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RESIDUAL DISCRIMINANT AND RESIDUAL BIFURCATION LOCUS
OF A FUNCTION GERM SINGULAR ALONG AN EULER FREE
DIVISOR

VINCENT GRANDJEAN

We are interested in a complex analytic function germ f defined in (C",0)
singular along a complete intersection germ (H,0) of positive dimension, and
with singularities more complicated than those of H only at the origin of C" (that
is, f is of finite relative codimension on the right along H). We know ([Pel])
that such a function germ f admits a mini-versal unfolding . We would like to
have informations about the objects which can control the analytic types of de-
formed function germs arising from f with singularities along H.

In the classical setting of isolated complete intersection singularities, it is well
known that the discriminant of its mini-versal unfolding is a free divisor (see [Sal]
for hypersurfaces and [Lo] in the general case) and that the logarithmic stratifi-
cation of this discriminant controls the analytic types of the deformations arising
from f (see [Wi], [Sal] for hypersurfaces and [Ti] in the general case). It is also
known that the vector fields tangent to this discriminant are liftable and we know
how to produce a basis of such tangent vector fields (see [Sa2], [Brul] or [Terl]
for hypersurfaces and [Go] for the general case). The same kind of results are
also true for the bifurcation set of the mini-versal unfolding (see [Ter2] and [Bru2]
and [Go]).

Despite the existence of the right objects for these questions in the non-
isolated case, that is, RCp the residual critical locus, RDp the residual dis-
criminant and RBp the residual bifurcation locus introduced by Pellikaan [Pe2],
as far as the author knows, there are no such results in the case of hypersurface
germ of finite codimension on the right along a variety of positive dimension.

Such theorems for any complete intersection germ H (CI for short) of pos-
itive dimension, as given singular set, are not easy to find.

In the first section we recall some notations and basic facts about non-
isolated hypersurfaces singularities and state a theorem which enables to compute
an equation for the residual discriminant when this last one is a hypersurface. In
the second section, the main part of this paper, we suppose that H is a hyper-
surface and we show that such nonisolated singularities are closely related in
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some way with function germs with isolated singularities on H (see [BR]). We
suppose that H is a free divisor and is Euler (see Section 2.3 or [All, p. 2]). With
a ringed structure over the residual critical locus RCp different from that given
by Pellikaan [Pe2] and under the hypothesis that dim RC; N (H x CP~') = p—2
(where G is the truncated mini-versal unfolding associated with F and p is the
dimension of the parameter space of the mini-versal unfolding F), we show that it
can be endowed with a reduced complete intersection structure of dimension p.
By means of Fitting ideals, the residual discriminant RDr becomes a reduced free
divisor. Moreover we show that the vector fields tangent to RDf are liftable by
F (the unfolding mapping associated with F'). The same results are also true for
the residual bifurcation locus RBp.

In the last section, thanks to the lists of simple singularities given by Zaharia
([Zal], [Za2]) and when H is a smooth space of codimension 2, we exhibit a
family of finite relative codimension on the right along H (which is not a sus-
pension of any function germ singular along a smooth hypersurface) such that the
residual discriminant of any function germ of this kind is a complete intersection
of codimension 2.

1. Residual critical locus and residual discriminant, first facts

1.1. Introduction

Let x:= (x1,...,x,) denote coordinates at the origin of C" and y a co-
ordinate at 0 € C. Let (), denote the local C-algebra of holomorphic function
germs at the origin of C”". Let I be the reduced ideal of a complete intersection
germ (H,0) = (C",0). We recall that %, is the subgroup of the automorphisms
of O, which preserve the ideal I and %; . is the subgroup of the biholomorphisms
which preserve the ideal I (the target may move), and they act naturally on O,
and /. We also recall that 7 . denotes the subgroup of the extended contact
group #, which preserves the ideal I

If z denotes any system of coordinates at a point 0 of a smooth space (germ)
(C',0) (I =1), we denote by ©. the (.-free module of rank / of smooth vector
field germs on (C’,0). If X is an analytic set germ in (C' 0) defined by a
reduced ideal J, then we denote by @y or @y . the ¢.-module of the vector fields
tangent to X, see [Pel].

