NONLINEAR CONSTRACTIONS IN ABSTRACT SPACES

By Kun-Jen Chung

I. Introduction.

Recently, Eisenfeld J. & Lakshmikantham V. [4, 5, 6], Bolen J. C. & Williams B. B. [1], Heikkila S. & Seikkala S. [7, 8], Chung K. J. [3], Kwapisz M. [10] and Wazéwski T. [11] proved some fixed point theorems in abstract cones which extend and generalize many known results. In this paper, we extend some main results of Boyd D. W. & Wong J. S. W. [2] to cone-valued metric spaces.

II. Definitions.

Let *E* be a normed space. A set $K \subset E$ is said to be a cone if (i) *K* is closed (ii) if $u, v \in K$ then $\alpha u + \beta v \in K$ for all $\alpha, \beta \geq 0$, (iii) $K \cap (-K) = \{\mathcal{O}\}$ where \mathcal{O} is the zero of the space *E*, and (iv) $K^0 \neq \emptyset$ where K^0 is the interior of *K*. We say $u \geq v$ if and only if $u - v \in K$, and u > v if and only if $u - v \in K$ and $u \neq v$. The cone *K* is said to be strongly normal if there is $\delta > 0$ such that if $z = \sum_{i=1}^{n} b_i x_i, x_i \in K$, $\|x_i\| = 1, \sum_{i=1}^{n} b_i = 1, b_i \geq 0$ implies $\|z\| > \delta$. The cone *K* is said to be normal if there is $\delta > 0$ such that $\|f_1 + f_2\| > \delta$ for $f_1, f_2 \in K$ and $\|f_1\| = \|f_2\| = 1$. The norm in *E* is said to be semimonotone if there is a numerical constant *M* such that $\mathcal{O} \leq x \leq y$ implies $\|x\| \leq M \|y\|$ (where the constant *M* does not depend on *x* and *y*).

Let X be a set and K a cone. A function $d: X \times X \to K$ is said to be a Kmetric on X if and only if (i) d(x, y)=d(y, x), (ii) $d(x, y)=\mathcal{O}$ if and only if x=y, and (iii) $d(x, y) \leq d(x, z)+d(z, y)$. A sequence $\{x_n\}$ in a K-metric space X is said to converge to x_0 in X if and only if for each $u \in K^0$ there exists a positive integer N such that $d(x_n, x_0) \leq u$ for $u \geq N$. A sequence $\{x_n\}$ in X is Cauchy if and only if for each $u \in K^0$ there exists a positive integer N such that $d(x_n, x_m) \leq u$ for $n, m \geq N$. The K-metric space (X, d) is said to be complete if and only if every Cauchy sequence in X converges.

Throughout the rest of this paper we assume that K is strongly normal, that E is a reflexive Banach space, that (X, d) is a complete K-metric space, that $P = \{d(x, y); x, y \in X\}$, that \overline{P} denotes the weak closure of P, and that $P_1 = \{z; z \in \overline{P} \text{ and } z \neq \mathcal{O}\}$.

Received February 27, 1980

III. Preliminary results.

In this section we list Mazur Lemma and needed properties of the cone K and the related K-metric space which will be used in our theorem.

(a) Strongly normal is normal.

- (b) A necessary and sufficient condition for the cone K to be normal is that the norm be semimonotone (cf. [9]).
- (c) If the sequence $\{u_n\}$ in E converges (in norm) to u, the sequence $\{v_n\}$ in E converges (in norm) to v and $u_n \leq v_n$ for each n, then $u \leq v$.
- (d) If $\{x_n\}$ is a sequence in the K-metric space X that has a limit in X, then the limit is unique.
- (e) If $u \in K^{0}$, then there exists a positive number c such that if $v \in \{p ; \|p\| < c\} \cap K$ then $v \leq u$.
- (f) If h is an element in the Banach space E, $h_n \in K$ for each n, $h \leq h_n$ for each n and $\{h_n\}$ converges (in norm) to \mathcal{O} in E, then $-h \in K$.
- (g) If $u \in K^0$ and $\{h_n\}$ is a sequence in K which converges (in norm) to \mathcal{O} in E, then there exists a positive integer N such that $h_n \leq u$ for $n \geq N$.
- (h) If $\{x_n\}$ is a sequence in the K-metric space X that is convergent to x in X then $\{d(x_n, x)\}$ converges (in norm) to \mathcal{O} in E.
- Mazur Lemma: Let E be a normed space and {u_n} a sequence converging weakly to u, then there is a sequence of convex combinations {v_n} such that

$$v_n = \sum_{i=n}^N b_i u_i$$
 where $\sum_{i=n}^N b_i = 1$, and $b_i \ge 0$, $n \le i \le N$

which converges to u in norm.

(j) Let the sequence $\{u_n\}$ in E be weakly convergent to v, if $u_n \ge \mathcal{O}$ for each $n \ge 1$ then $v \ge \mathcal{O}$.

