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THE SECTIONAL CURVATURE OF A 5-DIMENSIONAL
HARMONIC RIEMANNIAN MANIFOLD

BY YOsHIYUKI WATANABE

In 1939, E.T. Copson and H.S. Ruse [4] initiated to study harmonic Rieman-
nian manifolds. And, in 1944, A. Lichnerowicz [13] proved the curvature
identities (cf. §2) in a harmonic Riemannian manifold and gave the following

CONJECTURE. [If a Riemanman manifold M with positive definite metric 1s
harmonic, then M 1s locally symmetric.

For Riemannian manifolds of dimension 2 or 3 the conjecture is trivially af-
firmative, because a harmonic manifold is Einsteinian and therefore of constant
curvature. A.G. Walker [22] showed that the conjecture is affirmative for
Riemannian manifolds of dimension 4 (cf. [16], [2]). Later, harmonic Riemannian
manifolds were studied by T.J. Willmore [287], [29], A.]J. Ledger [11], [12], A.
Allamigeon [17], S. Tachibana [197], Y. Watanabe [23], [24], [25], [26], [27], A.
Besse [2], L. Vanhecke [20], [21], M. Kozaki [9], K. Sakamoto [18] and others.
But it is an open problem to show that the Lichnerowicz’s conjecture is affirma-
tive for Riemannian manifolds of dimension >4, and no counterexample is known
up to now. The main purpose of this paper is to prove the main Theorem 3.3
giving a sufficient condition, by pinching the sectional curvature at a point, for
a harmonic Riemannian manifold of dimension 5 to be locally symmetric, i.e. of
constant curvature. In §3, we prove Lemma 3.2, which implies immediately the
main theorem, because a locally symmetric harmonic manifold is locally flat or
locally isometric to a rank one symmetric space (cf. [12], [6], [3]), i.e., because
it is of constant curvature in the case where it is odd-dimensional.

In §1, we give some preliminaries concerning Riemannian manifolds. In § 2,
we give definitions and curvature conditions concerning harmonic Riemannian
manifolds. The last section §3 is devoted to the proof of the main theorem
and another.
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who gave him many valuable suggestions and guidances. He also would like to
acknowledge Professor S. Tachibana and Professor K. Takamatsu for their con-
tinuing guidances and encouragements.
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§1. Preliminaries.

First, we shall recall in Riemannian manifolds some curvature identities
which will be useful in the sequel. In the present paper, every Riemannian
manifold we consider is assumed to be of class C? and connected. Let M be an
n-dimensional Riemannian manifold with positive definite metric g and V be the
Levi-Civita connection. The Riemannian curvature tensor R is defined by

RX, VNZ=xVZ Vs Z—Vx nZ

for any vector fields X, ¥ and Z. With local components the curvature tensor
can be written as R=(R,;;"). Let R;=(R,;;*)=(R;;) and S=g’*R;; be the Ricci
tensor and the scalar curvature, respectively. Denote by T ,M the tangent space
to M at a point x of M. The sectional curvature £,(X, Y) for an orthonormal
pair {X, Y}, where X and Y belonging to 7T.M, is given by

£x(X, Y)=—g(R(X, V)X, Y).
We recall the well known Bianchi’s identities
(1.1) (@) Rpi"+Rjip"+R..,"=0,
(b) ViR,;"+Vp R, +V,R,,"=0,

where V, denotes the covariant differentiation with respect to the Levi-Civita
connection. Generally speaking, we put |T|*=T,;T** for any tensor field of
any type, say T=(T;j;;). Then from (1.1) we get the following well known
formulas (cf. [177])

(1.2) JrRabedqup =T, R, R e e =V RV, R s
:vu,RabcdvdRabcu:VuRadevuRubcd

=V RSAY, R o= | TR,
On putting (cf. [2])
[A\):RaMdRabuchduv and K):RadeRaucvaudv:

we have the following formulas (cf. T. Sakai [17]):

1

(13) (a) RadeRabuchudv:RabodRa.uvacduv:RabodRacuvaduv: ?}? )

(b) RadeRauvacudv:RadeRauvawud:RadeRaucvaduv
:RadeRacuvaudv: Z‘R )
s 1

(C) Rabc{lRaucvavd u:RadeR“vcuRbudv: R— ZR ’
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A. Lichnerowicz [14] gave the following identity
(L) L AIRP= TR ARIATT, Rk 2R RIHRY o REHAR,

where A is the Laplace-Beltrami operator acting on differentiable functions on
M (cf. [307).
If M is Einsteinian and |R|*=constant, then (1.4) reduces to

(L.5) |VR |+ —%SIR|2+R+4FQ:O.

