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By KivyosHI MATSUBARA
§1. Introduction.

A simple model of a confused plasma in tokomak machine can be described
by the following system :

—Au=2g(x, u) in 2,={xs ]| ulx)>0}, (1.1)
© —Au=0 in O\Q,, (1.2)
u|sp=unknown constant, (1.3)
—Sm%dszl (given positive constant), (1.4)

where 2 is a bounded domain in R™ with a smooth boundary and A is a given
positive parameter. £, is called a plasma domain and £2\%2, is called a vacuum
domain. We consider the free boundary problem of the following type:

(P) Find: ue H¥(Q) and 2,C2 s.t. u and 2, satisfy (E).

We call 02, a free boundary.
We consider this problem under the assumptions :

g(x, s)=0 if s=0, (1.5)

g(x, $)>0 if s>0, (1.6)
(A1)

g(x, s) is continuous in 2XR,

lim g(j; ) =0 uniformly in 2,

where p=n/(n—2) (if n>2) and p=3p,>1 (if n=2). By using (1.5) and (1.6),
we can rewrite (1.1) and (1.2) as follows.
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—Au=2g(x, u) in Q.

The problem (P) can be formulated as the following variational problem :
(See Berestycki and Brezis [7])

(

VE{{uEH‘(.Q); u | 30=constant, lgqg(x, u)zl}

W) (P(u)E—;—S!)IVu |2dx—x§9§:”” g(x, s)dsdx+Tu®@Q)

Find: uV s.t. O(u)=inf,c;, Ov).

The problem (P) has been considered by several authers. First Temam [14]
proved the existence of the solution in case of g(x, s)=s., where s,=max{0, s}
by using the variational method. We call this case “ g(x, s) is linear ”, and the
other case “ g(x, s) is non-linear”. In linear case, several methods of proof of
the existence of the solution of (P) are known. (See: Freedman [2], Sermange
[10], K. C. Chang [3]) In non-linear case with n=2 or 3, Temam [13] proved
the existence of the solution. In non-linear case with n=2, Berestycki and
Brezis [7] proved the existence of the solution of (V) in W**(2)(Ya>1) under
the assumption that g(x) is convex and g(x) satisfies (Al) by the variational
method which is different from Temam’s method [13]. In [7], they gave two
other proofs, which are the method of successive approximation and the method
of Leray-Schauder degree. In non-linear case Ambrosetti and Mancini [1] proved
that the free boundary exists if A is sufficiently large under the assumption (Al)
by using the method of Leray-Schauder degree and the bifurcation theory. And
geometric property of £, is studied by several authers. Berestycki and Brezis
[7] showed £, is connected. Kinderlehrer and Spruck [5] showed that 02, is
C*« (0£a<1) in linear case with n=2. Moreover Spruck and Caffarelli [9]
showed that the level line of the solution u is convex if 2 is convex.

Caffarelli and Freedman [8] studied the problem (V) in case when g(x, s) is
linear and n=2. They showed that

diam(2,)—0 as A1—oo,

In this paper, we extend the result of Caffarelli and Freedman to non-linear case
with n=2.

We obtain the following result. We consider the solution of (V) under the
following conditions :

(A2) {g(x, $)=Ks® for YxeR, *K>0, 1=<3a<p, 's=0
g(x, -) is convex  for all fixed x2
We assume (Al) and (A2). Then we obtain

d(2,)—0 as A—oco, (1.7)
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where d(£2,) is the maximum of the measure of the cross section of 92, by an
(n—1)-dimensional hyperplane.

The last section is devoted to the result about the symmetricity. We assume
that 2 and g(x, s) have symmetric property. i. e. £ is symmetric for the (n—1)-
dimensional hyperplane: x,=0 and that g(x, s) satisfies

(A3) g(x1, Xo, o0, X, $)=g(X1, Xg, =+, —Xn, S).

Previously Sermange [11] showed the uniqueness of the symmetric solution for
some A in linear case with n=2. We extend this result to non-linear case with
n=2. We assume that g(x, s) satisfies the following conditions:

glx, 8)—g(x, s")

; =M<eo,
§—S

(Ad) SUPzc0SUPs, s R
We show the existence of the symmetric solution under the assumptions (Al)~
(A3), and the uniqueness of the symmetric solution under the assumptions (Al)
~(A4) for some A.

