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THE DISTRIBUTION OF PICARD DIMENSIONS
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BY MITSURU NAKAI AND TOSHIMASA TADA

The purpose of this paper is to show that Picard dimensions of densities on
the punctured unit disk cover all countable cardinal numbers as well as the cardinal
number of continuum.

Before stating our result more precisely we first fix terminologies. We
denote by Ω the unit punctured disk 0< \z\ <1 which is viewed as an end of the
punctured sphere 0< \z\ ̂ ^> so that the unit circle \z\ = 1 is the relative boundary
dΩ of Ω and the origin z=0 is the ideal boundary δΩ of Ω. By a density P on
Ω we mean a nonnegative locally Holder continuous function P(z) on Ω — Ω\JdΩ
so that P may or may not have singularity at z—0. With a density P on_Ω we
associate the class PP(Ω dΩ) of nonnegative continuous functions u on Ω such
that u satisfies the following elliptic equation

( l ) 4 " a § F M ( e )

on Ω and vanishes on dΩ. We also denote by PPX{Ω dΩ) the subclass of
PP(Ω dΩ) consisting of functions u with the following normalization

( 2 )

The Choquet theorem (cf. e. g. Phelps [5]) yields that there exists a bijective
correspondence u<—>μ between PPx{Ω\dΩ) and the set of probability measures
μ on the set ex.PP^Ω dΩ) of extremal points of the convex set PP^Ω dΩ)
such that

r

v dμiy).

Thus the set ex.PPλ(Ω dΩ) is essential for the class PPX(Ω dΩ), and the cardinal
number #(ex. PPX(Ω dΩ)) of the set ex.PP^Ω dΩ) is referred to as the Picard
dimension of a density P at the ideal boundary δΩ of Ω, άimP in notation, i.e.
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(3) άimP=%(ex.PP1(Ω',dΩ)).

We are interested in the range dim 3) of the mapping P->dim P from the
totality 3) of densities P on Ω to the set of cardinal numbers. It is easily seen
(cf. e.g. [3]) that d i m P ^ l for any density P on Ω. Since PPλ(Ω dΩ) is a
subset of the space C(Ω) of real valued continuous functions on Ω which is
separable, the well known fact #(C(fl))=c implies that dimP^c, where c is the
cardinal number of continuum. Therefore we have

(4) l ^ d i m P ^ c (i. e. dim 3)C[1, c])

for every density P on Ω, where [1, c] is the interval consisting of cardinal
numbers m such that l^mrgc. We denote by N the set of positive integers and
by α the countably infinite cardinal number #iV and set Ξ—NVJ{a, c}. The
primary purpose of this paper is to prove the following result:

THE MAIN THEOREM. There exists a density Pm on Ω for any cardinal
number m in Ξ such that dimPm=m.

Therefore we have S c d i m £DC[1, c] so that ύ\m2)—Ξ if we assume the
continuum hypothesis Ξ—[l, c]. The proof is divided into two parts: the exist-
ence of canonically associated densities discussed in nos. 1-6, and three examples
of relative harmonic dimensions considered in nos. 8-14. The deduction of the
main theorem from the above two parts is given in no. 7.

§ 1. Canonically associated densities.

1. A sequence {Kn}™ of continua Kn possibly empty in Ω will be referred
to as a Ji-sequence in Ω if KnπKm=0 {nφm), W=Ω—{J?Kn is connected, and
{Kn} converges to δΩ: z=0, i. e. there exist only a finite number of Kn such
that KnΓ\{ε£ \z\ <1} Φ0 for every ε>0. We denote by JC(Ω) the set of JC-
sequences in Ω. The relative boundary dW of the region W=Ω—\J? Kn for a
JC-sequence {Kn}ΐ is 3W=(dΩ)U(\Jΐ dKn). We then consider the class HP(W dW)
of nonnegative harmonic functions on W with vanishing boundary values on dW
and the subclass HPX(W dW) of HP(W dW) consisting of those functions u with
the normalization (2). Similarly to the Picard dimension we define the relative
harmonic dimension, dim {if π} in notation, of a JC-sequence {Kn} at δΩ: z=0 by

( 5) άim{Kn} =#(ex. HPX{W dW)).