Let f eI?, which is equal to the primitive ideal associated with I, i.e., the
ideal of the holomorphic function germs vanishing over H and with their first
derivatives vanishing over H (see [Pel]). We assume that f is %;-finitely deter-
mined (or of finite relative codimension on the right along H or just of finite
relative codimension along H when the context is clear). This means that
the complex vector space I2/T,%;(f) is finite dimensional, with T,%;(f) :=
{&-f:Ee0;.}.

Remark 1.1. Let f be of finite relative codimension along H, and let us
denote by (df) the Jacobian ideal of f. Then V(T.2;(f)) = V((df)).
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Let F(x,u):= f(x)+ >.%_, urer(x) be a mini-versal unfolding of f, where
p is the dimension of the complex vector space I%/T.%;(f) and {ei,...,e,}
is a basis of this vector space. Let us denote by I := I ®g, Ox,, and by Oy, :=
Oy, ®¢, Ox,u the Oy ,-module of the vertical vector fields tangent to (H x c’ ,0)
(m the followmg the parameter space (C?,0) can be seen as the horizontal space)
and by T,%;(f) the ideal in O, , generated by the f F’s, where f € @)1 .. Then
by the Malgrange-Weierstrass Preparation Theorem, the ¢, ,-module I%/T,%;(f)
is an O,-module finitely generated by e;,...,e,. Let f,(x) := F(x,u). We want
to investigate where the f,’s present at the origin some singularities more com-
plicated than the singularities of H. For this purpose we introduce the following
definitions.

DerFiNiTION 1.1 ([Pe2, Section 2] and [Ji, Chapter 2.2]). The support in
(C" x C?,0) of the analytic coherent sheaf generated by I2/T,%;(f) is denoted
by RCr and is called the residual critical locus of F. We call I?/T,%;(f) the
residual Jacobian module of F and denote it by Mgc,. The image RDp of RCr
by F xidicr g is called the residual discriminant of F.

Our definitions use some ringed structure slightly different from those of
Pellikaan and Jiang, who are particulary interested in morsification of a germ f
(with one-dimensional singular set, in order to find the expected numbers of the
generic transversal singularities), but these differences do not change the geo-
metric properties of these zero loci.

Let F :=F x id, (cr,0): (C" x C?,0) — (C x C?,0) be the unfolding mapping
associated with the mini- Versal unfoldlng of f, and let = be the projection on the
second factor (C?,0).

Now let us recall what the 0O-Fitting ideal of a module is. Let M be any
finitely generated 4-module of finite presentation. Then there is an exact sequence

ApiAqHMHO.

The O-th Fitting ideal of M, denoted by Z(M), is the ideal generated in 4 by
the ¢ x ¢ minors of the matrix of the linear mapping ¥ : A? — A44. This ideal
does not depend on the presentation and behaves well under base change (see

[To, 1.2] and [Tei, Section 1]) and is such that #y(M) <= Anny(M) and /Foy(M) =
Ann4(M), which is a key point, since it enables to provide some analytic ringed
structure (non reduced in general) to images of finite mappings (see [Teil).

LemMma 1.2.  With the above hypotheses, the following restriction germs are
finite maps

F|Rc,~ : RCp — (C" x C,0) and 7|pc, : RCp — (C?,0).

Proof. When RCr is endowed with the following ringed structure
Oy.u) Fo(Mrc,) (since O/ Fo(1?/T.R;(f)) is a finite dimensional complex vector
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space, it is a finitely generated (/,-module), so [Gu, Theorem 5] tells us that we
are in presence of a finite map. O

Since ﬁ'RC RCp — (C? x C,0) is a finite map, RDp is the germ of an
analytic space in (C” x C,0) deﬁned (for instance) by the ideal Zy(F.(Mgc,)) in
O,.4, where Z, is the 0- th Fitting ideal of the given module. Note that the
dimension of RCp is always smaller than or equal to p.

Remark 1.2. The modules sheaves generated by Mpgc,, denoted by .#pc,,
and respectively by . ,/(d.F), denoted by CUs), coincide on the open set
(C" x C?,0)\(H x C?,0), where (d.F) is the ideal generated by 0F/dx,...
OF [ 0x,,.

