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ESTIMATION OF THE CORRELOGRAM FOR A STATIONARY

GAUSSIAN PROCESS BY RANDOM CLIPPING

BY MINORU TANAKA

Abstract

This paper deals with the problem of estimating the correlogram of a stationary
Gaussian process with known mean and variance. An unbiased estimate using random
clipping by normally distributed random variable with non-zero mean is discussed, and
the variance of the estimate is compared with those of competitors. Numerical
comparison is performed for AR(2) process, and it indicates that the suggested estimate
is preferable in many cases.

1. Introduction.

It is known that in the bivariate normal distribution N(μlf μ2 of, o% p),
if the only unknown parameter is the correlation p, there are infinitely many
unbiased estimates of p based on a sufficient statistics because the statistic is
not complete (see Iwase [6]). Consequently, various kinds of estimates are
proposed and discussed. The same account will be true of the correlogram for
a stationary Gaussian process with known mean and variance, (see Huzii [2],
[3], and Iwase [4], [5]). In this paper we shall consider an unbiased estimate
of the correlogram and compare the variance of the estimate with those of
competitors. It will be seen that the suggested estimate has a superiority over
the others.

Let {Xt} be a real valued stationary Gaussian process with discrete
time parameter t such that the mean E[Xt] and the variance Var[Z t] are
known, and for simplicity we assume E\_Xt~]—§ and V a r [ Z t ] = l . Then the
correlogram is identical with the covariogramme E[XtXt+h~]. Throughout this
paper we write ph=E[XtXt+h] for Λ^O, and following the prevailing custom,
we try to estimate ρh from the given series Xlf X2, •••, XN+n for Λi>0 in the
case N^3.

The unbiased estimate

1 *
Th=z~Γ7 Σ XtXt + h

JM ί = l

is usually applied to the estimating of ph. Another estimate is a simplified
estimate of ph which is given by
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where sgn( y) means 1, 0 and —1 if y>0, y=0 and j><0 respectively (see
Takahasi and Husimi [8]). Huzii [2], [3] and Iwase [4] numerically compared
the variance of γ^ with that of γh and showed, in some models, that γ{

h

0) has
a smaller variance than γh when h is small. On the other hand, when N—l,
Okamoto and Iwase [7] improved the simplified estimate of px by using a
function Cm(X) for ra^>0 which means 1, 0 and —1 if X>m, \X\^m and
X<—m respectively. They showed that the optimum value of the level m is
about 2/3 by employing a criterion of minimum variance when ρx is not equal
to one.

In the previous paper [9] we still more improved the estimate using random
clipping by normal distributed random variable with zero mean and showed that
the variance of the proposed estimate is shrunk by the random clipping and
that the variance become smaller than that of the simplified estimate. Here we
shall consider another improvement of the estimate.

Suppose that {Ut} is a sequence of independent random variables having a
normal distribution with mean μ and variance σ2, denoted by N(μ, σ2) where
μ^O and <rΞ>0, and also {Ut} is independent of {Xt}. Note that if Ut—μ for
all t, then σ 2 =0. The new estimate of ph is defined as

This estimate is reduced to that of Tanaka and Shimizu [9] when μ—0, and
also that of Okamoto and Iwase [7] when N—l, h = l and <72=0.

In Section 2 we show the unbiasedness of γ^ and give the variance of
this estimate in Theorem. Also in Section 3 we numerically investigate the
relation between the values of the parameters μ and σ2 and the variance of
ΐ^iμ* G2), and furthermore, the variance is compared with those of the other
estimates.

2. Mean and variance of the estimate.

Let a vector of random variables (X, Y)f follow the bivariate normal distri-

bution with mean vector (0, 0)' and covariance matrix ^ , denoted by

N(0, Ό,l,l;p). It is seen from Okamoto and Iwase [7] that

EίX sgn(F-u)2 = ̂ | P exp(- - £ ) ,

where the clipping level u is real. If the level is random variable U which
follows N(μ, σ2) and independent of X and Y, then we have
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^e X PL 2(/+l)J

Here Eυ means the expectation with respect to U. Since CV(X) in the estimate
γi° can be expressed as

C(X)

it follows that the estimate γ^ is unbiased.
The variance of the estimate is as follows.

