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ON THE STABILITY OF A THREE-SPHERE
By HIDEO MuTO

1. Introduction.

Let (M™, g) be an m-dimensional closed connected Riemannian manifold.
The identity mapping idy of M is a harmonic mapping, that is, a critical point
of the first variation of the energy functional. (M™, g)is said to be stable when
the second variation of the energy functional at id, is non-negative and other-
wise, (M, g) is said to be unstable. The m-dimensional (m=3) unit spheres are
unstable. And unstable, simply connected compact irreducible symmetric spaces
were determined (see Smith [6], Nagano [4], Ohnita [5] and Urakawa [11]).

Closed manifolds with negative Ricci curvature and closed Kaehler manifolds
are examples of stable manifolds. Since Gao and Yau [1] proved the existence
of a metric with negative Ricci curvature on every 3-dimensional closed mani-
fold, there exists a stable metric on every 3-dimensional closed manifold.

Recently Urakawa [12] and Tanno [9] studied some deformation of the
standard metric g, on S?***!' (n=1) with constant sectional curvature one. Let
(CP™, h) be the complex projective space with the Fubini-Study metric with con-
stant holomorphic sectional curvature 4 and = : (S™, g,)—(CP", h) (m=2n+1) be
the Hopf fibration. Let & be the unit Killing vector field on S™ which is tan-
gent to each fibre and % be the dual 1-form of & with respect to g,. We define
a one-parameter family g(¢), 0<t<oo, of Riemannian metrics on S™ by

gt)=t"1go+t' " —1)nQ7.

THEOREM (Tanno [9]) For m=2n+1=3 and t>t,(m), (S™, g(t)) is unstable,
where t(m)=[{(m?*—4)"/*—1} /(m*—5)]"/™.

In this note, we show:

THEOREM A. (S%, g(t)) is stable if and only if t<ty(3)=[+5 —1/4]"*=
0.676 --- .

Remark 1. The sectional curvature K,(¢) of g(t) is positive for 0<<¢t<(4/3)"/*
(see Tanno [9]). In fact, for i<1, #<K,()<t(4—3t%) and for =1, t(4—3t<
K,
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Remark 2. The volume element of (S®, g(¢)) is invariant in {€(0, o).

The author would like to thank Professor Tanno for his helpful sugges-
tions.

2. Preliminaries.

Let g(f), 0<t<co, be the family of metrics on S* defined in the introduction.
Let OV (resp. ‘“R,;) be the Riemannian connection (resp. Ricci tensor field) of
g(®). AYS® denotes the space of 1-forms on S®. Let ‘YA be the Laplacian of
g(t) and let {,), (resp. || ||.) be the L%inner product (resp. L®norm) of forms
on (S®% g()). The Ricci transformation 2@ : A (S®)— A'(S?) is defined by ‘’Qw
=(‘“R*;w,) for o= A*(S*). For convenience, we set V=LV, A=MA, {,>={, >,
I'llI=Il Il: and @=*Q. The Jacobi operator of the identity mapping acts on the
space of vector fields. By the natural duality, the Jacobi operator J(¢) acting
on the space of 1-forms is of the form (see Smith [6]):

2.1) JH=—®A-20Q,

Let 2, be the k-th eigenvalue of the Laplacian A acting on the space of
functions on S® with multiplicity m(k). Then it is known that

(2.2) Ae=k(R+2), k=0,
m(k)y=(k+1%, k=0.

Let Ly be the Lie derivation with respect to a vector field X and V, the
space of eigenfunctions corresponding to the k-th eigenvalue. Then V, has the
following orthogonal decomposition with respect to g, (see Tanno [7]):

(2.3) Ve=9Veo, 9=k, k=2, -, k—2[k/2].
Here for any f&V,,9, LeLef +9%f=0.

Let {£}i~1 be an orthonormal frame field of unit Killing vector fields of
S*® satisfying §=£&q, and [§, Epr1=2€(, where (a, B, 7) is a cyclic permutation
of (1,2, 3) and {9}i-1 the dual frame field of {£.}%-; with respect to g,.
Set Day=—V and @=0@P,. Then &, N and D, satisfy the following
equations: for any vector fields X, ¥ on S%(1),

D=0, 7w Pa=0, Nww)N=1,

D3P X=—X+0aX)ar,

g X, V)=go(P X, Py Y )+ ax(X)Nax(Y),
(VX¢(a>)(Y)=go(X, Y)E(a>—7](a)(Y)X ’
q)(a>$<ﬁ)=_¢<ﬁ)§(a)=§<r),
DsPpr—¢ax@Npr=—9D 5P+ 5P =P >,
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where (a, B, 7) is a cyclic permutation of (1, 2, 3). Then we get immediately :

LEMMA 1. @ ,*=—@,'' =V

LEMMA 2. For any t=(0, ), we have <N, 950e=0 (@#B), <D Nwre
=t% and {Ncw, N2>:=Nw, Nepyr=L.

