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ON A FREE BOUNDARY PROBLEM OF

PLASMA EQUILIBRIA

-ASYMPTOTIC BEHAVIOR AND SYMMETRIC

PROPERTY OF A SOLUTION—

BY KIYOSHI MATSUBARA

§ 1. Introduction.

A simple model of a confused plasma in tokomak machine can be described
by the following system:

(E)

f -Au=λg(x, u) in Ωp={x^Ω \ u(x)>0}, (1.1)

-Δw=0 in Ω\Ωp, (1.2)

u I dΩ—unknown constant, (1.3)

— \ -w-ds=I (given positive constant), (1.4)
JdΩ OV

where Ω is a bounded domain in Rn with a smooth boundary and λ is a given
positive parameter. Ωp is called a plasma domain and Ω\ΩP is called a vacuum
domain. We consider the free boundary problem of the following type:

(P) Find: u^H\Ω) and ΩpdΩ s.t. u and Ωp satisfy (E).

We call 8ΩP a free boundary.
We consider this problem under the assumptions:

(Al)

{ g(x, s)=0 if s^O, (1.5)

g(x, s)>0 if s > 0 , (1.6)

g(x, s) is continuous in ΩxR,

lim g ( x ; S ) =0 uniformly in Ω,

where p = n/(n—2) (if n>2) and p = *po>l (if n=2). By using (1.5) and (1.6),
we can rewrite (1.1) and (1.2) as follows.
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—Δu—λg(x> u) in fl.

The problem (P) can be formulated as the following variational problem:
(See Berestycki and Brezis [7])

(V)

ZΞH\Ω); w|^=constant, M g(x> M ) = / |

= 4 ( \lu\2dx-λ[ [U(X)g(x, s)dsdx+Iu(dΩ)

Find: u^V s.t. Φ(u)^'mfΌ&vΦ(v).

The problem (P) has been considered by several authers. First Temam [14]
proved the existence of the solution in case of g(x, s)=s+, where s+=max{0, s}
by using the variational method. We call this case " g(x, s) is linear ", and the
other case " g(x, s) is non-linear". In linear case, several methods of proof of
the existence of the solution of (P) are known. (See: Freedman [2], Sermange
[10], K. C. Chang [3]) In non-linear case with n—2 or 3, Temam [13] proved
the existence of the solution. In non-linear case with n^2, Berestycki and
Brezis [7] proved the existence of the solution of (V) in W3>a(Ω)Ca>l) under
the assumption that g(x) is convex and g(x) satisfies (Al) by the variational
method which is different from Temam's method [13]. In [7], they gave two
other proofs, which are the method of successive approximation and the method
of Leray-Schauder degree. In non-linear case Ambrosetti and Mancini [1] proved
that the free boundary exists if λ is sufficiently large under the assumption (Al)
by using the method of Leray-Schauder degree and the bifurcation theory. And
geometric property of Ωp is studied by several authers. Berestycki and Brezis
[7] showed Ωp is connected. Kinderlehrer and Spruck [5] showed that dΩp is
C2 a ( 0 ^ α < l ) in linear case with n—2. Moreover Spruck and Caffarelli [9]
showed that the level line of the solution u is convex if Ω is convex.

Caffarelli and Freedman [8] studied the problem (V) in case when g(x, s) is
linear and n—2. They showed that

diam (Ωp) —» 0 as λ—>oo.

In this paper, we extend the result of Caffarelli and Freedman to non-linear case
with n^2 .

We obtain the following result. We consider the solution of (V) under the
following conditions:

ί g(x, s)^Ksa for Ίx^Ω, 3/ί>0, l^a<p,
(A2)

{ g(x, •) is convex for all fixed iGi3

We assume (Al) and (A2). Then we obtain

d(Ωp)-+0 as Λ->oo, (1.7)
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where d(Ωp) is the maximum of the measure of the cross section of dΩp by an
(n—l)-dimensional hyperplane.

The last section is devoted to the result about the symmetricity. We assume
that Ω and g(x, s) have symmetric property, i. e. Ω is symmetric for the (n—1)-
dimensional hyperplane: xn=0 and that g(x, s) satisfies

(A3) g ( x 1 } x 2 , •" , x n , s ) = g ( x 1 } x 2 , • » , - x n , s ) .

Previously Sermange [11] showed the uniqueness of the symmetric solution for
some λ in linear case with n=2. We extend this result to non-linear case with
n^2. We assume that g(x, s) satisfies the following conditions:

(A4) sup

We show the existence of the symmetric solution under the assumptions (Al)~
(A3), and the uniqueness of the symmetric solution under the assumptions (Al)
~(A4) for some λ.

