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ON THE MINIMUM MODULUS OF A SUBHARMONIC OR

AN ALGEBROID FUNCTION OF μ*<l/2

BY HIDEHARU UEDA

0. Introduction. Let y(z) be an Λf-valued entire algebroid function defined
by an irreducible equation

(1) F(z, y)=y^ + Λ1(z)yN-ί+ - +AN(z)=0.

Denoting the j-th determination of y by y0, we set

M(r, y)~max m a x \yj(z)\, m*{r, y)— m i n m a x \yj(z)\.
\z\=r lύjύN \z\=r l^j^N

Let A be the system (1, Alf •••, AN) and put

B(z)= max | A5{z) \, Mir, B)= max B(z), m*(r, B)= min B(z).

l^jiN \z\=r \z\=r

Then Ozawa [12] showed that

m*(r, y) > log rn*(r,{ } log M(r, 3̂ ) = logM(r,

And he obtained the following theorem by making use of Kjellberg's method [10].

THEOREM A. Let y(z) be an N-valued entire algebroid function of lower
order μ, 0 ^ μ < l / 2 . Then

(3) E^jV
lo

r-̂ oo log M{χ, y)

We can improve his result by two different methods. The first method is
due to Baernstein [3]. He proved there

THEOREM B. Let f be a nonconstant entire function. Let β and λ be num-
bers with 0<Λ<oo, Q<β^π, βλ<π. Then either

(a) there exist arbitrarily large values of r for which the set of θ satisfying
log\f(reiθ)\>cos βλlog M(r, f) contains an interval of length at least 2β, or else

(b) limr"^ logM(r, /) exists, and is positive or oo.
7 -»oo
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MINIMUM MODULUS OF SUBHARMONIC OR ALGEBROID FUNCTION 299

It turns out by a minute observation of his papers [2], [3] that Theorem B
still holds when we replace | / | , \og\f{reιθ)\ and logM(r,/) by B(z), log B(reιθ)
and logM(r, B), respectively. Hence choosing β=π and λ—μ+ε in Theorem B,
it follows from (2), Theorem B and the above remark that

Tτ— Nlog m*(r, y) ̂
hm — —. r— > cos πμ .
r-oo log M(r, y)

The second method is to make use of the notion of a local form of the
Phragmen-Lindelδf indicator. This notion was introduced by Edrei [7] and is
closely related to Pόlya peaks. Drasin and Shea [6] proved that Pόlya peaks of
order p exist if and only if p^[_μ*, λ*~], io<co, where

(4)

• lim

It is easy to see that μ*^μί^λ^λ*, where λ and μ are the order and the lower
order of T, respectively. Edrei defined a local indicator for a sequence {/m(̂ )}T
of analytic functions such that fm(z) is regular and single-valued in the annulus:
rm^*\z\^r'm (m=l, 2, •••). However, his definition is naturally extended fora
sequence {Bm(z)}t of subharmonic functions. Exact definition of the local indi-
cator for a sequence {Bm(z)}°? will be stated in §1. In §2, we shall state some
elementary facts on subharmonic functions defined in C. In § 3 we shall prove
the following Theorem 1. The case when u{z)=\og\f{z)\, and f(z) is entire, is
due to Edrei [7, Theorem 1]. In what follows, for a subharmonic function u in
C, we put

N(r, u)=~[+*u(retθ)dθ, M(r, u)= sup u(rexθ), m*(r, u)= inf u(reιθ),
Zπj-π -πύθύπ -π^θ^π

THEOREM 1. Let u{z) be a nonconstant subharmonic function in C and let
T(r, u)—N(r, u+). Assume that μ*=μ*(T)<l. Let {rm}? be a sequence of Pόlya
peaks of order p (μ*^ρ^λ*, 0<p<l) of T{r> u). Then given ε>0, it is possible

to find a bound s=s(ε)>0, independent of m, and such that, in 0 Lrme~s, r m £ s ]
m=i

there exist arbitrarily large values of r satisfying the inequality:

(5) ra*(r, u)>(cosπp — ε)M(r, u).