T H E O R E M . Let <τ2>0. For h=l, 2, 3, •••, the variance of γί!}(μ, σ2) is given
by

+2pJ1{μ, σ2;pΛ)+phh(μ, σ* ph)+{l+pl)G{μ,

[2/)ft(l + |θ2ft)/1(/i, σ2 ph)+2pj2(μ, σ2

 ioft)+2(/ol

+2plh{μ, a2; pth)+It(μ, σ* p2h)+2plG(μ, σz;

h{pk.h+pk+h)I1{μ, σ2;pk)+2pkl2(μ, σ 2 ; pk)

+2(pl+ρk-hpk+h)G(μ, σ2; ρk)+2pkphli(μ, β2", pk+h

, σ2; pk+h)

+2phpkl1{μ, σ2; ρk-h)+ρk+hh(μ, o2 pk-h)

+ (pt+ρl)G(μ, σ2)pk-

where

a

F(μ, . 2 ) = e x p [ -
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Uμ, σ>; ^

Also for k—0, we have

i 1 { μ , σ 2; ρt)+pklt(μ, σs;pk)

+(σ*+l)G(μ,σ*;pk)-]\-l.

The proof of this theorem is given in Appendix later on. On the other
hand when σ 2 =0, the variance of γiυ(μ, 0) may be immediately obtained if we
put σ2-*0 in the above situation. Then it is noted that

-ψ), and F(/ι, O)=^| J%xp( j)dt.

3. Numerical comparison.

The estimate γ^iμ, σ2) should be compared with the usual estimate γh and
the simplified estimate γ^. In this section we mainly discuss the results of the
case where the process is the second-order autoregressive (ΛR(2)) process which
is written

Xt—φiXt-i+φzXt-z+at (see Box and Jenkins [1]).

For stationarity, the parameters φx and φ2 must lie in the triangular region

(3.1) 0 i + 0 . < l , φ*-φi<l, - 1 < 0 2 < 1 .

Then the correlogram satisfies the difference equation

with starting values ^o^ l and pi=φi/(l—φ2).
Numerical computations were performed for some pairs of parameters

(φu φ2) in (3.1), and for each μ=0.0 (0.1) 0.9 and <72=0.0 (0.01) 0.9 in the cases
iV=50 and 250. The comparison of γh and γc

h

0) for Markov process (φ2—0) was
treated by Huzii [2]. Throughout this section, (μ*t <7*2) denotes a vector (μ, σ2)
which minimises the value of VarCf^μ, σ2)] for a fixed h in four decimal
places.
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Table 1 concerns Markov process, and in which the variances of γlf γi0)

and γ[ι){μ, σ2) are given for each 1^1=0.1, 0.2, •••, 0.9, and for selected values
of (μ, σ2). In this case we have pι=φλ. When px is large in absolute value,
the variance of γl0) is smaller than that of γlt and the variance of γi1}(μ*, σ*2)
is still smaller than that of γi0). On the other hand, when px is close to zero,
the variances of γί0) and γ[iy exceed that of γlt but there is little difference in
two variances of γiiy(μ*, σ*2) and γx. This indicates that the estimate γily(μ*, <τ*2)
for selected value (μ*, <τ*2) is preferable except only when the coefficient pλ is
sufficiently small. Note in Table 1 that when l ^ l is 0.8, we have σ*2Φθ in
γ£y, so that the random clipping has an effect on the shrinkage of the variance.

Table 2 and Figure 1 provide the results for Φ ^ l . 7 and Φ2=—0.8. In
this case the correlogram ρh for small A (1^A^3) is so large that the variances
of γgy and γ£y(μ*, <7*2) are considerably smaller than that of γh. The variance
Var[^!(1)(0.3, 0)] is about one-seventh of Varjjj], and is also a half of Var|ji ( 0 )].
When A is large (A^15), the variances of γ^ and γfty exceed that of γh, but
the difference between Var[^^υ(0.7, 0)] and Var[jΛ] is almost negligible.

