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THE SECTIONAL CURVATURE OF A 5-DIMENSIONAL

HARMONIC RIEMANNIAN MANIFOLD

BY YOSHIYUKI WATANABE

In 1939, E. T. Copson and H. S. Ruse [4] initiated to study harmonic Rieman-
nian manifolds. And, in 1944, A. Lichnerowicz [13] proved the curvature
identities (cf. § 2) in a harmonic Riemannian manifold and gave the following

CONJECTURE. If a Riemannian manifold M with positive definite metric is
harmonic, then M is locally symmetric.

For Riemannian manifolds of dimension 2 or 3 the conjecture is trivially af-
firmative, because a harmonic manifold is Einsteinian and therefore of constant
curvature. A. G. Walker [22] showed that the conjecture is affirmative for
Riemannian manifolds of dimension 4 (cf. [16], [2]). Later, harmonic Riemannian
manifolds were studied by T.J. Willmore [28], [29], A.J. Ledger [11], [12], A.
Allamigeon [1], S. Tachibana [19], Y. Watanabe [23], [24], [25], [26], [27], A.
Besse [2], L. Vanhecke [20], [21], M. Kδzaki [9], K. Sakamoto [18] and others.
But it is an open problem to show that the Lichnerowicz's conjecture is affirma-
tive for Riemannian manifolds of dimension >4, and no counterexample is known
up to now. The main purpose of this paper is to prove the main Theorem 3.3
giving a sufficient condition, by pinching the sectional curvature at a point, for
a harmonic Riemannian manifold of dimension 5 to be locally symmetric, i. e. of
constant curvature. In § 3, we prove Lemma 3.2, which implies immediately the
main theorem, because a locally symmetric harmonic manifold is locally flat or
locally isometric to a rank one symmetric space (cf. [12], [6], [3]), i. e., because
it is of constant curvature in the case where it is odd-dimensional.

In § 1, we give some preliminaries concerning Riemannian manifolds. In § 2,
we give definitions and curvature conditions concerning harmonic Riemannian
manifolds. The last section § 3 is devoted to the proof of the main theorem
and another.

The author wishes to express his sincere thanks to Professor S. Ishihara,
who gave him many valuable suggestions and guidances. He also would like to
acknowledge Professor S. Tachibana and Professor K. Takamatsu for their con-
tinuing guidances and encouragements.
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§ 1. Preliminaries.

First, we shall recall in Riemannian manifolds some curvature identities
which will be useful in the sequel. In the present paper, every Riemannian
manifold we consider is assumed to be of class Cω and connected. Let M be an
^-dimensional Riemannian manifold with positive definite metric g and V be the
Levi-Civita connection. The Riemannian curvature tensor R is defined by

R(X, Y)Z=1XΊYZ-ΊY1XZ-ΊLX,Y1Z

for any vector fields X, Y and Z. With local components the curvature tensor
can be written as R=(Rkji

h). Let Ri=(Rajia)=(Rji) and S=gjίRji be the Ricci
tensor and the scalar curvature, respectively. Denote by TXM the tangent space
to M at a point x of M. The sectional curvature /cx(X, Y) for an orthonormal
pair {X, Y}, where X and Y belonging to TXM, is given by

We recall the well known Bianchi's identities

(1.1) (a) Rkj

(b) ΊtR

where Vj denotes the covariant differentiation with respect to the Levi-Civita
connection. Generally speaking, we put \T\2—TkjiT

kjί for any tensor field of
any type, say T=(Tkji). Then from (1.1) we get the following well known
formulas (cf. [17])

(1.2) lURabCdlURadcl> = luRabCdluRcbad=lURabCd^cRabu<l

On putting (cf. [2])

R=RabcdRab

uvRcduv and R=RabcdRa

u

c

υRbudv,

we have the following formulas (cf. T. Sakai [171):

(1.3) (a) RabcdRab

uυRcudv=RabcdRau

b

vRcauυ=RabcdRacuvRb(iuv^~R,

ίU\ Dabcd p u v p pabed p u v n jpabed p u v p

^D; K κa b κcudυ—κ κa b κcvud — κ κa c κbduυ

nabedn uυ p P
— K Kac K-budυ—~T >

/̂ N pabed p u υ p . ΊDabcd p υ u p — P p

{C) K Ka c Kbυdu — K Ka c Kbudv—K . K .
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A. Lichnerowicz [14] gave the following identity

(1.4) ^

where Δ is the Laplace-Beltrami operator acting on differentiable functions on
M (cf. [30]).

If M is Einsteinian and |i?|2=constant, then (1.4) reduces to

(1.5) |Vi? |M-—

§ 2. Harmonic Riemannian manifolds.