)

DerFIniTION 1.3, We denote by RBp the discriminant locus of the finite
analytic mapping 7|, : (RDf,0) — (C”,0) and RBp is called the residual
bifurcation locus of F, where n is the projection (y,u) — u

1.2. Providing an equation for the discriminant

The next result is a reformulation of [dPGW, Theorem 3.1] in more general
terms, which will be very useful when we want to find some equations of the residual
discriminant and to lift the vector fields tangent to the residual discriminant.

Let M = N/L be a given 0, ,-module of finite type where N and L are some
finitely generated submodules (or ideals) of C”’ for a positive integer /. Let
Sy denote its support in (C" x C?,0). Let G = (G(x,u),u) be a holomorphic
mapping with Ge 0, ,. Let n be the projection on (C”,0). Note that if M is a
free (,-module then G\{, and =l ~are finite mappings.

THEOREM 1.4.  Suppose that M is a free O,-module of rank s. If ay,..., 05 €
Oy, project to a C-basis of M/(mo G) m,M, then for each j=1,...,s, Gu; is
uniquely written as a (mo G)*O,-linear combination in ay,..., o5 say

S ~
(rj) Go; = Z(n 0 G)a; ;- oy

i=1
Let A:=la;;] and let 6 :=1;— A. Then the following sequence is exact
005, 50,5 M—0

where n(e;) is the projection of the i-th basis vector of (3 . Moreover the ideal
{det o) of O, defines the image G|y (Sm)-

Proof. We claim that the module of the 0, ,-relations amongst the o;’s
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is generated by the (r;)’s. Let Rel:={(¢y,....4,) €Oy ,: > (40 G = 0}.
Let R =ye;—> .  a;je; then Rel = (Ry,...R,)0,,. To see this, let ® =
(¢1,...,¢,) e Rel. For j=1,...,s, we can decompose ¢; = PB; +yy;, where
By €Oy, and y; € Oy ,. Thus for each j

G*yj 'OCj = Z(no G)*b,’J - O

i=1

with b;; € O,. Let S;=ye; —> . bije;, then we have S; e Rel.

D= Zﬁ+yyj Z/)’e]erZ(S +Zb”e,>
= Zﬁ,e/ + yZSj + Z Zbiv] (R,‘ + Za,-ﬁkek>
= = =1 = =1
= Z <ﬁk + Zzbi.jai,k> e + J/ZSJ + Zzbi.jRi~
k=1 =1 = = =1 =1

Since R;, Sj, and @ are in Rel we obtain that

S

Z(n 0G) -0 =0

k=1

where O = f5, + 2;:1 iy bijaik € O, Since the oy’s form an O,-free basis of
M, we deduce that ¢, =0 for any k. Then ® e m, , Rel + (Ri,...,R,)0, , and
thus

Rel = m, , Rel +(Ry,...,R;)0, ,,

and then by Nakayama’s Lemma Re/ is a ¢, ,-module (as module sheaf, we see
that Rel is coherent), finitely generated by Ry,...,R,. Then the sequence of
O, ,-modules
. J .
0= 0= Mpe, — 0
is exact with 6b; = 4;.

If J is not injective, there exists a vector 6 # 0 in kerd. Thus there is a
Zariski (analytic) open set on which 6 never vanishes. Then det ¢ vanishes over
an open set, but this is a contradiction, since detoJ is a Weierstrass polynomial
in y of degree s with coefficients in @,. O

Remark 1.3. The previous theorem applies when the depth of Mgc, is equal
to p and with G = F, in which case it is a free ¢,-module of rank p. So RDg is
a hypersurface.
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2. The hypersurface case

When the ideal I is principal (I = (h)), i.e., when we consider functions
singular along a (reduced) hypersurface H := {h =0}, we can say more in this
case than in the general case above.

