ON THE STABILITY OF A THREE-SPHERE

By Hideo Muto

1. Introduction.

Let $\left(M^{m}, g\right)$ be an m-dimensional closed connected Riemannian manifold. The identity mapping $i d_{M}$ of M is a harmonic mapping, that is, a critical point of the first variation of the energy functional. (M^{m}, g) is said to be stable when the second variation of the energy functional at $i d_{M}$ is non-negative and otherwise, (M, g) is said to be unstable. The m-dimensional ($m \geqq 3$) unit spheres are unstable. And unstable, simply connected compact irreducible symmetric spaces were determined (see Smith [6], Nagano [4], Ohnita [5] and Urakawa [11]).

Closed manifolds with negative Ricci curvature and closed Kaehler manifolds are examples of stable manifolds. Since Gao and Yau [1] proved the existence of a metric with negative Ricci curvature on every 3 -dimensional closed manifold, there exists a stable metric on every 3-dimensional closed manifold.

Recently Urakawa [12] and Tanno [9] studied some deformation of the standard metric g_{0} on $S^{2 n+1}(n \geqq 1)$ with constant sectional curvature one. Let ($C P^{n}, h$) be the complex projective space with the Fubini-Study metric with constant holomorphic sectional curvature 4 and $\pi:\left(S^{m}, g_{0}\right) \rightarrow\left(C P^{n}, h\right)(m=2 n+1)$ be the Hopf fibration. Let ξ be the unit Killing vector field on S^{m} which is tangent to each fibre and η be the dual 1 -form of ξ with respect to g_{0}. We define a one-parameter family $g(t), 0<t<\infty$, of Riemannian metrics on S^{m} by

$$
g(t)=t^{-1} g_{0}+t^{-1}\left(t^{m}-1\right) \eta \otimes \eta .
$$

Theorem (Tanno [9]) For $m=2 n+1 \geqq 3$ and $t>t_{0}(m),\left(S^{m}, g(t)\right)$ is unstable, where $t_{0}(m)=\left[\left\{\left(m^{2}-4\right)^{1 / 2}-1\right\} /\left(m^{2}-5\right)\right]^{1 / m}$.

In this note, we show :
Theorem A. $\quad\left(S^{3}, g(t)\right)$ is stable if and only if $t \leqq t_{0}(3)=[\sqrt{5}-1 / 4]^{1 / 3}=$ $0.676 \cdots$.

Remark 1. The sectional curvature $K_{\sigma}(t)$ of $g(t)$ is positive for $0<t<(4 / 3)^{1 / 3}$ (see Tanno [9]). In fact, for $t<1, t^{4} \leqq K_{\sigma}(t) \leqq t\left(4-3 t^{3}\right)$ and for $t \geqq 1, t\left(4-3 t^{3}\right) \leqq$ $K_{\sigma}(t) \leqq t^{4}$.

[^0]Remark 2. The volume element of $\left(S^{3}, g(t)\right)$ is invariant in $t \in(0, \infty)$.
The author would like to thank Professor Tanno for his helpful suggestions.

2. Preliminaries.

Let $g(t), 0<t<\infty$, be the family of metrics on S^{3} defined in the introduction. Let ${ }^{(t)} \nabla$ (resp. ${ }^{(t)} R_{i j}$) be the Riemannian connection (resp. Ricci tensor field) of $g(t)$. $A^{1}\left(S^{3}\right)$ denotes the space of 1 -forms on S^{3}. Let ${ }^{(t)} \Delta$ be the Laplacian of $g(t)$ and let \langle,\rangle_{t} (resp. $\left\|\|_{t}\right.$) be the L^{2}-inner product (resp. L^{2}-norm) of forms on ($S^{3}, g(t)$). The Ricci transformation ${ }^{(t)} Q: A^{1}\left(S^{3}\right) \rightarrow A^{1}\left(S^{3}\right)$ is defined by ${ }^{(t)} Q \omega$ $=\left({ }^{(t)} R^{k}{ }_{j} \omega_{k}\right)$ for $\omega \in A^{1}\left(S^{3}\right)$. For convenience, we set $\nabla={ }^{(1)} \nabla, \Delta={ }^{(1)} \Delta,\langle\rangle=,\langle,\rangle_{1}$, $\|\|=\|\|_{1}$ and $Q={ }^{(1)} Q$. The Jacobi operator of the identity mapping acts on the space of vector fields. By the natural duality, the Jacobi operator $J(t)$ acting on the space of 1 -forms is of the form (see Smith [6]):

