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ON THE STABILITY OF MINIMAL SURFACES IN S§°

By MAKOTO SAKAKI

§1. Introduction.

Let f: M—R® be a minimal immersion of a 2-dimensional orientable smooth
manifold into the 3-dimensional Euclidean space, and let D be a conpact domain
in M with the boundary consisting of a finite union of piecewise smooth curves.
J.L. Barbosa and M. doCarmo proved the following stability theorem.

THEOREM 1 (Barbosa and doCarmo [1]). If the area of the image of the
Gauss map g of D is smaller than 2z, then D s stable.

For the proof of this theorem, they defined on M a metric induced by g
from S? and connected stability with the first eigenvalue in g(D) for the Lapla-
cian with respect to the new metric. In this paper we study the stability of
minimal surfaces in S® For this we study the associated immersion into S°
defined by Lawson [4] and discuss about the first eigenvalue. After that we
use [5] for the estimate of the first eigenvalue. Our result is stated in Theorem
3.4 below.

§2. Preparations.

2.1. Let M be a 2-dimensional orientable smooth manifold and f: M—S® be
a minimal immersion into the 3-dimensional unit sphere in R*. In the following
we follow some definitions stated in [4].

Let z=x+7y be a local coordinate on M and set 0=(1/2)(0/0x—i9/dy). Then
the metric induced by f from S® is of the form

ds*=2F|dz|®.

The Gauss map g: M—S?® can be represented in the local coordinate as g=
(1/iF)fAdf Adf and it is a branched minimal immersion. Here A represents
the exterior product and we identify A3R* with R*.

Define h: M—S® by h=fAg. Here we identify A2R* with RS. Let K be
the Gauss curvature of M. K satisfies K<1. Then the metric induced by A
from S° has the form
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ds3=22—K)F|dz|*=(2—K)ds*

and h satisfies 00h=—(2—K)Fh. Therefore i is a minimal immersion into S°.

2.2. Let D be a compact domain in M and its boundary aD is a finite union
of piecewise smooth curves. Let N be a unit normal field along f(M). Given
a piecewise smooth function u: D—R with u=0 on dD, the second derivative
of the area for the variation whose deformation vector field is given by V=uN is

1, V)=SDu(—Au—2(2—K)u)dM.

§3. The stability theorem.

LEMMA 3.1. Let M, D and h be as above. Suppose D 1s unstable and h|p:
D—S® is an embedding, then A,(h(D))=2.

Proof. As D is unstable, there exists a piecewise smooth function u : D—R
with =0 on @D such that

SDu(——Au—-Z(Z—K)u)dMgO.
By using Stokes theorem we compute the left-hand side.

SD”(‘A“—Z(Z—K)u)dM
= Jerad ol M~ ugrad (0, nuds =2 @2~ Kyudt
=, (@ K)llgrad (h )1/ @~ K)dM,

2 uhyra,

=, lgrad g, dM—2]  @hyds,

where 7 is a unit normal vector to dD and ds is its element of arc. Thus we
obtain

h (D)

[, lerad i dMa=2]  @(hrdis,
and u(h~Y)=0 on d(h(D)), hence A, (A(D)<2. q.e.d.

Remark 3.2. By using the method in [1] we may obtain some resul a little
different from Lemma 3.1.
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We state the following theorem in [5] to estimate A,(h(D)). Let M—M be
an isometric immersion of a Riemannian manifold M of dimension m into a
Riemannian manifold M of dimesion 7. We use the following notation.

K=sectional curvature of M.

H=mean curvature vector field of the immersion.

R(M, M)-injectivity radius of M restricted to M.

wn=volume of the unit ball in m-dimensional Euclidean space.

b=a positive real number.

THEOREM 3.3 (Tanno [5]). Let M be a submanifold of M satisfying K<b
Let D be a compact domain of M. Assume the following.

m|H| <k, " Vol (D)< cy(m, @)™, bO(@)=1/1<1, 2p,@)<R(M, M),
where let a,(0<a,<1) be the real number which minimizes
[((m—a2m'—(1—a)l/a(l—a)'™
and for a real number a(0<a<a,<1)
§(@=[Vol(D)/Q—@Dwn]"'™,
o @=b"sin"[56(@)],

(m—a)2™*—1—a)
(m—Dal—a)''™

Then A{(D)=[cs(m, @)~ (Vol(D))~V™—g]?/4.

cy(m, &)=ysin~'(1/y) (m/m—Dw7t'™.

By using the theorem for the minimal isometric immersion h: M—S%, if

N a 2
volD)={ @~ K)dM<a= max 7(1—a)(sing_ 57577
then 2,(D)>2.
Here we have for any function p: D—R with p=0 on aD,

[ Jarad (9l,dMa>2( prda,.

And if D is unstable and 4|p: D—S® is an embedding, then for any function
g: h(D)—R with ¢=0 on dh(D)

2 2
Sh(m Ilgrad(q)llM,,th>2S o dM,.

h(
Thus we have A;(hA(D))>2 and this contradicts Lemma 3.1. Now we have the
following theorem.

THEOREM 3.4. Let M, D, h and a be as above. Suppose h|p: D—S® is an
embedding and
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SD(Z—K)dM<a,
then D 1s stable in S°.
We introduce another theorem in [5] to compare with our theorem above.

THEOREM 3.5. (Tanno [5]). Let M be a nunimal surface of a unit sphere
S™ and D be a a compact domain of M. If

SD(Z—K)ZdM< 1/8¢4(2, @7,

then D s stable in S™.
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