In sections 2~4, we prove (1.7) by using the method introduced by Caffarelli
and Friedman [8]. In section 2, we estimate @(u) in special case. Next we
extend this estimate to general case in section 3. In section 4, we estimate the
size of plasma domain of the solution of (V) by using an estimate of @(u). In
section 5, we consider the existence and uniqueness of the symmetric solution
of (P) by the method of Sermange [11].

The auther wishes to thank Prof. Y. Hirasawa and Prof. T. Nishimoto for
many helpful discussions and valuable comments.

§2. Estimate of @ (1) in special case.
In this section we assume that
Q:BRCRn,
(A5)
glx, wy=u* (I=a<p),

where Bpg is a ball with its radius R in R™ In the next section, we will extend
this estimate in this section to general case.
Let u, be the solution of the following problem :

—Au,=u§ in B,
o] 58,=0 2.1)
uy>0 in B,

Lions [12] and Amann [6] guaranteed the existence and uniqueness of the
solution of (2.1) for 0<a<(n-2)/(n—2) and a+1. By Freedman [2] (pp. 531),
uy(x) depends only on |x|. In the rest of this paper, A denote |Vu,(x)|=
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Sup, z1=1]Vue(x)| for |x|=1. A depends only on a and n.
The following lemma gives us one method of an explicit construction of a
solution of (P).

LEMMA 2.1. Assume (A5) and a#1. Then the solution of (P) exists uniquely,
and a plasma domain 2, is a ball with its radius given by

( Afa-1 )—ll(n—(n—z)a)
e=——r—-—
Aa—-llsn] a-1

and then u(x) is given as follows: In case of n=2,

, (2.2)

1 .
Y u(g) in B., 2.3)
u(x)= I
E(logs—loglxl) in Bgp\B.. (2.4)
In case of n>2,

I .

—s—wuo(%) in B., (2.5)
u(x)= 'In n-z

&€ .

e, ) i BB (2.6)

where |S,| s area of surface of unit ball in R™

Proof. The spherical symmetric property of u(x) is guaranteed in [2] and [6]
(8.3). Therefore it suffices to consider this problem only in case when the free
boundary is a ball. u(x) satisfies (1.3). By (2.4) and (2.6), u(x) satisfies Au=0
in Bp\B, since log|x| (or |x|2"™) is an elementary solution of Laplacian in case
of n=2 (or n>2, respectively). By using (2.2), (2.3) and (2.5), we have

Au=Au* in B..

Thus u satisfies (1.1) and (1.2). By using (2.4) and (2.6), we have ——g a—udl

. dBR or
=]. By using
. . I
Jim Tl any = Jim Vo lony( == =i757)
and Theorem 7.8 in Gilbarg and Trudinger [4], we obtain u=H?* ). So an
easy calculation give us the uniqueness of the solution of (P). Then u(x) defined

in the statemant in Lemma 2.1 is the solution of (P) and (V) by the uniqueness
of the solution of (P). Q. E.D.)

Remark 1. In the above lemma, the restriction a#1 is not essential. In
case of a=1, we can construct an explicit solution by using the first eigenfunc-
tion u, and eigenvalue 2;, and replacing u, by Au; (See: Caffarelli and Freedman
[8D).

The purpose of the rest of this section is to estimate @(u). To this end,
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we discuss the property of a solution of (2.1) in the following lemma.
LEMMA 2.2. Let u, be a solution of (2.1). Then it follows that

g Vuoltdx<-2nL g2,
B n
Proof. In B, (0<u=l), it follows that Au,<0 and u, is not a constant. By
Theorem 3.5 in Gilbarg and Trudinger [4], we have
uo(x)>uo(x)|ss,=cx in By,

where ¢, is a constant depending only on g So by Lemma 3.4 in Gilbarg and
Trudinger [4], we obtain

du,
av |rl=y<0'
Since g is arbitrary in (0, 1], we have
0u, .
<
Py =0 in B;. 2.7
On the other hand A ——I—-i(r""‘—aﬂ) since u,(x) is depend onl
n the other ha U= gy o Uy p y on

v (=]x]). Thus we have
—%(r"“%)zr”‘lug .
It follows that

2 r
(er =(1—n)r‘"SOS"“uo(S)“deruo(r)"

z(l—n)r‘"uo(r)“g:s""ds—l— uo(r)®

1
:—Euo(r)ago .