$$
\begin{equation*}
J(t)=-{ }^{(t)} \Delta-2^{(t)} Q . \tag{2.1}
\end{equation*}
$$

Let λ_{k} be the k-th eigenvalue of the Laplacian Δ acting on the space of functions on S^{3} with multiplicity $m(k)$. Then it is known that

$$
\begin{array}{ll}
\lambda_{k}=k(k+2), & k \geqq 0, \tag{2.2}\\
m(k)=(k+1)^{2}, & k \geqq 0 .
\end{array}
$$

Let L_{X} be the Lie derivation with respect to a vector field X and V_{k} the space of eigenfunctions corresponding to the k-th eigenvalue. Then V_{k} has the following orthogonal decomposition with respect to g_{0} (see Tanno [7]):

$$
\begin{equation*}
V_{k}=\Sigma V_{k, \vartheta}, \quad \vartheta=k, k-2, \cdots, k-2[k / 2] . \tag{2.3}
\end{equation*}
$$

Here for any $f \in V_{k, \vartheta}, L_{\xi} L_{\xi} f+\vartheta^{2} f=0$.
Let $\left\{\xi_{(\alpha)}\right\}_{\alpha=1}^{3}$ be an orthonormal frame field of unit Killing vector fields of S^{3} satisfying $\xi=\xi_{(1)}$ and $\left[\xi_{(\alpha)}, \xi_{(\beta)}\right]=2 \xi_{(\gamma)}$ where (α, β, γ) is a cyclic permutation of $(1,2,3)$ and $\left\{\eta_{(\alpha)}\right\}_{\alpha=1}^{3}$ the dual frame field of $\left\{\xi_{(\alpha)}\right\}_{\alpha=1}^{3}$ with respect to g_{0}. Set $\Phi_{(\alpha)}=-\nabla \xi_{(\alpha)}$ and $\Phi=\Phi_{(\alpha)}$. Then $\xi_{(\alpha)}, \eta_{(\alpha)}$ and $\Phi_{(\alpha)}$ satisfy the following equations: for any vector fields X, Y on $S^{3}(1)$,

$$
\begin{aligned}
& \Phi_{(\alpha)} \xi_{(\alpha)}=0, \quad \eta_{(\alpha)} \Phi_{\alpha}=0, \quad \eta_{(\alpha)}\left(\xi_{(\alpha)}\right)=1, \\
& \Phi_{(\alpha)} \Phi_{(\alpha)} X=-X+\eta_{(\alpha)}(X) \xi_{(\alpha)}, \\
& g_{0}(X, Y)=g_{0}\left(\Phi_{(\alpha)} X, \Phi_{(\alpha)} Y\right)+\eta_{(\alpha)}(X) \eta_{(\alpha)}(Y), \\
& \left(\nabla_{X} \Phi_{(\alpha)}\right)(Y)=g_{0}(X, Y) \xi_{(\alpha)}-\eta_{(\alpha)}(Y) X, \\
& \Phi_{(\alpha)} \xi_{(\beta)}=-\Phi_{(\beta)} \xi_{(\alpha)}=\xi_{(\gamma)}, \\
& \Phi_{(\alpha)} \Phi_{(\beta)}-\xi_{(\alpha)} \otimes \eta_{(\beta)}=-\Phi_{(\beta)} \Phi_{(\alpha)}+\xi_{(\beta)} \otimes \eta_{(\alpha)}=\Phi_{(\gamma)},
\end{aligned}
$$