In sections 2~4, we prove (1.7) by using the method introduced by Caffarelli
and Friedman [8]. In section 2, we estimate Φ(u) in special case. Next we
extend this estimate to general case in section 3. In section 4, we estimate the
size of plasma domain of the solution of (V) by using an estimate of Φ(u). In
section 5, we consider the existence and uniqueness of the symmetric solution
of (P) by the method of Sermange [11].

The auther wishes to thank Prof. Y. Hirasawa and Prof. T. Nishimoto for
many helpful discussions and valuable comments.

§ 2. Estimate of Φ (u) in special case.

In this section we assume that

(A5)

where BR is a ball with its radius R in Rn. In the next section, we will extend
this estimate in this section to general case.

Let u0 be the solution of the following problem:

—Au o — u$ in Bx

u L n —Π /o n

uo>O in Bx

Lions [12] and Amann [6] guaranteed the existence and uniqueness of the
solution of (2.1) for 0<a<(n-\-2)/(n-2) and aΦl. By Freedman [2] (pp. 531),
uQ(x) depends only on \x\. In the rest of this paper, A denote |VWO(Λ:)| =



ON A FREE BOUNDARY PROBLEM 55

supiaM=i|VMo(#)| for | x | = l . Λ depends only on a and n.
The following lemma gives us one method of an explicit construction of a

solution of (P).

LEMMA 2.1. Assume (A5) and aΦ\. Then the solution of (P) exists uniquelyr

and a plasma domain Ωv is a ball with its radius given by

( λla~l

and then u(x) is given as follows: In case of n=2,

i n

^ : (logε-log|x|) in BR\Bε.

In case of n>2,

u(x) =
2Λ\Sn

-M0(j) in Bt,

(n-2)εn-*\Sn

where \Sn\ is area of surface of unit ball in Rn.

i n

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Proof. The spherical symmetric property of u(x) is guaranteed in [2] and [6]
(§.3). Therefore it suffices to consider this problem only in case when the free
boundary is a ball. u(x) satisfies (1.3). By (2.4) and (2.6), u(x) satisfies Δw=0
in BR\Bε since log |* | (or l^l2"71) is an elementary solution of Laplacian in case
of n—2 (or n>2, respectively). By using (2.2), (2.3) and (2.5), we have

Au=λua in Be.

du
Thus u satisfies (1.1) and (1.2). By using (2.4) and (2.6), we have —\ -~-

= / . By using

and Theorem 7.8 in Gilbarg and Trudinger [4], we obtain u^H2(Ω). So an
easy calculation give us the uniqueness of the solution of (P). Then u(x) defined
in the statemant in Lemma 2.1 is the solution of (P) and (V) by the uniqueness
of the solution of (P). (Q. E. D.)

Remark 1. In the above lemma, the restriction aΦ\ is not essential. In
case of α = l , we can construct an explicit solution by using the first eigenfunc-
tion ux and eigenvalue λly and replacing u0 by Λwi (See : Caffarelli and Freedman
[8]).

The purpose of the rest of this section is to estimate Φ{u). To this end,
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we discuss the property of a solution of (2.1) in the following lemma.

LEMMA 2.2. Let u0 be a solution of (2.1). Then it follows that

Proof. In Bμ ( 0 < μ ^ l ) , it follows that Δw0<0 and uo is not a constant. By
Theorem 3.5 in Gilbarg and Trudinger [4], we have

UQ(X)^> UQ(X) \dBμ—Cμ i n B μ ,

where cμ is a constant depending only on μ. So by Lemma 3.4 in Gilbarg and
Trudinger [4], we obtain

du0

d\) \X\=μ

Since μ is arbitrary in (0, 1], we have

^ 0 in B ι . (2.7)

On the other hand Auo= n_1

 m~ϊ~yn~ι-~ϊj since uo(x) is depend only on

r ( = | x | ) . Thus we have

It follows that

dr2

n

Thus duo/dr is decreasing for r e [ 0 , 1]. By this fact and (2.7), we have

=const. in Bx.dr dr

/ dlln \ ^

Since f-̂ —j =\luo(x)\2, we obtain

Hence it follows that

[ |VM0|
2d*<;(volume of B1)xA2=—J^A2. (Q.E.D.)

jBi n

In the following lemma, Φ(u) is calculated for special case.
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LEMMA 2.3. Assume (A5). Then it follows that

_ d ; ί ( n - 2 ) / ( n - ( n - 2 ) α ) + C 2 (if n>2),

— ~Q— log λ-i-Cs (if n = 2 ) ,

where CΊ (/=1, 2, 3) αr£ constants such that Cι—Cλ(n, I, α)>0, C2=C2(n, I, R),
and CZ=CZ(I, a, R).

