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ASYMPTOTIC REDUCTION OF A CERTAIN BOUNDARY
VALUE PROBLEM ARISING FROM THE DENSITY
WAVE THEORY OF SPIRAL GALAXIES

By TOSHIHIKO NISHIMOTO

§1. Introduction.

The dynamical mechanism of the long term maintenance of the spiral struc-
ture observed in many disk shaped galaxies has been successfully explored
through the density wave theory of the spiral galaxies by C.C. Lin and his
collaborators. The mathematical formulation of this theory is based either on
the steller dynamic or on the hydrodynamic approach. If we adopt the latter,
the basic equation consists of the equation of continuity, the Euler’s equations of
motion, the equation of state and the Poisson equation. We assume that the basic
equation has a steady axisymmetric solution, then we get equations of pertur-
bations (2.1). In the context of the linear theory, there are three levels of appro-
ximations of the equations for analysis (private communication of Prof. C.C. Lin):
(i) an integro-differential system (2.3a), (2.3b), (2.3¢c) and (2.4), which is exact

as the linearlized equations for the perturbations,
(ii) a third order differential system (2.7a) and (2.7b),
(iii) a second order differential equation (2.9).
Through numerical and asymptotic analyses of the second order differential
equation, Lin and his school have arrived at a consistent interpretation of the
plysical problems of the spiral galaxies, Lin and Lau [7]. Pannatoni and Lau [10]
just begun the study of the integro-differential system by elaborate numerical
analysis.

The purpose of this paper is to study the third order differential system of
the second level of approximation by the asymptotic analysis and prove that
it is asymptotically equivalent to the second order differential equation of the
last level, in an appropriate region where the spiral structure prevails.

The program of this paper is as follows. In section 2, the basic equations
and the equation of perturbation of each level of approximations are stated. In
section 3, through the block diagonalization technique (Wasow [127], p. 133 ff.),
the third order differential system is split into a second order and a first order
differential equations. In section 4, we define the so-called admissible regions
in which we construct asymptotic expansions of solutions of the third order
differential system. And in the last section we consider connection formulas
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between two fundamental systems of solutions defined in two admissible regions,
and prove the splitting property, which means that one of the solutions is inde-
pendent from the other two solutions throughout the region of our interest. In
this way, we obtain the main result that the third order differential system
with certain boundary conditions is asymptotically equivalent to the second order
differential equation with the same boundary conditions. As a consequence,
we get an asymptotic formula of the global dispersion relation for the third order
differential system.

§2. Equations of perturbation.

The basic equation governing the behavior of the steller component are the
Boltzmann equation and the Poisson equation for the gravitational potential
(Rohlfs [11] Chapter 1). But for simplicity of analysis, a fluid dynamical model
has been often adopted for the disk stars. Since the mass distribution in a galaxy
is axisymmetrical, we describe the basic equation in the cylindrical coordinate
system (r, 6, z) with the plane z=0 coinciding with the plane of symmetry in
the disk. we idealize the disk as being infinitesimally thin. Let us denote the
surface density, the corresponding gravitational potential, by o(¢, r, 8), ¢(¢, 7, 8, 2),
and the components of velocity of unit mass of the fluid in the #- and 4-
directions by u(t, r, 8), v(t, r, 0) respectively. We can assume that the state of
equilibrium of the basic equations {co, us, Vo, Go} ={0o(r), 0, v4(r), Go(r)} has
rotational symmetry, and these quantities characterize models of galaxies. The
perturbation to the stationary state {4, @, 71, ¢,} satisfies the following set of
equations in the linearlized form. [11], [7]:

06, 06, 0 . 0 NN
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where 0(z) is the delta function of Dirac.

Here 2=0(r) is the angular velocity=uv,(r)/r, a=a(r) is the mean velocity
of the gas and « is the epicyclic frequency defined by 22(1+7/2Q2dQ2/dr)"2. We
can assume that these quantities are all given real analytic functions of » and
positive. G is the constant of universal gravitation.

We may seek solutions in the form of normal modes having spiral structure
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G,=0,(r) exp (wt—mb),
iy =u,(r) exp i(wt—mé) ,
(2.2)
Uy =v,(r) exp ilwt—m@),

B1=6:(r, 2) exp i(wt —m80),

where w is the complex parameter, and m is the number of spiral arms. From
(2.1.) and (2.2) we get

du,(r) 1 1 do, mv(r) | . o—m8 _
(2.32) ar ‘|‘(7+ o0 dr )ul(r'_'—r'—"“_}‘l(———ao )al(r)—O,

0(@(r, 2)+hy(r))

(2.3b) +ilo—m)u,(r)—28v,(r)=0,

or
(2.3¢) 2% u () Filw—mQ)v,(r)— —’"r—i(gﬁl(r, 2)-+hy(r)=0,
where
_ a¥n)eu(r)
hl(r)_" 0'0(7") ’
and
(23d) {%Jr %air + aazz — )i, D=42Ga(0).

The gravitational potential over the disk ¢,(r)=¢,(r, 0) can be expressed in
terms of an integral of the surface mass density

(2.4) ¢1(r)=—27rGS:K(r, o (r)dr’,

where K(r, »’) is known (see [7], p. 116).

Equations (2.3a), (2.3b), (2.3c) and (2.4) constitute the integro-differential system
which we refer in the introduction as the equations of the first level of appro-
ximation.