Thus du,/dr is decreasing for »<[0, 1]. By this fact and (2.7), we have

0= aa’:" = aa’;" _=const. in Bi.
. Oug\2_ . .
Since (—a};—) = |Vu,(x)|% we obtain
[Vuo(x)|*= A%
Hence it follows that
SB |Vu,l2d x <(volume of B,)X A*= li—"[/lz. (Q.E.D.)
1

In the following lemma, @(u) is calculated for special case.
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LEMMA 2.3. Assume (A5). Then it follows that

_CIZ(H—Z)/(n—(n—-2)a)+C2 (lf n>2)’

D(u)=

I? .
——glog A+Cs (if n=2),

where C, (=1, 2, 3) are constants such that C;=C,(n, I, a)>0, C,=Cy(n, I, R),
and C;=C(I, a, R).

Proof. By Lemma 1.2, u is determined by (2.2)~(2.6). Let us define @,(u)
(¢=1,2,3,4) by

_ 1 .
@1(u)=—2—SQPIVu] dx,
1
D,(1)= ﬂgvlw %dx,

u(zx
0

@;;(u)E—ZSQS )s"dsdx s

D, (u)=Iu(09),
where Q, is 2°\2,. By using (2.2), (2.5) and (2.6), we have

12
Ql(u):WLlqu(x)|2dx s
r 1 1 .
2n—2)|S,| \en® RH) (it n>2),
@2(14): IE
Z;(log R—log ¢) (if n=2),
]2
D)=y s et ), | T
ro/1 1 .
e IRy T e"”2) (if n>2),
¢4(u): I2
5 (log e—log R) (if n=2),

where ¢ is defined by (2.2). First we consider our lemma in case of n>2.
Since O(u)=@(u)+P,(u)+P(u)+D,(u), we obtain the following :

1 I
0w=—CoX (G )+ g5,
where
e=(l_ 1\ I* T S
C=(g = D) T b a9 = g
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Since a<(n+2)/(n—2), we have
12

— < -

C= s,

By using lemma 2.2, we obtain

12

gmmo(x)lzdx—m

I? I?
<SS =215, <O

So we have C,>0, which depend only on n, I, . By using the definition of e,
we can express @(u) as follows:

—C,

@(u):_Cll(n—z)/(n-(n—Z)a) +c2 s

where
_ I (n=2) (=1 /(n-(n-2)a)
a=cx(is7) '
2
c I

= o (n—2)|S, [ R™
In case of n=2, we obtain the following by using (2.2)~(2.4):

12
O(u)=— £ log 2+C;,

where
_ Ia—1) I 1 1 I? S N
o= 108( 5 ) H(T — 27 1) g ) [T D xSl R
Here C; is depends only on I, @, R. Thus we have proved our this lemma.

(Q.E.D.)

Remark 2. The lemmas in this section are valid for 0<a<(n+2)/(n—2).

§3. The estimate of @ (x) in general case.

In this section, we extend the result of the preceding section. When we
emphasis that @(u) or V depend on g(x, s) or 2, we write @,, @y, V, or Vy.
The next lemma is concerned with the relation between £ and @ when we fix
g(x, u).

N
LEMMA 3.1. Let 2, and 8, be any domains in R™ such that 2,CQ,. Assume
(Al) and (A2) and that 2 is a sufficiently large number. Then it follows that

inf @, (v)= inf Do, (v).
veV_Q1 veVQZ

Proof. Let u; be a minimizer of Q)gl. The existence of u; is guaranteed
in Brezis [7]. Let us define u, by the following formula.
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u(x) xe80,,

uz(x)E{
u(082,) xEQN\02,.

Since A is a sufficiently large number, we have u(02,)<0. By the definition of
® and V, we obtain
u(x)eVo,
and
¢91(u1)=@92(uz) .

Thus it follows that

inf @p (v)= inf Dy,(v). Q. E.D.)

'vEV_(_)1 UEVQZ

We need the next lemma to prove lemma 3.3.

