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We denote by 2 the punctured unit disk 0<|z| <1 and consider a Schréd-
inger equation

>, @ .
M (~A+PE@U@=0 (A=g5+gs, 2= x+i)

on £. The potential P is assumed to be nonnegative and locally Hoélder con-
tinuous on 0<]z|<1 and referred to as a density on £. We say that the
Picard principle is valid for P (at the origin z=0) if the set Fp(2) of nonnega-
tive solutions of (1) on £ with vanishing boundary values on the unit circle
I': |z|=1 is generated by one element u of Fp(2): Fe(2)={cu: c=0}. In other
words the Picard principle is valid for P at the origin if and only if the Martin
ideal boundary of £ over the origin with respect to (1) consists of one point.
Let P be a density on £ for which the Picard principle is valid and Q a density
on 2 with Q<P on £. The Picard principle for Q is generally invalid ([8],
[9]). However the Picard principle for @ is valid if densities P and Q are
rotation free, i.e. P(z)=P(|z|) and Q(z)=Q(|z|) on £ ([7]). Moreover the
Picard principle for Q is valid if Q<P on a subset of 2 for some densities P
([2]). In this note we will study this subset of £ for the special densities
P(z)=|z|* and P(z)=(og|z|)*/|z|?.

Hereafter every density P on £ in consideration is assumed to be rotation
free and is mainly viewed as a function P(») of  in the interval (0,1]. In
order to define the above subsets of £ .we take two sequences {a,}%, {b.}3
which are always supposed to satisfy

0<bpi<a,<b, <l (n=1,2, ), Lin; a,=0

and we set

A=A({au}, {6a)= U [an, bs1.
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Then the set A ({z:|z|=A}, more precisely) is called an essential set (of the
Picard principle) for a density P on £ if the Picard principle is valid for any
density Q@ on 2 with

Q)=0(P(r)) (reA, r—-0).

We remark that the Picard principle is valid for P if there exists an essential
set for P. We also remark that the above condition can be replaced by

Qr)=P(r) (r4)

since the Picard principle for @ and cQ (¢>>0) are equivalent ([4]). A typical
example of a density and an essential set for it are the density P(r)=r"% and
the set A with lim sup b,/a,>1 ([2]). An essential set for P(»)=r"% which is
smaller than the above essential set is given by M. Kawamura ([3]): The set
A is an essential set for P(r)=r"?% if

(2) né <log —2—”:)2 —=oco,

This result is a special case of the following generalization ([3]): For an arbi-
trary density P on £, the set A is an essential set for P if

ety
) P i —oo
n 1+<logz—’;)jin P(r)rdr—!—log%’::

In this note we will show that (2) is not only sufficient but also necessary
for A to be an essential set for P(r)=r"%:

THEOREM 1. The following statements are equivalent by pairs.
(a) The set A is an essential set for P(r)=r"%

(b) n% (1og Z—ZY =00,
(c) é}l log —é—(g": + %:-): 00

The density (log 7)?/r* is essentially different from the density »~2 ([2], [11]).
For this reason the separate study of essential sets for (log #)?/#* is in order:

THEOREM 2. The following statements are equivalent by pairs:
(@) The set A is an essential set for P(r)=(logr)/r%,

n=1 (loglan)2 log —21_{<Z_Z)mg “n+(%n1)‘°g “"}: <

© 2 s o8 () (52) =

Ms

(b)
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We remark that the sequences {a,} and {b,} given by a@,=27%" and b,=
272+l (=1, 2, ---) do not satisfy (3) for P(r)=(log 7)?/r* and nevertheless satisfy

(b) in Theorem 2.

§1. Fundamental properties of P-units

1.1. For a density P on £, the unique bounded solution of

A+P n

(~A+P@+ 1 )u2=0

on £ with boundary values 1 on I is referred to as the n-th P-unit (n=0,1,---)
([6]). In particular we call the 0-th P-unit simply the P-unit. Since P is rota-
tion free, the n-th P-unit e, is also rotation free so that it may also be con-
sidered as a function e,(#) of » in (0, 1]. Then the n-th P-unit is the unique

bounded solution of
Lo §r)=4"() + 61— (P 55 )(r)=0

on (0, 1) with ¢(1)=1, where we set ¢'(r)=d¢(r)/dr and ¢"(r)=d%¢(r)/dr*. In
particular the differential operator /p,, for P=0 and n=0 is denoted simply by
I. The n-th P-unit e, is also positive and increasing, i.e. en(#)=0 on (0, 1).