COROLLARY 1. Let y{z) be an N-valued entire algebroid function and have

μ*<l/2. Let {rm}T be a sequence of Pόlya peaks of order p of T(r, y) (μ*^p^λ*)

and let 0<ρ<l/2. Then given ε>0, tt is possible to find a bound s = s(ε), inde-

pendent of m, and such that, in 0 [rm£~ s, rmes2 there exist arbitrarily large values
m=i
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of r satisfying the inequality:

(6) N log m*(r, y) > (cos πp — e) log M(r, y).

This is also an improvement of Theorem A. However, since μ*Sμ (Equality does
not always hold.), the second method is superior to the first one for this problem.

It is natural to consider an analogous problem to Theorem 1 for d-subharmonic
functions—differences of subharmonic functions. That is, for a d-subharmonic
function v(z)=ucl\z)—uC2\z) of μ*<l/2, what can we say about the relation
between m*(r, v)= inf v(reid) and T(r, v)=N(r, v+)+N(r, w(2))? In [1], Anderson

and Baernstein considered a more general problem for ^-subharmonic functions.
The following theorem is a part of their consideration. Here we put for a δ-
subharmonic function V=M C 1 ) —MC 2 ) in C

J\[(r yW)

δ(oo, ι;)=l-lim { ί }

T(r, v) *

THEOREM B. Let v(z)—ua^(z)—u^(z) be a δ-subharmonic function in C of
lower order μ, 0 ^ μ < l / 2 . And assume that cos πμ—l+δ(oo, v)>0. Then it is
possible to find a positive number R and Pόlya peak sequence {rm}T of order μ
of T(r, v) satisfying the inequality:

nι*(Rrm, v)>i—J=: —. ε\T(Rrm, v).
I sm πμ J

Using the concept of a local indicator, we can prove the following Theorem
2. The case when v(z)=log\f(z)\=log\f1(z)\—log\f2(z)\, where f=f1/f2 is mero-
morphic, is due to Edrei [7, Theorem 2]. (The proof of Theorem 2 will be
omitted.)

THEOREM 2. Let v(z)—uil\z)—ui2\z) be a δ-subharmonic function in C and
have μ#<l/2. Assume that v(z) satisfies the following conditions (i) and (ii):

(i) Mr, w ( 1 ))~T(r, v) (r->oo),

(ii) δ(oo, z;)+coS7r/>-l = &>0, where μ^pSh, 0< i o<l/2.

And let {rm}T be a sequence of Pόlya peaks of order p of Tir, v). Then given
ε>0, it is possible to find a bound s=s(ε)>0, independent of m, and such that, in

m=l
Lrme~s, rmes~] there exist arbitrarily large values of r satisfying the inequality.

(7) m*(r, v)> πp.(k £) T(r, v).
sm πp

COROLLARY 2. Let y(z) be an N-valued algebroid function and have μ*
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Assume that p satisfies the following three conditions]

(i) μ*ύρ^>λ*, (ϋ) 0<p<l/2, (iii) <5(co, j/)+cos πp-l=k>0.

Let {rm}T be a sequence of Pόlya peaks of order p of T(r, y). Then given ε>0,
it is possible to find a bound s=s(ε)>0, independent of m, and such that in

m = l

s, rmes2 there exist arbitrarily large values of r satisfying the inequality.

(8) log m*(r, y) > ^ g ) T(r, y).

The derivation of Corollary 2 will be done in §4.

Finally, in § 5, as another application of a local indicator, we shall show the
following theorem.

THEOREM 3. Let v=uw — uC2:> be a δsubharmonic function in C and have
μ#<l/2. Assume that N(r, w ( 1 ))~T(r, v) (r—>oo) and let p satisfy the following
three conditions:

(i) μ*^p^λ*, (ii) 0<p<l/2, (iii) cosπp-l+δ(oo, v)/(2-δ(oo, v))=k2>0.

Further let {rm}Ί be a sequence of Pόlya peaks of order p of T{r, v), and let

m2(r}v)={N(r,v2)}^\

Then given ε>0, it is possible to find a bound s=s(ε)>0, independent of m, and

such that in U ίrme~s, rmes2 there exist arbitrarily large values of r satisfying
m = l

the inequality:

In particular, if v is subharmonic, then the assumption: N(r, wc l ))~T(r, v) can be
dropped.

