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ON SUBMANIFOLDS ALL OF WHOSE GEODESICS ARE

CIRCLES IN A COMPLEX SPACE FORM

BY SADAHIRO MAEDA AND NORIAKI SATO

0. Introduction.

First of all we recall the notion of circles in a Riemannian manifold M.
A curve x(t) of M parametrized by arc length t is called a circle, if there exists
a field of unit vectors Yt along the curve which satisfies, together with the unit
tangent vectors Xt—x(t), the differential equations: VtXt=kYt and ytγt = — kXt,
where k is a positive constant and l t denotes the covariant differentiation V
with respect to Xt. Let p be an arbitary point of M. For a pair of orthonormal
vectors X and Y^TPM and for a given constant k>0, there exists a unique
circle x(t), defined for t near 0, such that

x(0)=p,XQ=X and ($tXt)t=0=kY.

If M is complete, x(t) can be defined for —oo<^<-f-co (for details, see [9]).
Recently, Sakamoto [12] studied submanifolds all of whose geodesies are

circles in a real space form M. A Riemannian manifold of constant curvature
is called a real space form. He showed the following.

THEOREM 0.1 [12]. Let M be a submanifold in a real space form M. Then
the following three conditions are equivalent.

( I ) The submanifold M is nonzero isotropic and has parallel second funda-
mental form.

(Π) Every geodesic in M is a circle in M.
(IΠ) The submanifold M is planar geodesic and not totally geodesic.

In this paper, here and in the sequel, the conditions ( I ) , (Π) and (IΠ) stand
for those of Theorem 0.1, unless otherwise stated.

Moreover, Sakamoto [12] has classified such submanifolds M in the Euclidean
sphere Sm. Of course, the above three conditions are not equivalent in the case
that the ambient manifold M is a complex space form. A Kaehler manifold of
constant holomorphic sectional curvature is called a complex space form.

When the ambient manifold M is a complex projective space, Pak [11] clas-
sified submanifolds under the condition (IΠ), and Nomizu [8] and Naitoh [6]
under the condition ( I ) . Due to their works, we see that the condition (IΠ) is
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essentially stronger than ( I ) in the case that M is a complex projective space.
In fact, the submanifolds S'XS71 (n^ l ) , Sί/(3)/SO(3), SU(3), SU(6)/Sp(3), EJE,
do not satisfy the condition (HI) but they satisfy ( I ) .

We now remark that the following problem is still open: Classify all sub-
manifolds satisfying the condition (Π) in a complex projective space. In general,
we note that the condition ( I ) always implies (Π) regardless of the ambient
manifold. Roughly speaking, we may see that (Π) is close to ( I ) (see, Proposi-
tion 3.1). So, it is natural to consider the following problem: Is the condition
(H) quite the same as ( I ) when M is a complex space form?

The aim of this paper is to give an affirmative partial answer to the above
problem. For this purpose, we recall the notion of CivNsubmanifolds of a Kaehler
manifold. A submanifold M of a Kaehler manifold M is called a CR-submanifold
if there exists on M a C°°-holomorρhic distribution 2) such that its orthogonal
complements 1 is a totally real distribution, i.e., JίDpQTp-M. Hereafter we shall
study the problem for the class of Ci?-submanifolds in a complex space form.
But we assert that this class is not small. In fact, all holomorphic submanifolds,
totally real submanifolds and real hypersurfaces are necessarily CK-submanifolds.

Our result is as follows:

THEOREM. Let M be a CR-submantfold in a complex space form M(c) of
constant holomorphic sectional curvature c. Then the following two conditions are
equivalent.

( I ) The submanifold M is nonzero isotropic and has parallel second funda-
mental form.

(Π) Every geodesic in M is a circle in M{c).

The authors wish to express their hearty thanks to Professor K. Ogiue for
his encouragement and help during the preparation of this paper.

