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A CHARACTERIZATION OF THE PRODUCT OF TWO
3-SPHERES BY THE SPECTRUM

By SHUKICHI TANNO AND KAZUO MASUDA

§1. Introduction.

Let (M, g) be a compact Riemannian manifold. By Spec(M, g) we denote
the spectrum of the Laplacian acting on functions on (M, g). Let S™(c) be the
m-sphere of constant curvature c.

For m<6, S™(c¢) is characterized by the spectrum (Berger [1], Tanno [5]);
that is, Spec(M, g)=Spec S™(c¢) implies that (M, g) is isometric to S™(c).

For m=7, it is an open question if S™(c) is characterized by the spectrum.
As for partial answers see [6].

In this paper we obtain the following theorem on product Riemannian
manifolds.

THEOREM A. Let (M, g) and (M’, g’) be 3-dimensional compact Riemannian
manifolds. Assume that

Spec [(M, g)X(M’, g")]=Spec [S*(c) X S*(c")].

Then, (M, g) and (M’, g’) are of constant curvature K and K’, respectively, and
K+K'=c+c'.

Furthermore, if the sectional curvatures K and K’ are positive, then (M, g) is
1sometric to S*(c) (or S*(c’)) and (M, g’) is isometric to S*(c’) (or S%(c), resp.).

Let CP*(H) be the n-dimensional complex projective space of constant
holomorphic sectional curvature H. Corresponding to Theorem A we get

THEOREM B. Let (M, g,J) and (M’, g’, J') be (complex) 3-dimensional com-
pact Kdhlerian manifolds. Assume that

Spec[(M, g, [)X(M’, g’, ]’)]:Speé [CP*(H)XCP*H"].

Then, (M, g,]) is holomorphically isometric to CP*(H) (or CP*(H")) and (M’, g’, ")
is holomorphically isometric to CP*(H') (or CP*(H), resp.).
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§2. Preliminaries.

Let (M, g) be a compact Riemannian manifolds {of dimension m and let
Spec (M, g)={0=2,<A,=<4,=< ---} be the spectrum of the Laplacian acting on
functions on (M, g). By R=(R%:), p=(R;)=(R'y) and S we denote the
Riemannian curvature tensor, the Ricci curvature tensor and the scalar curvature
of (M, g), respectively. For a tensor field T on (M, g), |T|? denotes the square
of the norm of T with respect to g. Then, a formula of Minakshisundaram-

Pleijel is

© ]_ m/2
-2 pt
Beis ~<Tf:t) [aotait+ast*+ ],

tio

where a,, a;, a, and a, are given by the following (Berger [1], Mckean-Singer
[2], Sakai [4]) .

a():VOl (M, g) y

a=/6)| s,
@1) a:=(1/360)| [2IRI*~2|p|*+55%],

as;=(1/6 !)SM [—(1/9)|VR|*—(26/63)|Vp|*—(142/63)|VS|*

+@2/3)SIRI"~2/DS| p|*+(6/9)S*+ A,
where
A=(8/21)(R, R, R)—(8/63)(p; R, R)+(20/63)(p; p; R)—4/T)ppp),
(R, R, R)=R",;R* ,R*",,,
(03 R, R)=R,;R* 4, R7*%,
(p; 0; R)=RYR*R;;;.,
(opp)=R*;R’,R*,.
We denote tﬁe Weyl conformal curvature tensor by C and put
G=p—(1/m)Sg.
Then we get (cf. Tanno [5])

1 s, 2(6—m) o, (26—m)  Sm(m—3)+6\,
@2 a= 360SM[21C] t == Gl +<m(m—2) + (m—l)(m——Z))S]

Let (M, g’) be another compact Riemannian manifold. The Riemannian
product (M, g)X(M’, g’) is denoted by M*. We denote the geometric object of
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(M’, g’) or M* corresponding to T on (M, g) by T’ or T*,
Since

Seirt=(Te ) (Te Y,

we obtain
ao(M¥)=aM)a,(M’"),
a;(M¥)=a,(M)ay(M")+ ao(M)a,(M"),
as(M¥)=ax(M)a(M")+a,(M)a,(M")+ay(M)a(M").

For a function f on M(M’, resp.), we denote its extended function on M* by the
same letter f. The following is evident.

@.3) a(M)=/6)| [S+573

LEMMA 2.1. a,(M*) is given by

o L 26=m) L 26—m)
@8 aMi==l (101022 6 202 6
2(6—m) S5m(m—3)+6 ,
oz T (m—l)(m—2)>52+1055

2(6—m’) Sm’(m’'—3)+6\ o,
<m’(m'—2) + (m'—=1)(m"—2) >S 2] ’

+
Proof. Since
aMa,M)=/36) S| s'=aossen ss,
we get (2.4) by (2.2). q.e.d.