LEMMA 3.2. Assume that u’ s the solution of (V) for g(x, s)=gx, s)=Ks%.
Then it follows that
O(u'+1)=Py(u')  for Yy=R,
where D=0,

Proof. By the definition of @,(u), we have
’ ,___l. 7|2 _ )‘ ’ a+1 1 0] s
Ouutn)=gl, (VW dx— g Katrde s 1@ +).

So we obtain

G
—a};@o(u’—{—r):—ZSQK(u’—}—‘/)“a'x—{—I.

Since u’ is the solution of (V), u’ is a solution of (P). So u’ satisfies

Zgogo(x, udx=I.

Then we have

SO0 GE r=0).
Moreover since g,(x, s) is monotonically increasing, we have
D> (E 7<0),
0 ;. : \
3_7@°(u +7)<0 (if 7>0).
Thus we have proved the this lemma. (Q.E.D.)

In the next lemma, we consider the relation between g and @ when we
fix 0.
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LEMMA 3.3. Assume that g(x, s) satisfies (Al) and (A2). Then it follows that
. < i
vg},fgqjg(v):vég;@go(v) ,
where gox, s)=Ks%.

Proof. Let u’ be the solution of (V) for go(x, s). Since g(x, s) grows to
infinity as s grows to infinity, there exist y=R™ which satisfies

ZSQg(x, WApdx=I.

This implies that
wtreV,.
By this fact, it follows that
0

H 1 712 * !’
vlenvfg¢g(v)§@g(u’+7’):ESQIVu | dx~ZSQS Tg(x, s)dxds+1(u'(02)+7)
(by using our assumption (AZ2))
<lS qu’Ide-ZS ST (x, s)dxds+I(u'@Q)+7)
=2J)e 0)y 8%

= @go(u/+r)
(by lemma 3.2)

lIA

@go(u/)
= inf @, (). (Q.E.D.)

DEVgO

By using lemma 3.3, we extend lemma 2.3 to the following form:
LEMMA 3.4. Assume (Al) and (A2). Let R be the maximum of radius of
balls contained in 2 and u be the solution of V. Then it follows that
_C’lz(n—Z)/(n—(n—Q)a)_}_éz Gf n>2),
Ou)< 12
- 8m

log A+C, (f n=2),

where 61, 52 and 53 are constants, which depend on n, I, K, a, R.
Proof. By using lemma 3.1 and 3.3, we can estimate @(u) as follows:

O(uw)= inf @, ov)

vEVg,_Q

é inf @g, BR(U)
UEVg. Bp

< inf @, 3.).
€V g0, B 0 2R

Since lemma 2.3 gives an estimate for infveygo, BR@go, s(v), then we obtain this
lemma. (Q.E.D.)
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Remark 3. Further we can show the following strengthend form of lemma
3.4 under some assumption. Let R, be the maximum of the radius of a ball
contained in £ and let R, be the minimum of the radius of a ball which contains
0. Assume (Al), (A2) and that A is sufficiently large. If there exist K, K|,
a,, a; such that 1<a,<a;<p, 0<K,, K, and K,s?°<g(x, s)<K;s*t forall x€8
and all s>0, then it follows that

_Cil(n—Z)/(n—(n—2)a1)+Cé§@(u)§_Cgl(n-zﬂm—(n—zmo)_'_c; (lf 7’L>2),
2
(D(u):—~1—log A+0(1) (if n=2).
8
Here C;>0, C; are constants which depend on n, I, K, a;, R,; and C;>0, C;
are constants which depend on n, I, K,, @y, K, Moreover 0(1) denote the

quantity which remain bounded for 2 and depends on n, I, K,, K|, a,, a;, R, Ri.

Remark 4. The result of this section is valid if we replace (A2) by

(A2') glx, )=Ks*  for Yxef, *K>0, 0<3a<p, Ys=0.

4. An asymptotic property of a variational solution of (V).

We need the next lemma to estimate the size of £, in Theorem 4.2.

LEMMA 4.1. If u is the solution of (V), then it follows that
u(@= —?—@(u) .
Remark 5. In case when 1 is sufficiently large,
4G = 2| 0|
since @(u)<0.

