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REMARKS ON THE EXISTENCE AND THE NON-EXISTENCE

OF SOME KIND OF PERIODIC ORBITS FOR

HAMILTONIAN SYSTEMS

BY HARUKI YAMADA

§ 1. Introduction.

Let us consider a Hamiltonian system

(1) ξk=Hηk, ήk = -Hξk, k = l,2,-,n,

where we assume that the Hamiltonian H(ξ, η) is real analytic near the origin
(f, 3?)=(0, 0) and Hξk(0, 0)=HVk(0, 0)=0. Hence H has the following expansion
near the origin:

(2) H= — tζSζJr[higher order terms with respect to ζ] ,

where ζ = ε β 2 r ί and 5 is a 2nX2n real symmetric matrix. Then the Hamil-

tonian system (1) can be written in the following form:

Γ 0 E
(3) ζ=JSζ+ [higher order terms] / =

V-E 0

where E is the nXn unit matrix.
Recently, various researches have been done on the existence of periodic

orbits near the equilibrium point (0, 0). It is well known that if, among the
eigenvalues +λlf •••, +λn of JS, there is a pair of purely imaginary ones

(4) ±λj<ΞiR, λjφO

such that

(5) λk/λj^Z for all k = l, •••, n; kΦ],

then, there is a 1-parameter family of periodic orbits which emanate from the
equilibrium and whose periods have the values near 2π/\λj\. This is a theorem
of Liapunov. (For precise statement and proof of this theorem see e. g. [8] § 16).
Though it is known that the condition (4) is essential for the existence of such
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family of periodic orbits, it is often possible to remove the condition (5) or
replace it by some other conditions, (see e.g. [1], [2], [3], [5], [9] and references
cited there). On the contrary, it seems that [7] is the only known general result
for the non-existence of (some kind of) periodic orbits. In [7] it is proved, for
example, that if there is only one pair of purely imaginary eigenvalues ±λ1^iR,
λ^O, and ReλjΦO for all j=2, •••, n, then in a sufficiently small neighbourhood
of the origin, there are no periodic orbits other than those whose existence is
guaranteed by the theorem of Liapunov.

The aim of this note is to present a somewhat systematic method of con-
struction of examples for the non-existence of (some kind of) periodic orbits
when all the eigenvalues of JS are purely imaginary. Before doing so, in § 2, we
review on the normal forms and reality conditions for Hamiltonian systems. In
§3, we use our method to construct some examples in the case of two degrees
of freedom. We also prove a simple existence theorem of infinitely many periodic
orbits with arbitrary long periods when the Hamiltonian can be transformed into
a normal form. In §4, we indicate a generalization to the case of several
degrees of freedom.

I wish to thank to Mr. H. Ito for valuable discussions. This work was
supported by Grants-in-Aid for Scientific Research from the Ministry of Education,
Science and Culture (No. 454025).

§2. Normal forms and reality conditions, (cf. [8], §§. 15, 30).

In what follows, for simplicity, we shall assume that all the eigenvalues of
JS are non-zero purely imaginary numbers. Then we can take a linear canonical
transformation

to transform the Hamiltonian (2) into the following form:

n

(6) H=H(w)=H(u, v)= Σ λjUjVj+[highev order terms],

where the reality condition is

( 7 ) Vj=iϋj, J = l, •-•, n.

I n o t h e r w o r d s , i f w e f i n d a s o l u t i o n w { t ) — ( j o f

( 8 ) ύk=HVk, vk — —HUk, k=l, '•-, n

such that (7) is true for all t, then the function ζ(ί) defined by

ζ(t)=Cw(t)
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is a real valued solution of (1). Further, if we take

(9) uk = -7γ(pk + ιqk), vk=--—r^(qk

Jripk),

the transformation ( J~>( ) is a canonical transformation and the reality con-

dition (7) becomes

pk and qk are real valued for all k = l, •••, n.

