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We denote by Ω the punctured unit disk 0 < | z | < l and consider a Schrod-
inger equation

(1) (-Δ+P(s))u(*)=0 ( Δ - ^ + g ^ , z= x+yi)

on Ω. The potential P is assumed to be nonnegative and locally Holder con-
tinuous on 0 < | z | ^ l and referred to as a density on Ω. We say that the
Picard principle is valid for P (at the origin z=0) if the set FP(Ω) of nonnega-
tive solutions of (1) on fl with vanishing boundary values on the unit circle
Γ: \z\=l is generated by one element u of FP(Ω): FP(Ω)={cu : c^Q}. In other
words the Picard principle is valid for P at the origin if and only if the Martin
ideal boundary of Ω over the origin with respect to (1) consists of one point.
Let P be a density on Ω for which the Picard principle is valid and Q a density
on Ω with Q<P on Ω. The Picard principle for Q is generally invalid ([8],
[9]). However the Picard principle for Q is valid if densities P and Q are
rotation free, i.e. P(z)=P(\z\) and Q(z)=Q(\z\) on Ω ([7]). Moreover the
Picard principle for Q is valid if Q^P on a subset of Ω for some densities P
([2]). In this note we will study this subset of Ω for the special densities
P(z)=\z\" and P(z)=(log\z\γ/\z\\

Hereafter every density P on Ω in consideration is assumed to be rotation
free and is mainly viewed as a function P(r) of r in the interval (0, 1]. In
order to define the above subsets of Ω we take two sequences {αn}?, {bn}™
which are always supposed to satisfy

n-*oo
0<bn+1<an<bn<l ( n = l , 2, •••), lim α » =

and we set

A=A({an\, {W)=0[α»
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Then the set A {{z: \z\^A}9 more precisely) is called an essential set (of the
Picard principle) for a density P on Ω if the Picard principle is valid for any
density Q on Ω with

Q(r)=O(P(r)) (re=A, r-»0).

We remark that the Picard principle is valid for P if there exists an essential
set for P. We also remark that the above condition can be replaced by

Q(r)£P(r) (r<=A)

since the Picard principle for Q and cQ (c>0) are equivalent ([4]). A typical
example of a density and an essential set for it are the density P{r)—r~2 and
the set A with limsupftn/αn>l ([2]). An essential set for P{χ)—r~2 which is
smaller than the above essential set is given by M. Kawamura ([3]): The set
A is an essential set for P(r)=r~2 if

(2) Σ ( k > g — ) =

This result is a special case of the following generalization ([3]): For an arbi-
trary density P on Ω, the set A is an essential set for P if

(3) Σ - Un

In this note we will show that (2) is not only sufficient but also necessary
for A to be an essential set for P(r)=r~2:

THEOREM 1. The following statements are equivalent by pairs.
(a) The set A is an essential set for P{r)—r'2f

)
0 0 / h \2

(b) Σ ί l Q g — ) = ~ ,
n=i \ an/

(0 Σ l o g

The density (log r)2/r2 is essentially different from the density r"2 ([2], [11]).
For this reason the separate study of essential sets for (log r)2/r2 is in order:

THEOREM 2. The following statements are equivalent by pairs:
(a) The set A is an essential set for P(r)=(log r)2/r2,

1 ί/bn\l0*bn . /an\H>Sbn\
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We remark that the sequences {an} and {bn} given by an=2~2n and bn—

2-2n+i ( n r r l > 2, ...) do not satisfy (3) for P(r)=(log rf/r2 and nevertheless satisfy
(b) in Theorem 2.

§ 1. Fundamental properties of P-units

1.1. For a density P on Ω, the unique bounded solution of

on 42 with boundary values 1 on Γ is referred to as the n-th P-unit (w=0,1, •••)
([6]). In particular we call the 0-th P-unit simply the P-unit. Since P is rota-
tion free, the n-th P-unit en is also rotation free so that it may also be con-
sidered as a function en{r) of r in (0, 1]. Then the n-th P-unit is the unique
bounded solution of

on (0, 1) with 0(1)=1, where we set φ'(r)=dφ(r)/dr and φ"{r)=d2φ(r)/dr\ In
particular the differential operator lPtΊl for P = 0 and n=0 is denoted simply by
/. The n-th P-unit en is also positive and increasing, i.e. e'n(r)^0 on (0, 1).