Let M be a Riemannian manifold of dimension n. Take a normal neigh-
borhood N centered at a point x0 of M. Denoting by s(x) the geodesic distance
measured from x0 to a point x of N, we define in N a function s by s: x—>
S ( I ) ( I G ] V ) . Given a fixed point x0 of M, the Riemannian manifold M is said to
be harmonic at the point x0, if there is a normal neighborhood U centered at
x0 in such a way that there is in U— {x0} a nontrivial solution u, analytically
depending only on Ω=(l/2)s2, of the Laplace equation Au=0. When M is har-
monic at every point of M, it is called a harmonic Riemannian manifold. It is
well known (cf. [13], [16]) that in a harmonic Riemannian manifold the local
function AΩ has the form f(Ω) in each normal neighborhood U, where f(Ω) is
a function analytically depending on Ω, and the function f{Ω) is independent of
the choice of the center x0. The function f{Ω) is called the characteristic func-
tion of the harmonic Riemannian manifold.

Let M be a harmonic Riemannian manifold of dimension n and {3;*} be a
normal coordinate system, covering a sufficient small normal neighborhood U
centered at a point x0 of M. Then AΩ=f(Ω) and f(Ω) thus admits the
Maclaurin expansion

(2.1) /(β) /(0)+/(0)β+ / ( 0 ) f l 8 + / (

/

taking account of Ω—(l/2)s2, where (*) means the operator taking the derivative
with respect to Ω. On the other hand, in any Riemannian manifold the formula

(2.2) AΩ=n+\ % \yk

holds with respect to normal coordinates {3^}, where | i denotes the Christoffel

symbols. If \ A are expanded in Taylor expansion with respect to yh, then
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using (2.1) and (2.2), the following curvature conditions are obtained (cf. [13],
[10], [16]):

(2.3) Λji=—|A°)^*» S = - - y - / ( 0 ) ,

(2.4)

(2.5)

where © means the summation taken over all permutation of the free indices
appearing incide the parenthesis ( ). By the definition of harmonicity we see
that /(0), /(0) and 7(0) are absolute constants, i. e. that they are independent of
choice of the center x0. Then transvecting glJgkl with (2.4) and using (2.3),
we obtain

(2.6) \RV=

and see that \R\2 is constant.
We now need the following two lemmas for computing /(0) in terms of the

scalar functions constructed by the curvature tensors.

LEMMA 2.1. For a tensor {field) T~{Tιjkιmn) of type (0, 6), we have

jk i i ί ijk

Proof. See [23].

LEMMA 2.2. In a harmonic Riemannian manifold, we have

(2.8) (a) gl>gklgmn<S>{AtjHmn)=lte\lR\*,

(b) g^gklg

(c) gllgklgmn&(grjgHgm»)=48n(n+2)(n+4),

where

Bxj klmπ~ R pifRqkl'RrmnV •

Proof. Putting Tιjkιmn=gl]gkιgmn in Lemma 2.1, the formula (c) follows
immediately. Next putting Tl]kUrίn — A%]klmn in Lemma 2.1, (1.1), (1.2) and (2.3)
imply that
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^ ^ ^

and all the others corresponding to the terms appearing in the right hand side
of (2.7) vanish. Thus we obtain the formula (a). Lastly putting Tιjkιmn=Bιjkιmn

in Lemma 2.1, (1.1), (1.3) and (2.3) imply

£

Thus we obtain the formula (b).

Remark. Recently A. Gray and L. Vanhecke [7] has given in a Riemannian
manifold many formulas which are useful in obtaining systematically scalar
functions such as given in Lemma 2.2.

If we transvect g^gklgmn with (2.5), then taking account of the formulas
(2.8), we have the following lemma (cf. Y. Watanabe [23]).

LEMMA 2.3. In a harmonic Riemannian manifold of dimension n, we have

(2.9)

§ 3. 5-dimensional harmonic Riemannian manifolds.

We shall now prove a curvature identity (3.4) in a harmonic Riemannian
manifold M of dimension 5. To do so, we introduce in a Riemannian manifold
of dimension n a function G(m) by

for any natural number m ^ l , where

Z=\^\ (a,b=l,2,...,2m)

is the so-called generalized Kronecker delta (cf. [15]). When M is compact and
n—2m, the G ( m ) is, as is well known, the integrand of the Gauss-Bonnet
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theorem (see, for example, S. Kobayashi and K. Nomizu [8]). However, the
function G ( m ) vanishes identically for a Riemannian manifold M of dimension
n<2m, because in such a case <5iji|:::i|™ is equal to zero. Therefore if the dimen-
sion of M is 5, then

(3.2) G (3,=0,

which will be used in the sequel.
On the other hand, the function G ( 3 ) has in a Riemannian manifold of

dimension n the following form (cf. [17], [5]):

(3.3) G(v=8R-4R-24RabRcdRabcd-24RuυRu

abcRυabc

+16RabRa

cRbc+S3-12S \ Rx |
 2 +3S | R | 2 ,

as a consequence of (1.3). Thus using (3.3), we see that in an Einsteinian mani-
fold of dimension 5 the formula (3.2) reduces to

(3.4) 4R-2R=~(9\R\2-S2).