§2. Harmonic Riemannian manifolds.

Let M be a Riemannian manifold of dimension n. Take a normal neigh-
borhood N centered at a point x, of M. Denoting by s(x) the geodesic distance
measured from x, to a point x of N, we define in N a function s by s:x—
s(x)(xeN). Given a fixed point x, of M, the Riemannian manifold M is said to
be harmonic at the point x,, if there is a normal neighborhood U centered at
xo in such a way that there is in U— {x,} a nontrivial solution u, analytically
depending only on £2=(1/2)s? of the Laplace equation Au=0. When M is har-
monic at every point of M, it is called a harmonic Riemanman manifold. It is
well known (cf. [13], [16]) that in a harmonic Riemannian manifold the local
function AQ has the form /() in each normal neighborhood U, where f(2) is
a function analytically depending on &2, and the function f(£2) is independent of
the choice of the center x,. The function f(£2) is called the characteristic func-
tion of the harmonic Riemannian manifold.

Let M be a harmonic Riemannian manifold of dimension n and {y%} be a
normal coordinate system, covering a sufficient small normal neighborhood U
centered at a point x, of M. Then AQ=f(£2) and f(£) thus admits the
Maclaurin expansion

(@.1) [Q=1O+]O+ 5 FOL+-, FOL+ -

1, . 1 . 1 .
=f(0)+ 7f(0>5‘+ I -J(0)s +“3 i’zg"f(O)S + e,

taking account of 2=(1/2)s?, where (*) means the operator taking the derivative
with respect to 2. On the other hand, in any Riemannian manifold the formula

(2.2) AQ:n—!—{Z }yk
ok

holds with respect to normal coordinates {y*}, where {]Zk} denotes the Christoffel

symbols. [f {ll

Ie} are expanded in Taylor expansion with respect to »", then
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using (2.1) and (2.2), the following curvature conditions are obtained (cf. [13],

(101, [161):
(2.3) R]LZ_%f(O)gjl b S:—izn—f(o) >

45
@.4) (R Ron”+ g F0)g1,84:)=0,

(2'5) @(9kap1.ququmnp—32szquqklTernp—’315f<O)g l]gklgmn)zo ’

where © means the summation taken over all permutation of the free indices
appearing incide the parenthesis ( ). By the definition of harmonicity we see
that f(O), £(0) and F(0) are absolute constants, i.e. that they are independent of
choice of the center x,. Then transvecting g’ g*' with (2.4) and using (2.3),
we obtain

2.6) (RIp=—2 L fope 22 )

and see that |[R]|? is constant.
We now need the following two lemmas for computing f(0) in terms of the
scalar functions constructed by the curvature tensors.

LEMMA 2.1. For a tensor (field) T=(T,jrimn) of type (0, 6), we have
2.7)  g7gMgm ST uimn)=48(T 0, st TI % b TH b T kT
F Ty TV, T T T
AT T Tt T T30
Proof. See [23].

LEMMA 2.2. In a harmonic Riemannian manifold, we have
(28) (a) g”g“g’"”@(z‘lukzmn)zl‘l‘llVR[2:
S3

9 P
St SIRI'=5 RER),

(b) g7g"'g™"S(Bujuimn)=45(

() gYg* g™ "&(g:;8rgmn)=48n(n+2)(n+4),
where
Aljklmn:kaptququmnp and szklmn:RpZJqqulTernp~

Proof. Putting Tijrimn=gu,818ms in Lemma 2.1, the formula (¢) follows
immediately. Next putting T, rima=4A:,21ms in Lemma 2.1, (1.1), (1.2) and (2.3)
imply that

A7t pm s [TRIE, AT = L [VRIE, A= TR,
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. 1 : 1 . 1
‘4””,“:71‘71312, A”kku=§IVR|2, A“kkﬂ=§lVRlz,

and all the others corresponding to the terms appearing in the right hand side
of (2.7) vanish. Thus we obtain the formula (a). Lastly putting T jrimn=Bijrimn
in Lemma 2.1, (1.1), (1.3) and (2.3) imply

1 . 1 1
Blijjkkzﬁssy Bzi”;k:—zn—S!Rlz, Bli]kkJ:7SIR‘2}

1 1 5 1 4
B, y=——SIR[*, Blu=—7R, Bb,=—=R,
B”Jikk:—_:l_S|Rl2y B“Jklk:_%éy B”]kkl:_éy
j 5 15 ; J , 1.
Bwlz”k:R_ZR’ B”kzk;:_zRy B”knk:—‘zR,
Bt =— R, BI=-5-SIRI®, Bh,= " SIR|:.
2 2n n

Thus we obtain the formula (b).