1.2. We recall fundamental properties of P-unit and first P-units which
play an essential roll in the study of the Picard principle for densities P. Let
P be a density on Ω and e0, ex be the P-unit, the first P-unit, respectively.
The Picard principle is valid for P if any only if

For a test of the Picard principle for P, we only apply (4) to the first P-unit
in the sequel. We also use fundamental properties of P-units mentioned below.

Suppose that two densities P, Q on Ω satisfy P<LQ on a subinterval (0, a]
of (0, 1] and denote by en, fn the n-th P-unit, the n-th ζ?-unit, respectively
(72=0, 1, •••). Then we have

*§j$ a) ([I])

by the maximum principle for (1) ([5], [6]). The inequality (5) means that the
function fn(r)/en{r) is increasing so that we also have

Ih particular P(r)<P(r)+r'2 and P ( r ) + r - 2 ^ r " 2 imply that
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7& W>7
respectively since the first P-unit coincides with the (P(r)+r~2)-unit and the
r"2-unit is r.

§2. Characterization of essential sets

2.1. Consider a density P on Ω satisfying P(r)=a/r2 (α^O) on [α, 6]
. The first P-unit ex can be represented in the form ex{r)=λrβ-\-μr~β

(β=y/a+l) on [α, 6], The inequalities ^(ύOX) and βί(β)>0 by (8) yield that
/l>0. By using £i(α)>0 again and eίi^/e^a^a"1 we see that

(9)

Then we apply (9) to the integral

(10)
—μ r

to obtain the following evaluation:

Hence (4), (6) and (11) yield

L E M M A 3. Let P be a density on Ω with P(r)<Lan/r2 (an^0) on every
interval \_an> bn~] ( w = l , 2, •••). Then the set A is an essential set for P if

2.2. Let us prove a converse of Lemma 3. To this end we prepare three
lemmas in this no..

LEMMA 4. For four numbers ε, c, a, b ( 0 < ε < l , 0 < c < α < 6 < l ) there exists
a density Pε=Pε,c,a,b on Ω with supp P eC[£, a] such that the Ps-unit eε,Q satisfies
that
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Proof. Consider the functions

These functions satisfy lhε=0, he(a)=ε, and hε(b)=l, where / is the differential
operator defined in no. 1.1. There exists a small positive number δε (δε<(a — c)/i)
such that hε(a—2δε)>0. We also consider the functions φn(r) ( n = 1 , 2, •••) on
[_cy a\ defined by

These functions satisfy

Then we take a large integer nε=nε,c,a,b with 2n ε—l/4c2>0 and

(14) ^^ψl
ψnε(a—δε)

Construct a density Pε=Pε,c,a,b on J2 with Pε{r)=lψns{r)/φn&(r) on [c+δ ε , α—δ,]
and supp P s C[c, α] . We denote by eε,Q the Pe-unit. Since e£t0 is increasing
as mentioned in no. 1.1, eε,0(c+δε)/eε,0(b)^l and eε,0(a—δε)/eε,o(b)<ίl. Then the
maximum principle yields that

<

eε,0(b) = φnt(a-δε)
on [c+δε, α-3 β ] and hence et.o(a-2δs)/et.o(b)<h9(a-2δ9) by (14). Therefore
the maximum principle again yields that

on (β—2δε, ί>). Applying this inequality to r = α , we have Lemma 4.

LEMMA 5. For five numbers ε, c, a, b, a ^0<e<l, 0<c<a<b<l, a^O)
there exists a density Pε=PεtC,a,b,a on Ω with suppP e c[c, α] such that the first
(P+Pε)-unit /β,i satisfies
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for any density P on Ω with P(r)=a/r2 on [α, ft].