Table 3 and Figure 2 present the results for Φ ^ O . l and Φ2=—0.9. In this
case the correlogram ph is subject to sharp fluctuations. When A=l, px is so

Table 1. Variances for Markov process; h=l, φχ = plt N=50 (iV=250)

\φi\ = \pi\

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Var[rJ

0.02
(0.0040)

0.0210
(0.0042)

0.0241
(0.0048)

0.0295
(0.0059)

0.0381
(0.0077)

0.0510
(0.0103)

0.0708
(0.0144)

0.1037
(0.0212)

0.1671
(0.0347)

0.3413
(0.0740)

Var[rί
0)
]

0.0314
(0.0063)

0.03161
(0.0063)

0.0322
(0.0065)

0.0334
(0.0067)

0.0352
(0.0071)

0.0382
(0.0077)

0.0429
(0.0087)

0.0511
(0.0104)

0.0674
(0.0139)

0.1125
(0.0243)

VarCrFV,***)]

0.0224
(0.0045)

0.0229
(0.0046)

0.0244
(0.0049)

0.0267
(0.0054)

0.0298
(0.0060)

0.0339
(0.0068)

0.0398
(0.0081)

0.0489
(0.0100)

0.0651
(0.0135)

0.0982
(0.0221)

(/Λ σ*
2
)

(0.6, 0)

(0.6, 0)

(0.5, 0)

(0.3, 0)

(0.3, 0)

(0.2, 0)

(0.1, 0)

(0.1, 0)

(0, 0.05)

(0.25, 0)
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Table 2. Variances for the case: φi = 1.7, φ2=-0.8, N=50 (iV=250)

h

1

2

3

4

5

6

7

8

9

10

15

20

25

30

ph

0.9444

0.8056

0.6139

0.3992

0.1875

-0.0006

-0.1511

-0.2563

-0.3148

-0.3302

-0.0570

0.1089

0.0172

-0.0359

Var[>
Λ
]

0.2206
(0.0466)
0.1751
(0.0368)
0.1204
(0.0250)
0.0767
(0.0155)
0.0569
(0.0113)
0.0626
(0.0127)
0.0853
(0.0179)
0.1144
(0.0243)
0.1368
(0.0294)
0.1470
(0.0317)
0.1080
(0.0225)
0.1234
(0.0263)
0.1176
(0.0248)
0.1197
(0.0254)

Var[rΓ]
0.0625
(0.0131)
0.0571
(0.0117)
0.0526
(0.0105)
0.0543
(0.0107)
0.0647
(0.0128)
0.0821
(0.0166)
0.1024
(0.0211)
0.1204
(0.0251)
0.1327
(0.0278)
0.1381
(0.0290)

0.1326

(0.0274)
0.1460
(0.0307)
0.1450
(0.0303)
0.1468
(0.0308)

VarCr^OΛ**
2
)]

0.0297
(0.0065)
0.0319
(0.0067)
0.0352
(0.0071)
0.0419
(0.0082)
0.0530
(0.0105)
0.0662
(0.0134)
0.0862
(0.0178)
0.1034
(0.0217)
0.1148
(0.0243)
0.1199
(0.0254)
0.1117
(0.0232)
0.1251
(0.0265)
0.1220
(0.0257)
0.1240
(0.0262)

(0. 3, 0)

(0.3, 0)

(0.3, 0)

(0.3, 0)

(0.4, 0)

(0.7,0)

(0.5, 0)

(0.4, 0)

(0.3, 0)

(0.3, 0)

(0.7, 0)

(0.6, 0)

(0.7, 0)

(0.7, 0)

Var.