Now, let (M, g, /) and (M’, g’, J') be compact Kihlerian manifolds. We
denote the Bochner curvature tensor of (M, g, J) by B. Then, putting dimcM
=n, we get (cf. Tanno [5])

— 2
2(6—n) 5n*4+4n+3 SZ]

1 2 2
ag(M)z—SM[ZlBl—i— n+2 IGI*+ n(n+1)

360

Corresponding to Lemma 2.1, we get

LEMMA 2.2. a,(M*) for M*=(M, g, J)X(M’, g’, ') is given by

1 26—n) 2(6—n")
360 nt2 n'+2

5n*+4n+3 5n"2+4n"+3 S’Z]

@5 aM9=o=| [A1BI+BID+ Gl+ Tk

+ S?+10SS5"+

n(n+1) n’(n’+1)
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§3. Proof of Theorem A.
First we prove the following.

PROPOSITION 3.1. Let (M, g) and (M’, g’) be 3-dimensional compact Rieman-
nian manifolds. Let N(c) and N’(c’) be 3-dimensional compact Riemannian mani-
folds of constant curvature ¢ and ¢’. For i=0, 1, and 2, assume

ai[(M, g)X(M’, g")]=a;[N(c)XN'(c")].
Then, (M, g) and (M’, g’) are of constant curvature K and K’, and K+K'=c+c'.
Proof. We denote the Riemannian products by
M*=(M, g)x(M’, g"),  MF=N(c)XN'(c).
a(M*)=a,(M¥) implies Vol(M*)=Vol(M¥), and a,(M*)=a,(M¥) implies

| (s+50={ . sts0),

where S, and S; denote the scalar curvature of N(c) and N’(¢’). By Schwarz
inequality we get

3.1 fustsr=(, sosor,

where equality holds if and only if S+4S’'=S,+S,.
Since C=C"=0 for m=m’=3, by (2.4) we see that a,(M*)=a,(M¥) is equiv-
alent to

(3.2) [, 06061169 +5s+577=( 505,50
By (3.1) and (3.2), we obtain
G=G'=0, S+S5=S,+S,.

Thus, (M, g) and (M’, g’) are of constant curvature K and K’. Since S=6K,
we get K+K'=c+c'. q.e.d.

LEMMA 3.2. Let M(K) and M'(K’) be 3-dimensional compact Riemanman
manifolds of constant curvature K and K’. Assume that

Spec [M(K) x M’(K")]=Spec [S*(1) X S*(¢")].

If K<1=c=c¢'=K’ and K/c'>5-1078, then K=1, K'=c¢’ and M(K)(M'(K’), resp.)
is isometric to S3(1) (S%(c’), resp.).

Proof. (i) SpecS?*c) is given by
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Spec Ss(c): {0’ 36; 86', Tty k(k+2)c’ "'}:

and multiplicities are 1,4, 9, -+, 445Cr—2+1Cr -2, -+ .

(ii) Spec M(K) is a subset of {k(k+2)K; k=0,1, 2, ---}.

(iii) If 3K=Spec M(K), then M(K) is isometric to S3}(K). In fact, this
follows from the property of eigenfunctions corresponding to the first eigenvalue

3K of S}K).

(iv) If K=1, then K’=c¢’ by K+K’'=1+4¢’. In this case, since Spec M(1)
contains 3, M(1) is isometric to S3(1) by (iii).

(v) From now on in this proof we assume K<1. Then ¢/<K’.

(v-1) We show that there exists some integer %2 such that

3.3) 3=k(k+2)K.

In fact, since 3K’'>3¢’=3, we see that the first eigenvalue 3 of S%(1) is con-
tained in Spec M(K). Thus, we get (3.3). This means that 2=2, and for any
positive integer t<k, t(t+2)K e Spec M(K).

(v-2) Similarly we get some integer / such that

(3.4) 3¢'=I(+2)K, k=l.
(v-3) There exists some integer » such that
(3.5) 3+3¢’=r(r+2)K.

In fact, for 343c¢’=Spec [S3(1) X S%(¢’)], there exsist some integers » and s such
that
34+3c’'=r(r+2)K+s(s+2)K’.

Since r#1 and K+K'=1+c¢’, s must be zero. So, we get (3.5).
(v-4) There exists some integer p such that

(3.6) 8=p(p+2)K, 3=p.