Proof. By Lemma 1.2, u is determined by (2.2)~(2.6). Let us define Φi(u)

(ι = l, 2, 3, 4) by

S fu(a )

sadsdx,

where β υ is βxβ^. By using (2.2), (2.5) and (2.6), we have

2(n-2)|SJ

(ifn=2),

( n - 2 ) | S n

I2

(log ε — log (if n = 2 ) ,

where ε is defined by (2.2). First we consider our lemma in case of n>2.
Since Φ ( M ) = Φ I ( M ) + Φ 2 ( M ) + Φ S ( M ) + Φ 4 ( M ) , we obtain the following:

where

2(n-2) |S» |
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Since a<(n+2)/(n— 2), we have

| 7 M > ( x ) l d x 2 (n-2) |S , |

By using lemma 2.2, we obtain

/2 /2

4 n 2 | S n | 2 ( n - 2 ) | S n | ^

So we have C4>0, which depend only on n, I, a. By using the definition of ε,
we can express Φ(u) as follows:

where
(n-2)(α-l)/(τι-(ra-2)α)

C i - C < x ( ^ | £

Γ
C2ΞΞlUn

In case of n=2, we obtain the following by using (2.2)~(2.4):

where

C8Ξ-

Here C3 is depends only on /, a, R. Thus we have proved our this lemma.
(Q. E. D.)

Remark 2. The lemmas in this section are valid for 0<α<(n+2)/(n—2).

§ 3. The estimate of Φ (w) in general case.

In this section, we extend the result of the preceding section. When we
emphasis that Φ(u) or V depend on g(x, s) or Ω, we write Φgy ΦQ, Vg or VQ.
The next lemma is concerned with the relation between Ω and Φ when we fix
g(x, u).

LEMMA 3.1. Let Ωλ and Ω2 be any domains in Rn such that ΩιdΩ2. Assume
(Al) and (A2) and that λ is a sufficiently large number. Then it follows that

inf ΦQXV)^ inf ΦQSV).

Proof. Let ux be a minimizer of ΦQV The existence of wx is guaranteed
in Brezis [7], Let us define u2 by the following formula.
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u(x)

Since λ is a sufficiently large number, we have M(3]3I)<0. By the definition of
Φ and Vy we obtain

M2(l)G^2

and

Thus it follows that
inf ΦQXV)^ inf Φplv). (Q. E. D.)

We need the next lemma to prove lemma 3.3.

LEMMA 3.2. Assume that uf is the solution of (V) for g{x, s)=go(x, s) = Ks+.
Then it follows that

Φo(u'+r)^Φo(u') for "γ^R,
where Φ0=ΦgQ.

Proof By the definition of Φ0(u), we have

So we obtain

Since uf is the solution of (V), u' is a solution of (P). So uf satisfies

Then we have

~Φo(u'-{-r)=o (if r=o).

Moreover since go(x, s) is monotonically increasing, we have

^-Φo(u/+r)>o (if r<0),

Φ(~Φo(wτr)<o αf r>0).

Thus we have proved the this lemma. (Q. E. D.)

In the next lemma, we consider the relation between g and Φ when we
fix Ω.
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LEMMA 3.3. Assume that g(x, s) satisfies (Al) and (A2). Then it follows that

inf Φg(v)< inf ΦgQ(v),
V<EVg VZVgQ °

where gQ(x, s)=Ks%.

Proof. Let u' be the solution of (V) for go(x, s). Since g(x, s) grows to
infinity as s grows to infinity, there exist γ^Rn which satisfies

This implies that

By this fact, it follows that

JinfΦ,(ι;)gΦ,(u'+r) = ^

(by using our assumption (A2))

(by lemma 3.2)

= ^ n f Φg0(v). (Q. E. D.)