It is easy to see that, as in the case of Picard dimensions, l^άim{Kn}^c for
any Jί-sequence {Kn} in Ω. We will see in § 2 that the range dim JC(Ω) of the
mapping dim: J{(i2)->{cardinal numbers} also contains 3.

2. Suppose that each continuum Yn in a JC-sequence {Yn} in Ω is the
closure of a Jordan region Yn in Ω (n — l, 2, •••)• Such a JC-sequence will be
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referred to as a ^-sequence in Ω and we denote by <y(Ω) the class of ^/-sequences
m_Ω so that cg(Ω)dJ((Ω). Consider the region W=Ω—\J? 7n for a ^/-sequence
{Yn} and a density P on Ω such that supp.PcUT3 Ϋn=Ω—W. We denote by
//IT for each u in PP(β 942) the least nonnegative harmonic function on W
with boundary values u on dW (cf. e. g. Constantinescu-Cornea [1]). It is the
lower envelope of the family of superharmonic functions s on W with the lower
limit boundary values of s on dW being not less than u \ dW. Then the function
TPu = u-H% belongs to the class HP(W;dW) for every u in PP(Ω;dΩ)} and
u^TPu defines a mapping TP: PP(Ω dΩ)-*HP(W dW). It is easy to see that
the mapping TP is order preserving (i.e. u^u2 implies Tpu^TpUz), positively
homogeneous (i.e. T P{λu)—λT P{u) for nonnegative real numbers λ), and additive
(i.e. Tp(u1

Jru2)
:=Tpu1

JrTpU2). In general TP may or may not be injective and
similarly surjective. If the mapping TP happens to be bijective, then the density
P is said to be canonically associated with the ^-sequence {Yn}> If a density P
on Ω is canonically associated with a ^-sequence {Yn}, then we have

(β) dimP=dim{Fn}.

To prove this we denote by ί(u) the left hand side of (2). Then it is easy to
see that u^{2π/t{TPu))TPu is a bijective mapping of PPX{Ω\ oΩ) onto HP^W; dW)
along with TP. We now prove the following

THEOREM. There always exists a density P on Ω canonically associated with
an arbitrarily given <y'-sequence {Yn} in Ω.

The proof of this assertion will be given in nos. 4-6 after establishing an
auxiliary result in no. 3.

3. We denote by Pu

f the solution of (1) on the unit disk U: \z\<l with
boundary values / on dU, where P is a density on U and / is in C{dU). Give
any Jordan region V with VcU and any positive number ε. We then have the
following simple but very useful fact (cf. [2]):

PROPOSITION. There exists a density P—Pv<ε on U with supp.PcF and
satisfying the inequality

(7) £ \ t l s

for any f in C{dU).

For a proof of this we fix a disk X: \z\ <r (0<r<l) with VdX. Since the
Poisson kernel P(eίθ, z) on dUxU is continuous on dUxX, there exists the
maximum c of P(eίθ, z) on dUxX:

(eι°, z).



4 MITSURU NAKAI AND TOSHIMASA TADA

Let Y be an analytic Jordan region with YdV and ω be the harmonic function
on X— Y with boundary values c on dX, ε/2 on dY. Taking Y enough close to
V we can assume ω<ε on dV. Fix an analytic Jordan region Z and a conformal
mapping ζ=φ(z): Z->φ{Z) = {|ζ| ^1} such that Γ c Z , Z c F , and φ(Y) is a disk
with center at ζ=0. Consider the density ^ m and the function vm on φ(Z)
defined by

and observe that

If we set

' W I 2>

the function wm on Z has boundary values 1 on dZ and satisfies

3 2

4 U ) O ( ) ( )

on Z. We take a density P m on U with s u p p . P m c F , Pm^Qm on Z and
Pm^Pm+i on £/ (772 = 1, 2, •••)• Since Pm^Qm on Z, the solution um of

on X with boundary values c on dX satisfies um^cwm on Z. Observe that {wm}
converges to 0 uniformly on Y as m-^χ>. Then for some positive integer me we
have umε<ε/2 on dY so that uvlε^ω on Z—y. Therefore umε<ε on 9F, and
hence on K Now we set