1.2. We recall fundamental properties of P-unit and first P-units which
play an essential roll in the study of the Picard principle for densities P. Let
P be a density on £ and e, e, be the P-unit, the first P-unit, respectively.
The Picard principle is valid for P if any only if

1
(e o,
For a test of the Picard principle for P, we only apply (4) to the first P-unit
in the sequel. We also use fundamental properties of P-units mentioned below.
Suppose that two densities P, Q@ on £ satisfy P<(Q on a subinterval (0, a]
of (0,1] and denote by e,, f, the n-th P-unit, the n-th Q-unit, respectively
(n=0, 1, ---). Then we have

en(r) _ falr)
&) o) Ersy O<rss=a) (D)

by the maximum principle for (1) ([5], [6]). The inequality (5) means that the
function f,(r)/e.(r) is increasing so that we also have

fn(r) en(r)
® a0 = an)

Ih particular P(»)<P(r)+r~* and P(»)+r 2=r"* imply that

(0<r<a, nzl).
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90(7’) 31(7) P
" e(5)= es) O0<r=s=1) (16D,
® 90y e A0 ooy oy,

el(r)_’ oe(n)Tr

respectively since the first P-unit coincides with the (P(r)+7"%)-unit and the
r~2-unit is 7.

§2. Characterization of essential sets

2.1. Consider a density P on £ satisfying P(r)=a/r? (a=0) on [a, b]
(0<a<b<l). The first P-unit e, can be represented in the form e,(r)=2Ar# +ur 8
(B=+a+1) on [a, b]. The inequalities ¢,(a)>0 and ei(a)>0 by (8) yield that
A>0. By using e,(a)>0 again and ei(a)/e;(a)=a"* we see that

a?h Y~ ‘B l a?P
9) <= 7= ,B .
Then we apply (9) to the integral

boeyr) , (v 1/2i%t 1
<10) Surzei(r) dr_Sa-‘é(Zrzﬂ—,u - —r—>dr

_ L 1og 80P =g/
T B B bR(a /2

to obtain the following evaluation:

a foryir>gos g i(3) + ()}

12) Jo ey = gtos 515+ (5) +8((3) - (5))}-
Hence (4), (6) and (11) yield

LEMMA 3. Let P be a density on @ with P(r)Sa,/r® (a,=0) on every
interval [an, b,] (n=1, 2, --). Then the set A is an essential set for P if

(13) 2—1g;{(2)ﬂ(b—)’5} © (Ba=vasTl).

2.2. Let us prove a converse of Lemma 3. To this end we prepare three
lemmas in this no..

LEMMA 4. For four numbers ¢, c, a, b (0<e<1, 0<c<a<b<l) there exists
a density P,.=P. . a5 on 2 with supp P.C[c, a] such that the P.-unit e.,, satisfies
that
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e.,o(a)
2e,0(b)

<e.

Proof. Consider the functions

log (b/7)
log (b/a)

These functions satisfy [(h.=0, h.(a)=¢, and h.(b)=1, where [ is the differential
operator defined in no. 1.1. There exists a small positive number d, (6.<(a—c)/4)
such that A.(a—20.)>0. We also consider the functions ¢.(r) (n=1, 2, ---) on

[c, a] defined by
Sl’n(r):exp{n(r— G;CY}.

h(r)=1—(1—¢) (c<rLh).

These functions satisfy

l¢n(7):4n2( _ a+C) +2n+2 ( a—}-c)

&a(r) 2 2
={on(r— 255 )+ g +on— ez
Then we take a large integer n.=n. ¢ q.» With 2n.—1/4¢*>0 and
¢n(a—29,)

(14) =exp(—n.0.(a—c—30.)<h(a—24.).