If δ(oo, v)=l, the estimate (9) is best possible. For example, consider a sub-
harmonic function:

v(z)=—. cos pθ .
sm πp r

For an iV-valued algebroid function y(z), we introduce the following quantity:

[ I C+π N Ίl/2

o - \ Σ {log+1yj(re iθ)\}2dθ\ (y,: -th determination of y).
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COROLLARY 3. Let y(z) be an N-valued algebroid function and have
And let p satisfy the following three conditions:

(i) μ*^>ρ^λ*, (ii) 0<p<l/2, (iii) ^ 2 =cos πp-l+δ(π>, y)/(2-δ(oo, y))>0.

Further let {rm}°? be a sequence of Pόlya peaks of order p of T(r, y). Then given
ε>0, it is possible to find a bound s = s(ε)>0, independent of m, and such that in

0 [_rme~s, r m £ s ] there exist arbitrarily large values of r satisfying the inequality:
l

1. Definition of the local indicator of order p of a sequence {Bm(z)}™ of
subharmonic functions.

(i) three infinite sequences of positive numbers {r'm} ~, {rm} ?, {rΰ T such that
rm<rm<rm<rm+i (m=l, 2, •••), and such that, as m-+cχ>

(ii) a sequence {Bm(z)}™ such that Bm(z) is subharmonic in the annulus:
r-m^ I z\ \ r m .

(iii) a strictly positive sequence {F(rm)}T and a quantity ^ (0<1o<oo). We
then define a sequence {Fm(^)}T of analytic "comparison functions":

Vm(z)= Vm(r)e^θ = V(r

The symbol Vm(r) always refers to the choice of # = 0 .
(iv) Consider the intervals Iin—ΪJm, r'iΛ (m=l, 2, •••) as well as the intervals

Im(s)=trme~s, rmes2 ( m = l , 2, •••, s = l , 2, •••), and let

A=0lm, Λ(s)= 0 /m(s) ( s = l , 2, •••).
m = l m=i

(v) Let the sequence {B
m
(z)}™ be chosen so that

hm—^77-7—<cχ>,

where B(z) stands for Bm(z) in the annulus: r'm<\z\<r'Jrι. ( m = l , 2, •••)• We set
for every real value of θ,

B(reιθ)
λ ( 0 ) = l m i ^ ; ( s=l , 2, •••),

and consider

h(θ)=\imhs(θ).
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The real function h(θ) is, by definition, the local indicator of order p of {Bm(z)}°?
at the peaks {rm}? With this definition, Edrei's Fundamental Lemma can be
extended straightforwardly for the sequence {Bm(z)}™ of subharmonic functions
(For the proof, cf. [7, pp. 159-162]).

Fundamental Lemma. Let h(θ) be the local indicator of order p
of {Bm(z)}~ at the peaks {rm}? Let θ1} θ2 be given such that Q<θ2-θ1<π/p,
and let the constants a, b be such that the sinusoid H(θ)=a cos pθ+b sin pθ
satisfies the conditions Λ(0i)ίs#(0i), h(θ2)SH(θ2). Then given ε>0 and any
integer s>0, there exists a bound ro=ro(ε, s, a, b, θlf θ2), independent of θ, such
that for rs=A(s), θ^θ^θ

From Fundamental Lemma, we immediately have h{θ)^H{θ) {θλ^ΘSΘ2), that
is, the subtrigonometric character of h(θ). It is known that many important pro-
perties of an indicator depend only on its subtrigonometric character (cf. [5]).
For example, we have the following fact (cf. [5, pp. 42-45]).

Let h{θ) be the local indicator of order p of {Bm(z)}™. Assume that h(θ)
=£ —oo, and let θu 02, θ3 be such that ΰ<θ2-θλ<π/p, 0<θ3-θ2<π/p. Then

In particular, if 0^

(10)

cos ρθx

h(θ2) cos pθ2

h(θ3) cos ρθz

:/p, then

h{-θ)+h(θ)

sin pθλ

sin

sin pθ3

^ 0 .