We denote by g(ζ, z), G(ζ, z) the harmonic Green's function, P-Green's func-
tion on U, respectively. We remark that G(ζ, z)^g(ζ, z) and

for ex0 in 3/7 and z in U. If we set

then we have 0<K(eιΘ, z)^P(ei0, z). Since P(ei<?, z)^c on_3£/xZ υ(z)=c on 3Z
we have K{eiθ, z)^v(z) on Z so that K{eίθ, z)<ε on dίlX F. Thus we have for
/ in COJ7) and z in V
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\Puj(z)\=

Zπ Jo

^^-\2π\f{eiθ)\dθ. ϋ
Zπ Jo

4. We proceed to the proof of Theorem in no. 2, i.e. the existence of
canonically associated densities. Let {Yn} be any ^/-sequence on Ω and Un be
a slightly larger analytic Jordan region in Ω than Yn containing Yn. We may
assume UnΓ\Um=0 for nΦm. We fix a point zλ in Ω—\J™Un and denote by
i 7 the set of nonnegative harmonic functions u on W=Ω—UΓ ^ with w^O^l.
Then the Harnack principle yields for every nonnegative integer n

bn=mp max/z<+c° .
F 3Un

Using a conformal mapping φn of Un to φn(Un)— {\z\ rgl} we define a density

P=PW on i2 by

f Pn(^n(O) (ζ^Un; 72 = 1,2, •••)

0 ( ζ e f l - U r ί / n )

where P n is a density on ί 7 = { | z | < l } which satisfies (7) for V — φn(Yn), ε =
}-l). We will show that P is a canonically associated density with {Ϋn}.

5. First we prove that the mapping TP is injective. Let uly u2 be functions
in PP(Ω] dΩ) with TPu1=TPu2. Then we have u^u^H^^ on PF. Assume
that u1^u2. Then we may assume supw(u1—u2)>0 if necessary by exchanging
indices of ulf w2 Since H$[-U2 is quasibounded we have supWri/^_M2=supaίF^r^-w2.
We set v̂ ^Mfe/CwjfeC^O+l) (k = l, 2). Then vΛ satisfies vk^bn on 9f/n so that we
have for z in F w

Then we have HSr

1-U2=u1—uz^(u1(z1)+u2(z1)+2)/n on δF^, and hence the har-
monic function Hlv

1-U2 on W attains its supremum at a point in some dYn.
Therefore the function u1—u2 in PP(Ω dΩ) attains its maximum at the same
point as that of H^-U2 so that u1—u2 is identically a positive constant. This
contradicts the fact that u1—u2^(u1(z1)+u2(z1)+2)/n on Yn for every positive
integer n. Thus Uι = u2.

6. Next we prove that TP is surjective. Let h be any function in HP(W dW).
Since TP is positively homogeneous we may assume that h is in F. We denote
by w the harmonic measure of dW—dΩ considered on W and we set h1 = hJ

Γw
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on W. Observe that for z in dYn

1 C%* hάΦn\e*θ))dθ

Then we have PIiΊ{ί^h1 on Un—Yn by the maximum principle. Therefore the
function s on Ω defined by s = hγ on Ω—\J™Un, s=P%™ on Un (n = l, 2, •••) is a
supersolution of (1) (i.e. superharmonic with respect to (1)) on Ω with h^s^hλ

on W. On the other hand h is a subsolution of (1) (i. e. subharmonic with respect
to (1)) on Ω if we define h=0 on U? Yn- Now the lower envelope u of the
family of supersolutions of (1) on Ω which dominate h on Ω is a solution of (1)
with h^u on Ω, u^h1 on W so that M is in PP(Ω 942). If we set ι;= — h + u—H%
on W, i; satisfies vS~~h-}-u^ — hJrh1 = w^lf v^—H^^—Hf^ — w^ — 1. On
the other hand v vanishes on dW and therefore v=0, i.e. TPu — h. This com-
pletes the proof of Theorem in no. 2. •

§2. Relative harmonic dimension.

7. In view of (6) and the theorem in no. 2, the proof of the main theorem
is reduced to showing that dim QJ(Ω) contains Ξ. In passing we remark that
Q}(Ω)C<K(Ω) implies that dim JC(Ω) contains Ξ along with dim y(Ω). Thus the
proof of the main theorem will be complete if we show the following fact which
may have an independent interest in its own right:

THEOREM. There exists a ^-sequence {Yn} in Ω for any cardinal number m
in Ξ such that dim{Fn}=m.