To apply the asymptotic analysis, the equation (2.3d) connecting the potential
¢:(r, z) with the surface density o,(r) can be approximated for rather tightly
wound spirals by the differential relation, Bertin and Mark [1],

dgur) | ) mr—1/4
(2.5) dr -+ o St di(r)=12hy(r),
where
_ 2nGo, _ 2k __ka
Z(T’)—‘——ag —w, Q= 7Goy

From the equations (2.3a), (2.3b), (2.3c) and (2.5) we can eliminate u,(r), v,(r)
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and o,(r) and get a second order differential equation for the two variables
¢(r) and h,(r) in the traditional form [7]

d2h1 dh1 ]. _ 2, . m2—1/4
@6) Ao +[Brc—i3(o—a- 5 ) -
A 3
|5l
where
2 2
ao_Ldlogd o
r dlogr oo
B___mi 2mf2 dlog (k/0,2) T, i 4vmQ2  dlogk
Ty 72k dlogr 1—y ' r%(1—?) dlogr ’
—rkY(1—v?)
C=—
_ mlo—2) __(2mQ\e dlog Q
v= K ’ Ti= ( TK ) dlogr

By the standard transformation

hy=u exp {—Sr Atiz dr}zu exp {—%SZWKM)”’

2 o7
1= exp {—%SZ’dr}(#‘;”z)—)m ,
the equations (2.5) and (2.6) becomes
re) S (pros 2 (AL ANy X (L Zy_mioUd,
+{—§%+B+%}v:0,
(2.7b) —%%—{—A——;Z—Z——%— %}v—zfuzo.

The above equations (2.7a) and (2.7b) constitute a third order differential system
of the second level of approximation which we shall study in this paper.

From the basis of the physical consideration, Lau and Mark [4] reduced the
equations (2.7a) and (2.7b) by replacing v in (2.7a) by —2u and arrived at a
second order differential equation

2.8) di“ +{—B+c+—2~(—2——7+



156 TOSHIHIKO NISHIMOTO

R N

which can also be rewritten as (see section 3 for details)

d®u .
2.9) = + K*u=0,

K*=Fk*+R,
SIS

2 a4 o1 T, 2m2  dlog (k*/0,8)
k=g g 108 LU= 5 = dlog r

__4vmQ  dlogk _{ £(1—p?)l/? } d2_< oo )1/2
er*(1—yv?®) dlogr oo dr® \ g*(1—v?%)

x2(l—u2)mdﬁ e 5
T oor? dr ( £2(1—v%) ) Ay
Equation (2.9) is of the third level of approximation that has been extensively
studied, for example Lin and Lau [5], [7] and Nishimoto [9].

§3. Asymptotic reduction.

In this section, we construct a linear transformation which asymptotically
splits the differential system (2.7a) and (2.7b) into a second order differential
equation of single variable and a first order differential equation of another
variable. To do so, we rewrite the equations (2.7a) and (2.7b) by using the
physical quantities and introduce a large parameter 2 in order to apply the
asymptotic method.

In the equation (2.7a) and (2.7b), we replace A, B and C by their difinitions
written below the equation (2.6).

Since

am_Ldlsd_1dlogdt L v ddt_ g0y 4 o
T rdlogr v dlogr < r ¢t dr oo dr \ g1—?®) /’

A/:_<x—z(%5—)_2{~dd7( /cz((lrfuz) >}2+< xz(;f;ﬁ)_)_l?dr%< Ez(fflﬂj‘>,

it is easily verified that

A* A __( £*(1—v?) )1/2 a® ¢ oo )1/2
4 2 aor dr*\ 2(1—v?) ’
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and since

S:o(% “A—é:)drz[log r+log A—log 27z,

>y
_ 18 -1 a,Q T o ka "
—[logr( £H(1—v?) ) 2k ]TO—~[Iog QA= 200]ro’
then we have
1 N d
- A== - log [QM(1—v)].

And we have

e+ 3 =() (1),

Thus we have

2
DL (b4 R)u+ Ry =0,
(3.1)
d
'd%‘f‘kzu‘f‘(ks‘l'}?s)l/:()’
where
/1
b= (g —10),
. __ 2rGo, _ 2ik __g___ "
kg——- ZZ—- 1 2 = aQ B k3— 5 = aQ
_ W d T i 2m2  dlog (k*/0,82)
Ri= 2 dr [log {Q*1—v}] 1—y? + 7iky dlogr
4vm2  dlogk __( £2(1—v?) )1/2 d? ( oo )1/2
r*k(1—v%) dlogr o dr® \ g¥(1—y%
2mt—1/4
—
R — £2(1—v?) L( aor )_ T, 2m82 *dlog(/ﬁ/oo.Q)
B 20,7 dr \ g¥(1—v? 1—y? 2Ky dlogr
dymf2  dlogk 3—4m?®
ri(1—v?) dlogr 492 7
___i,_ £X(1—v?) d o aQ(m®*—1/4)
Ry= 2r aor dr ( £2(1—v?) >+ ik ’
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Now we introduce a dimensionless large parameter A which is a typical
value of kr/a. For a realistic model of galaxies, A is about 32. The orders of
magnitude of the coefficients 2, 1=1, 2, 3) and R, (:=1, 2, 3) on the region
where spiral structure prevails are assumed to be (this is the case for tightly
wound normal spiral galaxies, [4] and [7])

kl:O<2) ’ (Z:]w 2: 3) ’
Ri=000), R,=001),  R;=0(1).

By using the large parameter A, the equation (3.1) is rewritten in a simpler
notation as

u”——lz{(a%—l——aL)u_|_,,?,L_v}:0 )

2 2
v’—ﬂ{cou—l—(do—}—f{;1 >v}:0,

or if we put

U=1u, Uy=cu’, u;=v and e=A1"",
then the above equation becomes

u; ) I 0 1 0 0 0 0 Uy
(3.2) el s | ={| a2 0 0 |+e¢ a;, 0 by Us |,

Uy [cOOdO OOdIJu3

where
ag:_z_z %y alz_;{_lRly bl:'_l_lRZy

C():—Z-lkz, d():_)k-lkg, dlz—l'le.