1. Preliminaries.

Let M be an n-dimensional submanifold of a complex w-dimensional Kaehler
manifold M with complex structure / and Kaehler metric g. Let V (resp. 7) be
the covariant differentiation on M (resp. M). Then the second fundamental
form σ of the immersion is defined by σ(X, Y)=z^fχY—τ7χY, where X and Y
are vector fields tangent to M. For a vector field ξ normal to M, we write
Vxξ=—AξX+Dχξ, where — ΛξX (resp. DΣξ) denotes the tangential (resp. normal)
component of 7χf. The covariant derivative Iσ of the second fundamental form
o is defined by

{ϊxσ){Y, Z)=Dz(σ{Y, Z))-σ{lxY, Z)-σ{Y, 1XZ)

for all vector fields X, Y and Z tangent to M. The second fundamental form
σ is said to be parallel if 7(7=0. In particular, if σ vanishes identically, M is
said to be a totally geodesic submanifold of M. The submanifold M is called a



ON SUBMANIFOLDS ALL OF WHOSE GEODESICS ARE CIRCLES 159

holomorphic submanifold (resp. totally real submanifold) of M if each tangent
space of M is mapped into the tangent space (resp. normal space) by the com-
plex structure /.

O'Neill [10] defined a notion of isotropic immersions. An isotropic immersion
is an isometric immersion such that all its normal curvature vectors have the
same length at each point. Namely, the length of the normal curvature vector
is a function on the submanifold. In particular, if the function is constant, then
the immersion is said to be constant isotropic. A planar geodesic immersion is
an isometric immersion such that every geodesic of M is locally contained in a
2-dimensional totally geodesic submanifold in M.

Now we write the Gauss and Codazzi equations:

(1.1) g(R(X, Y)Z, W)=g(R(X, Y)Z, W)+g(σ(X, Z), σ{Y, W))

-g{σ{X, W\ σ(Y, Z))

(1.2) {R(X, Y)Z}^{ϊxσ){Y, Z)-(ϊγσ){X, Z),

where R (resp. R) denotes the curvature tensor for V (resp. 1).
In particular, the Riemannian curvature tensor R of a real space form M(c)

of constant curvature c is given by

(1.3) R{X, Ϋ)Z=c{g(Ϋ, Z)X-g{X, Z)Ϋ)

for all vector fields X, Ϋ and Z tangent to M(c). The Riemannian curvature
tensor R of a complex space form M(c) of constant holomorphic sectional curva-
ture c is given by

(1.4) R{X, Ϋ)Z=j{g(Ϋ, Z)X-g{X, Z)Ϋ+gUΫ, Z)JX

-g{JX, Z)JΫ+2g{X, JΫ)JZ)

for all vector fields X, Ϋ and Z tangent to M(c).
Here, for later use, we recall the following

PROPOSITION 1.1 [3]. Let M be a submamfold of a non-flat complex space
form M(c). Then M is a holomorphic or a totally real submamfold of M(c) if
and only if M satisfies R{X, Y)Z^TM, where R denotes the curvature tensor of
M(c) and all vector fields X, Y and Z are tangent to M.

2. C#-submanifolds.

First we recall a notion of Ci?-submanifolds M of a Kaehler manifold M
(see, Bejancu [1]).

DEFINITION 2.1. A submanifold M of a Kaehler manifold M is called a CR-
submanifold if there exists a C°°-distribution £): p->S)v^kTvM on M satisfying



160 SADAHIRO MAEDA AND NORIAKI SATO

the following conditions: (a) 3) is holomorphic (i.e., ]2)V—S)V at each point
p&M), and (b) the complementary orthogonal distribution S)L: p-^£)pQTpM is
totally real (i.e., ]2)L

V^TL

VM at each point p^M).
It follows from definition that all holomorphic submanifolds and totally real

submanifolds are necessarily Ci?-submanifolds in a trivial sense. A Ci?-submani-
fold is said to be proper if it is neither holomorphic nor totally real. For ex-
ample, any real hypersurface is a proper Ci?-submanifold.

Chen [2] defines Cft-products.