0.25

0.20

0.15

0.10

0.05

0 10 15 20 25

Fig. 1. (ΛΓ=50)
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h

1

2

3

4

5

6

7

8

9

10

15

20

25

30

Table 3. Variances for the

Ph

0.0526

-0.8947

-0.1368

0.7916

0.2023

-0.6922

-0.2513

0.5978

0.2860

-0.5095

-0.3235

0.1713

0.2596

0.0029

VarM

0.0021
(0.0004)
0.3024
(0.0718)
0.0153
(0.0033)
0.2843
(0.0677)
0.0373
(0.0083)
0.2596
(0.0621)
0.0637
(0.0144)
0.2323
(0.0558)
0.0910
(0.0208)
0.2057
(0.0494)
0.1559
(0.0369)
0.1297
(0.0297)
0.1823
(0.0447)
0.1351
(0.0305)

case: ψ
1
 = 0A

Var[rΓ]

0.0213
(0.0043)
0.0997
(0.0234)
0.0302
(0.0061)
0.1117
(0.0261)
0.0451
(0.0094)
0.1193
(0.0278)
0.0633
(0.0135)
0.1239
(0.0287)
0.0827
(0.0179)
0.1266
(0.0291)
0.1337
(0.0301)
0.1393
(0.0308)
0.1723
(0.0400)
0.1605
(0.0358)

0
2
=-0.9, N=50 (N=250)

VarCrί^*,**
2
)]

0.0018
(0.0003)
0.0889
(0.0215)
0.0116
(0.0024)
0.1023
(0.0245)
0.0277
(0.0059)
0.1106
(0.0263)
0.0470
(0.0102)
0.1150
(0.0272)
0.0673
(0.0148)
0.1171
(0.0275)
0.1198
(0.0274)
0.1238
(0.0278)
0.1579
(0.0373)
0.1391
(0.0313)

(μ*, **
2
)

(0.4, 0)

(0.3, 0)

(0.4, 0)

(0.3, 0)

(0.3, 0)

(0.3, 0)

(0.3, 0)

(0. 3, 0)

(0.3, 0)

(0.3, 0)

(0. 3, 0)

(0.4, 0)

(0.3, 0)

(0.8, 0)

10 15 20 25

Fig. 2. (W=50)
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h

1

2

3

4

5

6

7

8

9

10

15

20

25

Table

Ph

0.5650

-0.2663

-0.7230

-0.4889

0.1139

0.5116

0.4070

-0.0209

-0.3537

-0.3287

-0.1550

0.0676

0.0803

4. Variances

Var[r
Λ
]

0.0596
(0.0128)
0.0336
(0.0072)
0.1688
(0.0369)
0.0906
(0.0195)
0.0354
(0.0074)
0.1395
(0.0306)
0.1076
(0.0234)
0.0492
(0.0102)
0.1159
(0.0255)
0.1125
(0.0246)
0.0940
(0.0204)
0.0904
(0.0195)
0.0966
(0.0211)

for Iwase's model; iV=50 (N=250)

Var[rΓ]

0.0215
(0.0045)
0.0272
(0.0057)
0.0760
(0.0164)
0.0526
(0.0110)
0.0432
(0.0089)
0.0881
(0.0189)
0.0780
(0.0165)
0.0621
(0.0128)
0.0940
(0.0201)
0.0939
(0.0200)
0.1006
(0.0215)
0.1039
(0.0221)
0.1094
(0.0235)

Var[;i
υ
0Λ<7*

2
)]

0.0169
(0.0036)
0.0213
(0.0045)
0.0739
(0.0160)
0.0479
(0.0101)
0.0352
(0.0073)
0.0837
(0.0181)
0.0724
(0.0154)
0.0516
(0.0110)
0.0876
(0.0189)
0.0872
(0.0187)
0.0909
(0.0195)
0.0922
(0.0198)
0.0978
(0.0212)

(0, 0.01) or
(0.05, 0)

(0.2, 0)

(0, 0.01) or
(0.05, 0)
(0.1,0)

(0.5, 0)

(0.1, 0)

(0.2, 0)

(0.7, 0)

(0.2, 0)

(0.2, 0)

(0.4, 0)

(0.6, 0)

(0.6, 0)

Var.