Let us examine singularities and turning points of the above equation (3.2)
for real w and ». The singular points are

r=0, the center of galaxy,
and the points where

o= oy,
K

The latter are usually designated as the corotation resonance 7., the outer
Lindbladt resonance 7,:x and the inner Lindbladt resonance ;. The function
a,(r) has poles of order two at r=0 and 7oz 772z and a simple pole at 7.
The function b,(r) also has a pole of order two at r=0 and simple poles at
Torr ¥irr and 7., and the function d,(x) has a pole of order two at »=0, simple
poles at vorr, "rrR-
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The turning points are those at which roots of the equation

I 0 1 0 l
fw=det!| a3 0 0 |—pE!=0
1 co 0 do I

coalesce. Since we have f(u)=(pu—d,)(¢*—af), turning points are those at which
either

2
af=—2(5) (Q 7 145)=0,
or

a— 352-2(5)2(1~p2>:0.

Thus the Lindbladt resonance 7.z, 7.z Where v? =1 are simple turning points.
From the numerical investigations, we reasonably assume that the function
ai(r) has a double zero at r, where v=0 and a simple zero at r., such that
T1Lr<tee<te. Thus for real w, the function ai(r) is real and has a curve like
Fig. 1, [7].

As is easily verified, the point =0 is the irregular singular point and other
poles are regular singular points of the differential system (3.2). Thus we are
concerned with the equation having an irregular singular point, regular singular
points and turning points. But at present, there is no global theory which is

[}

YVILR Yee %N

Fig. 1. Function &} (r) for real o
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available to our equation, and so we restrict our attention to some subregion, for
example, to a neighborhood of 7., 771k, ToLr Or a segment between 7. and 7.,
just like other papers [4], [6], [7] and Mark [8].

Now we apply the following transformation to the equation (3.2).

(3.3) U=(Py+eP)W,
where
Uy W, 1 0 0
U: Uy |, W: Wiy |, Po—': O 1 O
codo G 1
Ug W a(z)_d% aa—-d(z)
—blcodo_ —bico _blnA
(a§—dp)* (a§—dp)* aj—dj
pP.— —"bICOd% —bl(,'odo —bldo#
T (ad—dip (a§—di?  a§—di |
alay,+doa, a+doas 0
ad—d? ai—d}
— Co(dodl_al) _ Sblcgdo +( cOdQW*)I
' aj—d} (a§—d})? ai—d§ /’
. Codo _ blcg Co !
= ety aeds )
Then the resultant equation is after some calculations
dw .
(34) ey =GN+ +eCulr, e} W,
where
bic
aQI—Z; 0 0
01 0 o
Gir=|az 0 0|, G=|a-+ bic"d‘;— 0 0 ,
ai—d?
0 0 d,
blbo
0 0 d, a—di

and Gu(r, ¢) is a polynomial of ¢ of degree 3 and its coefficients are rational
functions of a, a, b; ¢, do and d;. If we write down the expression of G(r, ¢),
it is easy to count the order of poles at each singularity. We don’t go into the
details here about this point, but only remark that the remainder term Gu(r, ¢)c®
can be written in the neighborhood of each singularity as
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Gulr, )= 33 G 0 (e)

where [ denotes one of singularities 0, 772z, ¥co OF 7orr, GP(r) is bounded in the
neighborhood of a singular point [ and z¥(r) is such that

72 for (=0,

(r—rip)® for =71z,

z.(l)(,,)___J

(r—7re)™? for I=r,
(r—T‘OLR)_3 for l:TOLR-
Details of the construction of (3.3) and (3.4) are given in Appendix.
Before constructing solutions of equation (3.4), let us compare it with the

second order equation (2.9). If we neglect the terms of order higher than O(e)
in the equation (3.4), then we have

J [ o 0 1 g OMN[ @
S 2 Y o P b
dr 12\)2 a% 0 gz 0 12}2

dw
dr

(3.5b) e———={dotegs} 0,

where

blco blcodo blco
=—, = 57y =d,———— .
81 ai—dz g:=a;+ ai—d? &8s 1 ai—dz

The equation (3.5a) is equivalent to

2 d*w _{a§+8g2+82(—g“;“+‘§‘>}w:0,

(36) ¢ dr 2 4

w=1, exp{—ST g21 dr}.

Since we have (see the notations below (3.2))

8'203=—<§>2<%—1+v2)=—kf:_ks ,

e e e e 1

then both equations (2.9) and (3.6) have the same principal term, and since the
quantity (1—y*)@Q? is nearly one in the neighborhoods of ». and 7., the remainder
term R in the equation (2.9) may be a good approximation of —e~'g, on a neigh-
borhood of the segment between 7, and 7., where it is the most important
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region for the wave mechanism of the density waves.
Now, we consider boundary conditions for the equation (3.4). The boundary
conditions for the equation (2.9) are such that

(i) u(r) exponentially decays for r<re.,
(3.7)
(ii) e*'u(r) represents an outgoing wave for r>r.,.

The physical reasons for these choices of the boundary conditions are given mn [7].

Since the equation (3.4) may be approximated by (3.5a), (3.5b) and the equation
(3.5a) is essentially equivalent to the equation (2.9), then it seems quite reasonable
to put the boundary conditions (3.7) for the equation (3.4).

In the next section, we shall construct asymptotic expansion of solutions of
the equations (3.4) and (3.5), and show that the solutions of (3.5) really approximate
the solutions of (3.4) in appropriate regions of the complex 7-plane. From these
facts, we can say that the boundary conditions (3.7) bring us a global dispersion
relation or a quantum condition for our system (3.4) and (3.1) which is analogous
to the one for the second order equation, [6], [9].

§4. Asymptotic solutions.

