K. ATSUYAMA
KODAI MATH. J.
9 (1986), 334—350

THE CONNECTION BETWEEN THE SYMMETRIC SPACE
E,/S0(12)-S0(3) AND PROJECTIVE PLANES

By KENJI ATSUYAMA

Introduction.

Our aim is to grasp the geometrical and intuitive image of the exceptional
Lie groups. For this purpose we will solve a problem which is given by
H. Freudenthal ([4], p. 175) to justify the B. A. Rozenfeld’s assertions for these
groups [6]. The problem asks us how to study, by making use of composition
algebras, the connection between projective planes and the symmetric spaces of
type EII, EVI and EVI in the sense of E. Cartan. As for type EIl, we in [2]
dealt with the compact and simply connected symmetric space E;/SO(10)-SO(2).
In this paper we study, in series, the symmetric space E,/SO(12)-S0O(3) of type
EVI. The conclusion is that the space can be considered a projective plane in
the wider sense. Namely, it has the structure such that two general points are
contained in three and only three lines (Theorem 5.17). The number of such
lines studied in [2] is just one. In the last of this paper we mention the types
of symmetric spaces which are made of the lines passing -through two points in
the singular position. The technique of calculations and the idea to obtain the
above results are all contained in [2].

1. Preliminaries.

We explain a model, according to [1], of the compact simple Lie algebra of
type E, to construct the symmetric space E,/SO(12)-SO(3) explicitly.
Let %A be a composition algebra over the real field R. Define in % a

symmetric inner product, a commutator and an associator by (a, b)=(ab-+ab)/2,
[a, bJ=ab—ba and (a, b, c)=(ab)c—a(bc) respectively, where a, b, ce and
—:a—@ is the canonical conjugation of W. Then any inner derivation of %A
can be generated by D, , where D, ,(c)=[[a, b], c]—3(a, b, c).

Let AVQM QA denote a tensor product over R composed of two com-
position algebras %A and one 3x3 matrix algebra M*® with coefficients in R.
If the confusion does not occur, we write aXu instead of a®@X®u, where
aeAM, ueA® and XeM?® A product is introduced into this vector space by
xy=abXYuv for x=aXu and y=>bYv. Furthermore, an involution and a trace
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Tr are defined by aXu—a@XT# and Tr(aXu)=atr(X)Iu respectively, where
T:X—XT is the transposed operator of matrix, tr(X)=(x,;;+ X+ x4s)/3 for
X=(x,;)eM? and I is the 3X3 unit matrix.

Let M denote a real vector space which is generated by all elements in
ADVRQM}QA® with the trace Tr 0 and the skew-symmetric form with respect
to the involution aXu—a@XT@. Let L(AD, M3, A®) be the real vector space
Der AVPMP Der A (direct sum), where Der AP is the Lie algebra of inner
derivations of A®. In this space we define an anti-commutative product [, ]
in the following way:
the Lie product of Der A (i=J)

(1) [D®, D“”]:{
0 @+,

(2) [D®+D®, aXu]=(D®a)Xu+aX(D®u),
(3) For x=aXu and y=>bYv in M,
Lx, y1=(X, Y)(u, v)Dao, s+ (xy—yx—Tr(xy—yx))+(X, Y@, b)Dy,»,

where DY Der AP and (X, YV)=tr(X, Y). Then L(AP, M3 A?) becomes a
real Lie algebra by this product. If AP js the Cayley algebra € (over R) with
the non-split type, it is a compact simple Lie algebra of type F,, E¢;, E; or E;
according as A® is R, C, Q or €, where C and @ are the fields of complex
and quaternion numbers with the non-split types respectively. The Killing
form B of L(G, M3 @) can be given by B(D®+aXu+D®, D +bYv+ D)
=9/2B®(D, DP)+-216(a, b)( X, Y)(u, v)+27B® (D, D), where B and B®
are the Killing forms of Der € and Der @ respectively.
For the remaining sections, we give a basis of € explicitly:

a basis: ey, ey, -+, @1}
rules of product:
€1€,=203, €184=€5, €5€7—E€1, €265=¢€q, €364=¢y,
€385—0Cq, ©€C4—Ey,
e;e,=—eje, (4, ;=1 and 1#j), ee;=—e, (121),
¢, is the unit element,
the canonical conjugation—: ey—e, e;——e, 1=:57).

Then R, C and @ can be realized as subalgebras in € which are generated by
{eo}, {eo, €1} and {e,, e, e,, 3} respectively, and Der @ is also generated by
Del, e9) Deg,es and Des,el-

2. Construction of a symmetric space //.

Let & be the compact real simple Lie algebra of type E, i.e.
S=L(, M?* Q). We will construct a compact simply connected symmetric
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space II by the same method as Section 2 in [2]. It can be realized as a
subset of projections in the set End @ of endomorphisms of &, and its type is
E,/SO(12)-SO(3) as a symmetric space.

Let ¥ be the subset in @ consisting of all elements x which satisfy an
identity (ad x)((ad x)®*+1)((ad x)*44)=0, where ad x is the adjoint representation
of x and 1 is the identity transformation of &. The eigenspaces of ad x,
for each x<X, can be given by Gy (x)={z€® | (ad x)z=0} and &,(x)=
{z€@® | (ad x)’z=—12%2z}, i=1, 2. Three projections {P;(x)} of &, moreover, can
be defined by Py(x)=1+5/4(ad x)*+1/4(ad x)*, Py(x)=—4/3(ad x)>—1/3(ad x)* and
Py(x)=1/12(ad x)®*+1/12(ad x)*. These satisfy P,(x)P;j(x)=0 ({#j) and Py(x)+
Pi(x)+Py(x)=1. Each Py(x) is a projection of & onto &,(x). Hence & has a
direct sum decomposition G=8,(x)DS,(x)PG,(x), and (G,(x)DG,(x))DS,(x)
becomes a Cartan decomposition of & with respect to an involutive auto-
morphism 1—2P;(x) (=exp n(ad x)).

0 00
ExaMPLE. If we take K1=(8 0 l) in IMNX, then the -eigenspaces

10
{@,(Ky)} can be given by

dimension
2¢ 0 0
oK) : Der@@( 0 —a b )@DerQ 14-+-324-3=49,
0 —b —a,
0 b, b, 0 a a,
G(K): |—b, O O)EB(al 0 O) 444-20=64,
—b, 0 0 a; 0 0
000 00 0
®.(K)): (0 0 a)@ 0 a 0) 10+10=20,
0 a 0 0 0—a

where a, a,, a, (resp. b, by, b,) are linear combinations of ¢,Xe, and e,Qe,
(resp. e/®e, and e;Qe;), 1=1, 2, -, 7 and j=1, 2, 3.