0.25

0.20

0.15

0.10

0.05

10 15 20 25

Fig. 3. (ΛΓ=50)
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h

1

2

3

4

5

6

7

8

9

10

15

20

25

Table

Ph

0.9572

0.8536

0.7192

0.5759

0.4384

0.3154

0.2116

0.1283

0.0647

0.0189

-0.0416

-0.0140

0.0004

5. Variances

VarO/J

0.2487
(0.0516)
0.2269
(0.0471)
0.1985
(0.0411)
0.1706
(0.0353)
0.1480
(0.0305)
0.1327
(0.0273)
0.1243
(0.0256)
0.1212
(0.0250)
0.1214
(0.0250)
0.1230
(0.0254)
0.1289
(0.0268)
0.1285
(0. 0267)
0.1285
(0.0267)

for Huzii's model; ΛΓ=50 (#=250)

Var[?i
0)
]

0.0720
(0.0149)
0.0772
(0.0159)
0.0850
(0.0173)
0.0954
(0.0194)
0.1075
(0.0218)
0.1199
(0.0244)
0.1315
(0.0268)
0.1412
(0.0289)
0.1487
(0.0305)
0.1539
(0.0317)
0.1608
(0.0332)
0.1607
(0.0332)
0.1608
(0.0332)

Var[7i
υ
(μ*,<;*

2
)]

0.0241
(0.0062)
0.0381
(0.0079)
0.0381
(0.0113)
0.0724
(0.0147)
0.0884
(0.0180)
0.1022
(0.0208)
0.1131
(0.0231)
0.1204
(0.0247)
0.1249
(0.0257)
0.1281
(0.0264)
0.1338

(0.0277)
0.1334
(0.0277)
0.1334
(0. 0277)

(0. 3, 0)

(0.3, 0)

(0.3, 0)

(0.3, 0)

(0. 3, 0)

(0.3, 0)

(0.4, 0)

(0.5, 0.02)

(0.6, 0.03)

(0.7, 0.04)

(0.7, 0.04)

(0.7, 0.04)

(0.7, 0.04)

10 15 20 25

Fig. 4. (#=50)
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small that the variance of γ[0) exceeds that of γlt and the former is about ten
times as large as the latter, but, on the contrary the variance of 7Ί(1)(0.4, 0) is
below the latter. For A=2, on the other hand, the value ρ2 is so large that
the variance of f2

(0) is smaller than that of γ2, but the former is not so small
as that of r2

(1)(0.3, 0). This confirms that the estimate γ(tϊ\μ*, <τ*2) is preferable
except for large A.

The following Tables and Figures treat of the other models. Table 4 and
Figure 3 present the results for the case where the correlogram is given by

p Λ = e x p ( - ^ j ) ( c o s A + — s i n A)
10 Λ * ' 10

which was treated in Iwase [4], [5]. It is seen that the variance of our esti-
mate rft}(μ*, tf*2) is the smallest of the three except for large A, and that for
large A the difference between the two variances of γh and γ^iμ*, σ*2) is
almost negligible. We remark that for A=l or 3, (μ*, σ*2) has two values, but
there is little difference between Var[γ£}(μ, σ2)] and Varljj^Cμ*, tf*2)] for other
(μ, σ2) around them.

Table 5 and Figure 4 are based on the process which has

ph=V~2(0.8)hcos(h log 0.8+π/4) (see Huzii [3]).

This correlogram is analogous to the one in Table 2. For small A, ph is so
large that γi0) and γiυ have smaller variances than γh, and still more the vari-
ance of τiυ(0.3, 0) is smaller than that of γi°\ Note that for A Ξ>8, we have
σ*2Φϋ. This is a rare phenomenon in our examples.

The performance of the estimate γlυ is much better for AR{2) process. It
appears that, on the whole, γg* looks like a hybrid between yh and γi0), and
which is superior to them. The choice of the parameters μ* and σ*2 is depend
on the parent correlogram phf but when ρh is large in absolute value, we may
put μ*=0.2~0.3 and σ*2=0, and also when ph is small, μ*=0.β~0.7 and σ*2=0
will be preferable. From Tables 4 and 5, we feel that the similar results hold
for the other models.