By using lemma 3.3, we extend lemma 2.3 to the following form:
LEMMA 3.4. Assume (Al) and (A2). Let R be the maximum of radius of

balls contained in Ω and u be the solution of V. Then it follows that

(tf n = 2 ) ,

where Clf C2 and C3 are constants, which depend on n, I, K, a, R.
Proof. By using lemma 3.1 and 3.3, we can estimate Φ{ύ) as follows:

Φ(u)= inf Φg,Ω(v)

Since lemma 2.3 gives an estimate for infυevgOtBRΦgQ.BR(v), then we obtain this

lemma. (Q. E. D.)
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Remark 3. Further we can show the following strengthend form of lemma
3.4 under some assumption. Let Ro be the maximum of the radius of a ball
contained in Ω and let Rx be the minimum of the radius of a ball which contains
Ω. Assume (Al), (A2) and that λ is sufficiently large. If there exist Ko, Kl}

a0, ax such that l^a^ax<p, 0<K0, Kλ and Kos
a°£g(x, s)^^"1 for all x

and all s>0, then it follows that

(if 7i>2),

Here C[>0f C'2 are constants which depend on n, I, Klf a1} i?x and Q>0, C[
are constants which depend on n, I, Ko, a0, Ro. Moreover 0(1) denote the
quantity which remain bounded for λ and depends on n, /, Ko, Klf a0, alf Ro, Ri*

Remark 4. The result of this section is valid if we replace (A2) by

(A20 g(x, s)^Ksa for v xeβ, *K>0, 0<3a<p, vs^0.

4. An asymptotic property of a variational solution of (V).

We need the next lemma to estimate the size of Ωp in Theorem 4.2.

LEMMA 4.1. // u is the solution of (V), then it follows that

Φ()

Remark 5. In case when λ is sufficiently large,

since Φ(u)<0.

Proof. Let u be a solution of (V). Integrating by parts, we have

\ \Vιι\2dx=λ\ ug{x, u)dx,
)av )ap ( 4 i )

f \lu\2dx = -Iu{dΩ).

Since g{x, •) is a convex function, we obtain

g^A^gψL f o r o g s ^ _ ( 4 2 )

And we have
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~ug(x, u)-\Ug(x, s)ds=\Ί8(x'u) s-g(x, s))ds . (4.3)
Δ Jo Jo \ U /

So by using (4.1)~(4.3), we obtain

-A [UiX)g(x, s)dsdx+Iu(dΩ)
JΩJo

(Q. E. D.)

The next theorem is the main theorem in this paper.

THEOREM 4.2. Let u and Ωp be the solution of (V). // g(x, s) satisfies (Al)
and (A2) and λ is a sufficiently large number, then it follows that

C (if n=2),
logλ

(»-2)/»(»-(»-2,«) { i f n > 2 ) >

where d(Ωp) is the maximum of the measure of the cross section of dΩp by an
(n — iydimensional hyper plane and C depends on n, I, K, a, Ω.

Proof of case of n—2. In this proof we use the method of Caffarelli and
Freedman [8]. We choose A and B such that \A—B\—dSzm(Ωp) and A, B<B3ΩP.
Consider the family of straight lines γx passing throught x and orthogonal to
~AB when x varies on AB. Denote by δx — yxzx a segment lying in γx such that

2, zx^dΩp and δxczΩυ. Then we have

By using the identities u(yx) — u(dΩ), u(zx)—0, we obtain

\u(dΩ)\^\ \lu\dl. (4.3)

If we integrate this with respect to x from A to B, then we have

\B-A\\u(dΩ)\^\B[ \lu\dldl,
JAjδx
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^(f \Vu\2dx)mχ\B-A\1/2X(diam(Ω)y/2.

By using (4.1), we obtain

\B-Λ\\u(dΩ)\^I1/2\u(dΩ)\1/2\B~Λ\1/2X(άiam(Ω)y/2.

Then it follows that

By using Lemma 3.4 and Lemma 4.1, we obtain the theorem in case of n=2.
(Q. E. D.)

Proof of case of n>2. Choose S and an (n—l)-dimensional hypersurface S'
such that \S\=d(Ωp) and S=S'Γ\ΩP, where \S\ is the (n—l)-dimensional
Lebesgue measure of S. Let x be an arbitrary point contained in S. When x
varies in S, we consider the family of straight lines lx and of points Plf Qlf

which satisfy the following condition. lx is a line that contains x and orthog-
onal to 5. lx is a line contained in 5 such that lx (i—2, •••, n) is orthogonal to
lχ iX^j<i) and passing through x. Let Pi^dΩp, Qi^dΩp be points such that
Pi, Qi^li- If there are more than three points in dΩpΓΛlΐ, we choose Pl} Qx

in such a way that the distance from Pτ to Qτ is the longest of all. Choose TΊ
in lxΓ\dΩ such that P1T1 belongs to Ωυ. Of course Plf Qz and Tx depend on
x. Let πi be an /-dimensional hyperplane which contains Vx (l^j^i). And let
πt be an intersection of Ωυ with π[. In particular, πx contains PxTi and πn is
equal to Ωv. We can assume that lx is orthogonal to the (n—l)-dimensional
hyperplane: xz—0. By using the identities w(Qi)=0, u{T^) — u(dΩ), we have