LEMMA 3. We get Le(a)<Vh)CVk, Lem(Vk,s)CVk,,g and <Le(a)f, h>:"
Sy Lo /> for any smooth functions f and h on S°.

3. Proof of Theorem A.

By (2.1), Tanno [9] gave the Jacobi operator J(¢) of g(¢).

LEMMA 4 (Tanno [9]). The Jacobi operator [(t) of (S™, g(t)) (m=2n+1=3)
1s gwen by the following: For ws AY(S™),

J®w=—tAw+t(1—t"™)L¢ Lew+2t¢™—1)( D™V ,w5)n
—2t(m~+1—2t™)w—2(m~+1)tt™ — ) (€)y .

We prepare some lemmas to prove theorem A.

LEMMA 5. On S% the following equations hold.

1) AU Nw@)=—e+Df N +2df Pas, fEVe.
2) LeL{fnan=—Ffnw, f€E V9.

LeL(fpo)=—Ffnw—4fne+4a e, fE V9.
LeLe(fma)):—192f77(s)“4f7]<a>—4§<1>f7}(2) ’ FE€E V9.

3) OV (Zafa)s=2f1+Ewfa—Ewr fs-

4) For any t€(0, ), a=2, 3, we have J{#)n.,=0 and
JO9 =4 —2+1t"*))ca> -

Proof. 1) and 4) were proved by Tanno in [8] and [9]. 2) is easily veri-
fied by [&co, f(ﬁJ]ZZE(r» Since we have q)rsvrﬂ(a)s=<v5(1), V& a>» by Lemma 1,
we have @™V, 7w,=2 and ®°V,7»,=0 for «=2, 3. By the definition of @,
we obtain @7V, f (3N cars=—go(g8rad f(ar, Ve ,Em)- Therefore 3) is proved.

q.e.d.

By the orthogonal decomposition (2.3) of V,, any l-form w on S°® can be
represented by @=3)..5,9 1590, f1.2.9S Vi,9. By Lemmas 2,3 and 4, we
have the following lemma.

LEMMA 6. For any o= 1,9 . k900> ANS®) and t€(0, o), we have



112 HIDEO MUTO
JQw, 03 =Z7S, k, 1).
Here
S(w, k, )=29[ 2+ =DFL* | fr. 2.9

+ 0L A6+t =241+ = 1)F 1] f2. 0,911
+29[ 2 +A ™ —2+2°)+ = 1)F 1 f5, .91
+@ =429 > [, 8.9, fre 9
+4239, a6 f 20,9, 10,20
—4239. a6 > fa. 0.9, frr.a0-

Proof. Using df @ =& fNpr—Ep Ny and Lemma 2, we have

J®o=34, o[+ =D f 11,970

+30, 9 +4E =24+ + = DF ] for, 90>
+306,9[ A +40 —24+)+( " — D] fo. .90
+H4E 2 -DZe. 96w o v 90

F4t 2 =1k 96w fo v, 9%

=23k 9w 19w 1 r9Mw]

=23 9w frur o=@ ur90w]

=239l furonw—Ew S Lr 9]

Therefore, by Lemmas 2 and 3, we have the above representation of S(w, £, ).

q.e.d.

LEMMA 7. For any 0= r,9f 1.1, 90>EANS®), set fo2=29 fir.9. Then
for any ws A(S?®), t=(0, 1] and k=0, we have

S, b, )zt =)D o P f1, 0,017+t k(k=2)l| f1,4°
+(k=2){k+2(1 =} fo, s 1P+ 11 fo. ")
H2RHU S 1 el =21 fo P+ f 1 sl =20 fo, D7}
200k f o v, 0l =11 fo. 5. 91)?

H 7 = D2 o[ =27(1 fo, 91+ o 2. 01"
F4tl fo. 0,9l =1 fo. 5. 01D%].