Remark. Recently A. Gray and L. Vanhecke [7] has given in a Riemannian
manifold many formulas which are useful in obtaining systematically scalar
functions such as given in Lemma 2.2.

If we transvect g¥g*'g™" with (2.5), then taking account of the formulas
(2.8), we have the following lemma (cf. Y. Watanabe [237]).

LEMMA 2.3. In a harmomic Riemanman manifold of dimension n, we have

3 o .o
(2.9) 27|\7R|2—32<%+%S|R|2—%]?+R>:315n(n+2)(n+4)f(0).

§3. 5-dimensional harmonic Riemannian manifolds.

We shall now prove a curvature identity (3.4) in a harmonic Riemannian
manifold M of dimension 5. To do so, we introduce in a Riemannian manifold
of dimension n a function G, by

3.1 Gmy=0]1gJam Ry ... Riam-12m

1tz tem 172 Jem-172m
for any natural number m=1, where

oulzgm=10le| (a, b=1, 2, -, 2m)

is the so-called generalized Kronecker delta (cf. [15]). When M is compact and
n=2m, the G, is, as is well known, the integrand of the Gauss-Bonnet
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theorem (see, for example, S. Kobayashi and K. Nomizu [8]). However, the
function G(n, vanishes identically for a Riemannian manifold M of dimension
n<2m, because in such a case d4142:izm is equal to zero. Therefore if the dimen-
sion of M is 5, then

(32) G(g):(),

which will be used in the sequel.
On the other hand, the function G, has in a Riemannian manifold of
dimension n the following form (cf. [17], [5]):

(3.3) G5y =8R—4R—24R%R“R 1.0 —24R*"R %R yare
+L16R®RRye-+S*—12S| R, |*+3S| R,

as a consequence of (1.3). Thus using (3.3), we see that in an Einsteinian mani-
fold of dimension 5 the formula (3.2) reduces to

(3.4) 41%—21?:1—%(9113 |2—57).
The identity (3.4) is also obtained by transvecting R*** with the identity

3
haququk+2thququi_’2thqukpqi+TS"Shajk

3 1
= (55 | RI* =55 S*)(@nigus—8nsp)

proved by E.M. Patterson [15] in a harmonic Riemannian manifold of dimen-
sion 5.

From now on, let M be a 5-dimensional harmonic Riemannian manifold.
We note here that any Oharmonic Riemannian manifold is necessarily Einsteinian
(see §2). Eliminating R from (1.5) and (3.4), we have

(3.5) |VR|2+%S|R|Z+31?—-%:0.
Eliminating R from (2.9) and (3.4), we have

(3.6) 27|9R|*+96R—36S| R |*— %53:3152)?(0) )
Next eliminating B from (3.5) and (3.6), we have

(3.7) 5|YR)| 2+3—588—S| R|*= 35 S1=—31550).

Since |R|? and S are constant in a harmonic Riemannian manifold because of
(2.3) and (2.6), we have from (3.7), (3.5) and (3.4)

PROPOSITION 3.1. In a 5-dimensional harmonic Riemannian manifold, the
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scalar functions |VR|% R and R are all constant.

In a harmonic Riemannian manifold M of dimension 5, we take a fixed point
x, and a fixed unit vector X belonging to the tangent space T M to M at x,.
Transvecting X* XX X'X™X™ with (2.5), we have at the point x,

OV R o TV, Ry X X XI X X X7 =232R ), AR 1" Ry X* Xt X X X7 X7-4-315 F(0)

Substituting f(0) given by (3.7) into the equation above, we have at the point x,
the following key equation

3.8)  9TuR ViR yn? X* XX XX X0 4 619 IVR|?
O

:SZRZJtquqleerankXinXleXn_l_‘;"( 388 S | RI +—S3)
315

We now define a linear transformation /7y in the tangent space T,M by
(3.9) I, V)=—R(X, X

for YT ,M, which implies immediately
(3.10) Il x(X)=0.