Then we have ukvk=i(pl-tqk)/2 and

H= Έiiλk(pl+

If we take a further transformation

(10) Xk = ~τγ(Pk—ιqk), yk = -7γ

(which is not a canonical transformation), the reality condition becomes

(11) Xk=9k, k=l,-,n,

and the Hamiltonian system (8) becomes

(12) xk=iHyk, y k = -iHXk, k = l, ••• , n,

where

(13) H = ι

Note that under the reality condition (11), we have

Further note that, though ±λk are eigenvalues of JS, the signs of iλk in (13) are
determined uniquely if we impose the reality condition (11). In the following we
shall consider the Hamiltonian system in the form (12), (13) under the reality
condition (11). Further, in what follows, for the simplicity, we shall say that a
function f=f(x, y) of xk and yk is real valued if it is real valued when we
replace yk by xk (i.e. if the reality condition (11) is valid). Of course the
Hamiltonian (13) is a real valued function.

Our method of construction of examples relies on a fact that if there is a

real valued function F(x, y) such that, for any solution ( j of (12),

F(x, y)^φ(x, ;y)^0 for all (x, y) with (11),dt



318 HARUKI YAMADA

then there are no periodic solutions other than those with φ(x(t), y(t))=O.

§ 3. The case of two degrees of freedom.

In this section we restrict ourselves to the case of n—2 in (1):

(14) ξk=Hvk, ήu = -Hζk, £ = 1,2.

We assume that the eigenvalues ±λlt ±λ2 of JS are non-zero purely imaginary
numbers. It is known that ([8], § 30), if further

(15) λlgl + *2g2 = 0 , gi, g2^Z^>g1 = g2^0f

is valid, we can transform H by the composition of a formal canonical trans-
formation (which is defined by a generating function expressed by a formal
power series) and transformations (9) and (10) to the following form:

(16) H=i(λ1x1y1+λ2x2y2)+ γRxlyt+Sx1y1x2y2+ — Tx2

2y
2

2+h(ω1> ω2),

where R, S and T are real constants and h is a real valued formal power series
in products ω1=x1y1, ω2=x2y2 alone, the reality condition is the same as (11).
Unfortunately, it is known that, in general, one has divergence (see [6]). But if
it happens that it is convergent, we have the following result.

THEOREM 1. Suppose that the Hamiltonian can be transformed into the form
(16) by a convergent transformation. {We do not necessarily impose the condition
(15)). Suppose further that

(17) Rλ2φSλx or Sλ2φTλλ

is valid. Then, for any small ε>0 and large N>0, there are infinitely many
periodic orbits with primitive period larger than N in the ^-neighbourhood of the
origin 0ei2 4 .

Proof. If we write ω1=x1y1, ω2—x2y2, we have, by (12), the Hamiltonian
system in the form

(18) xk=iHωkxky yk ——iΐίωkyky

from which it follows that ώk=0, k = l, 2. Hence the ωk are (real valued) inte-
grals of the system and hence Hωk(x, y) are independent of t if we take any
solution xk = Xk(t), yk=yk(t) of (18). Thus we can integrate (18) in the form

(19) x}ι—cke
iH<i)kt

i yk = dke~ίH<^kt.

If we take dk=ck and use the fact that H, and hence Hωjt, are real valued, we
know that the solution (19) satisfies the reality conditions for all t. Note that,
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in this case, xkyk=zωk = ckdk= \ck | 2 (constant). The general solution of (14) can
be written by a linear combination of xk(t), yk(t), k=l, 2, and xk(t), yk(t) are
periodic functions with primitive period 2π/\Hωk\. Thus if we are able to take
(<?!, C2)<ΞC2 in the ε-neighbourhood of the origin (0, 0)eC 2 such that

2π/\Hωi\:2π/\Hωi\=p:q,

where p and q are relatively prime positive integers, we have a periodic orbit
with primitive period

2qπ/\Hωi\=2pπ/\Hωz\.

