T. ADATI KODAI MATH. J. 4 (1981), 327-343

SUBMANIFOLDS OF AN ALMOST PRODUCT RIEMANNIAN MANIFOLD

By Tyuzi Adati

§0. Introduction. When a Riemannian manifold \overline{M} admits a tensor field F of type (1, 1) such that $F^2 = I$ (F is non-trivial), \overline{M} is called an almost product Riemannian manifold. Let M be a submanifold of an almost product Riemannian manifold \overline{M} . We denote by $T_p(M)$ the tangent space of M at $P \in M$ and by $T_p(M)^{\perp}$ the normal space of M at P. If $FT_p(M) \subset T_p(M)$ for any point $P \in M$, then M is called an invariant submanifold. If $FT_p(M) \subset T_p(M)^{\perp}$ for any point P, then M is called an anti-invariant submanifold. In this paper, we shall study non-invariant, invariant and anti-invariant submanifolds of an almost product Riemannian manifold.

In §1 and §2, we obtain for later use fundamental formulas for submanifolds of an almost product Riemannian manifold \overline{M} . In §3, we study hypersurfaces of an almost product Riemannian manifold \overline{M} . In §4 and §5, we mainly investigate non-invariant submanifolds of \overline{M} . We devote §6 to the study of invariant submanifolds of \overline{M} . In the last §7, we consider anti-invariant submanifolds of \overline{M} .

§ 1. An almost product Riemannian manifold. Let \overline{M} be an almost product Riemannian manifold of dimension m. Then, by definition, there exist a non-trivial tensor field F of type (1, 1) and a positive definite Riemannian metric G satisfying

$$F^2 = I$$
, $G(F\bar{X}, F\bar{Y}) = G(\bar{X}, \bar{Y})$, $\bar{X}, \bar{Y} \in \mathfrak{X}(\bar{M})$,

where I is the identity and $\mathcal{X}(\bar{M})$ is the Lie algebra of vector fields on $\bar{M}.$ It is well known that

$$G(F\overline{X}, \overline{Y}) = G(\overline{X}, F\overline{Y})$$
,

that is, Φ is symmetric, where $\Phi(\overline{X}, \overline{Y}) = G(F\overline{X}, \overline{Y})$.

Let M be an *n*-dimensional manifold immersed in \overline{M} (m-n=s) and i_* the differential of the immersion i of M into \overline{M} . The induced Riemannian metric g of M is given by

(1.1)
$$g(X, Y) = G(i_*X, i_*Y), \quad X, Y \in \mathfrak{X}(M),$$

where $\mathfrak{X}(M)$ is the Lie algebra of vector fields on M. Let $\{N_1, N_2, \dots, N_s\}$ be an orthonormal basis of the normal space $T_P(M)^{\perp}$ at a point $P \in M$.

Received March 25, 1980

The transform Fi_*X of $X \in T_P(M)$ by F and FN_i of N_i by F can be respectively written in the next form:

(1.2)
$$Fi_*X = \iota_*fX + \sum_{i=1}^s u_i(X)N_i, \qquad X \in \mathfrak{X}(M),$$

(1.3)
$$FN_i = \imath_* U_i + \sum_{j=1}^s \lambda_{ij} N_j,$$

where f, u_i , U_i and λ_{ij} are respectively a linear transformation, 1-forms, vector fields and functions on M. Using (1.1) and (1.2),

$$g(fX, Y) = G(i_*fX, i_*Y) = G(Fi_*X, i_*Y) = G(i_*X, Fi_*Y) = G(i_*X, i_*fY).$$

Therefore we have g(fX, Y) = g(X, fY). Furthermore, from $G(Fi_*X, N_i) = G(i_*X, FN_i)$ and $G(FN_i, N_j) = G(N_i, FN_j)$, we can respectively get the equations

$$u_i(X) = g(X, U_i), \qquad X \in \mathcal{X}(M),$$
$$\lambda_{ij} = \lambda_{ji}.$$

LEMMA 1.1. In submanifold M of an almost product Riemannian manifold \overline{M} ,

(1.4)
$$f^{2}X = X - \sum_{i=1}^{s} u_{i}(X)U_{i} \quad or \quad f^{2} = I - \sum_{i=1}^{s} u_{i} \otimes U_{i},$$

(1.5)
$$u_i(fX) + \sum_{j=1}^s \lambda_{ij} u_j(X) = 0, \qquad X \in \mathscr{X}(M),$$

$$fU_i + \sum_{j=1}^s \lambda_{ij} U_j = 0,$$

(1.7)
$$u_j(U_i) = \delta_{ji} - \sum_{k=1}^s \lambda_{jk} \lambda_{ki}.$$

Proof. From (1.2),

$$F^{2}i_{*}X = F(i_{*}fX + \sum_{i} u_{i}(X)N_{i}) = i_{*}(f^{2}X + \sum_{i} u_{i}(X)U_{i}) + \sum_{j} \{u_{j}(fX) + \sum_{i} \lambda_{ij}u_{i}(X)\}N_{j}.$$

Since $F^2i_*X = i_*X$, we get (1.4) and (1.5). Similarly,

$$F^2 N_i = \iota_* (f U_i + \sum_j \lambda_{\iota j} U_j) + \sum_k (u_k (U_i) + \sum_j \lambda_{\iota j} \lambda_{j k}) N_k .$$

Thus we get (1.6) and (1.7).

(1.5) and (1.6) are equivalent. Using (1.2), for X, $Y \in \mathfrak{X}(M)$,

$$G(Fi_*X, Fi_*Y) = G(i_*fX, i_*fY) + G(\sum_i u_i(X)N_i, \sum_j u_j(Y)N_j)$$

$$=g(fX, fY) + \sum_{i} u_i(X)u_i(Y)$$
,

from which

(1.8)
$$g(fX, fY) = g(X, Y) - \sum_{i} u_i(X)u_i(Y).$$

§2. A locally product Riemannian manifold. We denote the covariant differentiation in \bar{M} by $\overline{\nabla}$ and the covariant differentiation in M determined by the induced metric on M by ∇ . Then the Gauss and Weingarten formulas are respectively given by

$$\begin{aligned} \overline{\nabla}_{\imath\ast X} \imath\ast Y &= \imath\ast \nabla_X Y + \sum_{\imath=1}^s h_i(X, Y) N_i, \quad X, Y \in \mathcal{X}(M), \\ \overline{\nabla}_{\imath\ast X} N_i &= -\imath\ast H_i X + \sum_{j=1}^s \mu_{\imath j}(X) N_j, \end{aligned}$$

where $h_i(i=1, 2, \dots, s)$ are the second fundamental tensors corresponding to N_i respectively and $h_i(X, Y) = h_i(Y, X)$.