Proof. Let u be a solution of (V). Integrating by parts, we have

2 —
SQP [Vu| dx—lggpug(x, wydx,

4.1)
SQ |Vultdx=—Tu@9).
Since g(x, -) is a convex function, we obtain
85, 8) 85D g gos<, 4.2)

N t
And we have
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—%ug(x, u)—-S:g(x, s)ds=S:(ix’;—uls—g(x, s))ds. 4.3)

So by using (4.1)~(4.3), we obtain

2 I
d)(u):—z‘ggpug(X, u)dx——z—u(a.Q)
S g"“ (x, $)dsdx+Tu(@Q)

Su(x) g(x u) —g(x, S))dsdx+%[u(a.9)

Il

L_,—,

2

=

Tu(09). (Q E.D)

l\’:lv—l

The next theorem is the main theorem in this paper.
THEOREM 4.2. Let u and 2, be the solution of (V). If g(x, s) satisfies (Al)
and (A2) and 2 is a sufficiently large number, then it follows that

_C
log 2

d(Qp)éC/z—(n—2)/2(n—(n—2)a) Gf n>2),

diam(2,)= (if n=2),

where d(£2,) 1s the maximum of the measure of the cross section of 02, by an
(n—1)-dimensional hyperplane and C depends on n, I, K, a, £2.

Proof of case of n=2. In this proof we use the method of Caffarelli and
Freedman [8]. We choose A and B such that | A—B|=diam(£2,) and A, B€0d®,.
Consider the family of straight lines 7, passing throught x and orthogonal to

AB when x varies on AB. Denote by d,=7,z, a segment lying in 7, such that
9:€092, 2,02, and 6,C0Q, Then we have

0
u(y,)—u(z,)=§5 %—dl .
By using the identities u(y.)=u(02), u(z,)=0, we obtain
[u(@.Q)[éSa |V dl. 4.3)

If we integrate this with respect to x from A to B, then we have

B
[B—Allu(&.Q)]éSAL |Vu|didi,

(7, o) < -av
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g(gg 1Vu|2dx)”2>< | B— A2 (diam ()2
By using (4.1), we obtain
| B—A| | u@2)| <I'*| w(3Q)] | B— A |2 (diam (2))'2.

Then it follows that
|B—A| <1 u(@2)|*Xdiam(£2).

By using Lemma 3.4 and Lemma 4.1, we obtain the theorem in case of n=2.
(Q.E.D.)
Proof of case of n>2. Choose S and an (n—1)-dimensional hypersurface S’
such that |S|=d(2,) and S=S'"2,, where |S| is the (n—1)-dimensional
Lebesgue measure of S. Let x be an arbitrary point contained in S. When x
varies in S, we consider the family of straight lines /% and of points P,, Q,,
which satisfy the following condition. /% is a line that contains x and orthog-
onal to S. /% is a line contained in S such that /£ (=2, ---, n) is orthogonal to
I3 (1=j<4) and passing through x. Let P;€0R,, Q;=082, be points such that
P, Q;€li. If there are more than three points in 0£2,N\%, we choose P, @,
in such a way that the distance from P, to @, is the longest of all. Choose T,
in /LMo such that P, T, belongs to 2, Of course P, Q, and T, depend on
x. Let n; be an /-dimensional hyperplane which contains /4 (1=<7=<7). And let
7, be an intersection of £, with =]. In particular, x, contains P,7; and =, is
equal to £,. We can assume that (% is orthogonal to the (n—1)-dimensional
hyperplane: x,=0. By using the identities u(Q,)=0, u(T,)=u(02), we have

Py
w@)={ Do udx, .
1
Then we obtain

w@)I=| |Tuldx,.
1
By integrating both side of the above formula from P, to Q,, it follows that

Py Py

(u(a.Q)[S dngg S |Vu|dxidxs
Q2 Q2Jmy
gj [Vu|dx, .
Ty

By repeating this process, we obtain

|ua<9>]S::--.S::dx2 dxnggﬂn]Vu[dxl o dx,

=S0v|Vuldx
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. Py Py
Since SQ S dx, - dx,=|S|, we have

Q2

| u(09)] 15|§SQ \Vuldx

<i0p(l, (Tulrdz)"

=21 u(@Q)| 2 x '/
Then we obtain
(d(2,)=)|S|Z| 2|2 u(@Q)| 12X 2,
By using lemma 3.4 and lemma 4.1, we obtain this theorem. (Q. E.D.)