2.1. Hypersurfaces singular along a given hypersurface H and
hypersurfaces with isolated singularities along H

Arnol’d, in [Ar], studied a function having isolated singularities along a
smooth hypersurface (the boundary). This was generalized by [Lyl] when the
boundary is an isolated hypersurface singularity. They have given classifications
of such isolated singularities and connected them to some groups generated by
reflections. They give also some lists of such simple singularities. The gen-
eral work dealing with functions having isolated singularities on a variety has
been done by Bruce and Roberts in [BR]. They study a function f; with an
isolated singularity on an analytic set germ H, defined by a reduced ideal I,
and they define a notion of right finite determinacy for these function germs.
They give necessary and sufficient (numerical) conditions to be of finite deter-
minacy (on the right) in that case, which is equivalent to the finiteness of
dime (O, /(& - fo,---, & - fo)), where &, ... & (t > n) denote a minimal generat-
ing system of @;,. In that case we say that fy has an isolated singularity along
H or that f; is of finite codimension on the right along H. This is stronger than
just having an isolated singularity at the origin, since it means that outside the
origin the hypersurface f;!(0) is tranverse to the leaves of the foliation given
by the vector fields tangent to H (the logarithmic strata of H). In this context,
note that Dimca, in [Di], has given some conditions on any isolated hypersurface
singularity H to have simple functions (for functions with isolated singularities on
H). In the same way Tibar has also given conditions for functions with isolated
singularities on an analytic germ H to be simple when H is an ICIS or, in some
other cases, when H has nonisolated singularities [Ti].

In the sequel we will show that under some additional hypotheses on H,
every function of finite relative codimension on the right along an hypersurface H
comes, in fact, from a function having an isolated singularity on H.

Let f be any function in I? of finite relative codimension and let /# be a
generator of 1. Then the following composition of (),-modules homomorphisms
is onto:

12 Po 12 O (px P1 (Qx

D2
() T T Ty

where f; is the function germ such that /" = h%fy, po, p1 and p, are the obvious
projection maps and J;, is the homomorphism which maps 4%« to . This means
that f, has an isolated singularity at the origin and that a basis of the finite
dimensional complex vector space 12/T.%;(f), say {h’ei,..., h%e,}, is mapped
onto a generating family of the finite dimensional complex vector space
O./T.# (fo). Then the mini-versal unfolding F of f is of the form F = h?F,
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where Fy(x,u) := fo(x) + Y4, ukex(x) is a A,-versal unfolding of f;. We can
suppose that e,(x) = —1. We have {;-h = ho; and &; - F = h?4; for j=1,...,1
We verify that A;(x,u) = 20;(x)Fo(x,u) + &;(x) - Fo(x,u). Note that the O.,-
modules (h?)/T.%;(f) and O, ,/(Ay,...,A,) are canonically isomorphic. The
following proposition tells us more about f; than being just an isolated hyper-
surface singularity.

ProrosITION 2.1. Let H be a hypersurface defined by a reduced equation
{h =0} and with finite logarithmic stratification. If f = h*fy is of finite relative
codimension along H, then the restriction of fy to any logarithmic strata is a
submersion except at the origin, that is, dimc(O/(E; - fo,..., &+ fo)) < o0.

Proof. The conclusion means that for every xoe H\{0}, there exists a
vector field ¢ tangent to H such that (&- fy)(xo) #0. Since dime (0, /(201 fo +
- Jo, - 20 f0+ & - o)) < oo (by hypothesis), thus we obtain that dime(0,/
(fo, &1+ fo,-- -, & fo,)) <oo. If Of(& - fo,.-., & - fo) is not a finite dimen-
sional vector space, then by the Curve Selection Lemma there is an analytic path
I' on H\0 (since outside H the &’s form a generating family of the vector fields
of the ambient space and fy has only isolated singularities), such that 0 e T,
which is contained in the support of the coherent (/,-module sheaf induced from
Ox/(& - fo,---, &+ fo). We can suppose that T is contained in a single loga-
rithmic stratum, say . Hence d(fo,) vanishes along I'. Since fo(0) =0,
fo, =0. But this is a contradiction to dimc(Oy/(fo,¢; - fo,---,& - fo)) < oo.

Ul

Bruce and Roberts were just interested in the finite determinacy on the right
on varieties. But it is easy to obtain from their work the notion of contact
equivalence along a given variety for function germs having isolated singularities
on the variety.