Now let us consider the ratio

where py=iλlf p2—iλ2 are non-zero real numbers and the dots ••• indicate the
terms of order ^ 2 with respect to ωlf ω2. If we take ωλ~ks, ω2—ls with k, />0,
k*+l2=l, s>0, and put

Ά S ) Hω2(ks, Is) p2+(kS+lT)s+0(s2)'

we have

Thus if (17) is valid, we have for almost all values k, I, f'(O)Φθ and hence /(s)
is a monotone function near s=0. Thus there is a constant do>O such that for
any δ with 0<δ<δ0, {/(s); 0^5^^} is a closed interval with inner points in R
and it contains pjp2 as a terminal point. It is easy to see that in this interval
there are infinitely many rational numbers q/p with (p, q)=l and \p\, \q\>M
where M is an arbitrary fixed (large) number. If we take s such that f(s)=q/p
and take ωlf ω2 as ω1

:=ks, ω2—ls, we have a desired long periodic orbit

x1=V(o1e
iHa>iι, χ2—^/ω2e

iHω2«f

y1—^/ω1e~ίH(ύιt, y2—Vω2e~ίH<ι)2t,

with period

2qπ __ 2pπ / 2gπ 2̂ ?7Γ \

This proves the theorem.

Remark 1. It is clear that if

that is, if the polynomial Rξ2+2Sξη+Tτj2 can not be divisible by X£+X2rj, the
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condition (17) is valid.

Now if λjλ2, λ2/λ1^Z, it always exist two 1-ρarameter family of periodic
orbits with periods ~2π/\λχ\ and ~2π/\λ2\ which are guaranteed by the theo-
rem of Liapunov. The above theorem says that if further H can be transformed
into the normal form (16) and the condition (17) is valid, there are infinitely
many long periodic orbits other than the above ones. On the other hand, for

(20) H=i(λ1x1y1+λsx2y2), λjλ2^ Q,

there are no periodic orbits at all other than those cited above. It is likely that
under the conditions (15) and (17) (we do not impose the condition that the trans-
formation into the normal form (16) is convergent), there always be infinitely
many long periodic orbits near the origin. But we don't know whether this is
true or not.

If λ1/λ2^Q, on the other hand, all the solutions for (20) are periodic. But in
general these long periodic orbits may disappear by some perturbations for H.
To see this we start from somewhat general context.

Let us consider the Hamiltonian

(21) H=ΐ(λ1x1y1+22x2y2)+γRxίyϊ+Sx1y1x2y2+γTx2

2y
22+h(x, y),

where h(x, y), which represents higher order terms, is not necessarily a function
in α>i and ω2 only. Then the Hamiltonian system is

x^iHy =i(p1+Rx1y1+Sx2yi)xi+ihyi,
(22)

x2=ΐHy2=ΐ(p2+Sx1y1

JrTx2y2)x2

J

Γihy2f

where pι—iλ1} p2=iλ2. Note that other two equations can be given by taking
the complex conjugates in (22) and replacing xk and yk by yk and xk respec-
tively. Now take real valued functions f(x, y) and g(x, y) and put

(23, -•"•»=•£#•
Then, if we take xk, yk as a solution of (22), we have

(ff)

and

If we put

A=gXlf-fXlg, B=gyif—fVlg,
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we have

gf-fg=i(,XiA-y1BXp1+Rx1y1+Sx2y2)+i(x2C-y2DXp2+Sx1y1+Tx2y2)

+i(hyiΛ-hXlB+hy2C-hX2D).

Note that the condition λ1/λ2=ρ1/p2^Q reflects the fact that we can take appro-
priate / and g to cancel out the term

ip1(x1A—y1B)Jriρ2(x2C—y2D).

Using the above formulations we shall prove the following fact.

THEOREM 2. Suppose that λJλ2^Q, λ2/λlt λJλ2&Z and λ1/λ2<0. Then there
is a Hamiltonian H with quadratic term iλιx1y1+iλ2x2y2 and R, S, TΦO such that
there are no periodic orbits other than those two 1-parameter families whose
existence is guaranteed by the theorem of Liapunov.