In fact, for 8= Spec S¥(1), if 8<3K’, we get (3.6). If 8=3K’, then noticing that

the multiplicities are strictly increasing, we get (3.6). If 8>3K’ and if p(p+2)K

+3K’=8, then 3K’eSpec M'(K’). In this case, 3K’ must be of the form 3K’

=3+43¢’. However, this contradicts K+K’'=1+c¢’. So, in any case we get (3.6).
(v-5) There exists some integer ¢ such that

3.7 8c/=q(g+2)K.

In fact, if ¢’=1, (3.7) is clear. If ¢’>1, then 8¢’ is of the form (3.7) or 8¢'=
q'(¢'+2)K+3K’. We consider the second case.

If ¢’#0, then 8¢’>3K’. Since 3K'—3¢’<3, we get 3K’=a(a+2)=8 for some
integer a. Furthermore, 343K’ is of the form b(b+2)+d(d+2)c’ for some in-
tegers b and d. If d=0, then b(b+2)—a(a+2)=3, which is impossible. If =0,
then 3+3K’'=8¢’. In this case K=1+c¢'—K’=(11—-5K’)/8, which contradicts
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3K’=28 and K>0. Thus, 3+3K’'=b(b+2)+3¢’ and b=2. However, 3K’'—3¢'=
b(b+2)—3=5, which is a contradiction.

If ¢’=0, considering the multiplicities we get (3.7).

(v-6) By (3.3) and (3.6) we get

3 8
T k(R+2) T p(p+2)

3.8) K
By (3.4) and (3.7) we get
K_ 3 8

¢ T U+2) T g2
By (3.3), (3.4) and (3.5) we obtain.

3.9

(3.10) k(k+2)+I(+2)=r(r+2), k=!.

We show that there are no integers k, /, p, ¢, and r satisfying (3.8)~(3.10) for
[=<7800. [=7800 corresponds to K/c¢’=4.92--- -107% Pairs (k, p) ({, g), resp.)
satisfying (3.8) ((3.9), resp.) are as follows (cf. Remarks 1, 2, below):

7, 12), (18, 30), (78, 128),
(187, 306), (781, 1276), (1860, 3038),
(7740, 12640).

It is verified that for any two pairs chosen from the above, there is no integer
r satisfying (3.10). This means that M(K)X M’(K’) and S3*(1)xS3*(’) are not
isospectral for K<1 and K/c¢’>5-10"% q.e.d.

Remark 1. If one wants to use a computer, a simple BASIC-program for
(k, p) is as follows:

For £k=3n and p=2u;
10 FOR N=1 TO 2600
20 A=6*N*N+4*N
30 B=SQR(A): U=INT(B)
40 V=U+1)*U
50 If A=V THEN PRINT 3*N, 2*U
60 NEXT
70 END
For k=3n-+1 and p=2u, replace 20 and 50 by
20 A=6*N*N+8*N-+2
50 IF A=V THEN PRINT 3*N+1, 2*U

Remark 2. 1f one wants to apply a method for indeterminate equation, put
x=Fk-+1 and y=p+1. Then (3.8) is

8x2—3y*=5.

To solve this equation, we consider Pell’s equation
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t?*—Du’=+4, D=4-8-3=96,

The smallest solution (f, u) such that (t+u~+/D)/2>1 is (10, 1). Then general
solutions (¢,, u,) are given by [(10+4/96)/2]"=(t,+u,+/96)/2. Therefore

ta=(5+2v6)"+5—2v6)",
u,=[(5+2+v6)"—(5—2v6)"1/+/96.

Since
tnr1tUn14/96 . tat /96 . 10++/96
2 o 2 2
:%( 10t,,—;96u,, n t,,—}—éOun \/%)’
we get
)= G (=)
and hence

(=) (D) Go) () (o)
The matrix corresponding to (¢, u) is

(t/Z 3u>
8u t/2
and hence

()= () G (22 G-~
(-0 63 (62 G (3.

LeEmMA 3.3. Let M(K) and M’'(K’) be 3-dimensional compact Riemannian
manifolds of constant curvature K and K'. For 0<K<l=c¢=c'< K’ and K+K'=
c+c’, if K/c¢’<5-107% then M(K)X M'(K’) and S3(1)XS%c’) are not isospectral.

Proof. Suppose that Spec [M(K)X M’(K’)]=Spec [S3(1) X S*(¢")].
(i) First we show that 48=Spec S3(1) is expressed as

(3.11) 48=x(x+2)K
for some integer x. In fact, assume that
48=x(x+2)K+y(y+2)K’

for some integers x and y; 1=<y=<5. In this case, K’<16. Furthermore, we
get
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x(x+2)K=u(u+2)+v(w+2)c’,

(3.12)
Y+ K =w(w+2)+2z(z+2)c’

for some integers u, v, w, and z. Therefore
[vw+2)+2(z+2)]¢’=48—u(u+2)—w(w+2).