Therefore we have Scdim ^(fljcdim cX(fl)C[l, c] so that dim^(β) =
dim Jί(Ω)=Ξ if we assume the continuum hypothesis B= [l, c]. The proof will
be given in nos. 8-14 by exhibiting three examples in nos. 9, 12, and 14.

8. Before proceeding to our three examples we remark the following simple
fact (cf. e. g. Constantinescu-Cornea [1]) which plays an important role in verifying
that the examples in nos. 9, 12, and 14 are required ones. Let {Un}°? be a
sequence of relatively compact subregion Un in Ω such that UnΓλUm = 0 (nφm)
and {Un} converges to δΩ: z—0. Consider a region W—Ω—{J7 Kn for a
J{-sequence {Kn} in Ω. Set Vn=WΓ\Un and V=\J°?Vn. Let δW, δJV be the
Martin boundary of W over δΩ: 2=0, the set of minimal points in δW, respec-
tively and (W—V)a the closure of W—V considered in the Martin compactification
of W. Then

(8 ) δW-(W-V)adδW-διW .
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9. E X A M P L E 1. First we exhibit an example of a ^/-sequence {Fn}^° with

άim{Yn}—m for any given positive integer m. Fix a sequence {an}™ in (0, 1)

with an+1<an (n = l, 2, •••) and lim an=0. Fix a positive numbers Θlt •••, Θm

Vu " , V™ w i t n θ μ-\-2η μ<—2η μ+x+θ μ+1 (μ=0, 1, •••, m), where #0+2^0=0,

— 2 ) 7 m + 1 + 0 m + 1 = 2 7 r . We choose a sequence {bn}? in (0, 1) with an+1<bn<an.

Let (see Fig. 1)

Snμ={bn<\z\<an, \a.rgz-θμ\<ημ} (μ=l, - , m ; w = l, 2, •••).

Observe that any positive integer k has a unique expression k = (n — l)m+μ with

positive integers n and μ with l ^ μ ^ r a . We set

Then the sequence {F JΓ^-ίS^} is clearly a ^/-sequence. If we choose the

sequence {bn} so as to make the sequence {bn—αn+1}™ converges to zero enough

rapidly, i.e. satisfying (9), (11), and (14) below then we can show that dim{Snμ}

—m in the following way.

Fig. 1.

10. Fix a sequence {δn}t in (0, 1) with an+i+δn+1<an—δn (n = l, 2, •••),

where d ^ O . We set (see Fig. 1)

Unμ=ί\ \z\—an\<δn, \argz-θμ\<2ημ} (μ=l, •••, m n = 2 , 3, •••)
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and U={J^2[jp1Unμ. Then we have DnμΓ\Ukv=0 {{n, μ)Φ{k, v)). The first
property which {bn} has to satisfy is

(9) bn<an+ιΛ-δn+1 ( n = l , 2, •••).

We consider subregions W and Wn (n = l, 2, •••) of Ω given by

0 0 771

W=Ω-\J \JSnμ,
71 = 1 μ = l

and denote by g(ζ, z), gn(ζ, z) the Green's functions on W, Wn, respectively. Fix
a reference point a of the Martin kernels k(ζ, z)—g{ζ} z)/g(ζ, a), kn(ζ, z)=
gniζ, z)/gn(ζ, CL) on W, Wn, respectively and a neighbourhood D of a with
DdW—D. Finally we fix a sequence {εn}ΐ in (0, 1) with

•I

(10) Σ e n < l , Π(l-e»)^-9-
71 = 1 71 = 1 Z

Then the second property which {bn} has to satisfy is

(11) gn+l(ζ, z)-gn(

for any z in D and ζ in W—U. Assume (11) is valid for every positive integer
n. Then we have

gn+j(ζ, z)—gn(ζ, z)^angn+J(ζ, z)

so that

j(ζ, z)^{l-an)-'gn{ζ, z)

for every positive integer j , where an=^=n£k> Therefore Martin kernels k,
kn satisfy on (W-U)XD

(12) (l-α»)fen(

(13) d-α»)An(ζ, ^)^A(C, z^d-ctn^kniζ, z).