where (α, β, γ) is a cyclic permutation of $(1,2,3)$. Then we get immediately :
LEMMA 1. $\quad \Phi_{(\alpha)}{ }^{r s}=-\Phi_{(\alpha)}{ }^{s r}=\nabla^{r} \xi_{(\alpha)}{ }^{s}$.
Lemma 2. For any $t \in(0, \infty)$, we have $\left\langle\eta_{(\alpha)}, \eta_{(\beta)}\right\rangle_{t}=0(\alpha \neq \beta),\left\langle\eta_{(1)}, \eta_{(1)}\right\rangle_{t}$ $=t^{-2}$ and $\left\langle\eta_{(2)}, \eta_{(2)}\right\rangle_{t}=\left\langle\eta_{(3)}, \eta_{(3)}\right\rangle_{t}=t$.

Lemma 3. We get $L_{\xi_{(\alpha)}}\left(V_{k}\right) \subset V_{k}, L_{\xi_{(1)}}\left(V_{k, \vartheta)} \subset V_{k, \vartheta}\right.$ and $\left\langle L_{\xi_{(\alpha)}} f, h\right\rangle=-$ $\left\langle f, L_{\xi_{(\alpha)}} f\right\rangle$ for any smooth functions f and h on S^{3}.

3. Proof of Theorem A.

By (2.1), Tanno [9] gave the Jacobi operator $J(t)$ of $g(t)$.
Lemma 4 (Tanno [9]). The Jacobi operator $J(t)$ of $\left(S^{m}, g(t)\right)(m=2 n+1 \geqq 3)$ is given by the following: For $\omega \in A^{1}\left(S^{m}\right)$,

$$
\begin{aligned}
J(t) \omega= & -t \Delta \omega+t\left(1-t^{-m}\right) L_{\xi} L_{\xi} \omega+2 t\left(t^{m}-1\right)\left(\Phi^{r s} \nabla_{r} \omega_{s}\right) \eta \\
& -2 t\left(m+1-2 t^{m}\right) \omega-2(m+1) t\left(t^{m}-1\right) \omega(\xi) \eta
\end{aligned}
$$

We prepare some lemmas to prove theorem A.
Lemma 5. On S^{3}, the following equations hold.

1) $\Delta\left(f \eta_{(\alpha)}\right)=-\left(\lambda_{k}+4\right) f \eta_{(\alpha)}+2 d f \cdot \Phi_{(\alpha)}, \quad f \in V_{k}$.
2) $L_{\xi} L_{\xi}\left(f \eta_{(1)}\right)=-\vartheta^{2} f \eta_{(1)}, \quad f \in V_{k, \vartheta}$.

$$
\begin{array}{ll}
L_{\xi} L_{\xi}\left(f \eta_{(2)}\right)=-\vartheta^{2} f \eta_{(2)}-4 f \eta_{(2)}+4 \xi_{(1)} f \eta_{(3)}, & f \in V_{k, 9} . \\
L_{\xi} L_{\xi}\left(f \eta_{(3)}\right)=-\vartheta^{2} f \eta_{(3)}-4 f \eta_{(3)}-4 \xi_{(1)} f \eta_{(2)}, & f \in V_{k, 9} .
\end{array}
$$

3) $\Phi^{r s} \nabla_{r}\left(\sum_{\alpha} f_{\alpha} \eta_{(\alpha)}\right)_{s}=2 f_{1}+\xi_{(3)} f_{2}-\xi_{(2)} f_{3}$.
4) For any $t \in(0, \infty), \alpha=2,3$, we have $J(t) \eta_{(1)}=0$ and $J(t) \eta_{(\alpha)}=4 t\left(t^{3}-2+t^{-3}\right) \eta_{(\alpha)}$.