Appendix

Proof of Theorem.
First, let Λ=0. Then

(A. 1) ζ^ (^Γ){

+ 2 Σ E[_XtXsCUt{Xt)CUs{Xs)-\).

We evaluate these expectations individually. Now we have

^(X)^
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and observe that

Then we have

(A. 2)

2«
e x p

Γ j

ί" 2(
, 2

To evaluate the second term of (A.I), we prepare the following lemmas.

LEMMA 1. Let u ann v be real numbers. If (X, Y)' has N(0, 0, 1, 1 p),

then

E(u, v)=EtXYsgn(X-u)sgn(Y-v)~]

^E2(u, v; p)+-^J^E3(u, v; p)--^E,{u, v; p),

where

(
1)2 \ pit / γ^

"~^~/Joexp\~~2

\dx

JB2(M, V; p)=E1(v, u; p),

, v; , ) ^ -

2(1 —x

This lemma is due to Okamoto and Iwase [7].
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L E M M A 2. Let U and V be independent random variables having N(μ, σ2).
For real value x such that | x | < l ,

1 — r 2

, A ,, π\τn Γ U2-2UVX+V2J\ r r U2-2UVx + V2ΊΊ

μ\l + xY ) I l-x*

/Λ ΓN ^Γr7T7 Γ U2-2UVX + V2ΊΊ

(A. 5) £[£/7exp[ 2 ( 1_, 2 ) jj

Now put Xt=X, Xs=Yf Ut=U and US=V in (A.I) for simplicity. Then the
second term is rewritten as

^ - U ) sgn(F-F)]

+E\_XY sgn(X-U) sgn(F+F)]}.

Here we assume that, for σ2>0, U and V are independent random variables
having N(μ, σ2) and also independent of X and Y. It is shown from Lemma 1
and Lemma 2 that

(A. 6) EIE1(U9 V p)+E1{U9 -V p)1

4(72x2+l+<72

—2πϊx{μ, σ2; p),

(A. 7) £[£2«7, ± 7 p)]=£[£1(ί/, ± F

(A. 8) £[£,(£/, V p)+Es(U, -V p)]

=2wG(/ί, »*;/>),

(A. 9) £[£. ( ! / , V p)+Ei(U, -V p)]

= — 2π\ , . „ 2exp(

= —2πh(μ, σ 2; (θ).
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From these results we have

(A. 10) E\_XYCu{X)Cv{Y)-]

^ i , σ2;p)+ph(μ, σ2;

Therefore from (A.I), (A.2) and (A. 10) we have £[(?Ό(1))2] and this gives the
variance of γ(

h

υ for lag h=0.
Second, let Λ>0. Then

Σ Σ,EίXtX9Cϋt+h(Xt+h)Cϋi+h(Xt+h)τ ) Σ Σ

u s+h(Xs+h)Cu t(Xt)Λ- Xs+hXtCu s{Xs)Cu

We divide the summation into three parts

Σ Σ £ [ ] = 2 Σ Dx{t, s)+2 Σ_ D2(t,
t<s t<ϊS

and evaluate these expectations individually.

( I ) Case where t+hφs and t<s: We use the following lemma.

LEMMA 3. Let u and v be real numbers. If (X1} X2, X3, Z 4 ) ' has a normal
distribution with mean vector (0, 0, 0, 0)' and covariance matrix

#i a2

i a 2 a a 1 α 6

\α3 a5 a6

X2 sgn(X3—u) sgn(X4—v)]

1
= —^-{fl2α4£.1(M, v a§)-\-azaζE2\u> v\ α6)

, v; a6)},

where Ei(u, v; •)> 2=1, 2, 3, 4, are given in Lemma 1.