DEFINITION 2.2. A Ci?-submanifold M of a Kaehler manifold M is called a
CR-product if it is locally a Riemannian product of a holomorphic submanifold
and a totally real submanifold of M.

Very recently, Chen [2] gave examples of Ci^-products of a complex pro-
jective space. We denote by Pξ{C) the complex TV-dimensional complex projec-
tive space with constant holomorphic sectional curvature k. We can construct
many proper C7?-products of a complex projective space as follows: Let Mx

(resp. M2) be any holomorphic submanifold (resp. totally real submanifold) of
P?(C) (resp. P?(C)). Then

= _ P?(C)XP?(C) c=_^ P?n+m+n(C)

is a proper Ci?-product. Here we define a mapping

Sm,n : P
by

where (z0, •••, z m ) (resp. (^0, •••, ηn)) are the homogeneous coordinates of P?(C)

(resp. P?(C)). S m , n is a well-known Kaehler imbedding, which is called a

In contrast to this fact, when the ambient manifold M is a complex hyper-
bolic space, Chen [2] showed the following remarkable result.

THEOREM 2.1 [2]. There exists no proper CR-product in any complex hyper-
bolic space.

Finally we prepare two lemmas without proof in order to get our Theorem.

LEMMA 2.1 [2]. A CR-submanifold M of a Kaehler manifold M is a CR-
product if and only if AJg)1^D=0, where Aξ is the second fundamental form with
respect to ξ so that g(AξX, Y)=g(σ(X, Y), ξ).

LEMMA 2.2 [2]. Let Mn be a proper CR-product in Pf(C). Then

{σ{XuZa)} * = 1, - , 2 f t ; α = l , ..-,/> (2h+p = n)

are orthonormal vectors in v { T L M = J $ ) L ® v ) , where Xlf •••, X2h and Z : , ••-, Z7
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are orthonormal bases for 2)v and £)p , respectively.

3. Some results on the condition (II).

We get

PROPOSITION 3.1. Let M be a submanifold in a Riemannian manifold M.
Then the following two conditions are equivalent.

(i) The submanifold M is nonzero isotropic and the second fundamental form
σ of M in M satisfies (1'xσ)(X, ^0 = 0 for all vector fields X tangent to M.

(ii) Every geodesic in M is a circle in M.

Proof. The following discussion is quite the same as in [8]. (i)=>(ii):
We denote by 7 and 1 the Riemannian connections of M and M, respectively.
Put λ=\\σ(X, Z) | |/ | |Z | | 2 . Let x(t) be any geodesic with unit tangent vector Xt.
Then λ is constant along x(t), because, by the second assumption of (i), we have

Xt(λ*)=Xt(g(σ(Xt, Xt), σ(Xt, Xt)))

=2g{{ϊtσ){Xt, Xt\ σ{Xt, Xt))

= 0 .

Hence, λ is locally constant, because the immersion is isotropic.

Put Yt=-rσ(Xty Xt)- It follows by the Gauss formula that

*}tXt = σ(Xt, Xt)=λYt.

Moreover we get

By virture of the Weingarten formula we see

V Y ( Aj t t t , Xt))).

Since M is an isotropic submanifold, we easily see that

and again by the second assumption we get Dt(σ(Xt, Xt))=0.
Thus we see that every geodesic in M is a circle in M. (ii)=>(i): see, [8],

Q.E.D.
As an immediate consequence of Proposition 3.1, we find the following.

Remark 3.1. The condition ( I ) always implies (Π) regardless of the ambient
manifold M.
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Finally we investigate the condition (Vxσ)(Z, X)=0

PROPOSITION 3.2. Let M be a submamfold of a complex space form M{c)
with complex structure J. Then the following two conditions are equivalent.

(A) (ΐxσ)(X, X)=0 for all vector fields X tangent to M.
(B) WxσXY, Z)=(c/i){g(X, JY)JZ+g(X, JZ)]Y}" for all vector fields X, Y

and Z tangent to M, where {*}L means the normal component of {*}.