Proof. 1) and 4) were proved by Tanno in [8] and [9]. 2) is easily verified by $\left[\xi_{(\alpha)}, \xi_{(\beta)}\right]=2 \xi_{(r)}$. Since we have $\Phi^{r s} \nabla_{r} \eta_{(\alpha) s}=\left\langle\nabla \xi_{(1)}, \nabla \xi_{(\alpha)}\right\rangle$ by Lemma 1, we have $\Phi^{r s} \nabla_{r} \eta_{(1) s}=2$ and $\Phi^{r s} \nabla_{r} \eta_{(\alpha) s}=0$ for $\alpha=2,3$. By the definition of Φ, we obtain $\Phi^{r s} \nabla_{r} f_{(\alpha)} \eta_{(\alpha) s}=-g_{0}\left(\operatorname{grad} f_{(\alpha)}, \nabla_{\xi_{(\alpha)}} \xi_{(1)}\right)$. Therefore 3) is proved.
q. e. d.

By the orthogonal decomposition (2.3) of V_{k}, any 1 -form ω on S^{3} can be represented by $\omega=\sum_{2, k, 9} f_{l, k, 9} \eta_{(i)}, f_{\imath, k, 9} \in V_{k, 9}$. By Lemmas 2, 3 and 4 , we have the following lemma.

Lemma 6. For any $\omega=\sum_{2, k, \vartheta} f_{i, k}, \vartheta \eta_{(i)} \in A^{1}\left(S^{3}\right)$ and $t \in(0, \infty)$, we have

$$
\langle J(t) \omega, \omega\rangle_{t}=\sum_{k=0}^{\infty} S(\omega, k, t) .
$$

Here

$$
\begin{aligned}
S(\omega, k, t)= & \sum_{\vartheta}\left[\lambda_{k}+\left(t^{-3}-1\right) \vartheta^{2}\right] t^{-1}\left\|f_{1, k, 9}\right\|^{2} \\
& +\sum_{\vartheta}\left[\lambda_{k}+4\left(t^{-3}-2+t^{3}\right)+\left(t^{-3}-1\right) \vartheta^{2}\right] t^{2}\left\|f_{2, k, 9}\right\|^{2} \\
& +\sum_{\vartheta}\left[\lambda_{k}+4\left(t^{-3}-2+t^{3}\right)+\left(t^{-3}-1\right) \vartheta^{2}\right] t^{2}\left\|f_{3, k, 9}\right\|^{2} \\
& +\left(8 t^{-1}-4 t^{2}\right) \sum_{\vartheta}\left\langle\xi_{(1)} f_{3, k, 9}, f_{2, k, 9}\right\rangle \\
& +4 t^{2} \sum_{9, \alpha}\left\langle\xi_{(3)} f_{2, k, 9,}, f_{1, k, \alpha}\right\rangle \\
& -4 t^{2} \sum_{, \vartheta, \alpha}\left\langle\xi_{(2)} f_{3, k, 9}, f_{1, k, \alpha}\right\rangle .
\end{aligned}
$$

Proof. Using $d f \circ \Phi_{(\alpha)}=\xi_{(\gamma)} f \eta_{(\beta)}-\xi_{(\beta)} f \eta_{(\gamma)}$ and Lemma 2, we have