By the transformation,

1 -1 0 Xy
(4.1) W=T,X, To=lay a 0], X=! x,
0 0 1 Xy

the equation (3.4) becomes

dX  ~ ~ ~
4.2) a_dr ={H(r)+eH,(r)+*Hyr, e} X
with N
Hyr)=diag {as(r), —asr), do()},
Y Ry 0
()= kY Ry 0 |,
0 0 g
where
1 g, ap | ay a, bice
1 B
fii= 2{g1+ 4o @) 2ay 24, | 2a)a,—dy)
1 82 ap ay ay bice
(D = =2 T U Sl S _
B 2{g1+ as ao} 2a,  2a, 2aa,—do) ’
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1 L2 [} ay a; bico
T ez Go {__ . I U
/121_2{ &t ao ao } 2a, ' 2a,  2aactdy)
1 gZ a(’) 06 01 bICO

w_ )y &2 o l____ _
he Z{gl a, ao } 2a, 2a, T 2a4(a,+do)

The remainder term Hy(r, ¢)e® has singularities at =0, r;1z, 7ce, Yo and ¥oip,
and can be written

eflr, = 3 B a0}

where ﬁi"(r) is bounded at singularities, and ¢®(r) is defined as
IT(“(r) for =0, 7.z, Towr,

o=y r—r)V?  for [=r,,

I (r—"re)? for [=7,.

If we apply the same tsansformation (4.1) to the equation (3.5a), (3.5b), we
get te equation (4.2) with H,(r, ¢)e?=0.
We further change the equation (4.2) by the transformation

V1
(4.3) X={E+cT}Y, Y=| y,
B
where E is the 3-dim unit matrix, and T, is
. ag g L a |
. g1 gy’ a +<g1l o ), 0
Ty= 5 , ,
2a, | 82 _&o (g o G0
) E(ay ), Aay), 0
0, O) O/

By assuming that
(4.4) lege/2a}| K1,

we expand {det (E+eT)} '={1—c?g%/4al} ™ in power series of ¢, and obtain
from (4.2) and (4.3)

Y ) ) S, &) Y
dr

Here H,(r)=H,(r), H,(r)=diag H,(r) and 2H,(r, ¢) is a power series of ¢ such that

(4.5) €

CHy(r, &)= i HO0) (P (e}
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where H{"(r) are bounded at singularities »=/ and p®(r) is such that
Ir‘”(r) for [=0, 7i1z, Toir,
2PM)={ (r—re)™™*  for I=r,
(r—re)7? for (=7,

Now we define a diagonal matrix A(r, &) by

@) A, 9=diag Ui, 9, 4utr, ), Agr, ) =T mo}ar,
and put

4.7) Y(r, e)={E+Z(r, ¢)} exp A(r, €),

then Z(r, ¢) satisfies

(4.8) e%f—:<Ho+eH1>Z—Z(HO+5H1>+52H2<E+z> ,

where Z is a 3 by 3 matrix with elements z,, (i, j=1, 2, 3). If we denote
entries of the matrix Hy(r, ) by h,,(r, ¢) (i, =1, 2, 3), then z,, satisfy equations

(4.9) i =

dz, 3
20— (p (r, e)—hy(r, &) zy, e {ho,(r, &)+ ka hiw(r, €)za,}
@ j=1, 2, 3).
Here we denote the diagonal elements of the matrix Hy+¢H; by h(r, €):

ag
2a,

a; bico }
’

— (1) — —
hl('r, 6)—ao+5h11 a0+€{ Zao 2ao(ao—d0>

+

a; a; bico }
’

— D _ —
(410) hg(?", 6)— a0+ehzz 00—1—8{ 2a, 2a, T 200<Go+do)

b
ho(r, y=doteg=dotefd,——7 2.
0 0

The differential systems (4.9) are equivalent to systems of integral equations

(4.1) 2utr, =¢| Texp (1, =715, )]
{rils, OF B hals, Dzefs, ofds,

7ot e)z—i—{g;hi(r, ydr—{, nr, dr},
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where paths of integral C,, and C, are specified in later.

Now let us consider » as the complex variable, and solve the integral equation
(4.11) in a certain bounded region I in the complex »-plane. Then we assume
that each coefficient in the equation (3.2) is extended to be analytic function on
IT except singular points stated in section 3. The domain I7 is a neighborhood
of the segment between ., and 7., and does not contain the Lindbladt resonances
r1Lr Yorr and r=0. Hitherto, we assumed that the turning points 7., and 7
are on the real axis. For o complex but nearly real, ». or r,, may be complex
but nearly real and the general nature of the problem is not greatly changed.
Thus we assume that II contains 7, and 7. in its interior and contains no
other turning points or singular points. The reasons why we choose such a
region II are the followings:

(1) From the earlier works, the wave mechanism of density waves is the most
important in this region, [7] and [9].

(2) The original differential system (3.1) or (3.2) has singularities at the Lindbladt
resonances and these points are at the same time turning points of the system,
but global mathematical analysis in the region containing all singular points and
turning points is very difficult. Thus we limit our consideration to the region
IT in this paper. The wave mechanism around the Lindbladt resonances 7 ;. and
rorr Which are not contained in I7 is very important, and was studied locally
by Mark [8] by the steller dynamical approach.

Now we prove the existence of solutions of the integral equation (4.10),
which are of the order O(e), in several subregions of [I. First of all, let us
describe the Stokes curves in 7 :

ReS’ a(P)dr=0,
To

where 7, is 7, or 7, Then from the assumption on ai(r), we have a Stokes
curve configuration in the /I as shown in Fig. 2. Here and in the following,
Re f denotes the real part of f, and also Im f means the imaginary part of f.

The symbols S, in the figure denote subregions of II that are bounded by
Stokes curves and the boundary of II, and L, are some of the Stokes curves.
By using the notation in the Fig. 2, we define four subregions D, (k=1, 2, 3, 4)
of II containing parts of the real axis:

EIZ {SIVL,ISHNIT, Dz:ﬁ3: (S VLISV LIS NIT
ﬁ4: {SsVLISINIT.