Proof. By scaling the time variable t appropriately, it is enough to prove
the theorem when

λ1= — tp} λ2=ιq (i.e. pi=p, p2=—q),

where p and q are positive integers and (p, q)=l, pφl, qΦl. Now consider the
Hamiltonian in the form (21) with

h=χ\χi+y\yϊ

and take / = 1 , g=—(x\xv

2-y\yϊ) in (23). Then we have

Thus if we take R, S and T such that

(24) qR+pS=0,

we have

(25) s=2(x1ylγ-1(x2y2y~

where the equality is valid identically in time t if and only if

Xl = yi=0 or x2=y2=0.
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But if x2=y2=0 we have the Hamiltonian system

which has the 1-parameter family of periodic orbits

where p is a non-negative real parameter. Similarly, if x^y^O, we have
another 1-parameter family of periodic orbits

These orbits have periods 2π/(pJrRp2) and 2π/(q—Sp2) respectively. (These
orbits are those which are given by the theorem of Liapunov). By (25) all other
orbits cannot be periodic. This proves the theorem.

Remark 2. The condition (24) can be written as

Λ2iV—ΛiO , Λ2O—Λii .

If one of these equality breaks down and if h(x, y) is replaced by a function in
<wi and ω2t we have, by Theorem 1, there are infinitely many periodic orbits with
arbitrary large primitive periods.

Remark 3. For the Hamiltonian which was given in the proof of Theorem 2,
the result in Theorem 2 is valid globally in R\

Remark 4. We do not know whether, if λ1/λ2>^, we can construct a similar
example as in Theorem 2 or not. But if we consider non-Hamiltonian system,
we are able to do so. In fact, e. g., consider the system

Xi=i(p+Rx1y1+Sx2y2)x1-xq

1

+1yξ,

X2

(26)

yι=-i(P+Rxiyi+Sx2y2)y1-yq+1xξ,

y2

Then if we take

/ χ\y\

we have
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Accordingly, if we take R, S, and T as

(27) qR-pS=0, qS-pT=Q,

we have

and the equality is valid identically only if χ2=y2=0. Note that the above cal-
culation is valid only if x ^ O , yiΦO. Thus this system has no periodic orbits
other than two 1-parameter families of periodic orbits which correspond with
^ = ^ = 0 or χ2=y2=0. Note that the third and the fourth equations are con-
sequences of the first and the second equations and the reality condition. Thus
the system (26) has a meaning as the system in RA. Unfortunately (26) is not a
Hamiltonian system.

Remark 5. In [2], it is shown that if we assume some conditions for the
coefficients of higher order terms of the Hamiltonian, we have the existence of
some kind of long periodic orbits other than those whose existence is guaranteed
by the theorem of Liapunov. Of course our examples do not satisfy this condition.

In the case when λJλ2^Z we can prove easily the following theorem.

THEOREM 3. Suppose that λχ/λ2^Z and λ1/λ2<0. Then there is α Hamiltonian
with R, S, TφO, for which there are no periodic orbits other than one l-parameter
family whose existence is guaranteed by the theorem of Liapunov.

Proof. If λJλϊΦ—l, we have only to take q=l in the proof of Theorem 2.
Then if we take R, S, and T as

(28) R+pS=0,

we have

and there must only be one l-parameter family of periodic orbits corresponding
x2=y2=0. Note that the Hamiltonian can be written as

(29) H=px1y1-x2y2+~Rx*yl+Sx1y1x2y2+^-Tx2

2y
2

2+x1xξ+y1y2

0.

Thus unless p=l, the degree of x^ξ+yiyi is £ + 1 ^ 3 . If λjλ2= — l> we may
take

H=x1y1—x2y2+(x1y1+x2y2)(x1x2+y1y2)
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and s=(x1x2—y1y2)/i (This is due to [4]). This proves the theorem.