From (A.ll) we write D&, s)=Dn(t, s)+D12(t, s)+Du(t, s)+Du(t, s). Then
we have from Lemma 3

Du(t,s)=jEZXtXtsgn(Xt+h-Ut+h)sgn(Xt+h-Ui+h)l

+E[_XtXs sgn(Xt+h-Ut+h) sgn(Xs+h+Us+h)l

^-—{pnPs-t-nElE^U, V p-J+EiW, -V ps-t)l
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+ps+h-tphElE2(Uy V;ps-t)+E2(U, -V pt-t)l

+(pl+Ps-t+hPs-t-h)ElEs(U, V pt-t)+Ez(U, -V pt-t)Ί

-ps-tEtE4(U, V; ps-t)+E4(U, - V ; p.- t)]}.

Hence it follows from (A.β)-(A.9)

Dn(t, s)=—{ph(p8-t^h+pt.t+h)I1(μ, σ2; ρs-t)+ps-th(μ, σ2 p*-t)

+ (ρl+ρs-t-hps-t+h)G(μ, σ2; ρs-t)}.

A similar argument shows that

D12(t, s) =—{2ρhρs-tI1{μi σ2; ρs-t+h)+ρs-t-hh(μ, σ2; ps-t+n)

Ί, σ2; ps-t+h)},

D13{t, s)=—{2ρhρs-Ji(μ, σ2; ρs-t-κ)+ps-t+hh(μ, σ2 ρs-t-h)

+(pl+p2-t)G(μ,σ2;ps-t-h)},

and Du(t, s)=Dn(t, s). Hence by combining these results D&, s) is obtained.

(Π) Case where t+h—s: We use the following lemma.

LEMMA 4. Let u and v be real numbers. If (Xly X2i X3Y has a normal
distribution with mean vector (0, 0, 0)' and covariance matrix

/ I fli a2\

Ui 1 aλ
\a2 az l),

then
1

(i) E\_XιX2sgn(X2—u)sgn(X3—#)] = —τ-{aiEι(u, v; a3)-\-a2a3E2(u> v; az)

Jr{a2

J

Γa1az)E3{u, v; as)—a1E4,(u, v; a3)},

(ii) E[X\sgn(X2— u)sgn(X3—v)~\ = —^{a\Eλ{u, v; a3)-\-a2E2(u, v; a3)

+2a1a2E3{u, v; as)—Et(u, v; as)},

where E^u, v; -), i=l, 2, 3, 4, are given in Lemma 1.

Now let D2(f, s)=D21(t, s)+D22(f, s)+D23(t, s)+D2i(t, s), where

Du(t, s)=EίXtXt+hC&t+h(Xt+h)l.
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Then if {Ut} is a sequence of independent random variables having N(μ, σ2),
then from Lemma 4 and (A.β)-(A.9) it follows that

D21(t, s)=—{ph(lJ

rρ2h)I1(μf σ2; ph)+phl2(μ, σ2 ρh)

Jr{plκ+pl)G{μ,σ2',ph))i

D22(t, s)=-{2phl1(μf σ2; p2h)+I2(μ, σ2 p2h)+2plG(μ, a2 p2h)},
TC

D23(t, s)=D21(t, s), and

Du(t, s)=j{p2h+EtXtXt+2hsgn(Xt+h-Ut+h

{plE{μ> ^+P^σ2+l)F(μ) σ)}.

Thus from these results we have D2(t, s).

(ΠI) Case where t=s: Let Ds(t)=2{Dsl(t, h)+D32(t, h)}, where

Z?ai(f, h)=E(X2

tC&t+h(Xt+h)l,

Dn(t, h)=EtXtXt+hCUt(Xt)CUt+h(Xt+h)l.

Then we have

D31(t, h)= * {

From Lemma 1 and Lemma 2 we get

Du(t, h)=^{2phh{μ, σ2;ph)+pj2(μ, σ2 ph)+{l+pl)G(μ, σ2;ph)}.

Thus DS) is evaluated.
Therefore from these results, putting s—t—k, we can obtain E\_{γft))2~] and

the variance of γ^ for /i^l.
This completes the proof of Theorem.
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