$$
\begin{aligned}
J(t) \omega= & \sum_{k, \vartheta}\left[\lambda_{k}+\left(t^{-3}-1\right) \vartheta^{2}\right] f_{1, k, 9} \eta_{(1)} \\
& +\sum_{k, 9}\left[\lambda_{k}+4\left(t^{-3}-2+t^{3}\right)+\left(t^{-3}-1\right) \vartheta^{2}\right] f_{2, k, 9} \eta_{(2)} \\
& +\sum_{k, \vartheta}\left[\lambda_{k}+4\left(t^{-3}-2+t^{3}\right)+\left(t^{-3}-1\right) \vartheta^{2}\right] f_{3, k, 9} \eta_{(3)} \\
& +4\left(t^{-3}-1\right) \sum_{k, 9} \xi_{(1)} f_{3, k, 9} \eta_{(2)} \\
& +4\left(t^{-3}-1\right) \sum_{k, 9} \xi_{(1)} f_{2, k, 9} \eta_{(3)} \\
& -2 \sum_{k, 9}\left[\xi_{(3)} f_{1, k, 9} \eta_{(2)}-\xi_{(2)} f_{1, k, 9} \eta_{(3)}\right] \\
& -2 \sum_{k, 9}\left[\xi_{(1)} f_{1, k, 9} \eta_{(3)}-\xi_{(3)} f_{1, k, 9} \eta_{(1)}\right] \\
& -2 \sum_{k, \vartheta}\left[\xi_{(2)} f_{1, k, 9} \eta_{(1)}-\xi_{(1)} f_{1, k, 9} \eta_{(2)}\right]
\end{aligned}
$$

Therefore, by Lemmas 2 and 3, we have the above representation of $S(\omega, k, t)$. q. e.d.

Lemma 7. For any $\omega=\sum_{2, k, \vartheta} f_{\imath, k, \vartheta} \eta_{(i)} \in A^{1}\left(S^{3}\right)$, set $f_{\imath, k}=\sum .9 f_{\imath, k, \vartheta}$. Then for any $\omega \in A^{1}\left(S^{3}\right), t \in(0,1]$ and $k \geqq 0$, we have

$$
\begin{aligned}
& S(\omega, k, t) \geqq t^{-1}\left(t^{-3}-1\right) \sum, g \vartheta^{2}\left\|f_{1, k, \vartheta}\right\|^{2}+t^{-1} k(k-2)\left\|f_{1, k}\right\|^{2} \\
&+t^{2}(k-2)\left\{k+2\left(1-t^{3}\right)\right\}\left(\left\|f_{2, k}\right\|^{2}+\left\|f_{3, k}\right\|^{2}\right) \\
&+2 k t^{-1}\left\{\left(\left\|f_{1, k}\right\|-t^{3}\left\|f_{2, k}\right\|\right)^{2}+\left(\left\|f_{1, k}\right\|-t^{3}\left\|f_{3, k}\right\|\right)^{2}\right\} \\
&+2 t^{2} k \sum, g\left(\left\|f_{2, k}\right\|-\|-\| f_{3, k, \vartheta} \|\right)^{2} \\
&+t^{2}\left(t^{-3}-1\right) \sum, 9\left[(\vartheta-2)^{2}\left(\left\|f_{2, k, \vartheta}\right\|^{2}+\left\|f_{3, k, \vartheta}\right\|^{2}\right)\right. \\
&\left.\quad+4 t\left(\left\|f_{2, k, \vartheta}\right\|-\left\|f_{3, k, \vartheta}\right\|\right)^{2}\right] .
\end{aligned}
$$

Proof. By the definition of $V_{k, \vartheta}$, we have that for any $\phi \in V_{k, 9}$ and $A=2,3$,

$$
\begin{align*}
& \left\langle\xi_{(1)} f_{2, k, \vartheta}, f_{\jmath, k, \vartheta}\right\rangle \leqq \vartheta\left\|f_{\imath, k, \vartheta}\right\|\left\|f_{\jmath, k, \vartheta}\right\|, \tag{3.1}\\
& \sum, \vartheta, \alpha\left\langle\xi_{(A)} f_{\imath, k, \vartheta}, f_{\jmath, k, \alpha}\right\rangle \leqq k\left\|f_{\imath, k}\right\|\left\|f_{\jmath, k}\right\| . \tag{3.2}
\end{align*}
$$