^/ι(0) cos pθ .

2. Some elementary facts on subharmonic functons defined in C. Since we
are interested in results for large values of r in Theorem 1, we may assume that
u(z) is harmonic in a neighborhood of the orign. Further we may prove Theorem
1 for tt(0)=0. In fact, assume that Theorem 1 is valid for an arbitrary subhar-
monic function v(z) of μ*<l/2 which is harmonic in a neighborhood of z—0 and
satisfies v(0)=0. Take an arbitrary subharmonic function u(z) of μ*<l/2 which
is harmonic in a neighborhood of 2=0. Put v(z)=u(z)—u(ΰ). By the Riesz repre-
sentation theorem there exists a positive Borel measure v and C such that for
\z\<R (0<R<oo)

(Π)
lCl<Λ

log\z-ζ\dv(.O
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where h(z) is harmonic in \z\<R. Let n(r)—v(\ζ\<r). Then Jensen's formula
for subharmonic functions (cf. [9]) gives

(12) N(r, v)= ^T{r, v)<M{r, v),

which implies that "JV(r, v) is bounded. 4=> v(z) is harmonic in C " Assume now
that T(r, v) is bounded. Then z;+ is harmonic in C. Since v+^0, this shows that
z;+ is a constant. Therefore JV(r, v) is bounded, so that v is harmonic in C. How-
ever, since v is bounded above, v must be a constant. Hence the nonconstancy
of v implies that T(r, v)/Όo and that Mix, v)/Όo (r—>oo). Thus there exists a
r o=r o(ε)>O such that r ^ r 0 implies

(13) - | ) < - | - M ( r , ϋ).

Further by the above assumption, there exists a sequence {XrJT/^ contained in
00

U [ r m β " 5 , r m ^ s ] {{rm}"\ a P ό l y a p e a k s e q u e n c e of o r d e r p of T ( r , w ) ; s=s(ε): a
m=i

positive integer) satisfying the inequality:

(14) ε
27 J

It follows from (13) and (14) that

m*(Xn, u)>(cosπp-ε)M(Xn, u) (

In what follows we may assume that u(z) is harmonic in a neighborhood of 0
and satisfies w(0)=0.

Now, we put

(15) Ul{z,R)=\
J\ζ\<R

log

dv(ζ)=\R\og
Jo

dn{t).ulz, R)=\ log

Then ux(z, R) and u2(z, R) are subharmonic in C and they satisfy

(16) m*(r, u2)^

Next, let

(17)

Then, using (17), (11), and (15), we have

ulz, R)=h(z)+\ \og\ζ\dv(ζ) (\z\<R).
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which shows that us(z, R) is harmonic in \z\<R. Let f(z) be regular in \z\<R
such that Ref(z)=us(z, R) and /(0)=0. Hence by a theorem of Caratheodory

(18)
2\z\

-M(R, u3) (\z\<R).L/W| = R _ \ z \

Further, an estimate due to Kjellberg [10, p. 92] or Barry [4, p. 182] gives

(19) M(2R, Uz)^M(2R, u).

Combining (18) and (19) we obtain

(20) I u3(z, R) I ^ \f(z) I < ^~

3. Proof of Theorem 1. Since we are mainly interested in Corollary 1, we
shall prove only for the case of μ*<l/2, μ*f^p^λ* and 0<ρ<l/2. Let {rTO}T
be a sequence of Pόlya peaks of order p of T(r, u). And let {r'm}°ϊ, {rm}Y> {εm}T
be the associated sequences with Pόlya peaks {rm}? of order p. Choose {V(rm)}?
as follows.

(21)

This implies

(22)

Put

(23) B

V(rm)=a+em)T(rm, u) ( m = l , 2, •••).