To each D,, we assign two points 7., 7, and a Stokes curve L,, and denote
these quadruplets by {D,, 74, i, L} (B=1, 2, 3, 4) such as

{Db Veey Vees Ll} ’ {D‘Zy Veey Vees LZ} ’ {D3) Veos 7(;) L3} )

{Dy, ¥eo, 71, La},
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Fig. 2. Stokes curve configuration of a}(7)

where 7, is some point in D, respectively different from 7., By these we
characterize the integrals of h,(r, ¢) (=1, 2, 3) such that

S’ hi(r, s)dr:Sr aodr—l—srehi’ﬁdr,
C1 7 T/L

.
sh¥dr,
"

S;Zhg(r, s)d7':—S:laodr+S

|, it oar= (ditegyar,
3 Tee
for reD, (k=1, 2, 3, 4). The branch a, and Sraodr are determined by

ReST aPdr>0 on L, (k=1,2, 3 4).
Tk

Thus we have defined the matrices A(r, ¢) that are characterized by Dy, 74,
ri, L} as above. Note that the integral for h.(r, ¢) is the same for every D,.

By the suitable deformation of the above regions D,, we construct admissible
regions D,(y) where we can prove the existence of asymptotic solutions of (4.11).
To do so, we introduce here a mapping £=&(r, »,) from the complex »-plane into
the complex &-plane by

(4.12) &(r, ro)=S: a(r)dr
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where 7, may be any point of I, but it is the most convenient to take it 7,
for 7, if we consider the image of D,. Let us denote the image of D, by Dy
Then £Z3k is a bounded region in &-plane with vertical cuts. Next, we introduce
the domains of influence N, and N, which are direct neighborhoods of . and
7 respectively, by

Nee=1{(r, €)1 |r—re| <Ne'?, 0<e<eq} ,
Neo={(r, &): |r—7e| <Ne'’*, 0<e<eq},

where N and e, are some positive constants. By taking N sufficiently large and
¢, sufficiently small, the condition (4.4) is satisfied and the series of &2H,(r, ¢) is
convergent for r€Il—N,,—N,, and ¢ small enough. Let D be one of the regions
ﬁ)k (k=1, 2, 3, 4) and let J1., and I, be the images of N, and N, under the
mapping (4.12), and consider regions .Cf)—fnce—fnwzé)[e] in the &-plane. Now we
change the region g;[e] into 97, ] for small positive 7 by deleting small neigh-
borhoods of cuts and some portions near the boundary, so that it satisfies follow-
ing conditions: For each 1, j (3, j=1, 2, 3), there exists a fixed point 7,, in
D[y, ¢] and for every point & in 9D[7, e] we can describe piecewise smooth
curves Cy (s, &, 7) for 0=s=5,(&) connecting & and 7,, where s denotes the arc
length of the curve from & and it satisfies

(1) Cufs, & 7.y is contained in 97, ¢] and
(413) czj(oy E: 7]1;)25’ cz;(sm S; 7]1]):7]u »
(2) On this cvrve, the following inequality is satisfied

dRey.,(r, ¢)

(4.14) ds

-=0,
where 7,7, ¢) is defined in (4.11) and we consider here 7,,(r, ¢) as a function of
& under the mapping (4.12).

We take the inverse image of this region 9[7, ¢] and C, (s, & 7,,) as the
admissible region D[y] and paths of integral C,, respectively. The union of all
such admissible regions can cover a neighborhood of the real axis between 7,
and 7. except domains of influence N. and N,.

Now we specify how to construct the region 9[7, ¢] and curves C, (s, &, 7,,).
Firstly for i=j, C. (s, &, 7.,) can be any of the C, (s, & %.,) (1) specified below
since 7.,(r, ¢)=0 for 1=.

Let 1%, and note that

d d dr
‘ZS“RC ?’Lj(T, S)ZRG *d?)””'(r, S):Re (hl(T, 8)—hj(7’, E))‘E*

—Re{(htr, o htr, a6,
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Thus we have

da§

Re7.(r, e)=Re{2+e(hiy— m)a*‘} ds ’

d d
s Re 717, 6)—"9?

d d
(415) ——Re7(r, )=———Re7u(r, e)=Re{ 0= g)ai} %f’ '

ds ds
d __d &
is Re 7.4(r, €)= s Re 73(r, €)= Re{ —gs)ay } s

The domains of influence of the turning points »,, and 7., are deleted from
each ﬁ)[sj, so it is sufficient to construct C, (s, &, 7;;) satisfying (4.13), and instead
of (4.14) the followings

d
Re —gé< —7 on (i, Re —d%>7‘ on G,
do \ d§ daé
Re(l—— a )F< 7 on (s, Re (1 ) >r on (s,
Re ( 1— ) <—7 on G, Re(— ZS >7r on G,

for a small positive constant y, since the condition (4.14) can be satisfied by
taking ¢ sufficiently small. We show these for {D,, 7¢e, 7o, Ly} and {D,, 7, 7ce, L1},
for examples, and we can treat the other cases in a similar way.

(1) Case of {Dh Teer Teer L}

Let 5)1, Pee, L, be images of D, 7e, L, under the mappmg E=E(r, 7ce). 7o
is the or1g1n in the &-plane, L, directs upwards and Lz, L, make a downward

cut of .@1 (Fig. 3). From the definition (3.2) of the functions a2(r) and d.(») and

the way of determination of the branch Srao(r)dr (and then a(r)), we have

do(r) _ —k; _ >y
alr) ik 2R

where k,(r)>0 for real r>r. and Y positive for real »>0. Here we assume for
simplicity that Y is a positive constant and k,=a(r—r.)"? («; positive constant)
in D,.
The case in which the above assumptions do not satisfied could be handled
with a slight modifications by taking D, small.
Thus we have

£r, r“)zg: iad T =7, dr:%iaz-l(r—rce)wz,
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and then
32 1/3
_ e (.24
(7’ 7’ce) (20” E) ’
0(7’) 3 23 _ 2 e%z{;—ua
aor) 2k1 2a(r—re)V?  (2a)¥? (3A)V3 ’
It is easy to see that for £€ 9,
ar) oy 3%
Re o) >0 if 2<arg§< 5
>0 if —g—<arg§<£,
do(r)
a(r)
<0 if E<argec ST
g SABsST
By assuming D, is so small that for £ in .é)l we have
do
+1—Re-—=—-0<0.
Qo
On the other hand, since we have
dé d, d& d§
Re{(il ds } <+1 Re ) +I ao g, ds”’

then it is clear how to construct the region 9.[7, ¢] and C,(s, &, 7.;) (1, j=
1, 2, 3). For example, Ci (s, &, 7:3) may consist of three segments which satisfy
Re£>—6—, and Im %>o for the left side of L,UL, and Im %<o for the
other side (Fig. 3).
2) Case of {ﬁz; Tees Yo La}.