For simplicity, we put Il y=1II. Then X is obviously an eigen vector of I/ with
eigen value 0, because of (3.10). Since the linear transformation I7 is symmetric
because of (3.9), there is an orthonormal basis {X, e, e;, ¢;, e} such that

(3.11) Il(e)=2.04 (=1, 2, 3, 4).
Then by (2.3) and (2.4) we get

(312) T?’(”):ijXin:’g‘:“%f(o),

Tr(I1>)=R ., Ryu? X' X? X* X' = — -485— £,
Tr(IT*)=R )" R g1y Romn? X X Xt X X X",

where T» means the trace of each of linear transformations I/, I1*=II-I] and
II*=1I1-I-II. Thus (3.8) implies the following equation (3.13) at the point x,
because of (2.6) and (3.11).

(3.13)  9V4R o0V, Ry XP X0 XX X7 X7 6157 |VR|?

~32Tr(173)+«3»1»5—{ 388Tr(17< ~-f(0)2 525 f(O))+34O(Tr(H))3}.

Then arranging (3.13) and using (3.12), we get at the point x,
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o 1 4
(3.14) OV Ry, Vi Ry P X XXX X™ X - 63 |VR|*= 97 FQ),
where
FQ=216Tr(IT13)+35(Tr(I1))*—194T+(I1)Tr(II*).
As a consequence of (3.11), we have

F(2)=216 %} 22—%35(%,“ 24)3f194(§ Aa) %} A5
=54{43%; 2;";*(2&] Aa) Zﬁ] A3 +35 %} Za {(%} Az —4 % A5}

=543 (25— 2 A5+ 24)+35(2 Aa) 2 (25— 24)°
B<r @ By

= 3 e 2B+ )~ DA
N a

which implies the following formulas

(3.15)  FO=(L—2)* {1921+ 22) —35(As+ 20} (41— A)* {19(A;+ 25) — 35( 22+ 24)}
(2= 20" {1921+ 2) —35(2+ A9)} +(2s— 26)* {19( 2o+ 25) = 35(A+ 2,)}
+ (A= 2" {19(Z+ 20) —35(A1+ 23)} (23— 20)* {19(As+ 21) —35(4,+ Z2)}

and

(3.16) F=(A—2)" {19 2 2 =542+ )} (21— 2 {192 Ao — 54+ 20}
(=29 {19 X 20— 54(2e+2)} -+ (Ze— 40" {19 2 2. =544+ )}
(420" {19 2 22 =544 +2)) +(2— 20" {192 2 =544+ 220}

As a consequence of (3.14), we have the following inequality
(3.17) F()=0.

We first note that 1. is the sectional curvature for the orthonormal pair
{X, e} (@=1,2,3,4), because of the definition (3.9) of IT=1ITy. Suppose that
all 4, satisfy 6=2,=(19/35)0 for some 6=0. Then we see from (3.15) that the
right hand side of (3.14) is non-positive. Consequently it follows from (3.14) and
(3.17) that |VR|?*=0 at the point x, of M. Since M is connected, Proposition
3.1 implies that VR=0, i.e. that M is locally symmetric. Thus, we have the
following

LEMMA 3.2. Let M be a 5-dimensional harmowic Riemanman manifold all of
whose sectional curvatures (X, Y) at a pont x satisfy 6=xk.(X, Y)=(19/35)6 for
some 0=0. Then M 1s locally symmetric.
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Since a locally symmetric harmonic manifold is locally flat or locally isometric
to a rank one symmetric space (cf. [12], [6]), it is of constant curvature if it
is odd-dimensional. Thus, Lemma 3.2 implies

THEOREM 3.3. Let M be a 5-dimensional harmonic Riemanman manifold all
of whose sectional curvatures kx(X,Y) at a pont x satisfy 6=k,(X, Y)=(19/35)0
for some 6=0. Then M 1s of constant curvature.

Similarly using (3.16) and noting S=531,, we obtain

THEOREM 3.4. Let M be a 5-dimensional harmonic Riemannian manmifold. If
all sectional curvatures kx(X, Y) at a pont x satisfy kx(X, Y)=(19/540)S, where
S s the scalar curvature, then M 1s of constant curvature.
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