Let ^VFπ and δ^Wn be the Martin boundary of Wn over ^ β : z=0 and the set of
minimal points in δWn, respectively. Then we have δWn=δ1Wn=δW1=δ1W1=
{pi> '" > Pm} and we may assume for every positive integer n, μ, v with

+00 (μ = v)

0

where Γμ={0<\z\<l, ^rgz = (θμ

J

Γ27]μ

Jrθμ+1-2y]μ+1)/2} and
Θ1—2η1. Making ζ^pμ in (12) we have
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(l-an)kn(pμ, z)^kn+j(pμ, z)^(l-any
1kn(pμ, z)

for every positive integer μ with li^μ<Lm. Then the following limit exists for
any z in D: Aμ(z)=limn-*cokn(pμ, z), and hence {kn{pμ, z)}n=i converges to a
nonnegative harmonic function Aμ on W uniformly on every compact subset of
W. On the other hand from (13) it follows that harmonic functions

Aμ(z) = \m\ k(ζ, z), Aμ(z) = ljm k(ζ, z)

on W satisfy

(l-an)kn(pμ> z)^Aμ(z)^Άμ(z)S(l-an)~1kn(pμ, z)

on D. By making n—>co in the above inequalities we have Aμ(z)—Aμ(z)—Aμ(z)
on D, and hence on W. Then every pμ defines unique Martin boundary point
qμ of W over δΩ: z=0 such that

lim kn(pμ, z)— lim k(ζ, z) — k{qμ, z)

on W. We remark that it may happen qμ—qv for some μ, v with μφv. Let q
be any point in {W—U)aΓ\δW. Then there exists a sequence {ζw}Γ in W—ί/
with ζn->#. Since a subsequence {ζή}Γ of {ζn} converges to a point pμ in ^βj
we have q—qμ so that ^PF—(W—U)a contains δW—{qμ}ψ. Therefore by (8)
δW—δiW contains δW—{qμ}ψ, and hence we have δ^Wd{qμ}ψ. Thus we con-
clude that ά\m{Snμ}Sm.

11. Now we give the last property which {bn} has to satisfy. Consider the
harmonic function unμ on Wn-i with boundary values kn(pμ, z) on dWn-i
(μ=l, -, m; n=2, 3, •••)• We require {bn} to satisfy

(14) un+1>μ(z)^εn

on W—U for every μ. Since the nonnegative harmonic function kn+1(pμ, z)—
un+i.μ(z) vanishes on dWn it is represented by kn(pμ, z):

kn + lipμ, Z) — Un + I,μ(z) = (l—Un+I.μ(a))kn(pμ, Z ) .

Assume (14) is valid for every positive integer n. Then if we set vlμ{z)=kι{pμ, t
and

by (10) and (14) we have

/ 71 + 1 \ -1

\vn+i.μ(z)—vnμ(z)\={TI(l — Ukμ(a))j \kn+1(pμ, z) — (l — un+i,μ{a))kn(pμ, z>
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on W—U. Therefore {vnμ)Z=ι converges to a nonnegative harmonic function vμ

in HP(W dW) uniformly on every compact subset of W. Since we have

for every positive integer j , every function vμ satisfies vnμ—2an^v μ^vn

on W—U. Then vμ has the same limit as that of vnμ at δΩ: z=0 along Γv:

lim vμ(z) =
Γ 3 0

+ 00 (μ=v)

Q

Thus we have aim {Snμ}^m. Π

12. EXAMPLE 2. Next we exhibit an example of a ^-sequence {Yn}? with
dim{Fn}=α. Fix a sequence {βn}Γ in (0,1) with an+1<an ( n = l , 2, •••) and
lim β^^O. Fix sequences {θμ}?, {yjμ}T of positive numbers θμ, rjμ with 0<^ 2—2^!,
θμ+2ημ<— 2ημ+1+θμ+1<2π for every positive integer μ. We choose a sequence
{bn}™ in (0, 1) with an+1<bn<an (n = l, 2, •••). Let

vSnjU= {^n< kl <«n, \&rgz-θμ\<ημ) (μ=l, — , n n = l, 2, •••).