Covariantly differentiating $G(\iota_*Y, N_\iota)=0$ on M,

$$G(\overline{\nabla}_{\iota_*X}\iota_*Y, N_\iota) + G(\iota_*Y, \overline{\nabla}_{\iota_*X}N_\iota) = 0$$
,

from which $h_i(X, Y) = g(H_iX, Y)$. Similarly, covariantly differentiating $G(N_i)$, $N_j = \delta_{ij}$ on *M*, we have $\mu_{ij}(X) + \mu_{ji}(X) = 0$.

Next, we consider $\overline{\nabla}_{i*X}F$.

$$\begin{split} (\overline{\nabla}_{i*X}F)i_*Y &= \overline{\nabla}_{i*X}(Fi_*Y) - F\overline{\nabla}_{i*X}i_*Y \\ &= \overline{\nabla}_{i*X}(i_*fY + \sum_i u_i(Y)N_i) - F(i_*\nabla_XY + \sum_i h_i(X, Y)N_i) \\ &= \{i_*(\nabla_Xf)Y - \sum_i u_i(Y)H_iX - \sum_i h_i(X, Y)U_i\} \\ &+ \sum_i \{h_i(X, fY) + (\nabla_Xu_i)(Y) - \sum_j \mu_{ij}(X)u_j(Y) \\ &- \sum_i \lambda_{ij}h_j(X, Y)\}N_i \,. \end{split}$$

When \overline{M} is a locally product Riemannian manifold, that is, $\overline{\nabla}F=0$ ([2], [5]), we have

LEMMA 2.1. If \overline{M} is a locally product Riemannian manifold, then the next equations hold good:

(2.1)
$$(\nabla_X f)Y = \sum_i \{u_i(Y)H_iX + h_i(X, Y)U_i\},$$

(2.2)
$$h_i(X, fY) + (\nabla_X u_i)(Y) - \sum_j \mu_{ij}(X) u_j(Y) - \sum_j \lambda_{ij} h_j(X, Y) = 0.$$

Similarly,

$$\begin{split} (\overline{\nabla}_{i*X}F)N_i &= \overline{\nabla}_{i*X}(FN_i) - F\overline{\nabla}_{i*X}N_i \\ &= \overline{\nabla}_{i*X}(i_*U_i + \sum_j \lambda_{ij}N_j) - F(-i_*H_iX + \sum_j \mu_{ij}(X)N_j) \\ &= \iota_* \{\overline{\nabla}_X U_i + fH_iX - \sum_j \mu_{ij}(X)U_j - \sum_j \lambda_{ij}H_jX\} \\ &+ \{\sum_j \{h_j(X, U_i) + h_i(X, U_j) + \overline{\nabla}_X\lambda_{ij} + \sum_k \lambda_{ik}\mu_{kj}(X) \} \\ &+ \sum_k \lambda_{jk}\mu_{ki}(X)\}N_j = 0 \,. \end{split}$$

Thus we have

LEMMA 2.2. If \overline{M} is a locally product Riemannian manifold, then the next equations hold good:

(2.3)
$$fH_{i}X + \nabla_{X}U_{i} - \sum_{j} \mu_{ij}(X)U_{j} - \sum_{j} \lambda_{ij}H_{j}X = 0,$$

(2.4)
$$h_j(X, U_i) + h_i(X, U_j) + \nabla_X \lambda_{ij} + \sum_k \lambda_{ik} \mu_{kj}(X) + \sum_k \lambda_{jk} \mu_{ki}(X) = 0.$$

Calculating $(\nabla_X u_i)(Y)$,

$$(\nabla_{\mathcal{X}}u_{i})(Y) = \nabla_{\mathcal{X}}\{u_{i}(Y)\} - u_{i}(\nabla_{\mathcal{X}}Y) = \nabla_{\mathcal{X}}\{g(Y, U_{i})\} - g(\nabla_{\mathcal{X}}Y, U_{i}) = g(\nabla_{\mathcal{X}}U_{i}, Y).$$

Hence, (2.2) and (2.3) are equivalent.

§3. Hypersurfaces of an almost product Riemannian manifold. Suppose that M is a hypersurface immersed in an almost product Riemannian manifold \tilde{M} [1], [3]. In this case, (1.2) and (1.3) are respectively written in the following forms:

$$Fi_*X = i_*fX + u(X)N$$
, $FN = i_*U + \lambda N$,

where $N=N_1$, $u=u_1$, $U=U_1$, $\lambda=\lambda_{11}$ and u(X)=g(X, U). From Lemma 1.1, we have

$$(3.1) f^2 = I - u \otimes U,$$

$$(3.2) f U = -\lambda U ,$$

$$(3.3) u(U)=1-\lambda^2, \quad 0\leq \lambda^2\leq 1.$$

The Gauss and Weingarten formulas are respectively given by

$$\overline{\nabla}_{i*X}i_*Y = i_*\nabla_X Y + h(X, Y)N, \qquad \overline{\nabla}_{i*X}N = -i_*HX,$$

where $h=h_1$, $H=H_1$ and h(X, Y)=g(HX, Y). When \overline{M} is a locally product Riemannian manifold, from Lemma 2.1 and

Lemma 2.2 we have

(3.4)
$$(\nabla_X f)Y = u(Y)HX + h(X, Y)U,$$

(3.5)
$$h(X, fY) + (\nabla_X u)(Y) - \lambda h(X, Y) = 0 \text{ or } fHX + \nabla_X U - \lambda HX = 0,$$

$$(3.6) 2h(X, U) + \nabla_X \lambda = 0.$$

When $\lambda^2 = 1$, U is a zero vector. Consequently, M is an invariant hypersurface and $f^2 = I$. Furthermore, we get $FN = \lambda N$. Thus we have

THEOREM 3.1. In order that M is an invariant hypersurface of an almost product Riemannian manifold \overline{M} , it is necessary and sufficient that the normal of M is an eigenvector of the matrix F.

THEOREM 3.2. In order that M is an invariant hypersurface of an almost product Riemannian manifold \overline{M} , it is necessary and sufficient that the induced structure (f, g) of M is an almost product Riemannian structure excepting the case where f is trivial.

Proof. If $f^2=I$, we have u(X)U=0. Therefore, we get $u(X)g(U, X)=u(X)^2=0$, that is, u(X)=0. Hence M is invariant.