Sbne(a'—ae)
Construct a density P.=P, c.a.» 0n & with P.(r)=I, (r)/Pa(r) on [c+d,, a—5.]
and supp P.C[¢, a]. We denote by e., the P.-unit. Since e, is increasing
as mentioned in no. 1.1, e, ((c+0.)/e..o(b)=<1 and e, ((a—0.)/e..«(b)<1. Then the
maximum principle yields that

Codr) _ Par)
ee,o(b) = gbne(a_ae)

on [c+d., a—d.] and hence e, (a—20.)/e. «(b)<h.(a—20.) by (14). Therefore
the maximum principle again yields that

e.,o(r)
e.,o(b)

on (a—20., b). Applying this inequality to »=a, we have Lemma 4. I

<h(r)

LEMMA 5. For five numbers €, ¢, a, b, a (0<e<1, 0<c<a<b<l, a=0)
there exists a density P.=P. ¢ a.0.« on £ with supp P.C[c, a] such that the first
(P+P.)-unit f.,. satisfies

(e HE @b eva




ESSENTIAL SETS OF PICARD PRINCIPLE 139

for any density P on Q with P(r)=a/r* on [a, b].

Proof. Let P be an arbitrary density on £ with P(*)=a/7* on [a, b], 6 a
positive number with d<1, and Pj.. .., the density in Lemma 4. We denote by
fs.1 the first (P+P; ¢ q.5)-unit. On the interval [a, b] the function f; .(r) has
the following form:

four)=2rP+psrf  (B=va+1).

Let e5,, and e;5,; be the P; . o 5-unit and the first Pj, . 4. ,-unit, respectively. Then
by (5) the inequality Ps ¢ ¢.0=P+P;s . a5 implies

e;.1(a) Zfa,l(a)
e5,1(b) = fs.4(b)

Moreover from (7) and Lemma 4 it follows that

esola) _ esq(a)

0> si® s ®)

and hence we have

f&, l(a)
IO

This means
gs_ ObP—af
As < a f—ob8"
On the other hand ps/4;>—a®® by (9). Hence we have

lim &= ¢26
00 15

and the convergence is uniform for P. Therefore in view of (10) we obtain

tim 2 P00 Z10g H{(2) ()}

Here the convergence is also uniform for P so that there exists a positive con-
stant 6=0.=0., ¢ 4.0.« being independent of P such that

[ yar<pros (2 +(5) e

Thus the desired density P. in Lemma 5 is the density Ps_ ¢ a0 O

LEMMA 6. For three numbers ¢, ¢, a (0<e<1, 0<c<a<1)there exists a den-
sity P.=P, .o on 2 with supp P.C[c, a] such that the first P.-unit e, , satisfies

S“ e, :(r)

< el (1) dr<e.
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Proof. We take two numbers p, ¢ with 0<c<p<g<a<l, p<ce®? and
g>ae~/3. Construct a sequence {P,}? of densities P, on £ with supp P,C
[c, a] and P,(r)=(n*—1)/r® on [p, ¢g]. Every first P,-unit e, (n=1, 2, )
has the form e, (r)=2.7"+ .~ on [p, ¢] and by (12) satisfies

Fsrei r=aios () + (2405}

<%log%+nizlog (1+5)< l1og— l1og (1+ 2)

Then there exists an integer n=n.=n. .. Such that

¢ eq,1(r) &
Sp rien (¥) dr< 3

On the other hand by (8) and the choice of p, ¢ we have

? en(r) 1 ¢ en(7) 2
S r?en \(7) dr S FUr<3g EX Sq rien, (r) dr< 3

Therefore the density P, . .=P,, satisfies Lemma 6. O
2.3. We prove that the converse of Lemma 3 is true.

LEMMA 7. Let P be a density on Q with P'(r)Za,/r* (a,=0) on every in-
terval [an, b,] (n=1, 2, ---). If the set A is an essential set for P then (13) is
valid.

Proof. Consider a density P’ on 2 with P'(r\=a,/r? on every [an, b,].
If A is an essential set for P, then A is also an essential set for P’ by the
definition of essential sets. Therefore we may assume P(r)=a,/r® on every
[a., b,] without loss of generality.