IV. Examples and main results:

Example 1. Let E=R (all real numbers) and $K=R^+$ (all nonnegative real numbers), then K is strongly normal and semimonotone, and K satisfies the law of trichotomy.

Example 2. Let $E=R^2$ and $K=\{z\in R^2; 0 \le a \le Arg \ z \le b \le \pi/2\} \cup \{\mathcal{O}\}\$, where the symbol Arg z denotes the argument of the complex number z. Although K is strongly normal, semimonotone, K doesn't satisfy the law of trichotomy.

The mapping $\phi: P_1 \rightarrow K$ is said to be upper semicontinuous if $\{u_n\}$ and $\{\phi u_n\}$ are both weakly convergent, then $\lim \phi u_n \leq \phi(\lim u_n)$. Let G be a family of mappings ϕ such that $\phi: P_1 \rightarrow K$, ϕ is upper semicontinuous on P_1 .

The property of the law of trichotomy of the set R has been used in the proof of [2], but it can not be used in our Theorem 1 (cf. Example 2). The

KUN-JEN CHUNG

proof of Theorem 1 differs from that of Theorem 1 [2].

THEOREM 1. Let f be a self-mapping of X. Suppose that there exists $\phi \in G$ such that for all x, $y \in X$:

(1)
$$d(fx, fy) \leq \phi(d(x, y)),$$

where ϕ satisfies the condition: for any $t \in P_1$,

$$(2) \qquad \qquad \phi(t) < t$$

Then, f has a unique fixed point x_0 and $f^n x \rightarrow x_0$ for each x in X.

Proof. Let $x_0 \in X$. We define the sequence $\{x_n\}$ by $x_1 = fx_0, x_2 = fx_1, \dots, x_{2n+1} = fx_{2n}, \dots$. Let $d_n = d(x_n, x_{n+1}) \neq \mathcal{O}$. It follows, by (1), that, for each positive integer n,

(3)
$$d_{n+1} = d(fx_n, fx_{n+1}) \leq \phi(d(x_n, x_{n+1})) \leq d_n \leq d_1.$$

Therefore $\{d_n\}$ is decreasing and bounded.

Now, we show that $\{x_n\}$ is a Cauchy sequence. Suppose that $\{x_n\}$ is not a Cauchy sequence. Then, there is an $\varepsilon \in K^0$ such that for every integer *i*, there exist integers n(i) and m(i) with $i \leq n(i) < m(i)$ such that

(4)
$$d(x_{n(i)}, x_{m(i)}) \leq \varepsilon.$$

Let, for each integer i, m(i) be the least integer exceeding n(i) satisfying (4); that is

(5)
$$d(x_{n(i)}, x_{m(i)}) \leq \varepsilon$$
 and $d(x_{n(i)}, x_{m(i)-1}) \leq \varepsilon$.

Since K is semimonotone, the sequence $\{d(x_{n(i)}, x_{m(i)-1})\}$ is norm-bounded. Consequently the sequence $\{d(x_{n(i)}, x_{m(i)})\}$ is norm-bounded.

Since E is a reflexive Banach space, for convenience, we suppose

(A)
$$\begin{cases} \{d(x_{n(i)}, x_{m(i)})\} \text{ is weakly convergent to } z_1, \\ \{d(x_{n(i)}, x_{m(i)-1})\} \text{ is weakly convergent to } z_2, \end{cases}$$

where z_1 and z_2 are in K. Since

(6)
$$d(x_{n(i)}, x_{m(i)}) + d(x_{m(i)}, x_{m(i)-1}) \ge d(x_{n(i)}, x_{m(i)-1}),$$

(7)
$$d(x_{n(i)}, x_{m(i)-1}) + d(x_{m(i)-1}, x_{m(i)}) \ge d(x_{n(i)}, x_{m(i)}),$$

From (6), (7) and (B), we see that $z_1 \ge z_2$, $z_2 \ge z_1$ and $z_1 = z_2 = z$ (say). We see that

(8)
$$d(x_{n(i)}, x_{m(i)}) \leq d(x_{n(i)}, x_{n(i)+1}) + d(x_{n(i)+1}, x_{m(i)+1}) + d(x_{m(i)+1}, x_{m(i)})$$

 $\leq 2d_{n(i)} + \phi(d(x_{n(i)}, x_{m(i)})).$

290

Since E is a reflexive Banach space, for convenience, we suppose

(B)
$$\begin{cases} \{d_{n(i)}\} \text{ is weakly convergent to } c, \\ \{d_{n(i)-1}\} \text{ is weakly convergent to } b, \end{cases}$$

where b and c are in K.

From the fact that $d_{n(i)-1} \ge d_{n(i)} \ge d_{n(i+1)-1}$, it follows that b=c. Since $d_{n+1} \le \phi(d_n) \le d_n$, we obtain that $\{\phi(d_n)\}$ is bounded. Therefore there exists a subsequence $\{d_{r(i)}\}$ of $\{d_{n(i)}\}$ such that $\{\phi(d_{r(i)-1})\}$ has a weak limit. If $c > \mathcal{O}$, we have $c = \lim d_{r(i)} \le \lim \phi(d_{r(i)-1}) \le \phi(c) < c$, which is a contradiction. Hence $c = \mathcal{O}$. In fact $\{d_n\}$ is weakly convergent to \mathcal{O} .