Proof. By the definition of V, g, we have that for any ¢= V,, 9 and A=2, 3,
3.1 Ewfurs Fre.0=3fueolllfseol,
(3.2) 9.0l furo FruaSkIfuelllfo el
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By (3.1), (3.2) and Lemma 6, we have

Sw, k, )=t =D P f1. 2.9l
+t k(R =2) f1 &I+ 4RI f 1, 6]l
+2 LA —4A =) fo s 1241 fo. 211
+2 (=12 o(FP+4A)N f o, 912+ 52007
R A GRS SOIPTCINY PSR PR )
+483 96 > 5,0, 9, fo .90
— 439, o[> fr 0.9, Frr e+ a0, 9, [10,a0]
2t = D29 PN frv.0l°
+t k(R =2 f1, 6P+t 4k 1,
+[ k2 42k —41—2)J( fo. 1P+ 1 fa, 2 1)
+2 =D [I—27( fo, k. 9P+ 1 fo, v, 91%)
+49U fo v, 9ll— 1 f5. 2. 91)7]
=4k fo, 1l fo. 0
=4k foalll fo s P41 fo. 2 11%)
2t = D29 P fr w0l + (B —=2)] f1, 2 1?
267 R 1 el =2 o ID* U F sl =80 F 2, 1)7]
+°[k? =2k —4(1—1°) =2kt 1| o, e I°+ 11 F5. £ 1)
20k fo el +1 Fo. 6 1%)
+* =D L(I=20( fo. 2. 012+ f5, 5,917
+49(1 f 2. 5. 91l =1 fo, 2, 91?1
And this is the required inequality. q.e.d.
Set W ={23-1f9w: f+€Vi}. To decompose W, into three linear subspaces,
we define four forms in W,. Let (x, y, z, w) be the canonical coordinate system
in R* such that & is the restriction of yd/0x —x0/0y-+w0d/0z—z0/0w. Set
=10 INw, P=INw>+ENa,
Ps=2N>— Wy,  Pi=WNwTZNx.

LEMMA 8. W, has the following orthogonal decomposition with respect to g(t):

W1=W1, 1+W1, 2+W1,3 .
Here
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JOwi=u;{)w;, 0.€W,, =1,2,3),
us(t)=t2 +t-*—1—~/ 2 —1718),
uy() =t 41" — 14+ ~/2F—17+8),
us()=1(9t~*—8+4t%),
Wii={fn+ta®df-@: fEVi},
Wi e={fn+at)df-@: fEV},
W1, :=Span{¢,, ¢,, ¢s, .},
a,(t)=4t"*3—21'— /(2 —17+8),
a, (=432 + /(2 —1)*+8).
Proof. Tanno [9] proved that W,,, and W,,, are eigenspaces of J(¢) cor-
responding to u;(t) and wu,(t). By Lemma 5, we obtain that Aw=—9%, Liw=

—9» and @™V,w,=0. So, using Lemma 4, we see that W,, is an eigenspace
of J(t) corresponding to wu,(z). q.e.d.

Proof of Theorem A. When t>t,3), by showing u,({)<0, Tanno proved
that (S® g(t)) is unstable. From Lemma 7, we have S(w, k, t)=0 for any we
AY(S?®), any t<(0, 1] and k+#1. And by Lemma 8, when ¢<t,(3), J(t) have no
negative eigenvalue, that is, (S°, g(?)) is stable. q.e.d.

We also have the nullities Null,(:d) and the indices Index,(id) of the identity
mapping on (S%, g(t)) for 0<t<1.

COROLLARY B. We have

4 (0<t<ty(3)

_ | 8 (t=t(3)) [0 (0<t<t4(3)
NullGd)=1 4 (3yc1<1) Index(id)={ , (t(3)<t<l).
6 (t=1)

Proof. Since indices are obtained by Lemmas 7 and 8, we give nullities of
the identity mapping. From Lemma 7, we have that for any t<(0, 1], k#1,
S(w, k, t)=0 and moreover that if f, ,+#0 for some 7 and k=+0, 1,2, then
S(w, k, )>0. For k=2, set S(w, k£, t)=0. Then we have that f, =[5 0=
Sfa2.0=0 and ||fo.]l=|fs.=t°| f1.2. Since we have £ f2:=2f;,. by (3.1) and
(3.2), we obtain that &y f1..=2tfs. and &y f1,.=—2t%fs,. Therefore we have
Franwt+ oot fo o= rew+2 %t 2d(f1,20)@. Bydim V, =3 and Lemma
8, we have nullities of the identity mapping of (S, g(¥)) for t=(0, 1]. q.e.d.
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