By (3.1), (3.2) and Lemma 6, we have

$$
\begin{aligned}
S(\omega, k, t)= & t^{-1}\left(t^{-3}-1\right) \sum_{9}, \vartheta^{2}\left\|f_{1, k, 9}\right\|^{2} \\
& +t^{-1} k(k-2)\left\|f_{1, k}\right\|^{2}+t^{-1} 4 k\left\|f_{1, k}\right\|^{2} \\
& +t^{2}\left[\lambda_{k}-4\left(1-t^{3}\right)\right]\left(\left\|f_{2, k}\right\|^{2}+\left\|f_{3, k}\right\|^{2}\right) \\
& \left.+t^{2}\left(t^{-3}-1\right) \sum, 9\left(\vartheta^{2}+4\right)\left\|f_{2, k, 9}\right\|^{2}+\left\|f_{3, k, 9}\right\|^{2}\right) \\
& +8 t^{2}\left(t^{-3}-1\right) \sum_{9}\left\langle\xi_{(1)} f_{3, k, 9}, f_{2, k, 9}\right\rangle \\
& +4 t^{2} \sum_{9}\left\langle\xi_{(1)} f_{3, k, 9}, f_{2, k, 9\rangle}\right. \\
& -4 t^{2} \sum_{9, \alpha}\left[\left\langle\xi_{(3)} f_{1, k, \vartheta}, f_{2, k, \alpha}\right\rangle+\left\langle\xi_{(2)} f_{3, k, 9}, f_{1, k, a}\right\rangle\right] \\
\geqq & t^{-1}\left(t^{-3}-1\right) \sum, 9 \vartheta^{2}\left\|f_{1, k, 9}\right\|^{2} \\
& +t^{-1} k(k-2)\left\|f_{1, k}\right\|^{2}+t^{-1} 4 k\left\|f_{1, k}\right\|^{2} \\
& +t^{2}\left[k^{2}+2 k-4\left(1-t^{3}\right)\right]\left(\left\|f_{2, k}\right\|^{2}+\left\|f_{3, k}\right\|^{2}\right) \\
& +t^{2}\left(t^{-3}-1\right) \sum, 9\left[(\vartheta-2)^{2}\left(\left\|f_{2, k, \vartheta}\right\|^{2}+\left\|f_{3, k, \vartheta}\right\|^{2}\right)\right. \\
& \left.\quad+4 \vartheta\left(\left\|f_{2, k, 9}\right\|-\left\|f_{3, k, 9}\right\|\right)^{2}\right] \\
& -4 t^{2} k\left\|f_{2, k}\right\|\left\|f_{3, k}\right\| \\
& -4 t^{2} k\left\|f_{1, k}\right\|\left(\left\|f_{2, k}\right\|^{2}+\left\|f_{3, k}\right\|^{2}\right) \\
\geqq & t^{-1}\left(t^{-3}-1\right) \sum_{9} \vartheta^{2}\left\|f_{1, k, \vartheta}\right\|^{2}+t^{-1} k(k-2)\left\|f_{1, k}\right\|^{2} \\
& +2 t^{-1} k\left[\left(\left\|f_{1, k}\right\|-t^{3}\left\|f_{2, k}\right\|\right)^{2}+\left(\left\|f_{1, k}\right\|-t^{3}\left\|f_{2, k}\right\|\right)^{2}\right] \\
& +t^{2}\left[k^{2}-2 k-4\left(1-t^{3}\right)-2 k t^{3}\right]\left(\left\|f_{2, k}\right\|^{2}+\left\|f_{3, k}\right\|^{2}\right) \\
& +2 t^{2} k\left(\left\|f_{2, k}\right\|^{2}+\left\|f_{3, k}\right\|^{2}\right) \\
& +t^{2}\left(t^{-3}-1\right) \sum_{9}\left[(\vartheta-2)^{2}\left(\left\|f_{2, k, 9}\right\|^{2}+\left\|f_{3, k, 9}\right\|^{2}\right)\right. \\
& \left.\quad+4 \vartheta\left(\left\|f_{2, k, 9}\right\|-\left\|f_{3, k, 9}\right\|\right)^{2}\right] .
\end{aligned}
$$

And this is the required inequality.
q. e.d.