The action of the adjoint group G of @ on End ® is defined by g-h=ghg™",
where g€G and heFEnd®. Let Il be the orbit of the projection Py(K,) by G
under this action, i.e. II={g-P,(K,) | g€G}. We note g-P,(K;)=P,(gK,). Then
the eigenspace &,(gK;) can be regarded as the tangent space of II at Pi(gK)),
and the eigenspace &,(gK,)P®.(gK;) can also be regarded as the Lie algebra of
the isotropy group at Py(gK;) for G. When we introduce a G-invariant Rie-
mannian structure into I/ by restricting the Killing form B of & to each
tangent space ®,(gK,), G equals to the identity component of the isometry
group of II. Since the compact connected symmetric spaces of type EVI have
one locally isometry class (cf. [3], p. 411), the following assertion can be obtained
finally.
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PROPOSITION 2.1. I is a ssmply connected compact symmetric space of type
EV1, that is, E,/SO12)-SO3) with the dimension 64. Each pont Py(gK,) of II
has the geodesic symmetry 1—2P\(gK,).

3. Maximal flat tori of /.

From now on we will write P(x) simply instead of P,(x) as points of [I.
Three elements {K,} in X are defined by

0 00 0 01 010
K,={0 0 1), K,=| 0 0 0), K,=|—-1 0 0),
0-120 -1 0 0 0 00

where the unit elements ¢, and the tensor product (X are omitted.

The matrix representation of a projection P((expi(ad K,))K,), t€R, is first
given. We note that & (=L(€, M? Q))=Der EOMPDer @ and the set of
elements of & written in (2), (3) and (4) makes a basis of M. The following
matrices are the same as ones in [2], Section 3, and the direct product of these
matrices becomes the representation which we want to obtain.

(1) On Der 8P Der @, the form is the 0 matrix,

(2) On the each subspace consisting of ¢;Ke,, ¢;K;e, and e, K;e, (7, 7=0 or
7, 7=1), the form is

0 1 0

( sin’ 0 1/2sin 2t
1/2sin2t 0  cos’ )

(3) On the each subspace consisting of e,[,e,, e¢;l:eo, ¢;F e, e;F.e, and
¢;F.ey (1=1), the form is

1/2sin®2t 1/2 sin®2t 0 1/2 sin 4¢ 0
1/2sin®2t 1/2 sin?2t 0 1/2 sin 4¢ 0

0 0 sin®2¢ 0 —1/2sin 2t |,
1/4sin4t 1/4sin4t 0 cos®2t 0

0 0 —1/2 sin 2t 0 cos®t

1 00 00 0 000 0 01

where [,={0 —1 0), I,=[0 1 O), F1=<O 0 l), F2:(O 0 O) and F,=
0 00 0 0-—1 010 1 00

010

1 0 0},

0 0 0

(4) On the each subspace consisting of e./,e,, e.lse,, e.Fie, e,Foe, and
e,Fse, 1=1), the form is the same as that in (3).

LEMMA 3.1. The curve expt(ad K,)-P(K,) in Il s a simply closed geodesic
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with the witial point P(K;) and the tangent vector K,. The period 1s n and the
length is 12x.

Proof. We can derive the above assertions except the length [ from the
matrix representation of the geodesic r(t)=expit(ad K,)-P(K;). As B is the
Killing form of @, —B gives an inner product, being positive definite, by the
definition of the Riemannian structure of /7. Since »(t) has the tangent vector
K, at each point, its length is

Z:S:(“B(f’(t), f(t)))l/zdt:S:(—B(Kz, K)2dt=(—216 tr K,K)"*n=127.

Remark. When the tangent vector of r(¢) is ¢;K,e,, i=1, 2 or 3, instead of
K,, the above lemma also holds by direct calculations (or by the same method
as [2], Lemma 3.2).

Let P(K;) be the base point in /7. Since II has the rank 4 as a symmetric
space and has the tangent space ®,(K;) at P(K;), the subspace ¥, in &,(K)),
spanned by tangent vectors K,, e¢,K,e,, ¢,K,e, and e;K,e;, is a maximal abelian
subspace. Then the associated set T,={exp(ad x)-P(K;) | x€Z,} is a maximal
torus in II passing through the base point P(K,). Next we define a mapping
¢ of the 4-dimensional Euclidean space R*' onto the torus T, by ¢:(t,)—
exp(ad x)-P(K,), where (¢,)=(t,, ts, s, 1), t;E R, and x=2't,¢;K,e,. This mapping,
however, is not injective, and so we must establish the following criterion,
where Z is the ring of integers.

LEMMA 3.2. It holds that (t,)€¢ '(P(K)) ¢f and only i1f (1) t,en/2Z, for
each i, and (2) Yt,enZ.

Proof. The necessity is first showed. Put a=exp(ad(2 t;e;K,e,)). If a-P(K;)
=P(K,) holds, then we have P(K,a 'K,=a'aP(K))a'K,=a*P(K,)K;=a 'K,
because P(K;) leaves K, fixed as a projection of &. Hence a *K,=@,(K;). The
same method also gives a~(e,Fse,)=@,(K;). The two relations imply the eight
identities

cost,sint,sint, sin¢,=0,

sint, cost,cost, cost; =0,

where {1, 7, &, {}={1, 2, 3, 4}. These contain the three possible cases (t,)= R*
such that, under the condition n;&Z for all 7,

(1) (/2+n)x, 1/24+n)x, (1/2+ny)x, (1/2+n,)7),
(ii) ((1/24ngyx, 1/24+n,)x, n,x, nsmw) and its permutations,
(iii) (nemw, nimw, Nymw, Nem).
In the each case, the above (t,) satisfies the conditions (1) and (2) in the lemma.

Next the sufficiency is showed. If (f,)R* satisfies (1) and (2), the possible
cases for (¢,) are only (i), (ii) and (iii) above. For (¢,) in the each case, that
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é(t;)=P(K,) can be derived from the fact that exp(ad 2 n;we;K,e,)- P(K,)=P(K)),
n;€Z, and exp r/2 ad(e;Kye;+¢;K,e;) P(K,)=P(K;).

COROLLARY 3.3. It holds that ¢t.)=¢(s,) if and only of (1) t,—s,en/2Z,
for each i, and (2) X (t,—s;,)ErnZ.

In the torus' T, we next find out the points which are commutative with
the base point P(K)) in Il as endomorphisms of &.

LEMMA 3.4. A point exp(ad x)-P(Ky), x=G(K,), 15 commutative with P(K,)
if and only if exp(ad 2x)-P(K)=P(K,).

Proof. Put P=exp(ad x)-P(K,). Since the base point P(K;) has the geodesic
symmetry 1—2P(K;) (=a simply), we have a-P=alexp(ad x))at-a-P(K,)=
exp(ad ax)-P(K;)=exp(ad —x)-P(K;). If P and P(K,) are commutative, it holds
that - P=aPa~'=P and, hence, exp(ad 2x)-P(K;)=P(K,) from the above identity.
Conversely, if this equation holds, a-P=P, i.e. aP=Pa can be obtained. This
implies P(K,)P=PP(K,).