In the next place, we consider the case where M is not invariant, that is, $\lambda^2 \neq 1$. Since eigenvalues of f are ± 1 and $-\lambda$, we have

$$\operatorname{Tr}(f) = -\lambda + \operatorname{const.}$$

When $\lambda = 0$, the following equations hold good.

$$f^{2} = I - u \otimes U$$
, $u(U) = 1$,
 $u(X) = g(X, U)$, $g(fX, fY) = g(X, Y) - u(X)u(Y)$.

Thus, we get the following theorem [4].

THEOREM 3.3. Let M be a hypersurface of an almost product Riemannian manifold \overline{M} . If FN is tangent to M, then M admits an almost paracontact Riemannian structure.

THEOREM 3.4 [1]. When M is non-invariant hypersurface of a locally product Riemannian manifold \overline{M} , the following conditions are equivalent. (i) $\nabla_x f=0$, (ii) M is totally geodesic, (iii) U is parallel in M.

Proof. (i) When $\nabla_X f=0$, we get from (3.4) u(Y)HX+h(X, Y)U=0, from which u(Y)HX=-h(X, Y)U. Therefore, for X, Y, $Z \in \mathfrak{X}(M)$

$$u(Y)h(X, Z) = -u(Z)h(X, Y)$$
.

Thus, since u(Y)h(X, Z) is symmetric in X and Y,

$$u(Y)h(X, Z) = u(X)h(Y, Z) = -u(Y)h(X, Z).$$

By virtue of $u(U)=1-\lambda^2\neq 0$, we get h(X, Z)=0, that is, M is totally geodesic. Furthermore, from (3.5) we have $\nabla_x U=0$.

(ii) When h(X, Y)=0, from (3.4) and (3.5), we have $\nabla_X f=0$, $\nabla_X U=0$.

(iii) When $\nabla_X U=0$, from (3.5) we have $fHX=\lambda HX$. Therefore $f^2HX=\lambda fHX=\lambda^2HX$, from which

$$HX - u(HX)U = \lambda^2 HX$$

Since we have $\lambda = \text{const.}$ from (3.3) and $\nabla_X U = 0$, we find h(X, U) = u(HX) = 0 from (3.6). Thus we get

$$HX = \lambda^2 HX$$
,

from which HX=0. Consequently, $\nabla_X f=0$.

We denote by $\{e_1, e_2, \dots, e_n\}$ an orthonormal basis of the tangent space $T_P(M)$ at a point $P \in M$. Then we have

THEOREM 3.5. Let M be a non-invariant hypersurface of a locally product Riemannian manifold \overline{M} . If $\sum_{\lambda=1}^{n} (\nabla_{e_{\lambda}} f) e_{\lambda} = 0$ and $\operatorname{Tr}(f) = \operatorname{const.}$, then M is minimal.

Proof. Since we have $\lambda = \text{const.}$ from Tr(f) = const., we get h(X, U) = 0 from (3.6). From (3.4)

$$\sum_{\lambda} (\nabla_{e_{\lambda}} f) e_{\lambda} = \sum_{\lambda} (u(e_{\lambda}) H e_{\lambda} + h(e_{\lambda}, e_{\lambda}) U) = 0.$$

Consequently,

$$\sum_{\lambda} \{u(e_{\lambda})h(e_{\lambda}, U) + h(e_{\lambda}, e_{\lambda})u(U)\} = \sum_{\mu=1}^{n} h(e_{\mu}, e_{\mu})(1-\lambda^{2}) = 0,$$

from which $\sum_{\lambda} h(e_{\lambda}, e_{\lambda}) = 0$. Hence *M* is minimal.

§4. Submanifolds of an almost product Riemannian manifold (I). We consider a non-invariant submanifold M immersed in an almost product Riemannian manifold \overline{M} and assume that U_i ($i=1, 2, \dots, s$) are linearly independent. Consequently we have

$$\sum_{k} (\lambda_{ik})^2 < 1 \quad (i=1, 2, \cdots, s) \quad \text{and} \quad s \leq n.$$

Let $\{\bar{N}_1, \bar{N}_2, \cdots, \bar{N}_s\}$ be the another orthonormal basis of $T_P(M)^{\perp}$ at $P \in M$. We put

(4.1)
$$\bar{N}_i = \sum_{l=1}^s k_{li} N_l$$

333

By means of $G(\bar{N}_i, \bar{N}_j) = \sum_l k_{li} k_{lj}$, we have

$$\sum_{l=1}^{s} k_{li} k_{lj} = \delta_{ij},$$

from which

$$\sum_{h=1}^{s} k_{ih} k_{jh} = \delta_{ij}.$$

Consequently matrix (k_{ij}) is an orthogonal matrix. Thus from (4.1), we have

$$N_j = \sum_h k_{jl} \bar{N}_l$$
.

Making use of (4.1), equations (1.2) and (1.3) are respectively written in the next forms:

(4.2)
$$Fi_*X = i_*fX + \sum_l \bar{u}_l(X)\bar{N}_l,$$

(4.3)
$$F\bar{N}_l = i_* \bar{U}_l + \sum_h \bar{\lambda}_{lh} \bar{N}_h ,$$

where

(4.4)
$$\vec{u}_i = \sum_l k_{li} u_l , \qquad \vec{U}_i = \sum_l k_{li} U_l ,$$

(4.5)
$$\overline{\lambda}_{lh} = \sum_{i,j} k_{il} \lambda_{ij} k_{jh} .$$

From (4.4), we obtain

LEMMA 4.1. Let M be a submanifold of an almost product Riemannian manifold \overline{M} . When the orthonormal basis $\{N_i\}$ of $T_P(M)^{\perp}$ is transformed to the another orthonormal basis $\{\overline{N}_i\}$ of $T_P(M)^{\perp}$, if U_i (i=1, 2, ..., s) are linearly independent, then \overline{U}_i (i=1, 2, ..., s) are also linearly independent, and vice versa.

It is clear that if a submanifold M of a locally product Riemannian manifold \overline{M} is totally geodesic, then $\nabla_x f=0$ is satisfied. Conversely, we have the following

THEOREM 4.2. Let M be a submanifold of a locally product Riemannian manifold \overline{M} . If U_i (i=1, 2, ..., s) are linearly independent and $\nabla_x f=0$, then M is totally geodesic.