In this case, we remark that from the definition ai(r) and d(r), and from

the choice of the branch of a,(») in D,,
d, 1

TRV e oo
For real v (that is, for real w), 0<1—(1—v*)Q*<1 in 7, <r<r.
Then we can assume that in the region D,

+1—Re d <0.

Qg
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Ly

G35 6m).

~

N

Yice

Ql(r: 5)) _____ @1
Fig. 3.

do . . . .. .
For Im —&—0—, it is easy to see that Im d,/a, is positive (negative) for € in the
0

right side (left side) of L,. Therefore the construction of D[r, ¢l and C,, is
almost straight forwards as in the case (1), Fig. 4. Qualitative figure of D,[7]
and D,[7] in the r-plane is given in Fig. 5.

Now we have specified so far admissible regions D,[7] (k=1, 2, 3, 4) and the
integral paths C,, (i, =1, 2, 3) in (4.11), from which it is easy to prove the
existence of solutions of the integral equation (4.11) and of the differential equation
(4.8), (4.9) in each admissible region D,[y] by the standard application of the
successive approximations, and also it is clear that these solutions are of the
order O(e).

By transforming the differential equation (4.8) back to the differential equation
(3.2) through the transformations (4.7), (4.3), (4.1) and (3.3), we have thus est-
ablished the following existence theorem.

THEOREM 4.1. The differential system (3.2) has a fundamental system of
solutions such that it satisfies in each admissible region D,[7] (k=1, 2, 3, 4)

(4.16) UB(r, e)=(Poyt+eP)T(E+eT\E+Z)exp Alr, €),

where the matrices Py and P, are defined wn (3.3), Ty wn (4.1), Ty wm (4.3), A(r, ¢)
wm (4.6) respectively, and the remainder term Z(r, €) 1s of the order O(¢). The
expression (4.16) can be rewritten as
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Do(r,e), -=--- 9,
Fig. 4.

I
1
1
1
|
1
1
1
\
\
\
\

Fig. 5. Admissible regions D;[7] and Dy[y~



172 TOSHIHIKO NISHIMOTO

1 —1 0
(4.17) UB(r, e)= o o 0 (E+Z(r, €))
Co Co 1
ay—d, ay+d,

ST hyr, €) dr, 0, 0

&€
.exp O s Sr_h&i)_dr , 0 ,
&
0’ 0, ST h3(7/) 5)*(17’
13

where h(r, €) (1=1, 2, 3) are defined by (4.10), and Zr, ¢)=0(e).
The following corollaries are obvious;

COROLLARY 4.1. The differential system (3.5) has a fundamenial system of
solutions W (r, &) such that wn each admussible region D,[r] (k=1, 2, 3, 4) 1t
has an asymptotic expansion of the form

1 -1 0]
(4.18) Wo(r, e)=| as as 0 (E+Z(r, &) exp Alr, ¢),
0 0 1J

where Z(r, e)=0(e), and A(r, €) 1s the same as wn (4.17).

COROLLARY 4.2. There exists a fundamental system of solutions W (r, ¢)
of the differential system (3.4) which has the same asymptotic expansion as (4.18),
and satisfies in each admussible region D,[7] (k=1, 2, 3, 4) that

1 —1 03!
(4.19) @ a, 0 {W®(r, ) =WP(r, &)} exp {—A(r, &)} =0(e)
0 0 1

§5. Splitting property and dispersion relation.

We have established in the previous section that there exists a fundamental
system of solutions of the differential system (3.3) with asymptotic property (4.17)
in each admissible region. Each of the solutions carries the exponential function,
exp A(r, €) (=1, 2, 3), and so let us call all solutions carrying exp 4, the exp 4,
type solutions. We shall show in this section a splitting property which means
that the exp 4, type solution is asymptotically independent from other two type
solutions throughout the region II and conversely exp 4, and exp /4, type solutions
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are independent from the exp /A, type solution, if the differential system (3.2)
does not have singularity (pole) at the corotation point »r=r,. The singularity
of the system (3.2) at r=r,, comes from the term

2mf  dlog (k%/0,2)
r’kv dlogr

in the system (3.1), but we can avoid the singularity by replacing this term with
a regular term which is obtained from the steller dynamical approach instead of
the hydrodynamical approach, Lau and Bertin [3]. Nevertheless, further mathe-
matical studies around the singularity is important.