The identity (3.4) is also obtained by transvecting Rhι^k with the identity

QJ £

/ 3 , ,_lo 1

proved by E.M. Patterson [15] in a harmonic Riemannian manifold of dimen-
sion 5.

From now on, let M be a 5-dimensional harmonic Riemannian manifold.
We note here that any harmonic Riemannian manifold is necessarily Einsteinian
(see §2). Eliminating R from (1.5) and (3.4), we have

(3.5) j | ^

Eliminating R from (2.9) and (3.4), we have

(3.6) 27177?1 2 +96i?-36S\R\ 2 - | | s 8 =315 2 /(0).

Next eliminating R from (3.5) and (3.6), we have

(3.7) ^ ^ /

Since \R\2 and S are constant in a harmonic Riemannian manifold because of
(2.3) and (2.6), we have from (3.7), (3.5) and (3.4)

PROPOSITION 3.1. In a ^-dimensional harmonic Riemannian manifold, the
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scalar functions \1R\2, R and R are all constant.

In a harmonic Riemannian manifold M of dimension 5, we take a fixed point
x0 and a fixed unit vector X belonging to the tangent space T0M to M at x0.
Transvecting XkXίXjXιXmXn with (2.5), we have at the point x0

Substituting /(0) given by (3.7) into the equation above, we have at the point x0

the following key equation

(3.8) WkRpiWlRqnn*X*XiXJXlXmX" + -~

We now define a linear transformation Πx in the tangent space T0M by

(3.9) ΠX(Y)=-R(X, Y)X

for Y^TQM, which implies immediately

(3.10) Πx(X)--=0.

For simplicity, we put ΠX~Π. Then X is obviously an eigen vector of 77 with
eigen value 0, because of (3.10). Since the linear transformation 77 is symmetric
because of (3.9), there is an orthonormal basis {X, elf e2, eSf e4} such that

(3.11) Π(ea)=λaea ( α = l , 2 , 3 , 4 ) .

Then by (2.3) and (2.4) we get

(3.12) Tr(Π)=RJiXX=

where Tr means the trace of each of linear transformations 77, Π2—Π»Π and
773=77o77°77. Thus (3.8) implies the following equation (3.13) at the point x0

because of (2.6) and (3.11).

(3.13) 9\/kRpιJ^ιRqmn

pXkXίXjXίXmXn+ ~ 17i? 12

+ 3j5-{-388Tr(77)(-- -~/(0) 2- ^

Then arranging (3.13) and using (3.12), we get at the point x0
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(3.14) 9VkRplJ«7lRqmn

pXkXiXjXlXmXn+-^ |W? | 2 = ^ F(λ),

where

As a consequence of (3.11), we have

F(λ)=216 Σ ^+35(Σ λ J3-194(Σ λa) Σ Λ?
α a a β

a β

β<r a β<r
=54 Σ (^-OT,3+Λ)+35(Σ;U Σ Up-

β β

β<r

which implies the following formulas

(3.15)

and

(3.16)

,-2,7{19Σλa-54{λ1+λt)} + W . - W 1 {19Σ λa-54(21+2,)} .
a a

As a consequence of (3.14), we have the following inequality

(3.17)

We first note that λa is the sectional curvature for the orthonormal pair
{X, ea) {a—I, 2, 3, 4), because of the definition (3.9) of Π—Πx. Suppose that
all λa satisfy <^;^(19/35)<5 for some feO. Then we see from (3.15) that the
right hand side of (3.14) is non-positive. Consequently it follows from (3.14) and
(3.17) that |W? | 2 =0 at the point xQ of M. Since M is connected, Proposition
3.1 implies that 7 ^ = 0 , i.e. that M is locally symmetric. Thus, we have the
following

LEMMA 3.2. Let M be a ^-dimensional harmonic Riemannian manifold all of
whose sectional curvatures tcx(X, Y) at a point x satisfy δ^tcx(X, Y)^(19/35)5 for
some δ^O. Then M is locally symmetric.
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Since a locally symmetric harmonic manifold is locally flat or locally isometric
to a rank one symmetric space (cf. [12], [6]), it is of constant curvature if it
is odd-dimensional. Thus, Lemma 3.2 implies

THEOREM 3.3. Let M be a ^-dimensional harmonic Riemanman manifold all

of whose sectional curvatures tcx{X, Y) at a point x satisfy δ^tcx{X, 30^(19/35)5
for some δ^O. Then M ts of constant curvature.

Similarly using (3.16) and noting S=5ΣΛ α , w e obtain
a

THEOREM 3.4. Let M be a ^-dimensional harmonic Riemanman manifold. If

all sectional curvatures κx(X, Y) at a point x satisfy κx(X, 30^(19/540)5, where

S is the scalar curvature, then M is of constant curvature.
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