T{r, u)<V(r)

dn{t)

and we consider the local indicator h(Θ) of order p of {Bm(z)}™ at the peaks

(i) Existence of h(Θ): By definition we may show that

(24)

Put

n«>(ί)=

( r"

Then
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Since

N(t)

we easily obtain

r > N(t)
at

(A : an absolute constant),

By (22) we have

Thus for r e / m

Bm(r)£-

N(r, u)^T(r, u)<V(r)

-dx

This shows (24).
(ii) /z(O)iΞ>l: By definition we may prove

(25) ^ φ
^ ~ V(rm) -

From (21), (17), (16), (23) and (20) it follows that

, u2)+M(rm, u3)^

, Wj)+M(rm, M8)

, 4M(rm/2, M)
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where we used the fact that M(r, w)^3T(2r, u) (cf. [9, Chapter 3]). Since rm/r^
-»0 as m-^oo, (25) follows.

(iii) By (23) we have Bm(reιθ)=Bm(re~ιθ) for O^θ^π, which implies h{θ)=
h(-θ) (O^θ^π). It follows from this, (10) and (ii) that

(26) h(θ)^hφ) cos pθ^cos pθ>0 .

(iv) By (17), (16), (20) and (22) we have for r ^ r ^ / 8

ra*(r, u)^m*(r, w)+m*(r, w3)

(27) ^m*(r « ) 4 M ( r f / ? > M) ^

= « * ( r , M 2)-48(-^-

In the same way we obtain

(28) M(r, u)^M(r, u^+^i-^-Y V(r)

(v) For given η >0 (small enough), choose s (a positive integer) such that
hs(π)>h(π)—Ύ]. By the definition of hs(π), there exists a sequence {ZJTC^00)

C 0 Crmβ"5, rmes2 satisfying B(-Xn)>(ha(π)-η)V(Xn)>(h(π)-2η)V(Xn). Hence by
m=i

(27) and (26)

(n^no(η, s))
(29)

cos πp-3η)VQίn)^(cos πp-3η)V(Xn).

We may assume that cos πp—3τ?>0. On the other hand, by the definition of h(0)
and (28)

(30) M(Z», w X ^ ^ + ^ F α j + ^ F α j (n^n^^, s)).

It follows from (29) and (30) that

M(Xn, u)
>COS 7Γ/O —

Proof of Corollary 1. Let ^ ( ^ be an TV-valued entire algebroid function
defined by (1). And let A be the system (1, Au •••, AN). Then Valiron [13]
proved that
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(31) T(r, A)=NT(r,

Next, put u(z)—\og B{z)— max log | Alz) |. Evidently

(32) T{r, A)=N(r, u+)=T(r, u).

From (31) and (32) we deduce that {rm}^ is a Pόlya peak sequence of order p of
T(r, u)(p <l/2). Hence Theorem 1 implies the existence of a positive integer
s=s(e) and a sequence {Xn}?y°° contained in Λ(s) such that

log m*(Xn, B)>(cos πp-ε) log M(Xn, B) (n = l, 2, •••).

Combining this and (2), we have the desired result.

4. Proof of Carollary 2. Let y(z) be an A^-valued algebroid function defined
by the irreducible equation

F(z, y)=A0(z)y«+ ••• +AN(z)=0.

And let A=(A0, •••, AN). Then

min
\z\=r

For the proof, cf. [12, p. 167]. Since (31) holds also in this case, we have

m i n

\z\=r(33) Isτε?FL* nr,
Now, let v=uw-u^, where uw(z)= max logl^U)!, w(2)U)-log|ΛU)|. Then

it is clear that

T(r, v)=N(r, v+)-\-N(r, u™)=N(r, v)+N{r, w(2))
(34)

=N(r, M ( 1 ) )=T(r, Λ)=Λ^T(r, j ; ) + O ( l ) ,

and

7V(r, uC 2 )) τ ^ M r , 0, ^ 0 ) v~ N(r, oo, 3;)
(35) l - δ ( o o , ^zrriim—A-f -^-=:lim ' ' ' - = 1 1 1 1 1 - ^ — ^ = 1-^(00,3;).

r->α> T ( r , v) r->oo T ( r , ^4) r-00 T(r, y)