Remark 6. Even if we use the type of the estimates of Remark 3 in place
of lemma 3.4 in the proof of the above theorem, we can not improve the esti-
mate of £2,.

Remark 7. In case of n=2, we can extend this result to
diam (£2,)<Ca-/2

by using the method of Freedman [2] (lemma 13.5~lemma 13.7). But we can
not apply this method in case of n>2.

The next corollary is an estimate of the size of the level curves of the
solution of (V). We define 2, by 2,={xeQ; u(x)=—t}. In particular 2, is
equal to 2,.

COROLLARY 4.3. Let u be a solution of (V). If g(x, s) satisfies (Al) and
(A2) and 2 is sufficiently large, then it follows that

diam (2 (@f n=2),

C
< -
D= log 4
d(Qt)§CZ-(n—2)/2(n—(n—2>a) (Zf n>2)’
where C depends on I, n, K, a, 2, t.

Proof. This corollary is trivial in case of t<0 since £,202,. Thus we
consider the case of t>0. We use notations as in Theorem 4.2 with replacing
2, by 2, In case of n=2, we have

lu(6‘9>+t|§S5 Vuldi.

Applying the process of the proof of Theorem 4.2, it follows that

- I u(082)]

=Tue@)+* .

[B—A|
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On the other hand we obtain

w2+ = u32)] (4.5)

for sufficiently large 2 since u(02)<0 and u(0£2)——co as A—oco (by using lemma
3.4 and lemma 4.1). (4.4) and (4.5) implies that

|B—A|=4Ilu(@2)| .

Then we obtain this corollary by using lemma 3.4 and lemma 4.1. By using
this process, we can show this corollary in case of n>2. (Q. E. D.)

§5. A symmetric property of a solution of (P).

In this section we discuss a symmetric property of solution of (P). We say
a function is “symmetric” if it is symmetric with respect to the (n—1)-dimen-
sional hyperplane: x,=0. The symmetricity with respect to the (n—1)-dimen-
sional hyperplane : x,=0 is not essentially. Our argument is possible under a
transformation z such that zer=identity and A is invariant under z. In this
section we assume that £ is symmetric.

Let {1,} denote the eigenvalues of the equation:

{—-Agz):lgo in 0,
e HI(2),

where 1,+;=4,. And {2} are the eigenvalues whose eigenfunctions are sym-
metric, provided that A%.,=A1%

The next theorem is concerned with the existence and the uniqueness of the
symmetric solution of (P).

THEOREM b5.1. If g(x, s) satisfies (Al), (A2) and (A3), there exists a sym-
metric solution of (P). Moreover if g(x, s) satisfies (Al), (A2), (A3) and (A4), and

[I and A are constants such that a free boundary
exists for any solution of (P).7, 5.1

then it follows that a symmetric solution of (P) is uniquely determuned for
AL A¥/ M.

Remark 8. Under what conditions the statement (5.1) is satisfied ?
By the proposition 7 and proposition 8 in Ambrosetti and Mancini [1], a
free boundary exists under either of the following conditions.

Iinf lim =m,>0,

g(x, s)
zEQ $s-0 S

I : sufficiently small,
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or

3nf lim
zEQ s-00

=Me>0,
I : sufficiently large,
Moo

Then by using our theorem, we obtain the uniqueness of the symmetric solution
under the following condition :

ES
A <AL 4 ,  I: sufficiently small,
Mo M
or
—52—1—<"Z< : I: sufficiently large
Moo M’ ’ ’

Since M=m,, m., this interval may be empty in some cases. But the interval
is not empty in the following simple example. We choose a domain £ such that
A <A, We define g(x, s) as follows:

0 (s<0)
g(x, s)=1 as (0=5=5s,)
LUbs+(a—b)sy,  (54<8),

where a and b are constants such that 0<a<b and b/a<2¥/4,. Then the sym-
metric solution is uniquely determined for A<[A,/a, 4¥/b] if A is sufficiently
small. If A is sufficiently large, the unique symmetric solution exists for
2€(A,/b, 2¥/b) without our assumption b/a <2A¥/1;.