If we were interested in the contact finite determinacy of nonisolated hy-
persurface (that is dim¢(12/T,#;(f)) < o), then as a consequence of the above
discussion and of the previous proof, we have

COROLLARY 2.2. Let f =h’*fyeI?>. Then f is of contact finite determinacy
relative to H if and only if fy is of finite contact determinacy along H. Moreover
if the logarithmic stratification of H = {h =0} is finite then fy is finitely deter-
mined on the right relative to H if and only if fy is of finite contact determinacy
along H, i.e.,

0
X

dimg ——%
CT.2:(f)

Oy
< oo if and only if dime ——— < 0.
4 Y dme )

2.2. The smooth case
In this section we deal with functions singular along a smooth hypersurface
through the origin, i.e., I := (x,). That is the first (and simplest) case to work
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with, and it really behaves as does any function with an isolated singularity along
H :={x,=0}. The O,-module Oy, is freely generated by ¢/dxy,...,0/0x,_1
and x,(0/0x,). We have a converse to Proposition 2.1.

ProposITION 2.3. Let fy be a function with an isolated singularity at the
origin along the hypersurface {x, =0}. Then the function f = x2fy is of finite
relative codimension along {x, = 0}.

Proof. Let T' be the zeros set of dfy/dxi,...,0f/0x,—1. It is a one-
dimensional locus whose intersection with H is reduced to the origin. We have
to show that {2fy + x,(0fo/dx,) =0} NT is just the origin. Let T=T7U---U
I, where each T3, for i = 1,... k, is an irreducible curve germ at the origin with
holomorphic parametrization y’(z). We can suppose that k = 1. By an easy
calculus we find that

d. 2 _ dy, %o

L1020 06 =@ @) (26 + 5,22 ) 0100)]
Since I; goes through H only at the origin, if z # 0 then y,(z)(dy,/dz)(z) # 0.
Thus

{2ﬁ)+xn§—fn:0} Nr= {%((ngo)oy) :0}

={(x;fo) oy =0} = {fo(y) =0}

which implies that {2f; + x,(dfo/0x,) =0} NT = {(x,(9f6/0x,)) oy = 0} = {0}
since 0fp/0x, # 0 when all the other derivatives are vanishing outside H. [

We have to remember that any f; which admits an isolated singularity along
{x, = 0} can be written as go(xi,...,X,—1) + x,g1(x), where gy admits an isolated
singularity at the origin in (C"~',0), and ¢, is such that there is a non-negative
integer & such that (07g/0x¥)(0) # 0, or there exists an ie {l,...,n— 1} such
that (dg1/0x;)(0) # 0. These are necessary conditions on gy and g, but we do
not think there are sufficient to produce a f; with an isolated singularity along

{x, = 0}.

ProposiTION 2.4.  With the above assumptions and notations, RCp is a
smooth analytic set germ of dimension p and thus RDp is a hypersurface.

Proof. We see that

Rep = {20 f?FO —2Fy 4+, F0 gl
0x1 0Xn—1 0Xy
It is clear that F; is a versal deformation of the isolated hypersurface singu-
larity /;7!(0). So we can write Fy(x,u) = fo(x,u) + Z,’:;ll uger(x) —u,. By [Tei,
Section 5.5], we know that {3F,/dx; = --- = 0Fy/dx,_; = 0} is smooth. Then it
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is clear that RCr is also smooth, since {2F) + x,(0Fy/0x,) = 0} is a graph and
tranverse to {0F/dx; = --- = 0Fy/dx,—1 = 0}. O

Remark 2.1. Note that Oy ,/(0Fy/0x1,...,0Fy/0xy_1,2Fy + x,(0Fy/0xy)) is
a reduced algebra. From now we denote it by COgc,. R

Let Ogp, be defined by the 0-th Fitting ideal of the @, ,-module F.(Orc;).
As usual, to know the structure of the discriminant with this structure sheaf, we
need to know what the generic points of the discriminant are. Since there is only
one logarithmic stratum contained in H (H itself), folp, is a submersion.

Let @ be the sheaf of holomorphic function germs on C" x CP”.

LeMMA 2.5. Let f = x2fy of finite relative codimension along {x, = 0}. Let
F = x2Fy be its mini-versal unfolding. Then there is a Zariski open dense subset

of RCr of points (xo,up) = (xo,uo1 ,...,uép)) such that
(?j X0, U
dime B, to) 5 o=l
(0fo/0x1, ..., 0f0/0xn—-1,200 + X (0f0/Oxn), ur — 1ty ', ... Uy — uop )
Proof. We find that
oF, oF,
R ﬂ n = =<K — = .. = = Fy = = .
CrN{x, =0} {a)q P 0=X O}
Since fy = ko(x1,...,Xy—1) + Xnk1(x) such that ko admits an isolated singularity

at the origin of (C”",O), then we can write
Fo(x,u) = Ko(x1,. .., xp—1,u) + x, K (x, u).
It is obvious that Kj is a #,-versal unfolding of the isolated hypersurface
singularity k;!(0). Thus
0K 0K
RCFm{anO}:{—O—— 0

6)61 o o 6x,,,1

ZK():X,,:O}.