LEMMA 3.5. There are exactly fifteen points except P(K,) itself n the max-
imal torus T, which are commutative with P(Kj)).

Proof. By Corollary 3.3, Lemma 3.4 and (i), (ii), (ili) in Lemma 3.2, the
points in T, commuting with P(K,) have the coordinates (¢;) with respect to ¢:
(iv) (z/4, /4, /4, =/4) and (3z/4, /4, /4, n/4), (v) (z/4, =/4, 0, 0), (3x/4,
/4, 0, 0) and these permutations, (vi) (x/2, 0, 0, 0) and (0, 0, 0, 0). Its num-
ber is fifteen except (0, 0, 0, 0).

The points in /7 commuting with P(K,) can be characterized by the follow-
ing assertion.

PROPOSITION 3.6. The orbits of the ponts wn II, commuting with P(K,),
under the isotropy group at P(K,) become two compact connected submanifolds
which are also totally geodesic. One is a symmetric space of type S*-(SO(12)/U(6))

consisting of the midpoints (the distance 3v/ 2 rt) of the shortest closed geodesics
with the initial pomnt P(K,). The other is a symmetric space of type SO(12)
/SO8)-SO(4) consisting of the antipodal points (the distance 6xm) of P(Kj).

Proof. Let U be the isotropy group at P(K;) and U, be its identity com-
ponent. First we show that the points of (v) in Lemma 3.5 are transitive one
another by U, Put a=expr/2(ad D{,,), a is then an involutive automorphism
of & and acU, The eigenvalues of a are, with respect to the Cayley numbers,
1 on the linear space {e,, ¢, ¢, ¢s} and —1 on the linear space {ej, e, e, ¢;}.
Hence we can see a-¢(x/4, n/4, 0, 0)=a-(exp n/4 ad(K,+e,Kse,))- P(Ky) =
exp w/4 ad(aK,+ae, Kye,)-a-P(K,) =exp n/4 ad(K,—e,K,e,) - P(K)=¢(n/4, —x /4,
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0, 0)=¢(x/4, 3z /4, 0, 0) (by Corollary 3.3). Next, put a,=exp3x/2(ad e;K,e;)
and a,=exp x/2(ad K,), it then holds that a;a,€U, and a,a;-¢(x/4, /4, 0, 0)=
#(0, 0, #/4, =/4). The same method shows the transitivity for the others in (v).
That each point in (v) is the midpoint of the shortest closed geodesic can be
derived from (i), (ii), (iii) in Lemma 3.2.

Secondly, we show that the points of (iv) and (vi) in Lemma 3.5, except
0, 0, 0, 0), are transitive one another by U, Put f=exp=/4 ad(K;+e,Kie;+
e,Kie,+e;K,e;). It then holds that BeU, and B-¢(x/2, 0, 0, 0)=¢(x/4, —x /4,
—mn/4, —x/4) (by direct calculations)=¢(3x/4, =/4, =/4, =/4) (by Corollary 3.3).
If Bi=exp—=x/2(ad e,I,+1,)e,), the inclusion e,(I,+1,)e,€8(K,)PS,(K;) shows
Bi€U,. Then, from B,K=—K, and pBi(e;K,e;)=e;Kse, ((=1), we can see
Bi-¢(n/4, /4, /4, w/h)=¢(—n/4, n/4, w/4, w/4H)=¢(3x /4, /4, /4, = /4). Lemma
3.2 implies that these points are antipodal points of P(K)).

From the above arguments and the transitivity of maximal flat tori passing
through the base point P(K,), we can obtain that the points, being commutative
with P(K;), make two compact connected submanifolds. That these are totally
geodesic can be seen from the fact that the tangent spaces of these spaces at
P(K),) are Lie triple systems (cf. [3], Lemma 2.1).

4. The roots of the symmetric space //.

The Lie algebra @ has a direct sum decomposition 8=(G,(K,)DG.(K))P
®,(K,). The subspace &,;(K;) is the tangent space of I at P(K,), and the sub-
space G,(K,)PG.(K,) is the Lie algebra U of the isotropy group U at P(K)).
The maximal flat torus T, has the tangent space ¥, at P(K;). This space is
spanned by {e;Kse, | 7=0, 1, 2, 3} and it is a maximal abelian subspace of &,(K;).
Now put §,={DP . +2DP .., DL, —2e,(I,—1I;)eo, D ., —2eo(I,—1,)e;}, then this
is a subalgebra of 1 and gives a Cartan subalgebra § of & such that $=9,UZ,.
Let 4 denote the set of roots which are obtained by the root space decomposi-
tion of & with respect to 9. We, furthermore, restrict the roots to ¥, and get
a set dg,={4} of positive restricted roots of the symmetric space I/ under an

adequate ordering. Define four sets by

(1) WQ)={xel | exp(ad x)-Q=Q}, for Q&lI,

2) U@y={xel | [x, T1={0}},

@) W={xel |y, [y, x]J]=4(y)?x for any yeI,},

4) S;={QeT,| Q=exp(ad y)-P(K,) and A(y)riZ for some y=I,}, where

i=+v—1.

Then we can have a useful identity W(Q)=WE,)P2 U;, where Q= T, and the
index A runs over the positive roots A such that Q=S; (cf. [5], p. 64). Note
that the dimension of U(T,) is 9 and that of 11; is equal to the multiplicity of
A If WQ)=W(Z,) holds, Q is called a regular point (with respect to the base
point P(K;)). If not so, Q is called a singular point. By the transitivity of
maximal flat tori passing through P(K,), the definition can be applied for any
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point @ in I and it is independent of the choice of maximal flat tori passing
through P(K)) and Q.

Finally we list the positive roots 2 with respect to the operation ad(J a.e;K,e.),
a;=R, and also list the eigenvectors corresponding to 4, i.e. elements in U;.
The multiplicity of 2 is 1 for the roots with the type —2(a,+a;)i and is 4 for
the others.

Positive roots and eigenvectors.