Proof of the existence. We define successively {u,} as follows. Let u, be
an element in W={a symmetric function in V} and wu, be a solution of the
following system :

[—Aunzlg(x, Up-1) in 0,

un|s0=unknown constant, (5.2)
Zggg(x, wndx=I .

By a proposition (p. 424) in Berestycki and Brezis [7], {u,} converges to the
solution of (P) in W under the assumption (Al) and (A2). Here we choose u,
which is symmetric. We will show that u, is symmetric if u,-; iS symmetric.
Let us consider the following Dirichlet problem :
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—Ap=2g(x, Un_y) in 02,
{ p=re (5.3)

¢la0=0

This Dirichlet problem is uniquely solvable (See: Ch. 4 in Gilbarg and Trudinger
[4]). Since

lim ZS g(x, $)dx=0
so-c0 JRQ
and

lim xS g(x, s)dx=co,
§—00 2

g(x, s) is continuous and g L*(f), there exist a constant ¢= R such that
ZSgg(x, o+c)dx=I

Then ¢-c satisfies (5.2). We define u,=¢+c. Then u, is the solution of (5.2).
We assume that u, is not symmetric. i e. ¢ is not symmetric. We define ¢’
by the following.

O (x1, =+, Xpo1, Xa)=@(X1, =, Xn-1, —Xn)

o#¢’ and ¢’ is a solution of (5.3). This contradicts the uniqueness of (5.3). So
U, is symmetric. Then u, converge to a function €W and u is the symmetric
solution of (P). (Q.E.D.)

Proof of uniqueness. In this proof we use the method of Sermange [11].
Let u; and u, be two symmetric solutions of the problem (P). And let w; be a
plasma domain of u,. We can assume u,(092)=u,(0%). We define #,(x) as fol-
lows. In case of u.(002)=u,(002), we set

(x)=u,(x) .
In case of u,(02)>u,(002), we set il,(x)€H' () such that
u;(x) (if xew,),
JO (if x€0@,),
- harmonic  (if xe2 @),

ul(x)_—_
l u(042) (if x€0).

Then #,(x) satisfies
—Afl(x)=2g(x, fi,(x)) in £,
[ A g, wNdr=1,

in the sense of H(£). But #,(x) is not the solution of (P) since u does not
belong to H¥(Q). We set w(x)=1;(x)—uy(x), then w(x) satisfies the following.
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—Aw=2A(g(x, t(x)—g(x, ux)),
(5.4)
weHYD).
On the other hand if we set

{ 0 (if  di(x)=us(x)),
hix)= g(x, t(x)—g(x, usx)) ) N ~ ‘
(%) —us(x) Gf  @.(x)=us(x)),

then h(x) is a measurable symmetric function.

And we have

0Zhix)sM (5.5)
by our assumption (A4) and the monotone increasing property of g(x, ). By
using the definition of A(x), we can rewrite (5.4) as follows.

—Aw=2hw in 2,
(5.6)
weHYQ).
Thus w is an eigenfunction and 2 is an eigenvalue in (5.6).
We compare the following two eigenvalue problems :
—Ap=p*h in £,
{ ¢ 4 (5.7)
peHi9Q),
2*
—Ap=(=+)M¢ in £,
{ (M ) (5.8)
YEHND),
where p* is an eigenvalue whose eigenfunction ¢ is symmetric. (5.8) is an
ordinary eigenvalue problem. By (5.5) we have
2*
x>
o= M

And by this fact and our assumption, we obtain

-
M=

Since A is an eigenvalue of (5.7), it follows that

2=p¥,
i.e. w(x) is the first eigenfunction of (5.7). Since w(x) is symmetric, we have
w>0 (or w<0) in 2,

e, #i(x)>u, (or #,(x)<u,) in 0.
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By this fact and the monotone increasing property of g(x, -), it follows that

I:lggg(x, ﬁl(x))dx>lggg(x, uo(x))dx=1 .

This is a contradiction. Thus we have proved the uniqueness of symmetric
solutions. Q. E.D.)

Remark 9. We can rewrite (5.1) as follows. “J and A are constants such
that a free boundary exists for any symmetric solution of (P).”

[1l
£2]
L3l
[4]

L5]
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