At first, it is proved that the splitting property is valid over D,[71\UD,[7],
that is, the fundamental system U defined by the asymptotic expansion (4.17)
in D,[7] is expressed in D,[7] by U in the splitting way. Let D;[7] be an
auxiliary admissible region which is obtained from Dj:

Dy={S\V LIS I LIS NI,

and U® be a corresponding fundamental system of solutions defined by the
same method as in the previous section. We denote three linearly independent
solutions of U™ by {u{®, us®, u{®}, =1, 2, 5), where u{¥ corresponds to exp A,
type solution (k=1, 2, 3). Now since the point 7. is a regular point of the
equation, the conncetion formulas between them can be expressed as

uP=anu’+au’+aud
(5.1a) UP = Ay U+ apuf’+ amul®,
UP = a5 UL+ asuiP+ aguf?
WP =Dy U by +byyus®
(5.1b) u;‘”:b21u§2)—{—b22ug2)—|—b23u§2) ’
U =by U P+ bgous? + by us?
uil)zC11ui5)+012ués)+cl3ugs)
(510) uél):Cmuis)‘f‘szuéS)'i_623u§5) ‘
U=y UL+ Cyous’ +c55u®

As in the previous section, we have in the neighborhood of 7.,

Reg;e(i to—do)dr=Re {g

Tce

N dr—S’ il"‘—zw’r}
Tce 2

=Im 2‘1(r—rce)<i%a«/F—r_ce —%) :
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where 2 is a positive parameter, &« and Y are assumed to be positive constant,
and the sign(:) is determined by the branch of a, in the admissible regions.
Therefore for » close to 7., we have

Re{ST ia0d7’~5: dodr}.:'—lm [%—z-l(r—rce)} {

Tce ce

<0 if Im (r—r.)>0
>0 if Im (r—r)<0

This means that the region D,[y]J"\D,[7r] contains a region where

ReST a0d7'>ReSr dodr,

Tce Tce

and from this fact we can see that the coefficients a,;; and a,, in (5.1a) asympto-
tically vanish. Then we have proved that the exp /4; type solution u{is also
the same type solution in D,[7]. By the analogous reasons we can easily conclude
that by3=by3=b;,=0 in (5.1b) and ¢3¢y = o =051 =5, =0 in (5.1c), which means
that u{¥ and u{® are linear combinations of u{® and u{. Thus we have obtained
the splitting property over D,[7]\JUD,[7]. The splitting property over D,[7]
UD,[r] is trivial, and for D,[y1\UD,[7] it is easily proved if r, is not a singular
point by the analogous method as above.

THEOREM 5.1. The fundamental sysiems of solulions of (3.2) characterized
by the asymptotic expansions (4.17) have the splitting property throughout ihe
region Il 1f r=r. 15 a regular pownt of the differentrial system (3.2).

The splitting property for the fundamental systems of solutions of (3.5) is
defined analogously and is valid from the outset, and that for the system (3.4) is
also correct because the solutions of (3.2) are obtained from those of (3.4) by
applying the transformation (3.3). It is clear from the method of calculation of
connection formulas around turning points, Evgrafov and Fedoryuk [2], the
leading terms of connection matrices between two fundamental systems of the
differential system (3.4) are identical to those of the differential system (3.5).

This fact and the splitting property give us the following main theorem.

THEOREM 5.2. Suppose that the differential systems (3.4) and (3.5) have no
singular pownt wn II by replacing singular terms with regular terms. Then, the
principal terms of asymptotic expansions of the fundamental systems of solutions
of (8.4) are 1dentical to those of (3.5) throughout Il. If we consider the boundary
value problem subject to the boundary conditions (3.7), then the leading terms of
global dispersion relations of (3.4) and (3.5), 1f exist, have the same forms, and
in particular, they are identical to thal of the second ovder ordinary differential

equation (3.6).

Thus the problem of finding the global dispersion relation for the boundary
value problem of the differential system (3.4) has been reduced to that of the
second order ordinary differential equation (3.6). To make use of the results for
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the second order equation with a coefficient of a cubic polynomial [9], 1t 1s
convenient to rewrite the equation (3.6) slightly. Since g,(r) is assumed to be
regular at r=r., we can write the function a3(r)+4g(r)e in the neighborhood of
7. as follows:

af(r)+ego(r)=—ao {(r—7co)*+e/*+0(r—7eo)")+0(e(r—7reo))}

where aq and J? are positive constants, and gy(r.)=ae/% That ay/*>0
corresponds to the so-called Jean’s instability. We put

asry=ai(r+awp®  (PP=eJ?),
Go(r)=gur)—aonJ*
then ai(rytegar)y=air)+egsr).

Now let us consider the differential equation (3.6) with substitution «*) and
g.(r) by a@3(r) and Z,(r). Then there are three simple turning points 7., 7,+=p,
where 7., is close to 7, and 7.,-+p, is close to 7., It is clear that we can
construct fundamental systems of solutions of (3.6) in several admissible regions
by the similar method as in §4.

We assume here that the group velocity is positive for »>r., or

Re {z %%" »}_x>‘o for r>7,+0,

where o and 0 are positive constants.
Under these assumptions, we can follow the procedure in [9] and obtain

THEOREM 5.3. The leading terms of global dispersion relation for Lhe boun-
dary value problem (3.6), (3.7) and (3.4), (3.7) have the form

1_(%_!_(]2/2) q° )--qz/2 2
(Y PUE

I e e

& Tee Zdn

where ¢*=1vao0 /%

Lastly we give here a few remarks

Remark 1. We have proved that the study of the third order differential
system (3.1) or (3.2) is asymptotically reduced to that of the second order differ-
ential equation (3.6) which has the same principal term a%(x) as that of the
equation (2.9). But to estimate influences of higher order terms of the equations,
it is reasonable to study the equation (3.6).

Remark 2. In his previous paper [9], the author gave a dispersion relation
for the second order differential equation of the form (2.9) as a conjecture (see
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[9], (6.1)). But we can consider that its validity has been established in this
paper.

Remark 3. So far in the analysis of equations of the form (2.9), only two
types of solutions exp 4; and exp A4, type solutions in our terminology have been
considered. But in this note we have obtained the third type solution, exp 4,
type solution, and so roles of this solution in the density wave theory must be
studied. In the region II, exp A; type solution is independent from other types,
but they may interact with each other at the neighborhood of the Lindbladt
resonances 7;rr and 7org.

Appendix

In this appendix, we construct in detail the block diagonalization (3.3). The
letters A, B, C, D, S, and T used here are irrelevant to same letters in the
section 2, 3, 4 and 5.