We put a=vw+2)+2z(z+2).
(i-1) First we assume a>0. Then we get a<48 and ac’ is an integer.
By (3.12), ay(y+2)K’ is an integer. On the other hand, we get

ay(y+2)K'=ay(y+2)+y(y+2)ac’—y(y+2)aK.

Since y(y+2)a=1680, ¢’<K’'<16 and K/c’<5-107%, we get y(y+2)aK<0.1344
and it is not an integer. This is a contradiction.

(i-2) Next, if a=0, then 48 must be a sum of two numbers using {0, 3, 8,
15, 24, 35, 48}. First we show that 24 Spec M/(K’). If 24=y(y+2)K’'<Spec
M'(K’), then 1=y=3 and 3+ y(y+2)K'=27=b(b+2)+d(d+2)c’ for some integers
b and d. If d+0, one gets a contradiction similarly as in (i-1). So, d=0, and
b(b+2)+27 is clear.

Thus, we get 48=x(x+2)K or 48=y(y+2)K’. In the second case, consider-
ing the multiplicities we get (3.11).

(ii) As we have seen before, 3 is expressed as 3=k(k+2)K. By (3.11) we
obtain

(x+1)*=4(k+1))*—15.

This equation has only two solutions (%, x)=(0, 0) and (1, 6). Therefore, k=1
and K=1. This is a contradiction. g.e.d.

Proof of Theorem A. The first part of Theorem A follows from Proposi-
tion 3.1. To prove the second part we can assume that ¢c=1=<¢’ and K<K'.
If I<K<SK'<c’, we see that 3 is contained in Spec S*(1) but not in Spec [(M, g)
X(M’, g/)]. This is a contradiction. If K<1, by Lemmas 3.2 and 3.3, proof is
completed.

THEOREM A’. Let (M, g) and (M’, g’) be 3-dimensional compact and simply
connected Riemannian manifolds. Assume that (M, g)xX(M’, g’) and S*(c) X S*(c¢’)
are isospectral, then (M, g)xX(M’, g’) is isometric to S*(c) X S%(c’).

Proof. By Proposition 3.1 we see that (M, g) and (M’, g’) are constant
curvature K and K’ such that K+ K'=c+c¢’. Since M and M’ are simply con-
nected, (M, g) (M, g’), resp.) is isometric to S*(K) (S*(K’), resp.). Comparing
the volumes of S3(K)xS*K’) and S3(¢c)xS%c’), we see that K=c¢ and K'=¢’
(or K=c¢’ and K’'=c). q.e.d.



428 SHUKICHI TANNO AND KAZUO MASUDA

§4. Proof of Theorem B.

We prove Theorem B in a more general setting.

PropoSITION B. Let (M, g, J) and (M’, g’, J') be (complex) 3-dimensional
compact Kdahlerian manifolds. Let N(H) and N’'(H’) be (complex) 3-dimensional
compact Kdhlerian manifolds of constant holomorphic sectional curvature H and
H'. Assume that

(i) H+H'+0,

(i) for 1=0,1, 2, and 3

a;[(M, g, NX(M, g’, ')]=a,LN(H)XN"(H")].

Then (M, g, ) (M’, g’, '), resp.) is of constant holomorphic sectional curvature
Hor H'.

Proof. We denote the Riemannian products by
Mx=(M, g, NXM’, g, J), M¥=NH)XN'(H').

By the same argument as in §3 we obtain (3.1). By Lemma 2.2 and n=n"=3,
a,(M*)=a,(M¥) is equivalent to

[, L2 BI 1B/ 196/ G 1" +1G19+5(S+8)1=_5(So+S0*.
Therefore we obtain
B=B'=0, G=G’'=0, S+S'=S,+S,.

Consequently, (M, g, J) and (M’, g’, /') are of constant holomorphic sectional
curvature L and L’. Here S=n(n+1)L=12L.
Since R (R’, resp.) is parallel and

|R|*=2n(n+1)L*=24L*=(1/2)n(n+1)*L*=]p|?,

(R, R, R)=n(n+1)(n+3)L*=T72L3,

(0; R, R)=n(n+1)*L*=48L",

(p; p; R)=1/Hn(n+1)°*L*=48L*=(ppp),
a,(M*)=a,(M}¥) implies

SM.[(5/9)(S+S’)3+(64/7)(L3—I—L’3)]=SM, L(5/9)(Se+S0)°+(64/T)(H*+H™)].

Therefore we get L*+L*=H*+H’®. Since H+H'+#0 and L+L'=H+H', we
obtain L=H and L’=H’ (or L=H" and L’'=H). q.e.d.
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