Remark 6. In [5], it is proved that for the Hamiltonian (21), if S+pTΦθ,
ί ^ 4 , there is a 1-parameter family of periodic orbits with primitive periods ~2π
near the origin. (Note that by the theorem of Liapunov it always exists a
1-ρarameter family of periodic orbits with primitive periods ~2π/p). Our ex-
ample in the proof of Theorem 3 was constructed under the condition (28). We
do not know whether we can construct an example of non-existence of long
periodic orbits (with periods ~2π) assuming only that SJrpT=0 on the fourth
order terms of the Hamiltonian.

Remark 7. In [9], it is proved that for the Hamiltonian H=x1y1+px2y2

+ h(x, y), where h contains only terms of order ^ 3 and p is any positive real
number, there are at least two periodic orbits on each energy surfaces H=ε
where ε>0 are sufficiently small real numbers. Thus the assumption λ1/λ2<0 in
Theorem 3 is not so restrictive.

Remark 8. By investigation on the properties of s in the proof of Theorem
3, we have easily that, if S+pT=0, there are no periodic orbits for (29) in a
domain near the plane x2=y2=0 in which there exist long periodic orbits when
S+pTΦQ, p^L

§4. A generalization.

A part of our method in § 3 can be extended to the case of several degrees
of freedom. We shall mention only one example which is connected with a
result of [9] (This is also a straight forward generalization of an example in
[4]).

Consider the Hamiltonian of 2n-degrees of freedom:

n n / 2n \ n

(30) i /= Σ PkXkyk— Σ /o**n+*3>n+*+( Σ χιyΛ Σ (χkχn+k+ykyn+k),
k = l k = l \ 1 = 1 / k = l

where ρk are non-zero real numbers. Then there are no periodic orbits at all
for (30) other than the equilibrium. Let us prove this in the following manner:

The Hamiltonian system for (30) is

[ n / in \Ί

k=i n J\ ι=i /J
(31)

•TT Γ , Λ / , / VK VI
^ n + ; — IΠy . — / OjXn+j-\- Xn+J Z J \X k X n+k~t~ y k y n+k ) \ y A Z J Xiyi)\>

J L k=i \i=i /J

; = 1, •••, n.
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Other 2n equations for y3, yn+J, j = l, •••, n, can be given by conjugating (31)
and replacing xt and yt, 1=1, •••, 2n, by yt and xt respectively. If we take a
real valued function

we have

s-2J Σ (χjXn+j+yjyn+j)Y=2( Σ
1.7 = 1 ) \ 1 = 1

The equality is valid identically only if xi = yL=Q for all 1=1, •••, 2n. This proves
that the only periodic orbit for (31) is an equilibrium.

Remark 1. By a similar method, it is possible to make an example of
Hamiltonian with the form

n n+m
H— Σ PkXkyk— Σ PkXn+kyn+k+ •••

k=l k l

with pk^R, pk^O, k=l, -" , n+m, n>0, m ^ O ; pk/ρn+ι$Z for all k = l, •••, w,
/ = 1 , •••, m; pn+ι/pn+s&Z for all /, s = l , •••, m, /^s, for which the Hamiltonian
system has only m 1-parameter families of periodic orbits.

Remark 2. In [1], the following result is proved: Let

2TI+7ΪI

(32) H= Σ : pkχkyk + h{x, y),

where ρk>0 for k=l, •••, n, pk<0 for ^ = ?z+l, •••, 2n+m, and where h repre-
sents the terms of order ^ 3 . Suppose that there is a number T^R such that

T/(2π/pk)^Z for all k = l, •••, 2n + m.

Then there is a left neighbourhood IL and a right neighbourhood Ir of Te72 and
a pair of integers a, b^O with a+b—m such that, for all Γ G / ; (resp. / r ), the
Hamiltonian system for (32) possesses at least a (resp. b) distinct non-trivial
r-periodic orbits.

Our example shows that the condition m>0 is essential for the existence of
periodic orbits when we do not impose any additional conditions on the coefficients
in h(x, y) (i.e. terms of order ^3).
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