N— Dk Hut— 2™ ) pdo+o(e)

=¢], (1Tl = ur = (= (N—= DR H)upd o +o(e).
Here there is the equation as the background of our calculus.

Ozgagvt(uvgup)da

SVl PotulVeul®o+uVu-Vip)do

Il

(Vs P+ (N—DkHu*—2u?*")pda

Sm [Vou|? p+u Au 8 —(N— 1)H—~>p+uv,u th)da
»

—Sm u(%p—vzu -th>d0 .

Summing up these facts we get the desired result. It should be remarked
that the relation Au=—2Au?, 0u/0v=—ku, and Ap=0%p/0v*+(N—1)H(0¢p/0v)+ ¢
on 082, etc was used.

8. Variational formula for the ground state solution.

We have the following Proposition.

PROPOSITION 8.1. If the ground state solution u is unique and Ker (A+Apu®-")
={0}, then |fl.—ullce@=0(e) holds.

The proof] is similar to the Dirichlet case using Lemma 7.3. Thus we
omit it.

We prove the following Proposition 8.2.

PROPOSITION 8.2. Assume that u is unique and Ker (A+Apu?~")={0}. Then,

ou=—02/(A(p—1)u

Hal (o T Voo Jio
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=—(04/(A(p—1))u
—Sag(VtFVtF—F(lup—l—(kz—(N—l)kH)u))do .

Proof. By the Green formula with ((0/0v)+k)ula0=0, ((0/0v)+k)I"|30=0,
we have

go—u=—{, [@+ar ) @—wdy
a 7 J—
+Smf<3;+k)usday_~Pl+Pz.

As in the Dirichlet case P,=¢(d2/(A(p—1)))u+o(e) by ngf(u)dx=—u/(2(p-—l)).

ou 0*u _
Pzzegag(——k‘o?};——p—-3)7+Vtuvtp)da+o(s) for x=2. Therefore, we get the

desired result by Lemma 7.2.

Part III
9. Neumann second state value.

In the section we prove the following Proposition 9.1.

PROPOSITION 9.1. There exists a constant C independent of ¢ such that
0.1 [A—2A1=Ce
holds. Moreover,
9.2) luelles agy=C.

Proof. Proof of (9.2) is in the Appendix. We prove (9.1). Recall that
ae HY(Q.). Then,

SQ |V |2d x=2+0Ce)

[, 1a17dr=1+00).
We also have
598Iﬁl”“ﬁdngglulp“uIJQ)sldx:SQIul”"udx—l—O(e):O(e).

We have the following Claim. The proof of this Claim is rather complicated.
So we want to prove Proposition 9.1 using this Claim 9.2.

Claim 9.2. There exists a constant C.€R such that v.=u.+C. satisfies
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S |ve]? tv.dx=0
2.

and C.=0(e).
We use this Claim. Then, v.= H(Q,),

SQ Vo, |2d x=A+0(e)

Jo, 077 5=, Tk P 700 =140(0).

Therfore, A.<A+0(e).
Conversely we get A<A.+0(e) using the diffeomorphism u.>#.. Thus, we
have the desired result.

Proof of Clasm 9.2. We generalize Claim 9.2 as the following statement.
Fix ¢.€C%Q) such that

(i) ”%“00@)§C

(i) N@ellzprcr=C">0.

(iD) |, 1¢el7~'p.dx=0(c).
Then, there exisls unique constant C.< R such that

gg [+ C:| P pe+C.)dx=0 and C.=0(e).

Proof. We put g(t)=|t|""'t, then g'(t)=p|t|*-'. Thus, for any x=2, the
function t—g(p.(x)41) is strict monotone increasing function. Since ¢.<C(Q),
we have

lim [ g(@(0)+Ddx= 00

The continuity tv—»SQg(gos(x)-H)dx is easy to see. Therefore, there exists C.
such that | glpe+Codr=0. We put F()=| gp.+tCodx. Then, Fi(t)=
SQ C.g'(p.+tC.)dx. Then, by the mean value theorem there exists 0<¢. <1 such
that F(1)—F(0)=F'(t.). We know that F(1)=0, F(0)=0(¢). therefore
CeSQg’(sosHaCs)dx:O(a)-

We want to show
9.3) Sgg'<goe+tsce)gc">o.
We have

p-1 > p-1
[plottcaridz| lgttC.l?dx

€
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> p-1 i
_S e>0lgos| dx, if C.>0.

If C.<0, then

[plocttcarias=z| 1p1rdz.

€

Therefore,

S.Q |g0e+tscslp’1dxgmin(g o lp.|?-d x, S‘as@ |¢€|p-1dx)_

Pe

Now we assume that (10.3) does not hold. Then,

S%>Olg05|”"dx—>0 or S lpdPidy —0.

Pe

Without loss of generalities

-1
S¢s>0 I%Ip dx —>0.
Then, by (i) we have § | |7d x—0, S lp:|P*'dx—0. Therefore,
Jg>0 @e>0

S‘/’e>o l@e| P 'pedx —> 0.

On the other hand O(e):S{2 lgoslp"gosdxzd )lgoelp"‘%dx. Therefore,

Pe>0 S¢s<°

S¢s<0 }@e!pd/\f - 0
and
D+1
[ clods 0.

We have a contradiction by (ii). Now the assertion holds.

10. Variational formula.

We impose the assumption

(10.1) lldie—ullc2ca>=0(e)
and
(10.2) Ker(A+2p|u|P-1)={0}

and assume that the minimizer » is unique up to its signature. Then, we have

Theorem 3.
We do not give Theorem 3, since it is a routine work for the readers who

read Dirichlet and Robin cases.
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Appendix.

We state the regularity theorem in the following manner. This is a con-
sequence of famous Sobolev embedding theorem (Adams [1]), Schauder estimate
(Agmon-Douglis-Nirenberg [2]), L?-estimate (Agmon-Douglis-Nirenberg [2]) and
bootstrap argument.

Let A, u. be the Dirichlet (Robin, Neumann) ground state value, solution,
respectively. Then, there is a locally bounded function F such that u.e C**(£.)
and [luclles, a@p=<F(A). (f p<2 then, a=p—1, If p=2, a<(0, 1) can be taken
arbitrary.)

The reader who is unfamiliar with Hadamard’s variation may be referred
by Hadamard [9], Garabedian [6], Garabedian-Schiffer [7].

Qur theorem combined with Ozawa [10] we get a singular variational
formula Osawa-Ozawa [11] for nonlinear eigenvalues.
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