—2a4i: e, QU;+1,)Re,
—2a;i: DS, +een@Ii—1:)Qe,
—2(a,xa)i: ¢,QU,+1,)Qe,Fee@U,+1,)RQe, (7=1,2,3 and k=4, 5,6, 7)
—2(a;%ay)i: DL, +e; QU —1)ReF ee QU1 —1,)Res F DY,
—2(a,xas)i: Do+ e.QUi—1,)QeF ee@U1—1:)Qes FDEe,
—2(a,xa5)i: Doyt eQUi—15)QeF ee@U1—1:)Qer F DL,
—(aoy+tea,+¢e.a,+85a5)i :
QK Qe+, QK Qe+ 20, QK1 Qe+ €5: D K 1 Res

—e,QF1Res+e,60QRF 1R e; — 5, R K Qe +£32. QK Res

— 2, QF Qe +e12s QK Qe+ €220 QF Qe — £36, QK 1 R)es

—e;RQF Qe —e,6, QK Qe+ 8.0, QK Qe+ £56QF Qe
—(@y—&,a,—€20,—E35a3)L :

—e,QF Qey—e,1e:QK Qe+ 6,6 QK 1 Xes— e3¢, QK Qe

—esQF Qe+, QK Qe —e,2, QK Qe —ese, QK Qe

— e QF Re,—ee, QK Qe —ee, QK Res+e5¢: QK Qe

— o, QF Qe+, QK Qe; 42,6, QK Qes e3¢, DK 1 Qey

(g4, €5, €3=1 or —1 and &,e,6;=1)

WX )=90U{DS ¢, +2DS} ;s D e, +2D e, DY ey—2esQU1—1)es,

D& e, —2e, Q1 —1)Qeo, D3 e, —2e0 U1 — 1) ey,

Do, —2e0QU—1)Qe,}.

5. The connection between I/ and projective planes.

We first introduce two geometrical objects, points and lines, into the sym-
metric space I/ by the same method as Section 5 in [2] and study the connection
between II and projective planes. The aim is to solve a problem by H.
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Freudenthal ([4], p. 175), but the result is different slightly from his conjecture,
namely, we assert that there are exactly three lines passing through two
general points.

Let L(P) denote the set of antipodal points of P. It coincides the set of
points which are commutative with P and have the distance 6z from P. We
call L(P) a line (associated with P) and call P a point again in the sense of
projective geometry. The incidence structure is defined by the inclusion relation
of sets. Let IT* be the set of all lines in [/, then the structure of a manifold
can be introduced into I7* from II because the correspondence L :P—L(P)
gives a bijection between II and II% (see Lemma 5.1). Since all lines are
transitive one another by the isometry group of /7, they are diffeomorphic to
the line L(P(K,)) as manifolds. Therefore, each line is a compact connected
symmetric space with the type SO(12)/SO(8)-SO(4) (from Prop. 3.6) and has the
dimension 32.

From now on we will study the number of lines passing through two points
in IT. Our result can be summed up as Theorem 5.17. For this purpose we
begin to prepare some facts. Let U(Q) be the subgroup of U which leaves @
fixed, where U is the isotropy group at the base point P(K;). Then U(Q) in
Section 4 is the Lie algebra of U(Q). Put Q,=P(1/2(K;—e,K;e,—e.Kie,—e;K;e,)),
i=1, 2, 3, it then holds by direct calculations that Q,=¢(x/4, =/4, /4, =/4) and
Q:=¢Bn/4, /4, /4, x/4). Hence Q,, Q;T, (but Q,«7T,). We can see later
that the set {a-Q, | acU(P(K,))}, denoted as £, is a totally geodesic submani-
fold in IT and becomes a compact connected symmetric space with the type
SO@®)/S04)-SO4). Moreover put R,=P(1/2(K;+e,K,e,+e,K;e,+e;K;es), 1=1,
2,3, it can be also shown in Lemma 5.3 and Corollary 5.6 that R,=R,=R;,
R, Q,=2 and the fact that four points R,, Q, are different from one another.
Note that two groups U(P(K,)) and U(P(K,)) are the same. This fact can be
derived from the identity (1—2P(K,))(1—2P(K,))(1—2P(K,))=1 and the commu-
tativity of these geodesic symmetries. The Lie algebra of U(P(K}) has a direct
sum decomposition W(P(K;))=28,PBL,; (=2s0(8)Pso(4)). The basis of €, consists of
Der G, ¢;2I,+15)e, (=1), e,e, (=1), and its dimension is 28 (=14+7+7). &,
has a basis consisting of el +1)e;—D,, ellse,, Where (i, j, k) runs over
the even permutations of (1,2, 3), and its dimension is 6 (=3+3). Since
exp(ad &,) leaves @, fixed, this becomes only an identity transformation as
isometries of £2. Finally we make three involutive automorphisms of & as

100 001 010
follows. Put A,=[0 0 1}, A2=(0 1 0), As=[10 0), and define a transforma-
010 100 001

tion ¢; of matrices X for each 7 by 9;: X—A,XA,. Since §; becomes an auto-
morphism of the matrix algebra M? it can be extended as an automorphism of
& by 6,:DV4+aXu+D®—-DV+a@;X)u-+D®. This extended map is also
denoted by d;.

LEMMA 5.1. The correspondence L : II—-II* 1s a bijective map and also gives
the duality for the incidence structure.
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Proof. From the transitivity of points in /7, it is sufficient to show that
L(P(K))=L(Q) implies P(K,)=Q. Then there exists acU(P(K,)) such that
a-QeT, by the transitivity of maximal flat tori passing through P(K)). Since
a-L(P(K)=a-L(Q) means L(P(K,)=L(a-Q), the point a-Q is commutative
with any point in L(P(K,)), especially with @,, Q; and P(K,) in T,. Moreover
a-Q has the distance 6x from these points. Hence, from the transitivity of
points in T, and the proof of Lemma 3.5, it holds that a-Q=P(K)), i.e. Q=
a 1-P(K))=P(K,). The equivalence of P L(Q) and L(P)>Q is an easy con-
sequence of the definition for lines.

LEMMA 5.2. For any point Q mn I, let V, and V, are maximal flat tor:
passing through P(K,) and Q. Then there exists zeW(Q) such that exp(ad z)- V,=V,.

Proof. This can be shown by the same method as Lemma 5.9 in [2]
essentially.

LEMMA 5.3. The followings hold: (1) Q,=P(x;)=P(xs), @:=P(x,)=P(y,)
and Qs=P(y,)=P(ys), where x;=1/2(e,Fie,+e;K.e,—eKie,+e,Kie;) and y,=
1/2(34Fieo—esKtex'*'eeKiez_e'zKiea)- (2) Ri=R.=R;,. 3) R,, QiE‘Q-

Proof. We first show Q,, Q,=2. Put a=expr/2(ade,(I;+1,)e,), then
acsU(P(K;) holds because e (I,+1,)e,< (So(K)PG(K))N(So(K)PSo(K,). Fur-
thermore, we have a-Q,=a-¢(x/4, /4, n/4, n/8)=¢(—=/4, n/4, n/4, n/4)=Q;.
This implies Q;=£. Next, put B=expx/2(ad el e,), then BU(P(K;)) and
B-Q:=Q, hold similarly. We obtain a~*-Q;=P(x;) by direct calculations. This
gives @Q,=P(x;). When the automorphism §, acts on the each side of Q,=P(x,),
we obtain Q,=P(x,) because §, maps e¢;Kie, e,Fse, ¢;Kse, to —eKie, e,F,e,
e;K,e, respectively. To make use of d, and §, shows similarly the remaining
equations in (1). By operating exp z/2(ad e.J,e,) on the both sides of Q,=P(x,),
we can see R, and R,=R, from eJ,e,c(P(K,)). Finally R,=R, follows
from R,=é,-R, and R,=4,-R,.