Fix a sequence {¢,}$ of positive numbers ¢, such that X7e,<co. We de-
note by Q, the density P. a5« On £ in Lemma 5 for five numbers e¢=¢,,
¢=bu+1, a=a,, b=b,, and a=a,. We also denote by R, the density P, ., in
Lemma 6 for three numbers e=e¢,, ¢=bn4+1, and a=a,. Consider the density
S=P+3%(Q,+R,)on . Then S(r)=P(r)=a,/r? on every [a, b,] (n=1,2,---).
The first S-unit A,, the first (P+@Q,)-unit f,, ;, and the first R,-unit g, , satisfy
by (6)

hi(r) fn «(7) hi(r) _ Gna(¥)
R E Fonry R = gy LB

since P+Q,<S, R,<S on (0,1]. On the other hand Lemmas 5 and 6 imply
that

(2 o< s H(EY (5 ron v

and
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@ Gaa(7)
== dr<e,,
Sbn-{-l rzg;z, «(7)

respectively. Therefore we have the following evaluation :
b hy(r) e 1 Lrby\fu, (@a\Pr) o2
So rhir <2 gz o8 2{<an) +(b,,) }+2n§15”‘

If A is an essential set for P then the Picard principle is valid for S so that
the integral in the above inequality is oo by (4) and hence (13) is valid. [

Lemmas 3 and 7 yield the following

COROLLARY 8. Let P be a density on 2 with P(r)=a,/r* (a,=0) on every
interval [aq, b,] (n=1, 2, ---). The set A is an essential set for P if and only
if (13) is valid.

§ 3. Proofs of theorems

3.1. We start with the proof of Theorem 1. First we show that the con-
ditions (b) and (c) are equivalent. In the case that the sequence {a.}, {0z}
satisfy limsup b,/a,>1, the conditions (b) and (c) are valid. Observe that

(log x)2>log%(x +x7) (x>1),

(log x)*<3 log %(x—l—x'l) (1<x<x0)

for a positive constant x, with x,>1. Then (b) and (c) are also equivalent in
the case that lim b,/a,=1.

Next we apply the above assertion to the sequences {az%}%, {b»2}5. Then
the condition (b) is equivalent to

& 1 (/ba\*2  [an\"2| _

Breg{() (G0 ==
On the other hand this condition is equivalent to (a) by Lemma 3 and 7 and hence
the proof of Theorem 1 is complete.

3.2. We turn to the proof of Theorem 2 which is carried over in 3.2 and
3.3. Consider auxiliary conditions

(15) 5 artog 3 {(2) (&) ") =e (an=og@rTD),
(16) & 5rron7{(3)"+(52) "} = (b= vTIogB D
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In this no. we show (b)=(15)=(a)=(16)=(c). Since

(_Zln)mgan+(%)logan<(%)an+<%)an,
1 (log a,)%+1
(log a») a

we have (b)=(15). Observe that the density P(r)=(logr)?/r* in Theorem 2
satisfies (log b,)%/r*< P(r)<(log a,)?/r? on every interval [a,, b,] (n=1, 2, ---).
Then Lemma 3 assures (15)=(a); Lemma 7 assures (a)=(16).

We consider the function

(n=1, 2, ),

B)=4(x; p)==5;108 (o™ 0"
of x in (0, o) for every positive constant p with p>>1. This function ¢ satisfies
lim x°¢’(x)= lim {x°¢'(x)}'=0,
(0= p™*}(x°¢/(x))'}'=2(l0g p)(2— p** —p"**)
and hence ¢ is decreasing. Therefore ¢(log bz'; bn/a)>¢d(B,; ba/as) (n=1,2, ).
This means (16)=(c).

3.3. If we prove that (c) yields (b), then the proof of Theorem 2 is com-
plete. In the case sequences {a,} and {b,} satisfy lim (log b;')/(log az')=1,
there exists a positive constant M with (log b7)*< M (log az")™* (n=1, 2, ---) so
that (c) yields (b) by inequalities

(Zoy o (F2) ™ e ()™ o (B2) " (=1, 20,

an bn an bn
Therefore we assume
. . . log byt
lim inf -2 =
oga

- lg n

<1.

However, in this case we see that the upper limit of

m log % {( Z_ Yoo Z_ ) )

is positive since this term is greater than

1 l/az\logan) _ log27' . loghy!
(log a,,)zmg{z(bn) }—(logan)z log a3

and (log a,)*— as n tens to c. Thus (b) is valid. O
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