Proof. Since we have from (2.1) $\sum_{i} \{u_i(Y)H_iX + h_i(X, Y)U_i\} = 0$, we get the equation

$$\sum_{i} \{ u_{i}(Y)g(H_{i}X, Z) + h_{i}(X, Y)g(U_{i}, Z) \} = 0, \quad X, Y, Z \in \mathcal{X}(M),$$

from which

$$\sum_{i} \{ u_{i}(Y)h_{i}(X, Z) \} = -\sum_{i} \{ u_{i}(Z)h_{i}(X, Y) \}$$

and consequently

$$\sum_{i} u_i(Y)h_i(X, Z) = -\sum_{i} u_i(X)h_i(Y, Z).$$

Therefore $\sum_{i} u_i(Y)h_i(X, Z)$ is symmetric and at the same time skew-symmetric in X, Y. Thus we have

$$\sum_{i} u_i(Y) h_i(X, Z) = 0.$$

Since U_i (*i*=1, 2, ..., s) are linearly independent, we get $h_i(X, Z)=0$ (*i*=1, 2, ..., s), that is, M is totally geodesic.

In $T_p(M)$, we denote by $V(U_i)$ an s-dimensional vector space spanned by U_i $(i=1, 2, \dots, s)$ and by V an eigenvector of f perpendicular to the vector space $V(U_i)$. Then the following equation holds good:

$$fV = \rho V$$
,

where ρ is an eigenvalue of f. Therefore, $f^2 V = \rho f V = \rho^2 V$, from which $(I - \sum_i u_i \otimes U_i) V = \rho^2 V$, that is, $V = \rho^2 V$. Hence we have $\rho^2 = 1$.

When s < n, in $T_P(M)$, we denote eigenvectors of f, which are perpendicular to $V(U_i)$ and mutually orthogonal, by V_A $(A=s+1, \dots, n)$. We put

$$fV_A = \varepsilon_A V_A$$
 $(A = s+1, \cdots, n),$

where $\varepsilon_A^2 = 1$.

Next, if we take an eigenvector U of f in the vector space $V(U_i)$, the following equation holds good:

$$fU = \sigma U$$
,

where σ is an eigenvalue of f. Since we can put $U=\sum_{i} c_i U_i$, from (1.6)

$$fU = f \sum_{i} c_i U_i = -\sum_{i,j} c_i \lambda_{ij} U_j,$$

from which $\sum_{i} c_i \lambda_{ij} = -\sigma c_j$. Therefore, if we denote by σ an eigenvalue of f in $V(U_i)$, then $-\sigma$ is an eigenvalue of the matrix (λ_{ij}) . The converse is also true.

LEMMA 4.3. Let M be a submanifold of an almost product Riemannian manifold \overline{M} . If U_{ι} ($\iota=1, 2, \dots, s$) are linearly independent, then we have

$$\operatorname{Tr}(f) = -\operatorname{Tr}(\lambda_{ij}) + \sum_{A} \varepsilon_{A} \quad (s < n)$$

(4.6)

$$=-\operatorname{Tr}(\lambda_{ij})$$
 (s=n)

where $\varepsilon_A^2 = 1$ (A=s+1, ... n).

Proof. We shall prove the case of s < n. Since from (1.6) we have $fU_i = -\sum \lambda_{ij} U_j$, matrices (f), (λ_{ij}) and $(U_1 U_2 \cdots U_s)$ satisfy the relations

$$(f)(U_1U_2\cdots U_s)=(U_1U_2\cdots U_s)(-\lambda_{ij}).$$

We define matrices \widetilde{U} , L by

$$\begin{aligned} \widetilde{U} &= (U_1 U_2 \cdots U_s V_{s+1} \cdots V_n), \\ L &= \begin{pmatrix} -\lambda_{ij} & 0 \\ 0 & \varepsilon_A \delta_{AB} \end{pmatrix}, \end{aligned}$$

where $\delta_{AA}=1$, $\delta_{AB}=0$ $(A \neq B)$ $(A, B=s+1, \dots, n)$. Then we have $(f)\tilde{U}=\tilde{U}L$. Since $|\tilde{U}|\neq 0$, we have $(f)=\tilde{U}L\tilde{U}^{-1}$. If we denote components of (f), L, \tilde{U} and \tilde{U}^{-1} by $f_{\mu}^{\lambda}, l_{\mu\lambda}, u_{\mu}^{\lambda}$ and v_{μ}^{λ} respectively, then we get

$$f^{\lambda}_{\mu} = \sum_{\omega,\nu} u^{\lambda}_{\omega} l_{\omega\nu} v^{\nu}_{\mu} \qquad (\lambda, \ \mu, \ \nu, \ \omega = 1, \ 2, \ \cdots, \ n).$$

Thus we have

$$\Gamma \mathbf{r}(f) = \sum_{\mu} f^{\mu}_{\mu} = \sum_{\nu} l_{\nu\nu} = -\sum_{i} \lambda_{ii} + \sum_{A} \varepsilon_{A}.$$

LEMMA 4.4. Let M be a submanifold of an almost product Riemannian manifold \tilde{M} . If U_{ι} (i=1, 2, ..., s) are linearly independent and $\nabla_{x} f=0$, then $\operatorname{Tr}(\lambda_{\iota j})=\operatorname{const.}$

Proof. Let $\{e_1, e_2, \dots, e_n\}$ be an orthonormal basis of $T_P(M)$ and extend e_{λ} $(\lambda=1, 2, \dots, n)$ to local vector fields E_{λ} which are covariantly constant at $P \in M$. Then at $P \in M$,

$$\nabla_{X} \operatorname{Tr}(f) = \nabla_{X} \sum_{\lambda} g(fe_{\lambda}, e_{\lambda}) = \{ \sum_{\lambda} \nabla_{X} g(fE_{\lambda}, E_{\lambda}) \}_{P}$$
$$= \{ \sum_{\lambda} g(\nabla_{X} f) E_{\lambda}, E_{\lambda} \} + 2 \sum_{\lambda} g(\nabla_{X} E_{\lambda}, fE_{\lambda}) \}_{P} = \sum_{\lambda} g((\nabla_{X} f) e_{\lambda}, e_{\lambda}) = 0.$$

Thus we have Tr(f) = const., from which, $Tr(\lambda_{ij}) = const.$.

THEOREM 4.5. Let M be a submanifold of a locally product Riemannian manifold \overline{M} . If U_i (i=1, 2, ..., s) are linearly independent, Tr(f)=const. and M is totally umbilical, then M is totally geodesic.