LEMMA 5.4. L(P(K)NL(P(K;)={P(K:)}\URQ holds, where {1, j, k}={1,2,3}.

Proof. We show the lemma in the case of /=1, ;=2 and £=3. The result
P(K,)e L(P(K),)) is an easy consequence from P(K;)=¢(x/2, 0,0, 0) and (vi) in
Lemma 3.5. Operating d; on the each side of this relation, we obtain P(K;)e
L(P(K,)) because 0;K;=—K,; and 0,K,=K,. Furthermore we can derive P(K)
e L(P(K,)) from d,K;=—K, and §,K,=—K,. By applying exp /4 ad(K,+¢,K,e,
+e,Kye,+e,K,e;) to the both sides of P(K,)e L(P(K,)), we have Q,cL(P(K,))
because this transformation leaves P(K,) fixed. L(P(K,)) contains Q, from (iv)
in Lemma 3.5. By the above arguments, we get L(P(K,)N\L(P(K,)2P(K,), Q,.
From U(P(K,)=U(P(K,)) and the definition of £, the inclusion L(P(K,))N
L(P(K,))D{P(K)}\ UK follows.

Next the converse is shown. If @ is any point in L(P(K,)NL(P(K,)), there
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exists a 4-dimensional maximal flat torus TC L(P(K,)) such that P(K;), QT
because the line L(P(K,)) has the rank 4 as a symmetric space. On the other
hand, since P(K,) eT,CL(P(K,), there exists an element « in the identity
component of the isometry group of L(P(K,)) (i.e. in a subgroup of U(P(K,)))
such that a-T=T, by the transitivity of maximal flat tori in L(P(K,)) passing
through P(K,). This implies a-Q<7T, Hence a-Q is commutative with P(K))
and has the distance 6z from P(K,). Such points in T, are only Q,, @ and
P(K;) by Lemma 3.5 and Prop. 3.6. If a-Q=P(K;), Q=a™*-P(K;)=P(K;) holds
because U(P(K,)=U(P(Ky). If a-Q=Q,, we obtain Q=a1-Q,€2. If a-Q=0Q,,
Q=a™'-Q,= 2 holds, where f=exp x/2(ad e,(I[,+I,)e, and hence, BeU(P(Ky)).
By the above arguments, we can see L(P(K,)UL(PK,))C{P(Ky)}UL. Note
that P(K,), P(K,), P(K,) Q.

In other cases for 7, j, £, we can show the lemma by applying the auto-
morphisms 4, and d; to the identical equation showed already. Then note that
O0n-82=9£. This fact can be given by the following method. First we have
easily On-2={0na-Q,| acUPE)}={B0n Q.| BEU@n -P(Ky)}. If dn=0,,
this set becomes 2 because 9,-Q,=@Q, and U(J,-P(K,))=UP(K,)=U(P(Ky). If
dm=0s,, this set equals {8-Q, | BEUP(Ky)}={BB:-Q: | BU(P(K,))} =4, where

=exp n/2(ad e,J,e,) and, hence, B,€U(P(K,)). The proof is completed.

We will study further the submanifold 2 in II. £ is defined as the orbit
of Q, under the group U(P(K,). Let Q, be the base point of £. The Lie
algebra of U(P(Ky)) is L,PL; as before and exp(ad &) acts on £ only as an
identity transformation. Hence &, is the Lie algebra of the isometry group of
£, and the Lie algebra of the isotropy group at Q, with respect to the group
exp(ad &) becomes & 0@80 1 (=so(d)Pso4)): L., has a basis consisting of
e;(I,+1y)e,, DS ;T .0;(I;—1,)e, and &, ; has a basis consisting of Déife,—ZDese,,e5eJ,
D&)e;—2eie5(1,—15)e,, where (i, ))=(1,2), (2,3) and (3, 1). Then the tangent
space of £ at @, is spanned by sixteen vectors e¢;(I;+15,)e,, Dé}fej+eie,~(1 1—1I)e,
where 1=1, 2, 3 and j=4, 5, 6,7. This space becomes a Lie triple system in
the tangent space of /I at @,. Hence £ is also a compact connected symmetric
space with the type SO(8)/SO@4)-SO4) which has the rank 4. Let T, be the
maximal abelian subspace spanned by four tangent vectors e, +1s)eo, D&,
+e,(I,—1I,)e, at Q,, and denote the maximal flat torus in £ associated with T,
as To. We make here a correspondence y between T and 7,. Put r=
exp n/4 ad(e,Foeo+esKye,—e K e,+e,K,e,), then this is an isometry of I7.

LemMA 5.5, (1) y-Ty=Tg holds- especially y-P(K,)=R,, 7-P(Ks)=Q,, 7-Q;
=Q, and T'Qa——_Qs- 2) 7’2:—1 on T,.

Proof. We can see y-T,=Ty from yK,=—e,I,+1,)e, and 7y(e;K,e,)=
1/3(D& eye;+esli—12)e,). That y*(e;Kye;)=—e;K,e, implies y2=—1 on T,. Since
7-Q,=0Q,; and 7-P(K,)=R, can be obtained easily by direct calculations, we have
7 Q:=0Q;: 7-Qs=exp n/2(ad e,Fse,) exp n /4 (ad(—e,Freo+ esKze,— e Kye, + ¢, K, e5))
-Qs=exp n/2(ad e,Fye,) 0,705 (0:- Q1) (by d:-Q:=Qs)=exp x/2(ad e,F;e,)-Q; (by
7-Q:=Q)=P(y,) (by direct calculations)=Q; (by Lemma 5.3). Next we give
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7+ P(K;)=Q, by the similar method : y- P(K;)=exp w/2(ad e;F.e,)-exp n/2(ad D,,,.,)
-0y (- P(K,))=exp nr/2(ad e,Fye,)- Ry=P(x,) (by direct calculations)=@Q, (by Lem-
ma 5.3), where the second equality is derived from y-P(K,)=R,, 0,- R,=R; and
exp w/2(ad D, )  R:=R..

COROLLARY 5.6. (1) Four points R,, Q,, Q. and Q; are different from one
another. (2) v-To=T, holds - especially y-R,=P(K,), 7-Q.=P(K,), 7-Q,=Q, and

T'Qs=Qs-

LeEMMA 5.7. If A 1s a root of type —2(a,*+a;)i, the set expladU;) s con-
tamned in UQ)NU(P(K,)).