Proof. Let P be an arbitrary density on Ω with P{r)—afr2 on [α, ft], <5 a
positive number with 3<1, and Pδ,c,a,b the density in Lemma 4. We denote by
fδ.i the first (P+i\ c > α , 6 )-unit. On the interval [α, ft] the function /<u(r) has
the following form:

Let βδ,0 and βδ.i be the Pa,c.α,6-unit and the first Pa.co,s-unit, respectively. Then
by (5) the inequality Pδ.c.a.bύP+Pδ.ca.b implies

fδ,i(a)

Moreover from (7) and Lemma 4 it follows that

g ga.o(fl) ^

^,o(ft)

and hence we have

This means

μδ

λδ

On the other hand μδ/λδ> — a2β by (9). Hence we have

and the convergence is uniform for P. Therefore in view of (10) we obtain

-*o )ar2f'δtl

Here the convergence is also uniform for P so that there exists a positive con-
stant ί=3 t=3, l C fα.6.α being independent of P such that

Thus the desired density P ε in Lemma 5 is the density Pδε>c,a,b •

LEMMA 6. For three numbers ε, c, a ( 0 < ε < l , 0<c<a<l)there exists a den-
sity Pε—P&,c,a on Ω with supp P ε C[c, α] such that the first Pδ-unit eSfl satisfies
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Proof. We take two numbers p, q with 0<c<p<q<a<ly p<ceε/z, and
q>ae~ε/B. Construct a sequence {Pn\ΐ of densities Pn on Ω with suppP^C
[*, α] and Pn(r)=(n2-l)/r2 on [/>,?]. Every first iVunit en.i (n=l, 2, •••)
has the form en.i(r)=Λnrn+Aenr-n on [p, q~\ and by (12) satisfies

< l o g + i , o

Then there exists an integer n — nε—ntyC,a such that

On the other hand by (8) and the choice of p, q we have

c r2e'n,i{r) ~~)c r 3 io. r2e'nΛ(r) 3

Therefore the density Pε,c,a=Pnε satisfies Lemma 6. •

2.3. We prove that the converse of Lemma 3 is true.

LEMMA 7. Let P be a density on Ω with P'(r)^>an/r2 (an^0) on every in-
terval [α n , bn~] (n=l, 2, •••). // the set A is an essential set for P then (13) is
valid.

Proof. Consider a density P' on Ω with P'(r\=an/r2 on every [α n , 6 n ].
If A is an essential set for P, then A is also an essential set for P1 by the
definition of essential sets. Therefore we may assume P(r)—an/r2 on every
[fln> bn] without loss of generality.

Fix a sequence {εn}T of positive numbers εn such that Σ?εn<°° . We de-
note by Qn the density Pε,c,a,b,a on Ω in Lemma 5 for five numbers ε—εn,
c=bn+i, a — an) b=bn, and a—an. We also denote by Rn the density Pε,c,α in
Lemma 6 for three numbers ε—en, c~bn+1, and a~an. Consider the density
S=:P+Σ>°ϊ(Qn+Rn) on Ω. Then S(r)^P(r)^aJr2 on every [α n , 6n] ( n = l , 2, •••).
The first 5-unit Λj, the first (P+Qn)-unit fn,lf and the first J?Λ-unit gnΛ satisfy
by (6)

hi(r) /n,i(r) Λi(r) <gn,i(r) , _-, 9 x

since P + ( ? n ^ 5 , Rn^S on (0, 1]. On the other hand Lemmas 5 and 6 imply
that

and
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g W t l ( r )

respectively. Therefore we have the following evaluation:

[ h ] φ ) ~ 1 1 j/bnγn ,/anγn\ , 9 ^ c

Jo r2h[{r) n = i j8S 2 l Λ α n / \ & n / J *»=i

If A is an essential set for P then the Picard principle is valid for S so that
the integral in the above inequality is oo by (4) and hence (13) is valid. •

Lemmas 3 and 7 yield the following

COROLLARY 8. Let P be a density on Ω with P{r)~an/r2 (an^0) on every
interval [_an, bn~\ ( n = l , 2, •••). The set A is an essential set for P if and only
if (13) is valid.

% 3. Proofs of theorems

3.1, We start with the proof of Theorem 1. First we show that the con-
ditions (b) and (c) are equivalent. In the case that the sequence {an}, {bn}
satisfy l imsup6 w /α Λ >l, the conditions (b) and (c) are valid. Observe that

(log x)2<3 log y U + T 1 ) ( K x < * o )

for a positive constant x0 with xo>l. Then (b) and (c) are also equivalent in
the case that \imbn/an=l.