Proof. If we put i=j in (2.4), we can get

$$2\sum_{i} h_{i}(X, U_{i}) + \nabla_{X} \sum_{i} \lambda_{ii} + 2\sum_{i,k} \lambda_{ik} \mu_{ki}(X) = 0.$$

Since λ_{ij} is symmetric and μ_{ij} skew-symmetric in *i*, *j*, $\sum_{i,k} \lambda_{ik} \mu_{ki}(X) = 0$. And by means of Tr(f) = const. and (4.6), we have $\sum_{i} \lambda_{ii} = \text{const.}$ Hence we find

$$\sum_{i} h_i(X, U_i) = 0.$$

Putting $h_i(X, Y) = \sigma_i g(X, Y)$ and substituting in the above equation, we have $\sum_i \sigma_i g(X, U_i) = 0$, from which $\sum_i \sigma_i U_i = 0$. Thus we have $\sigma_i = 0$, that is, M is totally geodesic.

THEOREM 4.6. Let M be a submanifold of a locally product Riemannian manifold \overline{M} . If U_i (i=1, 2, ..., s) are linearly independent, $\sum_{\lambda} (\nabla_{e_{\lambda}} f) e_{\lambda} = 0$ and $\operatorname{Tr}(f) = \operatorname{const.}$, then M is minimal.

Proof. If we put $X=Y=e_{\lambda}$ in (2.1), we have

$$(\nabla_{e_{\lambda}}f)e_{\lambda} = \sum_{i} (u_{i}(e_{\lambda})H_{i}e_{\lambda} + h_{i}(e_{\lambda}, e_{\lambda})U_{i}),$$

from which

$$\sum_{\lambda} (\nabla_{e_{\lambda}} f) e_{\lambda} = \sum_{i} (H_{i} \sum_{\lambda} u_{i}(e_{\lambda}) e_{\lambda} + \sum_{\lambda} h_{i}(e_{\lambda}, e_{\lambda}) U_{i}) = \sum_{i} (H_{i} U_{i} + \sum_{\lambda} h_{i}(e_{\lambda}, e_{\lambda}) U_{i}) = 0.$$

By means of $\operatorname{Tr}(f)=\operatorname{const.}$ and (4.6), we have $\sum_{i} h_i(X, U_i)=0$, which was shown in the proof of Theorem 4.5. Therefore $\sum_{i} g(H_iX, U_i)=\sum_{i} g(H_iU_i, X)=0$, from which $\sum H_iU_i=0$. Thus we find

$$\sum_{i} \sum_{\lambda} h_{i}(e_{\lambda}, e_{\lambda}) U_{i} = 0$$

and consequently $\sum_{\lambda} h_i(e_{\lambda}, e_{\lambda}) = 0$. Hence M is minimal.

Next, we consider the case of $\lambda_{ij} = \lambda_i \delta_{ij}$ ($\lambda_i^2 < 1$). In this case, since from (1.7) we have

$$u_j(U_i) = \delta_{ji} - \lambda_j \lambda_i \delta_{ji}$$
 ,

 U_i ($i=1, 2, \dots, s$) are mutually orthogonal. Consequently these vectors are linearly independent. Furthermore, since from (1.6) we have $fU_i = -\lambda_i U_i$, U_i is an eigenvector of f and $-\lambda_i$ is the corresponding eigenvalue of f.

Thus we have

THEOREM 4.7. Let M be a submanifold of a locally product Riemannian manifold \overline{M} . If $\lambda_{ij} = \lambda_i \delta_{ij}$ ($\lambda_i^2 < 1$) and $\nabla_X f = 0$, then M is totally geodesic.

Similarly, in Theorem 4.5 and Theorem 4.6, we can replace the condition that U_i $(i=1, 2, \dots, s)$ are linearly independent by $\lambda_{ij} = \lambda_i \delta_{ij}$ $(\lambda_i^2 < 1)$.

Especially, we put $\lambda_{ij}=0$, that is, $u_j(U_i)=\delta_{ji}$. In this case, FN_i is tangent to M. Since we have $f^3X=fX$ by means of $fU_i=0$, we obtain the following

THEOREM 4.8. In a submanifold M of an almost product Riemannian manifold

 \overline{M} , if FN_i (i=1, 2, ..., s) are tangent to M, then the induced structure tensor f satisfies $f^3-f=0$.

It is obvious that the following theorems hold good.

THEOREM 4.9. In a submanifold M of a locally product Riemannian manifold \overline{M} , if FN_i (i=1, 2, ..., s) are tangent to M and $\nabla_x f=0$, then M is totally geodesic.

THEOREM 4.10. In a submanifold M of a locally product Riemannian manifold \overline{M} , if FN_i is tangent to M and M is totally umbilical, then M is totally geodesic.

THEOREM 4.11. In a submanifold M of a locally product Riemannian manifold \overline{M} , if FN_i is tangent to M and $\sum_{\lambda} (\nabla_{e_{\lambda}} f) e_{\lambda} = 0$, then M is minimal.

Furthermore, we assume s=n. Since $fU_i=0$ and U_i $(i=1, 2, \dots, n)$ are linearly independent, we get f=0. Thus we have

THEOREM 4.12. In an n-dimensional submanifold M of a locally product Riemannain manifold \overline{M} of dimension 2n, if FN_i is tangent to M, then M is anti-invariant and totally geodesic.

§ 5. Submanifolds of an almost product Riemannian manifold (II). In this section, we assume that U_i ($i=1, 2, \dots, s$) are not always linearly independent. Let $\{N_1, N_2, \dots, N_s\}$, $\{\bar{N}_1, \bar{N}_2, \dots, \bar{N}_s\}$ be orthonormal bases of the normal space $T_P(M)^{\perp}$. If we put

(5.1)
$$\tilde{N}_i = \sum_l k_{li} N_l ,$$

then the matrix (k_{ij}) is an orthogonal matrix and we have (4.2), (4.3), where

(5.2)
$$\bar{u}_i = \sum_l k_{li} u_l, \qquad \bar{U}_i = \sum_l k_{li} U_l,$$

(5.3)
$$\overline{\lambda}_{lh} = \sum_{i,j} k_{il} \lambda_{ij} k_{jh} \, .$$

By means of (5.2), if U_i ($i=1, 2, \dots, s$) are linearly dependent, then U_i ($i=1, 2, \dots, s$) are also linearly dependent. And the greatest number of the linearly independent vector fields in U_i ($i=1, 2, \dots, s$) is invariant under the transformation (5.1).