Proof. 1If 2 is such a root, both @, and P(K;) are contained in S; because
Q:=¢(x/4, n/4, /4, w/4) and P(K;)=¢(x/2, 0,0, 0). Therefore the inclusion
W, CU(Q)N(P(K,) holds by the identity W(Q)=WE,)PXU;. This gives the
lemma.

LEMMA 5.8. Three points Q,, Qs and R, are fixed by the identity component
of the isotropy group at Q, with respect to the 1Someiry group of £.

Proof. Let I(P) denote the isotropy group at P with respect to the isometry
group of II. Note that U(P(K,)=U(P(K,) is equivalent to I(P(K)))NI(P(K,))
=J(P(K,)))NI(P(K,)). By operating an isometry exp /4 ad(K,+ e, Kie,+e, K e,+
¢;K,e;) on this relation, we have I(P(K)NI(Q.)=IP(K))NI(Q;). By making
use of 4§, further, I(P(K)NI(Q.)=IPK)NI(Q, can be found. It shows
1(Q)NU(P(K,))CI(Q,) which asserts the lemma for Q,. For @ by the action
of 0, on this inclusion relation and by U(P(K,))=U(P(K,)), we can see
IQ)NUP(K,))CI(Q,). For the case of R,, by operating 78,y on I(P(K))NI(Q.,)
=I(P(K,))NI(Q,), we also obtain I(P(K)NI(R)=I(P(K,))NI(Q,) from Lemma
5.5 and Corollary 5.6, where y is the same as the one in Lemma 5.5. This

implies I(Q)NU(P(Ky)CTI(R)).

LEMMA 5.9. If a point PR 1s commutative with Q, and Q, and P has the
distance 6m from these points, then P=Q, or R, hold.

Proof. Let P satisfy the assumption in the lemma. Then there exists
« in the identity component of the isotropy group at @, (with respect to the
isometry group of 2) such that a-P<T, by the transitivity of maximal flat tori
of £ passing through @Q,. Since a-Q,=Q; by Lemma 5.8, «a-P satisfies the
same assumption as P. Hence we obtain a-P=@Q, or R, from Lemma 3.5 and
Corollary 5.6. This means P=@Q, or R, by Lemma 5.8. Conversely we can see
easily from Corollary 5.6 that Q, and R, satisfy the assumption in the lemma.
The proof is completed.

For QeT,, three sets {&;} are defined by £,={a-P(K,) | acU(Q),}, 5,=
{a-Q. | acU(Q),} and &;={a-R, | acU(Q),}, where 0 means the identity com-
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ponent of U(Q). Then we have the following.

PROPOSITION 5.10. Let Q€T,. Then a line L(P) passes through two distinct
points P(K,) and Q if and only if PEE,\JE,JE; holds.

Proof. First the necessity is showed. If L(P) is such a line, there exists
in L(P) a maximal flat torus 7 with the dimension 4 such that P(K,), QT
because the rank of L(P) is 4 as a symmetric space. Moreover, there exists
zeW(Q) by Lemma 5.2 such that a-T,=T, where a=exp(ad z) and so a=U(Q),.
This means T,CL(a"*-P). Hence a~'-P is commutative with P(K,), P(K,), Q,
and @Q,, and a~*-P has the distance 6x from the points. From these facts it
holds a~!-Pe L(P(K,)N\L(P(K,)) and, therefore, we have a '-P=P(K,) or
a1.-Pcf by Lemma 5.4. In the first case, P=a-P(K,)€5,. In the latter case,
a'-P=Q, or R, by Lemma 5.9. This implies P £&,U&,.

Next the sufficiency is showed. Let P be contained, for instance, in Z&,.
Then there exists a€U(Q), such that P=a-R,. On the other hand, since
R,eQ2CL(P(K,) from Lemma 5.4, we have P(K,)e L(R,) by the duality of L
(see Lemma 5.1). Since T, is spanned by {expt(ad e¢;K,e,)} as an orbit of P(K))
and these transformations leave R, (=R,) fixed, we obtain T,CL(R,). Hence
a-T,cCL(P). This shows that the line L(P) passes through P(K;) and @ because
a leaves P(K,) and Q fixed. In the case of P&, or £, the assertion can be
showed similarly. The proof is completed.

Let Q be a regular point in T, i.e. satisfying W(Q)=W(Z,). Since U(Q),=
exp(ad W(Q)) and WQ)CN(Q)NUP(K,)) hold, we obtain U(Q),CU(Q)NUP(Ky)).
This implies by Lemma 5.8 that U(Q), leaves Q, and R, fixed. U(Q), also does
P(K,) fixed because U(P(K,))=U(P(K,)). Therefore, for the above lemma, we
can assert the following.

COROLLARY 5.11. If Q&T, 1s a regular point for P(K,), there exist exactly
three lines L(P(K,)), L(Q,) and L(R,) which pass through P(K,) and Q.

For any positive root A4y, the set S; becomes a 3-dimensional flat torus
in T, because there exists x ¥, such that A(x)==i and exp(ad x)- P(K,)=P(K,).
Hence S; is said to be the torus associated with A. If Q&S;, we say that A
passes through Q. From the list of the positive roots in Section 4, each S; has
three shortest closed geodesics of /7 as generating elements. If A=—2a,i, for
example, such the geodesics {r;(f)} can be defined by r,(t)=exp t(ad(e,K,e,+
e.Ke,))- P(K,), ry(t)=expt(ad(e;K,e,—eKye,) - P(K,) and ry(f)=expt(ad(e,K,e.+
2;K,e.))-P(K,). The volume of each torus S; is 4327° 4324/ 27° or 432r°
according as the root A has the type —2a;i, —2(a,*a;)i or —(ap+a;*+a,+a,)i.

From now on we will study the converse of the above facts. The result
is given in Prop. 5.13. Put x=a;x/2¢,K;e;+a,m/2 ¢;K;e,, where i#; and
a, a;€Z—{0}. Assume that the geodesic r(t)=expt(ad x)-P(K,) satisfies
r(1)=P(K)).
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LEMMA b5.12. If r(t) first returns to P(K,) at t=1, one has <a,, a,)=1 or
2, where <, > means the greatest common divior.

Proof. Put <a,, a,>=2'n, where n is a positive integer such that <{n, 2)=1.
Since »(1)=P(K,), we have a;+a,=2m, meZ, from Lemma 3.2. There exists
mo< Z such that m=nm, because <{n, 2)=1. Then a;/n, a;/n=Z and a;/n+a;/n
=2m, hold. This gives r(1/n)=P(K;) by Lemma 3.2. If n+#1, it contradicts
the our assumption because 0<1/n<1l. So we may consider only the case
{a,, a,y=2' If [=2, r(1/2)=P(K,) again by the same reason as above. This
also contradicts ours. Therefore we obtain /=0 or 1, i.e. <a,, a,>=1 or 2.