We deduce from (34) that {rm}T is a sequence of Pόlya peaks of order p of
T(r, v). Further note that the condition (ii) in Theorem 2 follows from (35) and
the condition (iii). Hence Theorem 2 guarantees the existence of a positive integer
s=s(ε) and a sequence {Xn}"(zΛ(s) tending to 00 such that

m i n m a x l o g + 1 A3(z)/A0{z) \ > πP^kε) τ(Xn, A ) .
\z\=r I^JUN sm πp

Combinig this and (33) we have the desired result.
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5. Proof of Theorem 3. We may assume that ucυ and w(2) are harmonic in
a neighborhood of 0 and that uw(0)=uC2\0)=0. In fact, assume that Theorem 3
holds for the set £F of such <5-subharmonic functions. Take an arbitrary noncon-
stant <5-subharmonic function v— wcl) — uw satisfying the assumption of Theorem
3. Since we are interested in results for large values of r, we may assume that
ua) and MC2) are harmonic in a neighborhood of 0. Next put u(Ό(z)=ua\z)
-wα )(0), u( 2\z)=u^2\z)-ui2\0)f and ϋ=u™-u™. Since nonconstancy of v im-
plies that T(r, v)/Όo as r-*oo (For the proof, cf. § 2), we easily have

(36) T{r, v)=T(r, i))+O(l)=(l+o(l))T(r, v) ( r-oo) .

From (36), if {rm}T is a sequence of Pόlya peaks of order p of T(r, v), it is also
a Pόlya peak sequence of order p of T{r, v). Further evidently (36) implies that
"All the assumptions of Theorem 3 are satisfied for v(z). Φ=Φ All the assumptions
of Theorem 3 are satisfied for ϋ(z)" Hence by assumption Theorem 3 guarantees
the existence of a positive integer s=s(ε)>0 and a sequence {Xn}"dA(s) tending
to oo such that

(37) »•«., ̂ >viwSip7wm^'ϋ) n=1'2> ~h

Next, it is clear that

(38) m*(Zn, v)=rn*0Cn, v)+u^K0)-uw(0),

and

(39) m2(r, v)^N(r, \v\)=N(r, v+)+N{r, v~)=2T{r, v)-N(r, u™)-N(r, uw).

It follows from (39) and (Koo, t;)>0 that m2(r, v)->co as r-^oo. Since v—
v-(uaK0)-u<2K0))~v-c, we have

m2(r, ϋ)=m\(rf v—c)^ml(r, v)Jrc2—2\c\m2(r, v)={m2(r, v ) ~ \c\}2,

so that

(40) mlry v)^mlr, v)-\c\ ( r ^ r o ( \ c \ ) ) .

Now, noting that m2(r, v)-*oo as r-^oo, there exists a n > 0 such that r ^ n implies

i 2 I ( )
2 Vl/2+In2πp/4πp

Combining (37), (38), (40) and (41) we deduce

From now on, we assume that v^ΞF. Let i/J) be the Riesz mass associated with
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iί<» 0 = 1, 2), and let n c '>(f)=i/ Λ ( |ζ |<0. Further let K J T , {rί}~, {εm}? be the
associated sequences with {rm}?. Choose V(rm)=(l+εm)T(rm, v), which implies

(42)

Put

T(r, z;)<F(r)

) =
Jo

log </{n(1>(f)+nC2)(f)}

Now, we consider the local indicator h(θ) of order p of {£mU)}? at the peaks
{rm}T As in the proof of Theorem 1, we can easily see the existence of h(θ).
Here we shall show /z(0)^l. By our assumptions, as m—>oo

1 i —•«• \> my v j --LI\I jri)

-L~rεm

Hence by the definition of /ι(0)

Next, using (17) we have

(43) v(z)=u^(z)

Since Wm{z) is harmonic in \z\<r'm/4=Rm and Wm{0)=0, it is the real part ofja
regular function fm(z) which may be taken to satisfy /m(0)=0. Let

(44)

Then

) = Σ Cn (\z\<R

Evidently

—\+πv(reiθ)e-%nθdθ
π J-π

\
TZ J - π

( (

MJlClSrVr

ΊZ J - π

λ\ (L.Y dl)w

n Jr<ιζι^/2m

v|)^4T(r, v)-2N(r, u™)-

(cf. [8])
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) ^ \ ( ) n m ( r ) , etc.
Jo