Furthermore, because λ_{ij} is symmetric in i and j, from (5.3), we can find that under a suitable transformation (5.1) λ_{ij} reduces to $\overline{\lambda}_{ij} = \lambda_i \delta_{ij}$, where λ_i $(i=1, 2, \dots, s)$ are eigenvalues of (λ_{ij}) . In this case, we have $\overline{u}_j(\overline{U}_i) = \delta_{ji} - \lambda_j \lambda_i \delta_{ji}$, that is,

(5.4)
$$\bar{u}_i(\bar{U}_i) = 1 - \lambda_i^2, \quad \bar{u}_i(\bar{U}_i) = 0 \quad (i \neq j),$$

and

(5.5)
$$f\bar{U}_{i} = -\lambda_{i}\bar{U}_{i}$$

For h such as $\lambda_h^2 = 1$, \overline{U}_h is a zero vector and $F\overline{N}_h = \lambda_h \overline{N}_h$. Consequently \overline{N}_h is an eigenvector of F. When $\lambda_l^2 \neq 1$ $(l=1, 2, \dots, p \leq s)$, \overline{U}_l $(l=1, 2, \dots, p)$ are linearly independent, because these vectors are mutually orthogonal.

Therefore Fi_*X , $F\bar{N}_i$ can be written as follows:

(5.6)
$$Fi_*X = i_*fX + \sum_{l=1}^p \bar{u}_l(X)\bar{N}_l$$
, $(p \le \min(s, n))$,

(5.7)
$$\begin{cases} F\bar{N}_{l} = \imath_{*}\bar{U}_{l} + \lambda_{l}\bar{N}_{l} & (l=1, 2, \cdots, p), (p < s, p \leq n), \\ F\bar{N}_{h} = \lambda_{h}\bar{N}_{h} & (h = p + 1, \cdots, s), \end{cases}$$

respectively, where $\lambda_l^2 \neq 1$ ($l=1, 2, \dots, p$) and $\lambda_h^2 = 1$ ($h=p+1, \dots, s$). Especially, when p=s, in place of (5.7) the following equation holds good:

(5.7)'
$$F\bar{N}_l = i_*\bar{U}_l + \lambda_l\bar{N}_l, \qquad \lambda_l^2 \neq 1 \quad (l=1, 2, \cdots, s).$$

LEMMA 5.1. Let M be a submanifold of an almost product Riemannian manifold \overline{M} . A necessary and sufficient condition for U_i ($i=1, 2, \dots, s$) to be linearly independent is that at every point of M normals are not the eigenvector of F.

Proof. We consider the condition for U_i $(i=1, 2, \dots, s)$ to be linearly dependent. Let N be a unit normal of M which is an eigenvector of F. If we put $\bar{N}_s = N$ and transform the orthonormal basis $\{N_1, N_2, \dots, N_s\}$ of $T_P(M)^{\perp}$ to another orthonormal basis $\{\bar{N}_1, \bar{N}_2, \dots, \bar{N}_s\}$, then \bar{U}_i $(i=1, 2, \dots, s)$ are linearly dependent, because \bar{U}_s is a zero vector. Consequently, U_i $(i=1, 2, \dots, s)$ are linearly dependent.

Conversely, if U_i $(i=1, 2, \dots, s)$ are linearly dependent, then by a suitable transformation of $\{N_1, N_2, \dots, N_s\}$, we get a zero vector \overline{U}_s and the normal \overline{N}_s corresponding to \overline{U}_s is an eigenvector of F. Thus, the lemma was proved.

LEMMA 5.2. In a submanifold M of an almost product Riemannian manifold \overline{M} , we have

(5.8)
$$\operatorname{Tr}(f) = -\sum_{l=1}^{p} \lambda_{l} + \sum_{A=p+1}^{n} \varepsilon_{A} \qquad (p < s, \ p \leq n),$$

where λ_l $(l=1, 2, \dots, p)$ are eigenvalues of (λ_{ij}) satisfying $\lambda_l^2 \neq 1$ and $\varepsilon_A^2 = 1$ $(A=p+1, \dots, n)$. Especially, when p=s,

$$Tr(f) = -Tr(\lambda_{ij}) + \sum_{A=s+1}^{n} \varepsilon_A, \qquad \varepsilon_A^2 = 1 \quad (s < n),$$
$$= -Tr(\lambda_{ij}) \qquad (s=n).$$

or

Proof. We prove the case of p < s. From (5.5), we have $f \bar{U}_l = -\lambda_l \bar{U}_l$ $(l=1, 2, \dots, p)$, where \bar{U}_l $(l=1, 2, \dots, p)$ are linearly independent. Thus we get

(5.8).

From Theorem 4.2 and Lemma 5.1, we have

THEOREM 5.3. Let M be a submanifold of a locally product Riemannian manifold \overline{M} . If at every point of M normals are not the eigenvector of F and $\nabla_x f=0$, then M is totally geodesic.

Similarly, in Theorem 4.5 and Theorem 4.6, the condition that U_i ($i=1, 2, \dots, s$) are linearly independent can be replaced by the condition that at every point of M normals are not the eigenvector of F.

THEOREM 5.4. Let M be a submanifold of a locally product Riemannian manifold \overline{M} . If $\lambda_{ij} = \lambda_i \delta_{ij}$, where $\lambda_i^2 \neq 1$ (l=1, 2, ..., p), $\lambda_h^2 = 1$ (h=p+1, ..., s) (p<s, p \leq n), and $\nabla_{\mathbf{X}} f = 0$, then $h_l(X, Y) = 0$ (l=1, 2, ..., p).

Proof. From (2.1) we have

$$\sum_{l=1}^{p} \{ u_{l}(Y) H_{l} X + h_{l}(X, Y) U_{l} \} = 0.$$

Consequently,

$$\begin{split} \sum_{l} u_{l}(Y)h_{l}(X, Z) &= -\sum_{l} u_{l}(Z)h_{l}(X, Y) = \sum_{l} u_{l}(X)h_{l}(Y, Z) \\ &= -\sum_{l} u_{l}(Y)h_{l}(X, Z) \,. \qquad (X, Y, Z \in \mathcal{X}(M)) \end{split}$$

Thus, we get $\sum_{l} u_l(Y)h_l(X, Z)=0$, from which $h_l(X, Z)=0$ $(l=1, 2, \dots, p)$.

Similarly, when $\lambda_{ij} = \lambda_i \delta_{ij}$, where $\lambda_l^2 \neq 1$ $(l=1, 2, \dots, p)$ and $\lambda_h^2 = 1$ $(h=p+1, \dots, s)$ $(p < s, p \leq n)$, the following theorems hold good.