Then we obtain

By integrating both side of the above formula from P2 to Q2, it follows that

\7u\dXldx2

By repeating this process, we obtain

~dxn^\ \Ίu\dXl~ dxn
Qn JQ2

= \lu\dx
JΩn
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ί
pn rp2

•••I dx2 ••• dxn^\S\, we have
Qn JQ2

\u(dΩ)\\S\S-\ \lu\dx

/Γ \l

^\Ω\1/2(\ \lu\2dx)

Then we obtain
(d(Ωp)=)\S\^\Ω\1/2\u(dΩ)\-1/2xI1/2.

By using lemma 3.4 and lemma 4.1, we obtain this theorem. (Q. E. D.)

Remark 6. Even if we use the type of the estimates of Remark 3 in place
of lemma 3.4 in the proof of the above theorem, we can not improve the esti-
mate of Ωp.

Remark 7. In case of n=2, we can extend this result to

by using the method of Freedman [2] (lemma 13.5Memma 13.7). But we can
not apply this method in case of n>2.

The next corollary is an estimate of the size of the level curves of the
solution of (V). We define Ωt by Ωt={χ(=Ω; u{x)^—t). In particular Ωo is
equal to Ωp.

COROLLARY 4.3. Let u be a solution of (V). // g(x, s) satisfies (Al) and
(A2) and λ is sufficiently large, then it follows that

-r-̂ -r- {if n=2),
log/

( n - ! ) / 2 ( B - ( n " 2 ) β ) (// n>2),

where C depends on I, n, K, a, Ω, t.

Proof. This corollary is trivial in case of t<0 since Ωp^Ωt. Thus we
consider the case of f>0. We use notations as in Theorem 4.2 with replacing
Ωp by Ωt. In case of w=2, we have

\^\ \lu\dl.

Applying the process of the proof of Theorem 4.2, it follows that

( Λ Λ ^
( 4 4 )
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On the other hand we obtain

(4.5}

for sufficiently large λ since u(dΩ)<Q and u(dΩ)—>—oo as Λ-><χ> (by using lemma
3.4 and lemma 4.1). (4.4) and (4.5) implies that

Then we obtain this corollary by using lemma 3.4 and lemma 4.1. By using
this process, we can show this corollary in case of n>2. (Q. E. D.)

§5. A symmetric property of a solution of (P).

In this section we discuss a symmetric property of solution of (P). We say
a function is "symmetric" if it is symmetric with respect to the (n—l)-dimen-
sional hyperplane: xn=0. The symmetricity with respect to the (n — ̂ -dimen-
sional hyperplane: xn—ΰ is not essentially. Our argument is possible under a
transformation τ such that τ°τ=identity and Δ is invariant under τ. In this
section we assume that Ω is symmetric.

Let {λn} denote the eigenvalues of the equation:

ί — Aφ=λφ in Ω,

1
where λn+1^λn. And {λt\ are the eigenvalues whose eigenfunctions are sym-
metric, provided that λ%+1^λt.

The next theorem is concerned with the existence and the uniqueness of the
symmetric solution of (P).

THEOREM 5.1. // g(x, s) satisfies (Al), (A2) and (A3), there exists a sym-
metric solution of (P). Moreover if g(x, s) satisfies (Al), (A2), (A3) and (A4), and

[/ and λ are constants such that a free boundary

exists for any solution of (P).] , (5.1)

then it follows that a symmetric solution of (P) is uniquely determined for
λ<λf/M.

Remark 8. Under what conditions the statement (5.1) is satisfied ?
By the proposition 7 and proposition 8 in Ambrosetti and Mancini [1], a

free boundary exists under either of the following conditions.

3inf g ( x s )

XGΩ S->O S

/ : sufficiently small,
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or
3iinfn l moo
X<=Ω S^OO S

I: sufficiently large,

Then by using our theorem, we obtain the uniqueness of the symmetric solution
under the following condition:

m0 M '

or

I ' sufficiently small,

λ λ*
—~^^~i/Γ > ^ : sufficiently large.