Set $W_{1}=\left\{\sum_{i=1}^{3} f_{2} \eta_{(i)}: f_{i} \in V_{1}\right\}$. To decompose W_{1} into three linear subspaces, we define four forms in W_{1}. Let (x, y, z, w) be the canonical coordinate system in R^{4} such that ξ is the restriction of $y \partial / \partial x-x \partial / \partial y+w \partial / \partial z-z \partial / \partial w$. Set

$$
\begin{array}{ll}
\phi_{1}=x \eta_{(2)}-y \eta_{(3)}, & \phi_{2}=y \eta_{(2)}+x \eta_{(3)}, \\
\phi_{3}=z \eta_{(2)}-w \eta_{(3)}, & \phi_{4}=w \eta_{(2)}+z \eta_{(3)} .
\end{array}
$$

Lemma 8. W_{1} has the following orthogonal decomposition with respect to $g(t)$:

$$
W_{1}=W_{1,1}+W_{1,2}+W_{1,3}
$$

Here

$$
\begin{aligned}
& J(t) \omega_{i}=u_{i}(t) \omega_{i}, \quad \omega_{\imath} \in W_{1,2}(\imath=1,2,3), \\
& u_{1}(t)=t\left(2 t^{3}+t^{-3}-1-\sqrt{\left(2 t^{3}-1\right)^{2}+8}\right), \\
& u_{2}(t)=t\left(2 t^{3}+t^{-3}-1+\sqrt{\left(2 t^{3}-1\right)^{2}+8}\right), \\
& u_{3}(t)=t\left(9 t^{-3}-8+4 t^{3}\right), \\
& W_{1,1}=\left\{f \eta+a_{1}(t) d f \circ \Phi: f \in V_{1}\right\}, \\
& W_{1,2}=\left\{f \eta+a_{2}(t) d f \circ \Phi: f \in V_{1}\right\}, \\
& W_{1,3}=\operatorname{Span}\left\{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right\}, \\
& a_{1}(t)=4 t^{-3}\left(3-2 t^{3}-\sqrt{\left(2 t^{3}-1\right)^{2}+8}\right), \\
& a_{2}(t)=4 t^{-3}\left(3-2 t^{3}+\sqrt{\left(2 t^{3}-1\right)^{2}+8}\right) .
\end{aligned}
$$

Proof. Tanno [9] proved that $W_{1,1}$ and $W_{1,2}$ are eigenspaces of $J(t)$ corresponding to $u_{1}(t)$ and $u_{2}(t)$. By Lemma 5 , we obtain that $\Delta \omega=-9 \omega, L_{\xi}^{2} \omega=$ -9ω and $\Phi^{r s} \nabla_{r} \omega_{s}=0$. So, using Lemma 4, we see that $W_{1,3}$ is an eigenspace of $J(t)$ corresponding to $u_{3}(t)$.
q. e.d.

Proof of Theorem A. When $t>t_{0}(3)$, by showing $u_{1}(t)<0$, Tanno proved that $\left(S^{3}, g(t)\right)$ is unstable. From Lemma 7, we have $S(\omega, k, t) \geqq 0$ for any $\omega \in$ $A^{1}\left(S^{3}\right)$, any $t \in(0,1]$ and $k \neq 1$. And by Lemma 8 , when $t \leqq t_{0}(3), J(t)$ have no negative eigenvalue, that is, $\left(S^{3}, g(t)\right)$ is stable.
q. e.d.

We also have the nullities $\operatorname{Null}_{t}(2 d)$ and the indices Index $_{t}(i d)$ of the identity mapping on ($\left.S^{3}, g(t)\right)$ for $0<t \leqq 1$.