If $\operatorname{Tr}(f)=\operatorname{const.}$ and M is totally umbilical, then $h_l(X, Y)=0$ $(l=1, 2, \dots, p)$. If $\sum_{\lambda} (\nabla_{e_{\lambda}} f) e_{\lambda}=0$ and $\operatorname{Tr}(f)=\operatorname{const.}$, then $\sum_{\lambda} h_l(e_{\lambda}, e_{\lambda})=0$ $(l=1, 2, \dots, p)$.

§6. Invariant submanifolds of an almost product Riemannian manifold. Suppose that M is an invariant submanifold immersed in an almost product Riemannian manifold \overline{M} . Then U_i $(i=1, 2, \dots, s)$ are zero vector fields and consequently (1.2), (1.3) are respectively written as follows.

$$Fi_*X = \iota_* fX$$
, $FN_\iota = \sum_J \lambda_{\iota_J} N_J$,

where

(6.1)
$$\sum_{k} \lambda_{jk} \lambda_{ki} = \delta_{ji},$$

that is $\sum_{k} \lambda_{jk}^{2} = 1$, $\sum_{k} \lambda_{jk} \lambda_{ki} = 0$ $(i \neq j)$.

Moreover, from (1.4) and (1.8), we get

 $f^2 = I$, g(fX, fY) = g(X, Y), $X, Y \in \mathfrak{X}(M)$.

Hence, M is an almost product Riemannian manifold excepting the case where f is trivial.

LEMMA 6.1. If M is an invariant submanifold of an almost product Riemannian manifold \overline{M} , the next equations hold good.

$$\begin{split} \varPhi(i_*X, i_*Y) = \phi(X, Y), \quad (\overline{\nabla}_{i*Z}\varPhi)(i_*X, i_*Y) = (\nabla_Z \phi)(X, Y), \quad X, Y, Z \in \mathfrak{X}(M), \\ where \quad \varPhi(\overline{X}, \overline{Y}) = G(F\overline{X}, \overline{Y}), \quad \phi(X, Y) = g(fX, Y), \quad \overline{X}, \quad \overline{Y} \in \mathfrak{X}(M). \end{split}$$

Proof.
$$\Phi(i_*X, i_*Y) = G(Fi_*X, i_*Y) = G(i_*fX, i_*Y) = g(fX, Y) = \phi(X, Y).$$

Next,

$$(\overline{\nabla}_{\imath\ast Z} \varPhi)(i_{\ast}X, i_{\ast}Y) = \overline{\nabla}_{\imath\ast Z}(\varPhi(i_{\ast}X, i_{\ast}Y)) - \varPhi(\overline{\nabla}_{\imath\ast Z}\iota_{\ast}X, \iota_{\ast}Y) - \varPhi(i_{\ast}X, \overline{\nabla}_{\imath\ast Z}\iota_{\ast}Y).$$

On the other hand,

$$\begin{split} & \varPhi(\overline{\nabla}_{i*Z}i_*X, i_*Y) \\ &= \varPhi(i_*\nabla_Z X + \sum h_i(Z, X)N_i, i_*Y) = G(Fi_*\nabla_Z X + \sum h_i(Z, X)FN_i, i_*Y) \\ &= G(i_*f\nabla_Z X, i_*Y) = g(f\nabla_Z X, Y) = \phi(\nabla_Z X, Y) \,. \end{split}$$

Therefore

$$(\overline{\nabla}_{\iota*Z} \Phi)(\iota_*X, \iota_*Y) = \nabla_Z(\phi(X, Y)) - \phi(\nabla_Z X, Y) - \phi(X, \nabla_Z Y) = (\nabla_Z \phi)(X, Y).$$

THEOREM 6.2. Let M be a submanifold of an almost product Riemannian manifold \overline{M} . A necessary and sufficient condition for M to be invariant is that the induced structure (f, g) of M is an almost product Riemannian structure whenever f is non-trivial.

Proof. It is clear that, if M is invariant, then M is an almost product Riemannian manifold whenever f is non-trivial. Conversely, suppose that M with the induced structure (f, g) is an almost product Riemannian manifold. Then, since $\sum_{i} u_i(X)U_i = 0$, we get

$$\sum_{i} u_{i}(X)g(U_{i}, X) = \sum_{i} u_{i}(X)^{2} = 0$$
,

from which $u_i(X)=0$. Hence M is invariant.

THEOREM 6.3. Let M be a submanifold of an almost product Riemannian manifold \overline{M} . A necessary and sufficient condition for M to be invariant is that

the normal space $T_P(M)^{\perp}$ at every point $P \in M$ admits an orthonormal basis consisting of eigenvectors of the matrix F.

Proof. Suppose that, by the transformation of the basis $\{N_1, N_2, \dots, N_s\}$, N_i , U_i and λ_{ij} was respectively transformed into \bar{N}_i , \bar{U}_i and $\lambda_i \delta_{ij}$, λ_i being eigenvalues of (λ_{ij}) . If M is invariant, then we have $F\bar{N}_i = \lambda_i \bar{N}_i$, $\lambda_i^2 = 1$. Hence \bar{N}_i $(i=1, 2, \dots, s)$ are eigenvectors of F.

Conversely, suppose that \bar{N}_i $(i=1, 2, \dots, s)$ are eigenvectors of F. Then, by virtue of $F\bar{N}_i=\lambda_i\bar{N}_i$ $(\lambda_i^2=1)$, we obtain $\bar{U}_i=0$. Consequently M is invariant.

THEOREM 6.4. If M is an invariant submanifold of a locally product Riemannian manifold \overline{M} , then M is a locally product Riemannian manifold whenever f is non-trivial.

Proof. Making use of Lemma 6.1 (or (2.1)), from $\overline{\nabla}F=0$ we can easily obtain $\nabla_x f=0$.

THEOREM 6.5 [5]. In a submanifold M of a locally product Riemannian manifold \overline{M} , if the equations

(i)
$$\begin{cases} Fi_*X = i_*X, \\ FN_i = -N_i \end{cases} \text{ or } (ii) \begin{cases} Fi_*X = -i_*X, \\ FN_i = N_i \end{cases}$$

are satisfied, then M is totally geodesic.

Proof. In the case (i), we have f=I. Therefore from (2.3) we get $H_iX=0$. Hence M is totally geodesic.

Similarly, we obtain

THEOREM 6.6. In a submanifold M of a locally product Riemannian manifold \overline{M} , if the equations

(i)
$$\begin{cases} Fi_*X = \iota_*X, \\ FN_l = -N_l \ (l=1, 2, \dots, q) & \text{or} \ (ii) \\ FN_h = N_h \ (h=q+1, \dots, s) \end{cases} \quad \text{or} \ (ii) \begin{cases} Fi_*X = -\iota_*X, \\ FN_l = N_l \ (l=1, 2, \dots, q), \\ FN_h = -N_h \ (h=q+1, \dots, s) \end{cases}$$

are satisfied, then $h_l(X, Y)=0$ $(l=1, 2, \dots, q < s)$.