Proof. Now we may easily see that (ΐxσ)(X, X)=0 is equivalent to

(3.1) &χσ)(Y, Z)+(lγσ)(Z, X)+&zσ)(X, Y)=0 .

On the other hand, by the Codazzi equation (1.2) and (1.4), we get

(3.2) {ϊχσ){Y, Z)-{ϊγσ){X, Z)

= {R(XfY)Z}

=(c/4)te(/r, z)jx-g(jx} z)jγ+2g{x, jγ)jzy.

Exchanging Y and Z, we have

(3.3) {ϊχσ){Z, Y)-{ϊzσ){X, Y)

= (c/4){gUZ, Y)JX-g(JX, Y)JZ+2g(X,

Summing up (3.1), (3.2) and (3.3), we obtain (B).
The converse is trivial. Q.E.D.

Remark 3.2. When the ambient manifold M is a real space form, (7 xσ)(F, Z)
is symmetric for X, Y and Z from the Codazzi equation (1.2) and (1.3). Thus
we easily see that (Vχ<τ)(Z, X)=0 is equivalent to VO ΞΞO. On the other hand,
when the ambient manifold M is a complex space form, this is not true. In
fact, Chen and Vanhecke [4] proved that any small geodesic hypersphere in a
complex space form satisfies the condition (7 xσ)(Z, X)=0. It is well known
that, as a consequence of the Codazzi equation (1.2), there does not exist a real
hypersurface of a complex space form with parallel second fundamental form
(for details, see [5]).

4. Proof of Theorem.

We have already seen that the condition ( I ) implies (Π) by Proposition 3.1.
In this section, we shall show that (Π) implies ( I ) for Ci?-submanifolds. So,
our aim here is only to prove that (VX(τ)(F, Z) is symmetric for X, Y and Z
under the condition (Π) again by Proposition 3.1. Namely, we have only to
show that all Cft-submanifolds of a complex space form with condition (Π) are
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necessarily holomorphic submanifolds or totally real submanifolds (see, Proposi-
tion 1.1 and the Codazzi equation (1.2)). The following discussion consists of
two parts. First, we shall prove that any Ci?-submanifold of a complex space
form with condition (Π) is a Ci?-ρroduct. Secondly, we shall show that any
proper Ci?-product of a complex space form can't satisfy the condition (Π).

We are now in a position to prove the following:

PROPOSITION 4.1. Let M be a CR-submanifold of a complex space form M(c)
with condition (Π). Then M is a CR-product in M(c).

Proof. By the assumption, we decompose TVM into £)v@£)p. Because of
Lemma 2.1, it suffices to show that AJw

1-£)=0. First we shall check g{Ajg)L3),
£))=0, i.e., g(σ(£D, £)), /^) 1)=0. By Proposition 3.1, the immersion is Λ-isotropic,
that is,

(4.1) g{σ{X, X), σ(X, X))=λ*g{X, X)g{X, X)

holds for all vector fields X tangent to M. We may easily see that (4.1) is
equivalent to

(4.2) g(σ(X, Y), σ{Z, W))+g(σ(X, Z), σ{Y, W))+g(σ(X, W), σ(Y, Z))

, Y)g(Z, W)+g(X, Z)g{Y, W)+g(X, W)g(Y, Z)}.

For simplicity, in the following calculation, we may assume that 1X=1Y =
VZ=VJ^=O at a fixed point p of M. Differentiating (4.2) with respect to U,
we get

(4.3) g{{%σ){X, Y), σ{Z, W))+g(σ(X, Y), (%σ)(Z, W))

, Z), σ(Y, W))+g(σ(X, Z), (%σ)(Y, W))

, W), σ{Y, Z))+g(σ(X, W), (%σ)(Y, Z))

=0

at p, since λ is locally constant (see the proof of proposition 3.1).

If, in particular, I G J J : Y, Z, U, W^£)P in (4.3), then we get from Proposi-
tion 3.2

(4.4) g(U, JY)g(JX, σ{Z, W))+g{U, JZ)g(JX, σ{Y, W))

Jrg{U,JW)g{JX, σ(Y, Z))=0.