Since $\mathcal{O} \leq \phi(d(x_{n(i)}, x_{m(i)})) \leq d(x_{n(i)}, x_{m(i)})$, and *E* is reflexive, for convenience, we let $\{\phi(d(x_{n(i)}, x_{m(i)}))\}$ have a weak limit. If $z \neq \mathcal{O}$, we see, by (A), (B), (*j*) and (8), that $z \leq \phi(z)$. We obtain that $z = \mathcal{O}$.

By (4) and (g), there exist a positive number s and a subsequence $\{d(x_{p(i)}, x_{q(i)})\}$ of $\{d(x_{n(i)}, x_{m(i)})\}$ such that $\lim_{n \to \infty} ||d(x_{p(i)}, x_{q(i)})|| = s > 0.$

Since the sequence $\{d(x_{p(i)}, x_{q(i)})\}$ is weakly convergent to \mathcal{O} , by Mazur Lemma, there is a sequence of convex combinations $\{v_n\}$ such that $v_n = \sum_{i=n}^N b_i u_i$ where $\sum_{i=n}^N b_i = 1$, $b_i \ge 0$, $n \le i \le N$ and $u_i = d(x_{p(i)}, x_{q(i)})$, which converges to \mathcal{O} (in norm). For convenience, we can assume s=1. Since K is strongly normal, there exists $\delta > 0$ such that $||v_n|| > \delta$ for sufficiently large n. Since $\{v_n\}$ converges (in norm) to \mathcal{O} , this is a contradition. Therefore $\{x_n\}$ is a Cauchy sequence. By completeness, there is a $u \in X$ such that $\{x_n\}$ converges to u in X. Since f is continuous on X, we obtain that f(u)=u. The uniqueness is obvious. This completes the proof.

If E is the set of all real numbers and if K is the set of all nonnegative reals, then, from (4) and (8), Theorem 1 may now be restated in the following form.

THEOREM 2. Let (X, d) be a complete metric space, f a self-mapping of X such that for all $x, y \in X$.

(C)
$$d(fx, fy) \leq \phi(d(x, y)),$$

where ϕ is upper semicontinuous from the right on P_1 (that is: $\lim_{t\to c^+} \phi(t) \leq \phi(c)$). Moreover, ϕ satisfies the condition (D).

(D)
$$\phi(t) < t$$
 for any $t \in P_1$.

Then, f has a unique fixed point x_0 and $f^n x \rightarrow x_0$ for each x in X.

Theorem 2 was proved in [2] by Boyd D.W. and Wong J.S.W. but it is a special case of our Theorem 1.

KUN-JEN CHUNG

References

- [1] BOLEN, J. C. AND WILLIAMS, B. B., On the convergence of successive approximations for quasi-nonexpansive mappings through abstract cones. Technical Report No. 29 (1975), University of Texas at Arlington.
- [2] BOYD, D. W. AND WONG, J.S. W., On nonlinear contractions. Proc. Amer. Math. Soc. 20 (1969), 458-464.
- [3] CHUNG, K. J., Common fixed point theorems through abstract cones. Bull. Polon. Sci. Sér. Sci. Math. Astr. Phys. 3-4 (1980), 61-68.
- [4] EISENFELD, J. AND LAKSHMIKANTHAM, V., Comparison principle and nonlinear contractions in abstract spaces, J. Math. Anal. Appl. 49 (1975), 504-511.
- [5] EISENFELD, J. AND LAKSHMIKANTHAM, V., Fixed point theorems through abstract cones, J. Math. Anal. Appl. 52 (1975), 25-35.
- [6] EISENFELD, J. AND LAKSHMIKANTHAM, V., Remarks on nonlinear contraction and comparison principle in abstract cones. J. Math. Anal. Appl. 61 (1977), 116-121.
- [7] HEIKKILA, S. AND SEIKKALA, S., On fixed points through cluster values of iterates. J. Nonlinear Anal. Theory & Appl. Vol. 1 No. 6, 603-606, 1977.
- [8] HEIKKILA, S. AND SEIKKALA, S., On the estimation of successive approximations in abstract spaces. J. Math. Appl. Anal. 58 (1977), 378-383.
- [9] KRASNOSELSKII, M.A., Positive solutions of operator equations, Noordhoff, Groningen 1964.
- [10] KWAPISZ, M., Some generalization of an abstract contraction mapping principle, J. Nonlinear Anal. Theory & Appl. Vol. 3, No. 3 (1979), 293-302.
- [11] WAZÉWSKI, T., Sur une procede de prouver la convergence des approximations successive sans utilisation des series de comparaison. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 45-52.

DEPARTMENT OF MATHEMATICS CHUNG YUAN CHRISTIAN UNIVERSITY CHUNG LI, TAIWAN, 320 R.O.C.