PROPOSITION 5.13. Let T® be any 3-dimensional torus in T,. Assume T?*
contains P(K,) and has the minimal value of volume. Then T* 1s oue of the
twelve tori associated with the roots of type —2ad and —(a,+a,+a,+a,)i. The
mimemal value is 432x°,

Proof. Let T® be such a torus in 7. T3 has three geodesics exp t(ad z,)
-P(K,) as generating elements, where z,=2 a,n/2 ¢;K,e,, z,=2b;n/2¢;K,e, and
zs:=2c,m/2e;K,e,., Assume these geodesics first return to P(K,) at t=1. Then
we obtain from Lemma 3.2 that a,, b;, c;€Z and X a,, 2b;, 2 c;€2Z. Define
a mapping ¢ of the 3-dimensional Euclidean space R® onto T2 by ¢(t,, ,, t3)=
exp(ad(t,z,+1:2.+1325)) - P(K,).

First we consider the case of a;=b;=c,=0. Moreover, if a,=b,=c,=0,
this leads to a contradiction because {z;} are linearly independent. So we may
assume a,#0 without the loss of generality. If b,#0, put w,=a,z,—b,z;,. Then
w,€%T, and expt(ad w,)-P(K,)T?3. Note that z,, w,, z; are also linearly inde-
pendent. Since exp(ad w,)-P(K,)=P(K,), there exists the minimal value ¢, (0, 1]
such that exp to(ad w,) - P(K,)=P(K,;). Write again z,, t,w,, z; as z,, 2, 2; respec-
tively, then b, can be considered to be 0. By the same reason, ¢,=0. Since
b;#0 and ¢,#0 can be assumed, we may say a,=c¢,=0 and a,=b,=0. After
all, the above argument asserts that 7% can have three tangent vectors z,=
a,mt/2e,K,e,, z,=b,m/2¢,K,e, and z;=c,x/2K, (a,, by, ¢,>0) such that each geo-
desic expi(ad z;)-P(K,) first returns to P(K,;) at t=1. Then Lemma 3.2 gives
a,=b,=c,=2. T?* turns out the torus associated with the root —2a,i. The
volume vol(T®) can be calculated by making use of the fact that ¢ is a bijective
map for 0=¢,<1 and 0=t,, 1,<1/2:

1/2(1/2(1 —_
vol(T“’)-——So So SO«/ g dtdt,dt,—4327,
where g=det(g,;) with g,,=—B(z,, z;).

Secondly suppose that one of a,, bs;, c; is not 0 at least. Then there remain
in essential three cases to study. We consider these by the same method as the
first case.

(i) In this case {z;} satisfy that z,=a,n/2e,K,e,+a;n/2¢;K,e;, z,=me,K,e,
and z;=xnK,, where a,, a;€Z—{0} and a,+a;2Z. If a,, a; are even numbers
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and a,+a,+2€4Z, ¢ is an injective map on the set {(t, t;, t)ER® | 0=5t,<],
0=t,<1/2, 0=<t,<1/2}. Then we have vol(T*)=216(a}+a?)"*r*=432+/ 5% The
equality holds, for instance, when a,=4 and a,=2. If a,, a, are not so, since
¢ is injective for 0<¢,<1, 0=¢,<1/2, 0<t,<1, we get vol(T* =432+ 2 x®. The
equality can be given by a,=1 and a,=-—1.

(ii) This is the case that {z;} have the forms that z,=a,x/2K,+a;,n/2¢;K,e,,
2,=bym /2K,+ b, /2¢,K e, and z,=me,K,e,, where a,, a;, by, b= Z—{0} and a,+a,,
bo+b,=2Z. Since both z, and z, satisfy the assumption in Lemma 5.12, we
obtain <a,, a>, <b,, b>=1 or 2. If |b,|=1, ¢ is an injective map on the set
{24, 82, t)ER? | 0=t,<1/]a;], 0=t,<1, 0=Z1,<1}. Hence vol(T?*)=432((a,b,/as)?
+b3+63)"2n*>4324/ 2 7% If |by|>1, since ¢ is injective for 0=t,<1/|asl,
0=<t,<1, 0=t,<1/2, we have vol(T?) =216+ 5 *>432x°.

(iii) In this case {z;} have the forms that z,=a,x/2K,+ a;n/2¢;K,e;, z,=
bomt /2K, +-bo/2¢,K,e, and zy=c 1 /20,K,0,+com /2¢,K,0,, Where a,, a;, -, C.EZ
—{0} and a,+as, bo+bs, c;+c,€2Z. Lemma 5.12 gives <a,, as), <b,, by, {c1, 3>
=1 or 2. If |b|=1b.|=1 does not hold, ¢ is an injective map on the
set {(ty, b5, ts) € R* | 08, <1/ asl, 058, <1, 0=¢,<1/|c,|}. Hence vol(T? =
216((aoby/ as)®+(bocs/cy)®+b2i4-03)2n® >432n%. If |by|=|b,|=1 holds and |a,|=
|as|=1 does not hold, ¢ is injective for 0=¢,<1, 0=¢,<1, 0=¢;<1/l¢;|. Then
we obtain vol(T®)=216((asc,/c,)*+ai+2a2)'2x*>432x%. Finally, if |b,|=|b.|=
la,l=la,! =1, since ¢ is injective for 0=t¢,, t,, t,<1, we have vol(T*)=216(3¢5+
c)V2x®=432x%. The equality can be established when |c,|=]c.|=1. Then T?
is associated with a root of type —(a,+a;+a,+a,)i.

The above argument shows that the minimal volume of 3-dimensional flat
tori in T, is 432x% and its value is attained by the tori associated with the roots
of type —2a;i or —(a,+a,*+a,+ayi. The proof is completed.

COROLLARY 5.14. Let T® be a 3-dimensional torus wn II. If T? has the
minimal volume, it has three shortest closed geodesics as generating elements.

Definition. (1) Two distinct points in /I are said to be in the general posi-
tion if any 3-dimensional flat torus with the minimal volume does not contain
both of them. If not so, they are said to be in the singular position. (2) Two
distinct lines L(P) and L(Q) in Il are said to be in the general (resp. singular)
position if P and ¢ are in the general (resp. singular) position.

PROPOSITION 5.15. A point Q in Il is a singular point with respect to P(K,)
if and only if there exists a 3-dimensional flat torus passing through P(K,) and
Q such that it has three shortest closed geodesics with the initial point P(K;) as
generating elements.