Next we apply the above assertion to the sequences {α^¥}T, {M¥}? Then
the condition (b) is equivalent to

Σ i°4{(
n=i 2 l\fl

On the other hand this condition is equivalent to (a) by Lemma 3 and 7 and hence
the proof of Theorem 1 is complete.

3.2. We turn to the proof of Theorem 2 which is carried over in 3.2 and
3.3. Consider auxiliary conditions
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In this no. we show (b)=X15)=Ha)=X16)=3(c). Since

b l l b an\
an

(logαn)2 ( n = l f 2 f . . . ) f

we have (b)=φ(15). Observe that the density P(r)=(\ogrf/r2 in Theorem 2
satisfies (log bn)

2/r2^P(r)^(\og an)
2/r2 on every interval [_an, bn~l ( n = l , 2, •••).

Then Lemma 3 assures (15)=Xa) Lemma 7 assures (a)=χi6).
We consider the function

φ(x)=φ(x p)= -2 log hp*+p-*)
X u

of x in (0, oo) for every positive constant p with ρ>l. This function φ satisfies

lim xψ(x)= lim {xψ(x)}'=0 ,
x-+0 x-*0

and hence ψ is decreasing. Therefore ^(log bΰ1 bn/an)>φ(βn bn/an) ( n = l , 2, •••).
This means (16H(c).

3.3. If we prove that (c) yields (b), then the proof of Theorem 2 is com-
plete. In the case sequences {an} and {bn} satisfy lim (log fe^/Uog at1)—I,
there exists a positive constant M with ( logZ^Γ^MOog α^1)"1 (w=l, 2, •••) so
that (c) yields (b) by inequalities

V ^ ^ V # ^
 V 6 ? ^

Therefore we assume

However, in this case we see that the upper limit of

1 1 bn \ l o g an , / fln\
log

is positive since this term is greater than

Iog2 - 1

1 . fl/flΛ

(logan)
2 g 12 \bn

+
(logan)

2 + logα^1

and (log απ)
2->oo as n tens to oo. Thus (b) is valid. D



ESSENTIAL SETS OF PICARD PRINCIPLE 143

REFERENCES

[ I ] H. IMAI, On singular indices of rotation free densities, Pacific J. Math., 80(1979),
179-190.

[ 2 ] M. KAWAMURA, On a conjecture of Nakai on Picard principle, J. Math. Soc.
Japan, 31 (1979), 359-371.

[3HIM. KAWAMURA, A note on Picard principle for rotationally invariant density,
Hiroshima Math. J., 20 (1990), 395-398.

[ 4 ] M. KAWAMURA AND M. NAKAI, A test of Picard principle for rotation free
densities, II, J. Math. Soc. Japan, 28 (1976), 323-342.

[ 5 ] C. MIRANDA, Partial Differential Equations of Elliptic Type, Springer, 1970.
[ 6 ] M. NAKAI, Martin boundary over an isolated singularity of rotation free density,

J. Math. Soc. Japan, 26 (1974), 483-507.
[ 7 ] M. NAKAI, A test of Picard principle for rotation free densities, J. Math. Soc.

Japan, 27 (1975), 412-431.
[ 8 ] M. NAKAI AND T. TADA, Nonmonotoneity of Picard principle, Trans. Amer.

Math. Soc, 292 (1985), 629-644.
[ 9 ] M. NAKAI AND T. TADA, Extreme nonmontoneity of the Picard principle, Math.

Ann., 281 (1988), 279-293.
[10] T. TADA, On a criterion of Picard principle for rotation free densities, J. Math.

Soc. Japan, 32 (1980), 587-592.
[II] T. TADA, Nonmonotoneity of Picard principle for Schrδdinger operators, Proc.

Japan. Acad., Ser. A, 66 (1990), 19-21.

DEPARTMENT OF MATHEMATICS

DAIDO INSTITUTE OF TECHNOLOGY

DAIDO, MINAMI, NAGOYA 457

JAPAN