Since M^m0> m*, this interval may be empty in some cases. But the interval
is not empty in the following simple example. We choose a domain Ω such that
λ1<λt. We define g(x, s) as follows:

0 (s<0)

as

bs+(a—b)s0 (so<s),

g(x, s) =

where a and b are constants such that 0<a<b and b/aKλf/λi. Then the sym-
metric solution is uniquely determined for λ&[λjaf λf/b] if λ is sufficiently
small. If λ is sufficiently large, the unique symmetric solution exists for
2Gft/&, λf/b) without our assumption

Proof of the existence. We define successively {un} as follows. Let uQ be
an element in W= {a symmetric function in V} and un be a solution of the
following system:

—Aun=λg(x, Un-x) in Ω,

un I s β ^ unknown constant, (5.2)

λ\g(x, un)dx—I.

By a proposition (p. 424) in Berestycki and Brezis [7], {un} converges to the
solution of (P) in W under the assumption (Al) and (A2). Here we choose u0

which is symmetric. We will show that un is symmetric if un-i is symmetric.
Let us consider the following Dirichlet problem:
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—Δφ=λg(x, un-i) in Ω,
(5.3)

This Dirichlet problem is uniquely solvable (See: Ch. 4 in Gilbarg and Trudinger
[4]). Since

lim λ\ g{x, s)dx=0
8-*-oo ]Ω°

and

lim A g{x, s)dx = oo ,
S-oo JΩ

g(x, s) is continuous and φ^L°°(Ω), there exist a constant c^R such that

Then φ+c satisfies (5.2). We define un=φ+c. Then un is the solution of (5.2).
We assume that un is not symmetric, i. e. φ is not symmetric. We define φ'
by the following.

φ'(x
u
 ••', Xn-l, Xn) = ψ(Xl, ••", ΛJn-i, — X

n
)

ψφψf and >̂r is a solution of (5.3). This contradicts the uniqueness of (5.3). So
un is symmetric. Then un converge to a function ^W and M is the symmetric
solution of (P). (Q. E. D.)

Proof of uniqueness. In this proof we use the method of Sermange [11].
Let Uι and u2 be two symmetric solutions of the problem (P). And let ωt be a
plasma domain of u%. We can assume u1(dΩ)^u2(dΩ). We define u^x) as fol-
lows. In case of u1{dΩ)=u2(dΩ), we set

In case of u1(dΩ)>u2(dΩ), we set ύ1{x)^H1{Ω) such that

( Ui(x) (if x^ωλ),

_jθ (if

harmonic (if

( u2(dΩ) (if
Then ux{x) satisfies

u1(x)=λg(x, Ui(x)) in Ω,

'(X, Ux))dx=I,

in the sense of H\Ω). But uλ{x) is not the solution of (P) since u does not
belong to H2(Ω). We set w(x) — u1(x)—u2(x), then w{x) satisfies the following.
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—Aw=λ(g(x, ΐίi(x))-~g(x, uz(x)),
(5.4)

On the other hand if we set

0 (if u1(x) = u2{x))f

then h(x) is a measurable symmetric function. And we have

(5.5)

by our assumption (A4) and the monotone increasing property of g(x, •)• By
using the definition of h(x), we can rewrite (5.4) as follows.

—Aw—λhw in Ω,
(5.6)

HKΩ

Thus w is an eigenf unction and λ is an eigenvalue in (5.6).
We compare the following two eigenvalue problems:

—Aφ—a*hφ in Ω,
(5.7)

Ω

in Ω,
(5.8)

where μ* is an eigenvalue whose eigenf unction ω is symmetric. (5.8) is an
ordmary eigenvalue problem. By (5.5) we have

λ*
μι= M'

And by this fact and our assumption, we obtain

λ<~M-μt

Since λ is an eigenvalue of (5.7), it follows that

λ=μΐ,

i.e. w{x) is the first eigenfunction of (5.7). Since w(x) is symmetric, we have

w>Q (or w<0) in Ω,

i.e. Wi(x)>w2 (or ύ1{x)<u2) in Ω.
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By this fact and the monotone increasing property of g(x, •), it follows that

I=λ\ g(x, u1(x))dx>λ\ g(x, u2(x))dx=I.

This is a contradiction. Thus we have proved the uniqueness of symmetric

solutions. (Q. E. D.)

Remark 9. We can rewrite (5.1) as follows. " / and λ are constants such

that a free boundary exists for any symmetric solution of (P)."
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