Les us rewrite the equation (3.2) in the following form

u
A B '
(A1) elU'= U, U=| u, |,
C D
Usg
where
0 1 0 0 0
A=A+eA= +e s B=¢B,=c¢ '
a% 0 a, 0 bl
(A.2)

C=Co=[ ¢,, 071, D=Dy+eD,=do+ed,.
Accordingly, we construct the transformation of the form
Wy
JW, W= w, |,

Ws

(A3) U=

{ E,+eST &S
T 1

where E, is the 2-dim unit matrix, and S, T are (2-1), (1-2) matrix functions to
be determined. By applying (A.3) to (A.l), we get
Gll G12
(A.4) eW'=GW, G=
GZI GZZ
with
G =A(E;+eST)+BT—eS(C+eCST+DT +T7),
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G,;=¢AS+ B+¢e*S'—eS{eCS+D—¢¥TS)'},
Gu=—T(A+eAST+BT)+1+eTSC+eCST+DT+T),
Gop=—T(eAS+B+¢e*S")+(1+eTS){eCS+D—eXTS)'} .

Here we put S=S, and T=T,+e¢7T, in the above equations and replace the
matrices A, B, C and D by their power series of ¢ (A.2). Then we have

Gi=A¢te{A;—SeCo+(AsSs—Se Do+ B1)T o}
+62{A:S,To—S:CoSoTo—So D1 Ty—So T4+ (AySy—Se Do+ B)T 1}
+e*{A;S5,T1—S:CoSoT1—SoD,T,—S,T1},

G12=e(A6Ss—So Do+ B1)+e*(A1Se+Si—SeCoSe—Se D)
+&3S(T4So) +e*So(T1So) ,

Gou=—TyAy+DTo+Cote{—TA—T1As+CoSoTo+DoT 1+ D, Ty—Ti+TS,Co
—Ty(AsSo—So Do+ BT o} +e2{—=T 1A, — T A;SoTo+CoSo T+ D, T+ T4
F+T4SoCoSoeTo+D T o+T)+T:SeCo—T(AeSe—So Do+ BT
—T1(AeSo—SoDoy+-B)To} +e* {—TA,SeT1—T1A4:S: T
+T0So(CoSeT1+ D1 T1+T)+T1S(CoSoTo+ Dy To+Th)
—T(ASe—SoDo+ BT} +e {—T1 A Se T+ T1S:CoSo T
+T,So(D, T+ T},

Gae=Dy+e{D;+CoSe—T(AeSy— S Do+ B1)}

Fe {=T(A:1So+St—S:CoSe—SeD:)—(T4Ss) —T1(AeSs—Se Do+ B1)}
F e {—T1(A1So+St—S:CoSo—SeD1)—(T1Se) +T6So(T4Se)'}
e {T1So(ToSo) +ToSo( T1S0)' +-6°T:So(T1So)’ .
In order that G,, and G,; are of the order % S,, T and 7', must satisfy
AoSy—SoDo+B,=0,
—TyAy+D,Ty+C,=0,
—T1 A0+ DT\ —T A +CoSeTo+D, T+ Ti+TS,Co=0.

Thus we have
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s ___[_)}_-,,, \
1 PR \
o o 0 o
[ — bed ir
SO ,L,S’__.,/

2 2

di—a§

b=(1© t;o))__;(,,,f,"‘di’_,_ fﬁc,o_>
’
ai—dt’ a}—d:/’

adota, axdo‘l‘azg%_)

T,=(tV, :( ,
1 ( 1 2 ) ag_dg ag_dg

where

__Co(dod1—‘al) - 3b,cid,

G e (ai—d3)? (

ai—di

codo )/’

2 | Co ’
A= o s T e gaye T\ 2 g2 )
ag—d} (af—df) aj—d;

By these determinations of S and T, the transformation (A.3) becomes (A.5)
U:(P0+€P1)W,

1 0 0
0 1 0
PD: y
codo Co 1
ai—d} ai—d?
;blcod(1> o -‘bIC() '_bl -
(a§—dp*  (a§—d})*  af—d§
p—| Thedi  —biceds  —bido
T Gab—dpr (a3—ddt aidi |
agag"i‘doal ”a1+d0gi 0
ad—d} ai—d}
and the resultant equation is
dw .
(AG) &€ W(‘i_?’_: {GO(T’)+5G1(7’)+€ Gz(r; 5)} VV:
where
0 1 0
Gor)= a5 0 0 |,

0 0 d
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bico

———aﬁ——dﬁ 0 0
bicod
G| at—2% 00
. bico
0 0 d, wa%—d%

and Gu(r, ¢) is a polynomial of ¢ of degree 3 and its coefficients are rational
functions of a,, ai, by, co, dy and d,. Since ai—di=x*1—v?)/a? it is easy to count
the order of poles of Sy, T, and T, at each singularity. We give at Table 1 the
order of poles of A;, By, D, and S,, Ty, T\.

center (r=0) 4' YILR 7o ‘ TOLR
a 2 L2 1 2
by 2 1 1 1
d, 2 1 0 1
A, 2 2 1 2
B, 2 ' 1 1
D, 2 | 1 0 1
So 2 I 1 2
T, 0 | 1 0 1
T, 2 j 4 1 4

Table 1. Order of poles at singularities.

From the expression of G,;(») (1, =1, 2) in power series of ¢ and the above
Table, the remainder term Gu(7, ¢)e® can be written in the neighborhoods of
singularities as

5

Gulr, €)= 3, GP(r) (e O(r)e}

1=2

where | denotes one of singularities 0, 7;.z, 7e and 7o,z G®¥(r) is bounded in
the neighborhood of singular point [ and ®(r) is defined by

r? for (=0,
{ (r—v;r)? for [=7i1r,
O (r)=
(r—re)t for [=r,

(V—TOLR)_S for l—_—ToLR.
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