Corollary B. We have

$$
\operatorname{Null}_{t}(\imath d)=\left\{\begin{array}{l}
4\left(0<t<t_{0}(3)\right) \\
8\left(t=t_{0}(3)\right) \\
4\left(t_{0}(3)<t<1\right) \\
6(t=1)
\end{array} \quad \text { ndex }_{t}(i d)= \begin{cases}0\left(0<t \leqq t_{0}(3)\right) \\
4\left(t_{0}(3)<t \leqq 1\right) .\end{cases}\right.
$$

Proof. Since indices are obtained by Lemmas 7 and 8, we give nullities of the identity mapping. From Lemma 7 , we have that for any $t \in(0,1], k \neq 1$, $S(\omega, k, t) \geqq 0$ and moreover that if $f_{2, k} \neq 0$ for some i and $k \neq 0,1,2$, then $S(\omega, k, t)>0$. For $k=2$, set $S(\omega, k, t)=0$. Then we have that $f_{1,2,2}=f_{2,2,0}=$ $f_{3,2,0}=0$ and $\left\|f_{2,2}\right\|=\left\|f_{3,2}\right\|=t^{-3}\left\|f_{1,2}\right\|$. Since we have $\xi_{(1)} f_{2,2}=2 f_{3,2}$ by (3.1) and (3.2), we obtain that $\xi_{(3)} f_{1,2}=2 t^{3} f_{2,2}$ and $\xi_{(2)} f_{1,2}=-2 t^{3} f_{3,2}$. Therefore we have $f_{1,2} \eta_{(1)}+f_{2,2} \eta_{(2)}+f_{3,2} \eta_{(3)}=f_{1,2,0} \eta_{(1)}+2^{-1} t^{-3} d\left(f_{1,2,0}\right) \cdot \Phi$. By $\operatorname{dim} V_{2,0}=3$ and Lemma 8, we have nullities of the identity mapping of $\left(S^{3}, g(t)\right)$ for $t \in(0,1]$. q.e.d.

References

[1] L.Z. Gao and S.T. Yau, The existence of negatively Ricci curved metrics on three manifolds, Invent. math., 85 (1986), 637-652.
[2] H. Muto, The first eigenvalue of the Laplacian on even dimensional spheres, Tôhoku Math. Journ., 32 (1980), 427-432.
[3] H. Muto and H. Urakawa, On the least positive eigenvalue of the Laplacian for compact homogeneous spaces, Osaka Journ. Math., 17 (1980), 471-484.
[4] T. Nagano, Stability of harmonic maps between symmetric spaces, Lect. Notes Math., 949, Springer-Verlag, 1982, 130-137.
[5] Y. Ohnita, Stability of harmonic maps and standard mınimal immersions, Tôhoku Math. Journ., 38 (1986), 259-267.
[6] R.T. Smith, The second variation formula for harmonic mappings, Proc. Amer Math. Soc., 47 (1975), 229-236.
[7] S. Tanno, The first eigenvalue of the Laplacian on spheres, Tôhoku Math. Journ., 31 (1979), 179-185.
[8] S. TANNO, Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spectra of Riemannian manifolds (Kaigai Pub.), Tokyo, 1983, 115-128.
[9] S. Tanno, Instability of spheres with deformed Riemannian metrics, Kodai Math Journ., 10 (1987), 250-257.
[10] H. Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, Journ. Math. Soc. Japan, 31 (1979), 209-226.
[11] H. Urakawa, The first eigenvalue of the Laplacian for positively curved homogeneous Riemannian manifold, Comp. Math., 59 (1986), 57-71.
[12] H. Urakawa, Stability of harmonic maps and eigenvalues of the Laplacian, Trans. Amer. Math. Soc., 301 (1987), 557-589.

Department of Mathematics
Tokyo Institute of Technology

[^0]: Received May 16, 1988, Revised September 8, 1988