Observe that any positive integer k has a unique expression k — n(n — l)/2+μ
with positive integers n and μ satisfying n ^ μ . We set (see Fig. 2)

Fig. 2.
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Then the sequence {Ϋk}T={Snμ} (μ=l, '••, n; n = l, 2, •••) is a ^/-sequence. If
we choose the sequence {bn} so as to make the sequence {bn—αn+i}Γ converges
to zero enough rapidly, i.e. satisfying (15), (16), and (17) below then we can
show that άim{Snμ}=a in the similar way as in nos. 10 and 11.

13. Fix a sequence {δn}™ in (0, 1) with an+i+δn+1<an—δn (n —1, 2, •••),
where d2=0. We set (see Fig. 2)

ί/n/«={|M-αnl<δn, \*rgz-θμ\ <2ημ] (μ = 1, , n-1 n=2, 3, •••)

and U=\JZ^\Jn

μz\Unμ. Then we have UnμΓ\Ukv = 0 ((n, μ)Φ{k, v)). The first
property which {bn} has to satisfy is

(15) bn<an+1-{-δn+1 ( n = l , 2, •••).

We consider subregions W and Wn (n = l, 2, •••) of Ω given by

W=Ω-\J 0snμ,
i i

- 0
μ = n + l

and denote by g(ζ, z), gn(ζ, z) the Green's functions on W, Wn> respectively.
Fix a reference point α of the Martin kernels k(ζ, z)=g(ζ, z)/g(ζ, α), kn(ζ, z) —
gn(ζ, z)/gn(ζ, α) on W, Wn, respectively and a neighbourhood D of α with
DdW-Π. Finally we fix a sequence {εn}? in (0, 1) with Σ Γ e Λ < l , ΠΓd —eJ

Then the second property which {bn} has to satisfy is

(16) * n + 1 (ζ, z)-gn(ζ, z)^εngn(ζ, z)

for any z in D and ζ in W—U. Let δWn and ^ i ^ n be the Martin boundary
over δΩ: z=0 and the set of minimal points in δWny respectively. Then we
have δWn—δ1Wn—δW1—δ1W1={pι, p2, ••• and ôo} and we may choose a family
{Γμ : μ=l, 2, ••• and oo} of pairwize disjoint curves Γμ in W—U converging to
δΩ: z=0 such that

lim /?„(/>„, z) = \
* ° 1 0

for every positive integer n. Assume (16) is valid for every n. Then kn{pμ, z)
and k(ζ, z) converge to a same function in HP(W;dW) uniformly on every
compact subset of W as n->oo and ζ-*pμ, respectively for every μ—\, 2, ••• and
co. Therefore every pμ defines unique Martin boundary point qμ of W over δΩ:
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z=0 such that

lim kn(pμ, z) = lim k{ζ, z) = k{qμi z)
7i->oo ζ~>Pμ

on W. We remark that it may happen qμ—qv for some μ, v with μφv. We
denote by δW and δJV the Martin boundary of W over δΩ: z=0 and the set
of minimal points in δW, respectively. Observe that δW—(W—U)a contains
δW- {qu q2, ••• and q^}. Then by (8) δW-δλW contains δW— {q1} q2L~ ; and q*,}
and hence δ^W(Z.{q1, q2, ••• and #00}. Thus we conclude that άim{Snμ} ^ α .

We give the last property which {bn} has to satisfy. Consider the harmonic
function unμ on Wn-i with boundary values kn(pμ, z) on 9PFn_i for n—2, 3; •••
and /i=l, 2, ••• and 00. We requir {bn} to satisfy

(17) un+1μ

o n ^ — / 7 for e v e r y μ. W e set vlμ{z) = k1{pμ, z) a n d

nC^Ai, ^) ( n = 2 , 3, •••; ̂ = 1 , 2, •••; a n d oo).