Putting U=JW in (4.4), we have

(4.5) g(Y, W)g(JX, σ{Z, W))+g{W, Z)g(JX, σ(Y, W))

+g(W,W)g(JX, σ(Y, Z))=0.
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Here we fix Y and Z in (4.5). Then, in the case of dim^)>2, choosing
W(Φθ) in such a way that g(Y, W)=g(W, Z)=0 at p, we get by (4.5)

(4.6) gUX, σ{Y, Z))=0 at p.

This implies that g(σ(£), 2)), j£>λ)=0 in the case of dim^)>2.
Next we shall check the case of άim^D=2. Putting Z—Y and choosing

W(Φθ) in such a way that g(Y, W)=0 in (4.5), we get

(4.7) g(JX,σ(Y,Y)) = Q at p.

On the other hand, putting Z—JY—JW in (4.5) we get

(4.8) g(JX, σ(Y, JY))=0 at p.

Taking account of (4.6), (4.7) and (4.8), we find g(σ(£), SJ), /^)-L)=0.
Secondly, we shall check g^Aj^S), QL)—% i.e., g(σ(Φ, g)1), / ^ 1 ) = 0 . We

now put X, Z G ^ ) 1 ; Y, U, W^S) in (4.3). We get from Proposition 3.2

(4.9) g{U, JY)g{JX, σ(Z, W))+g(U, JW)g{σ{X, Y\ JZ)

+g(U, JW)g(JX, *(Y, Z))+g{U, JY)g(σ(X, W\ JZ)=0.

In particular, putting U=W—JY in (4.9) and using (3.3) in Lemma 3.1 [2],
we have

g{σ(X,W),JZ)=0,

that is,

giAjzW, X)=0,

which implies

g(Aj3)1.3), ^ ) = 0 . Q.E.D.

Remark 4.1. It follows from Theorem 2.1 and Proposition 4.1 that our
Theorem holds in the case that M(c) is a complex hyperbolic space.

Finally we will prove our Theorem when the ambient manifold M is a com-
plex projective space. We get the following

PROPOSITION 4.2. Let M be a proper CR-product in Pm(C). Then M is not
an isotropic submanifold.

Proof. We assume that there exists an isotropic proper CR-product in Pm(C).
Without loss of generality, Pm(C) is equipped with the Fubini-Study metric of
constant holomorphic sectional curvature 4. Let M=M\hxMξ be a proper CR-
product (i.e., hΦO and pΦO). We here denote by M\h (resp. M?) a 2/z-dimen-
sional holomorphic submanifold (resp. ^-dimensional totally real submanifold) of
Pm(C). Let {Xt} (resp. {Zβ}) be an orthonormal basis on M\h (resp. Mf). From
(1.1), (1.4) and Lemma 2.2 we get



ON SUBMANIFOLDS ALL OF WHOSE GEODESICS ARE CIRCLES 165

(4.10) g(σ(Xif X%), σ(Za, Za)) = 0.

On the other hand, using (4.2) we get

2g(σ(Xτ, Za\ σ(Xτ, Za))+g(σ(Xι, Xx), σ(Za, Za))=λ\

Here, again by Lemma 2.2, we have

(4.11) g(σ(Xl} Xx\ σ(Za, Za)) = λ2-2 .

Combining (4.10) and (4.11), we obtain λ=\/ 2.

Thus we may find that Mx is holomorphically immersed V 2-isotropic sub-

manifold in Pf(C). This implies that M1 is locally isometric to the Euclidean

space Rzh. In fact, for any vector field X tangent to Mlf by the Gauss equation

(1.1) we have

g(R{X, JX)JX, X)=4+g{σ(JX, JX), σ{X, X))-\\σ{JX,

, XW

However, R2h can't be immersed holomorphically into Pm(C) (see, [7]). This

is a contradiction. Q. E. D.
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