Hence by (45) we have

(46)
4Γ(2/?m, v) 2T{2Rm, v)

n>R£ \og2

Substituting (46) into (44), we obtain for r=\z\<Rm/2

(47) <4T(2Rm, v) Σ (^)+2T(2Rm, v) ± (
n=l\Km/ lOgZ n=l\R

=4T(2Rm, v)'".m

Ώ +2T(2Rm,

4 x
log 2 /

From (43), (16), (47) and (42), we deduce that for any η>0 and any integer
s>0, there exists a mo=mo(η, s)>0 such that rE/ m (s), m^m0 imply

(48) m*(r, ̂ ) ^ ^ ^ m ( - r ) - z / ^ m ( r ) - ^ 7 ( r ) .

Now, for given 57>0, choose an integer s>0 such that hs(π)>h{π)—η. By the
definition of /zs(π) there exists a sequence {Zn}TCyl(s) tending to 00 such that

(49) B(-Xn)>(hs(π)-V)Van)>(Kπ)-2V)Van)>(h(0)cos πp-2V)V(Xn).

We may suppose that cosπρ—2η>0. By (48) and (49) we have

(50) m*an,v)>(h(π)-3V)V(χn)-{uZl(-χn)+uί%(χn)}.

Since N(r, uw)~T(r, v) (r—>oo), we obtain for any ε>0,

(51) Mr, uf^)^N{r, u^)<(l-δ(™, v)+ε)N(r, uw) (rε/m(s), r^ro(e)).

As we have shown in the proof of Theorem 1,

Using this and (51), we easily have for r^Im(s), m>rno(η, s)



312 HIDEHARU UEDA

κ&.(r)<(l-3(oo, v))u?,l(r)+VV(r).

Thus for re. I mis), m>mo(τ], s)

(52) «^m(

where ηf, η"(>0) satisfy ΎJ\ η"-*Q as ^-*0. Substituting (52) into (50),

(53) m*(Xn, v)>\h(π)-3rjh(0)- o ~ «, \ K0)—7}"h(0)\v0tn)-
I ' 2—o(°°, ι>) J

We may suppose that the right hand side of (53) is positive. On the other hand,

by (43) and (47),

n, v)=ml(Xn, u\%-u[2,l

(54) +2^-\2πWm(ln

LIZ JO

As Miles and Shea [11] proved,

(55) m2(Xn, u[%-u[%)^

Here we note that for \z\—Xn

where

Hence

m2(Xn, u

< V(Xn)

H(β)
Π\U )•

(1) _i_ - J / ( 2 ) \ ^ \7

i(h(0))2-{-(h(

0) sin (

n X π

J\2

κ — θ)pJrh
sin 7Γ/?

Jo

4^^

sin

(ττ)si

) 2ί/^

/

πp

nθp

L 1 / 2

\j)n\π

(O^θ^π).

ϋ
1 W"\ η

where η'"->§ as ε-^0. Combining (53)—(56), we obtain
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m*{ln, v)

n, v)

The function

2-2δ(oo, v)
t--

2-3(oo, v)

sin

increases as t increases, and therefore, in view of h(π)> h(0) cos πp, the right
hand side of (57) is not smaller than

2—2δ(oo, v)
cos πp — ^ r~r 2—δ{^, v)

vΊ/2+sin 2πp/4πp

Proof of Corollary 3. We make use of some estimates stated in § 4. As
Valiron [13] showed

Σlog + b', | ^ max \og\Λj/ΛQ\+O(l).
.7 = 1 OZzN

Hence

(58) C\r, y)^\^-\+Ίmax log
L Z π J U z a N

We apply Theorem 3 to ua)= max log 1-4,1, wC 2 )=log|ΛI Then there exist an

integer s=s(ε)>0 and a sequence {Xn}^dΛ(s) tending to oo such that

(59) { min max log| Λ4/Λ4011

log
sm2πp/4πρ

Combining (58), (59) and an estimate stated in §4, we have

Ydθ\.
J J

' y)
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