Assume (17) is valid. Then vnμ converges to a function vμ in HP(W;dW) uni-
formly on every compact subset of W and vμ has the same limit as that of
kn(pμ, z) at δΩ: z—0 along Γ v :

+00 (μ =
l im > ( ) ^

0

for /i, v = l, 2, ••• and 00. Thus we have άim{Snμ}^a. D

14. EXAMPLE 3. Finally we exhibit an example of a ^-sequence {^JT3

with dim{Fn}=c. Fix a sequence {α^J^in (0, 1) with an+1<an (n = l, 2, •••) and
lim an=0. Fix a sequence {ημ}™ of positive numbers 5^ with

For every positive integer n we set ηno=y]o and for every positive integer μ with
μ^2n—1 we set ηnμ — rjn-j if μ=k2j for positive odd integer &. Then we define
a sequence {0^} (0^μ^2 n —1, n ^ l ) in [0, 2π) by induction : ^ 1 0 = 0 , ̂ n = π ;
in the case n ^ 2 we set

n n
"nμ'—"n-l, μ/2 y

if μ is a nonnegative even integer,

Vnμ~ ~n~\ϋn-l, (μ l)[2~~\~2<y]n I,(μ-l)l2

2f]n-l, (μ + l)/2Jrvn-1, (μ + D/ZJ >

if μ is a positive odd integer, where θnv—2π, -ηnv—η^ if v—2n. We choose a
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sequence {bn}ΐ in (0, 1) with an+1<bn<an (n = l, 2, •••). Let (see Fig. 3)

Snμ={bn<\z\<an, \*rgz-θnμ\<Vnμ} (0g/*g2"-l, n^l).

Observe that any positive integer k has a unique expression k=2n+μ—\. with
positive integer n and nonnegative integer μ satisfying μ^2 n —1. We set

Yk = Snμ (k=2n+μ-l).

Then the sequence {Yn}7={Snμ} (0^μ^2 n —1, n ^ l ) is a ^-sequence. If we
choose the sequence {bn} so as to make the sequence {bn—an+1}°? converges to
zero enough rapidly, i.e. satisfying (18) and (19) below then we can show that
dim{SnjU}=c in the similar way as in nos. 10 and 11.

ί ^ ( J H * M .

Fig. 3.

Fix a sequence {δn}t in (0, 1) with an+1

J

Γδn+1<an—δn (n = l, 2, •••), where
^ = 0 . We set for every integer n with n ^ 2 and every even integer μ with

nμ={\ \z\—an\ <δn, \a.rgz—θn/t\ <2ηnr

and (see Fig. 3)

Then we have UnμΓλUkv=0 ((n, μ)Φ(k, v)). The first property which {bn} has
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to satisfy is

(18) bn<an+1+δn+1 (n = l, 2, •••).

We consider subregions W and Wn (w = l, 2, •••) of 42 given by

i o

Wn = W- 0 *U1

- 0 201

k = n + l μ = 0

and denote by g(ζ, z), gn(ζ, z)_the Green's functions on W, Wn, respectively.
Fix a reference point a in W—U of the Martin kernels k(ζ, z)=g(ζ, z)/g(ζ, a),
kn(ζ, z)=gn(ζ, z)/gn(ζ, a) on W, Wn, respectively and let δWn, δxWn be the
Martin boundary of Wn over δΩ: z=0, the set of minimal points in δWn,
respectively. If we set Λ— {0, 1}N then the cardinal number of Λ is c and every
point x m A defines unique minimal point px in δ1Wn=δ1W1: we have δWn=
31Wn=δW1=δ1W1={px: x^Λ} and we may choose a family {Γx: x^Λ} of
pairwise disjoint curves Γx in W—U converging to δΩ: ^=0 such that

hm n ( ^ y , ) j
i 0 (xΦy)

for every x, y in A and positive integer n. Consider the harmonic function unx

on Wn-i with boundary values kn(px, z) on 3^n-i for every x in A and integer
n with n^2. Finally we fix a sequence {εn}T in (0, 1) with Σi°ε r ι <l, Πi°(l—εw)

Then the second property which {bn} has to satisfy is

(19) un+1,x(z)^εn

on W—U for every x in Λ. We set vlx = k1(px, z) and

Assume (19) is valid for every n. Then {vnx} converges to a function vx in
HP(W dW) uniformly on every compact subset of W and vx has the same limit
as that of kn(ρx, z) at δΩ: z=0 along Γy :

+ 00 (χ =

lim vx(z) =
' 0

for every 3; in A. Then we have dim{Sn/i}^c. Since the dimension of any
^/-sequence is at most c, we conclude that άim{Snμ} =c. D
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