THEOREM 6.7. Let M be an invariant submanifold of a locally product Riemannian manifold \overline{M} . If M is totally umbilical and $\{\operatorname{Tr}(f)\}^2 \neq n^2$ (or equivalently, f is non-trivial), then M is totally geodesic.

Proof. From (2.2), we have $h_i(X, fY) = \sum_j \lambda_{ij} h_j(X, Y)$. If we put $h_i(X, Y) = \sigma_i g(X, Y)$, we get $\sigma_i g(X, fY) = \sum_j \lambda_{ij} \sigma_j g(X, Y)$. Substituting $X = Y = e_\lambda$, we

find $\sigma_{\iota} \sum_{j} g(e_{\lambda}, fe_{\lambda}) = n \sum \lambda_{\iota j} \sigma_{j}$, that is,

(6.2)
$$\operatorname{Tr}(f)\sigma_{i} = n \sum_{j} \lambda_{ij}\sigma_{j}$$

We multiply the above equation by λ_{ji} and sum for *i*. Then we have

$$\mathrm{Tr}(f)\sum_{i}\lambda_{ji}\sigma_{i}=n\sum_{i}\sum_{k}\lambda_{ji}\lambda_{ik}\sigma_{k}=n\sigma_{j}$$

by virtue of (6.1). Consequently

$$\sigma_j = \frac{1}{n} \operatorname{Tr}(f) \sum_{i} \lambda_{ji} \sigma_i \,.$$

Substituting the above equation into (6.2), we have

$$\{\mathrm{Tr}(f)\}^{2} \sum_{j} \lambda_{ij} \sigma_{j} = n^{2} \sum_{j} \lambda_{ij} \sigma_{j},$$

from which $\sum_{j} \lambda_{ij} \sigma_{j} = 0$. Since $\sum_{i} \sum_{j} \lambda_{hi} \lambda_{ij} \sigma_{j} = \sigma_{h} = 0$ (*h*=1, 2, ..., *s*), *M* is totally geodesic.

§7. Anti-invariant submanifolds of an almost product Riemannian manifold. Last we consider an anti-invariant submanifold M immersed in an almost product Riemannian manifold \overline{M} . In this case, Fi_*X , FN_i are written as follows:

(7.1)
$$Fi_*X = \sum_i u_i(X)N_i,$$

(7.2)
$$FN_i = i_* U_i + \sum_{i} \lambda_{ij} N_j.$$

And (1.4), (1.6) become

(7.3)
$$\sum u_i \otimes U_i = I_j$$

(7.4)
$$\sum_{i} \lambda_{ij} U_{j} = 0.$$

In order that the solution of $u_i(X)=0$ $(i=1, 2, \dots, s)$ does not exist except zero vector, it is necessary and sufficient that the rank of the matrix $(U_1U_2 \cdots U_s)$ is *n* and consequently $s \ge n$.

When s=n, U_i ($i=1, 2, \dots, n$) are linearly independent and we have $\lambda_{ij}=0$ from (7.4). Thus we obtain the following theorem by virtue of Theorem 4.2.

THEOREM 7.1. In a locally product Riemannian manifold \overline{M} of dimension 2n, an antiinvariant submanifold M of dimension n is totally geodesic.

When s > n, U_i $(i=1, 2, \dots, s)$ are linearly dependent. Suppose that, by a suitable transformation (5.1) of the orthonormal basis $\{N_1, N_2, \dots, N_s\}$, N_i , U_i and

 λ_{ij} are transformed to \bar{N}_i , \bar{U}_i and $\lambda_i \delta_{ij}$ respectively, which λ_i are eigenvalues of (λ_{ij}) . Then, since (7.4) becomes $\lambda_i \bar{U}_i = 0$ $(i=1, 2, \dots, s)$, we can assume that \bar{U}_i $(l=1, 2, \dots, n)$ are linearly independent, \bar{U}_h $(h=n+1, \dots, s)$ zero vectors, $\lambda_l=0$ $(l=1, 2, \dots, n)$ and $\lambda_h^2=1$ $(h=n+1, \dots, s)$. Consequently \bar{U}_i $(l=1, 2, \dots, n)$ are unit vectors which are mutually orthogonal and \bar{N}_h $(h=n+1, \dots, s)$ are eigenvectors of F.

Now, denote by $\{e_1, e_2, \dots, e_n\}$ the orthonormal basis of $T_P(M)$. If we put $Fi_*e_k = N'_k$, $Fi_*e_l = N'_l$ $(k, l = 1, 2, \dots, n\}$, then $G(N'_k, N'_l) = \delta_{kl}$. Therefore, we can take the normals \bar{N}_l $(l=1, 2, \dots, n)$ such as $Fi_*e_l = \bar{N}_l$.

Thus we obtain

THEOREM 7.2. If M is an anti-invariant submanifold of a locally product Riemannian manifold \overline{M} , for the normals N_l ($l=1, 2, \dots, n$) corresponding to the orthonormal basis { e_1, e_2, \dots, e_n } of $T_P(M)$, $h_l(X, Y)=0$ ($l=1, 2, \dots, n$).

On a Riemannian product manifold $\overline{M}=\overline{M}_1\times\overline{M}_2$, K. Yano and M. Kon proved Theorem 7.1 and Theorem 7.2 [6].

References

- [1] T. ADATI AND T. MIYAZAWA, Hypersurfaces immersed in an almost product Riemannian manifold II, TRU Math., 14-2 (1978), 17-26.
- [2] S. TACHIBANA, Some theorems on locally product Riemannian spaces, Tôhoku Math. Jour., 12 (1960), 281-292.
- [3] M. OKUMURA, Totally umbilical hypersurfaces of a locally product Riemannian manifold, Kōdai Math. Sem. Rep., 19 (1967), 35-42.
- [4] T. MIYAZAWA, Hypersurfaces immersed in an almost product Riemannian manifold, Tensor (N.S.), 33-1 (1979), 114-116.
- [5] K. YANO, Differential geometry on complex and almost complex spaces, Pergamon Press (1965).
- [6] K. YANO AND M. KON, Submanifolds of Kaehlerian product manifolds, Atti Acc. Naz. dei Lincei, S. VIII-Vol. XV (1979), 267-292.

Science University of tokyo