Proof. We first show the necessity. Let @ be such a singular point. There
exists ac€U such that a-Q&T,, where U is the isotropy group at P(K,). Since
a-Q is also a singular point, we can find a root leATo such that a¢-Q<S,. S;
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is generated by three shortest closed geodesics. Hence a~!-S; contains Q and
satisfies the condition in the proposition. Next the sufficiency is showed. Let
T?® be the torus satisfying the condition. From the transitivity of maximal flat
tori, we may assume QT3*CT, (v) in Lemma 3.5 gives all the shortest closed
geodesics in T, with the initial point P(K)): ¢(tx/4, tn/4, 0, 0), ---, (0, 0, tx/4,
—tn/4), where 0=t<2. The number of the geodesics is 12. Moreover, since
any 3-dimensional flat torus determined by three geodesics in them is certainly
associated with some positive root 4, therefore Q=7T3=S; holds. This means
that @ is a singular point.

COROLLARY 5.16. If P(K,) and Q are in the singular position, Q s a
singular point with respect to P(K,). The converse is not always true.

THEOREM 5.17. II is a projective plane in the wider sense, that s, Il satis-
fies the following properties:

(1) For two distinct points there exist exactly three lines passing through
them if the points are in the general position. If in the singular position, the
set of lines passing through the points forms a symmetric space as a manifold.

(2) The correspondence L asserts the duality of (1) for two distinct lines.

Proof. Since (2) can be derived from (1) and Lemma 5.1, we show only
(1). Let P and Q be two distinct points in /7. We may assume P=P(K,) and
QeT, by the transitivity of points and of maximal flat tori. Let a line L(R)
pass through P(K,) and Q. Then Re£&,\U&,UE&, by Prop. 5.10. If P(K,) and
Q are in the general position, Prop. 5.13 gives (i) @ is a regular point with
respect to P(K,) or (ii) @ is the point which only the roots of type —2(a,+*a;)i
pass through. If (i) holds, Corollary 5.11 shows R=P(K,), Q, or R, If (ii)
holds, Lemma 5.7 and 5.8 give the fact again since U(Q)=U(Z,)PI U; for some
A of type —2(a,*a;)i. On the other hand, if P(K,) and Q are in the singular
position, the following lemma finishes the proof.

LEMMA 5.18. If P(K,) and Q are in the singular position, the set of lines
passing through them makes six kinds of symmetric spaces as submanifolds in
ITE, that is, (1) SO(n+4)/SO(n)-SO@)\J{one isolated point} (n=1, 2, 3, 4), (2)
Sp(3)/Sp(2)-Sp(1) and SU6)/S(U4)-U(2)).

Proof. Let II* have the differential structure introduced by L from /1.
Let I'CII* be the set of lines passing through P(K;) and Q. We may assume
QeT,. Denote by n(d) the number of positive roots 4 such that Q=S;. First
we consider the case of n(d)=1. If A=—2a,i, U(Q), leaves P(K,) fixed because
WQ)=W(ZT)DU-4q,: and hence WQ)CTG(K,)DS,(K,) by the list in Section 4.
Moreover, expr/2(ad x)-Q,=R, holds, where x=e,{,+1,)e, and so xE0 44
This shows by Prop. 5.10 that (i) &, is an isolated point P(K,) and (i) &,\UZ,
is a connected symmetric space with the type W(Q)/W(Z,) (=s0(5)/s0(4)). In fact
E,\J&5, turns out to be the 4-dimensional sphere S¢ Therefore L-{(/")=
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S*U{P(K,;)}. When A has the type —2a,i ((=1) or —(a,*+a,+a,+a,)i, we also
get the same result. For instance, if A=—(gy;—a,—a,—a,)i, put a=
exp —z/4ad(K,+e, K e,+¢,K,e,+¢,K,e;). Then a-T,=T, a-P(K,)=P(K,) and
all;=U._,., hold. Hence, by this @, the argument for A comes back to that
for —2a,. Therefore, since a-P(K,)=Q, a-Q,=P(K,) and «-R,=R, we
can obtain L-'I")=S*U{Q,}. Next, if A= —(a,+a,+a,+ay)i, put a=
exp —n/4 ad(e,Fie,+e;K,e,—eK,e,+¢,K,e;). Noting that a-P(K,)=R,, a-R,=
P(K,) and a-Q,=@Q,, we have L-*(I")=S*U{R,} by the same method.

Secondly we consider the case of n(A)=2. Then there remain in essential
six cases to study. (i) {A}={—2a., —2a,i, —2(a,*a,)i}: Then L-()=
S0(6)/S0(2)-SOUNJ{P(K,)} holds. (ii) {A}={—2a.i, —2(a,+a,)i}: This is the
same case as {A}={—2a,i}. Hence L-YI")=S*U{P(K,)}. (i) {A}={—2a,i,
—(ayt+a,—a,—ay)i, —(ay—a,+a,+a,)i}: We have L-I")=5Sp(3)/Sp(2)-Sp(1).
This is the quaternion projective plane. (iv) {A}={—2a,, —2(a;+a)i}, @, j=
0,1,2): Then L-*I")=SOT)/SOB)-SOA)J{P(Ky}. (V) {A}={—2a., —2ai,
—2(apta)i, —2(a,tay)i, —(apta,—a,—ay,)i, —(a,+a,+a,+aj)i}: We have
L-YI"=SU®6)/S(U4)-U(2)). This is a maximal submanifold in L-(I") with
respect to the inclusion relation. (vi) {4}={—2a.i, —2(a,*aji}, @ j=0): We
obtain L-}(I")=S0(8)/S0(4)-S0O(4). This is maximal too.

As a consequence, we can assert the following. If @ is a singular point,
S*U{P} is minimal in {L-*I")}, where P is some isolated point. This manifold
has three possible kinds of extension: (i) SO(n+4)/SO(n)-SO@A)U{P} (n=
2,3,4). (i) Sp3)/SpR)-Sp()ycSUB)/SWUE)-U2)). (i) SO(6)/S02)-SO¢)C
SU®6)/SWU4)-U@2)).

REFERENCES

[1] K. Atsuvama, Another construction of real simple Lie algebras, Kédai Math.
J., 6 (1983), 122-133.

[2] K. Atsuvama, The connection between the symmetric space E¢/SO (10)-SO(2)
and projective planes, ibid., 8 (1985), 236-248.

[3] B. Cuen anp T. Nacano, Totally geodesic submanifolds of symmetric spaces,
1I, Duke Math. J., 45 (1978), 405-425.

[4] H. FREUDENTHAL, Lie groups in the foundations of geometry, Advances in Math.,
1 (1965), 145-190.

[5] O. Loos, Symmetric spaces I, Benjamin, New York, 1969.

[6] B.A. RozenreLp, Einfache Lie-Gruppen und nichteuklidische Geometrien, Alge-
braical and topological foundations of geometry, Proc. Collog. Utrecht, 1959,
(1962), 135-155.

KumMamMoTo INSTITUTE OF TECHNOLOGY
IKkEDA, KuMaMoTO 860
JAPAN