This is a smooth germ in (C"! x 0 x C”,0) of dimension p — 1. This exactly
means that

oF oF

RCpN 0} =¢—=---=

F 1 # 0} {6)61 0xp

Then the set outside {x, # 0} where the f,’s have only Morse singular points

with p distinct critical values is a Zariski dense open subset of RCpN{x, # 0}.

Since RCr is irreducible and dim RCpN{x, =0} < p— 1, there is a Zariski

dense open subset of RCr where the f,’s have only Morse singular points with p

distinct critical values, which ends the proof. O

:Ozx,ﬁéO}.

So, for a function germ f of finite relative codimension along H equal to
1, we obtain that the maximal ideal of O, m, = (dfy/0xi,...,df/0x—1,2f0 +
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xn(0f0/0xn)). 1f fo € m2, then since 2fy + x,(0fo/0x,) € m2, we obtain that m, =
(0fo/0x1,...,0fo/0xs—1) +m? and so by Nakayama’s Lemma m, = (dfy/0xy, ...,
dfo/0x,—1) which is impossible. Since the previous dimension is positive, we
deduce that fyem,\m2 with (fy/0x,)(0) #0. In expanding fy as a power
series in x, and in making explicit the equations of (dfo/dx1,...,df0/0xu—1,2f0 +
xn(0f0/0xn)) = my, we find that fo(x) = ko(xi,...,X4—1) + x,k1(x) where ko is a
Morse function in the variables xi,...,x,_1, and k; is invertible.

ProPOSITION 2.6.  The residual discriminant RDp endowed with the ringed
structure Ogp, = O, ,/ Fo(F.Orc,) is irreducible and reduced.

Proof. The irreducibility comes from the smoothness of RCr. To show
that Ogp, is reduced, there is just to see that it is reduced at a smooth point, see
[dPGW, Corollary 1.18]. Let f(x) = x2(x, + x{ +---+ x2_,) be a generic point

of the residual discriminant. Then F(x,u) = x2(x, +x7+ - +x2 | —u) is a

mini-versal unfolding of f. We see that Orc, = Oy u/(x1,. .., Xu1,3X, — 2u),
and by computations we have Fy(F,Ogc,) is generated by y — (4/27)u?, hence
reduced. O

Another important question about the geometry of the (residual) discrim-
inant is to exhibit a basis of the vector fields tangent to the (residual) discriminant
in order to know if it is a free divisor, and if such vector fields are liftable by the
unfolding map associated to the mini-versal unfolding, since this is the case for
isolated complete intersection singularities (see [Lo, Corollary 6.13] and [Go,
Theorem 3] or [Sal], [Terl], [Brul] for hypersurfaces). As in the isolated sin-
gualirity case, instead of considering the mini-versal unfolding we consider the
truncated mini-versal unfolding:

DerINITION 2.7. Let f = h%fy be a function of finite relative codimension
along {x, =0} equal to p. Let /h’e,...,h%e, be a C-basis of I?/T,%(f), with
e,(x) = —1. Then the unfolding G(x,v) = h?(x)[fo(x) + Zl’.’;ll vie;(x)] is called
the truncated mini-versal unfolding of f.

Now we return to the case A(x) = x,. To make the distinction between the
truncated mini-versal unfolding G and the mini-versal unfolding F of f, we will
denotes RCs, RCr, RDg and RDp their respective residual critical loci and dis-
criminants.

Then RCg is the support of the coherent ¢y ,-module sheaf generated by

I? ®¢f‘x Cﬂx,v

Mpc; ==
ke 1Y G: Ye®u® ..}

and RDg is the image of RC; by G := G x idcr1 -
Let F(x,u) = x2[fo(x) + S wiei(x) + upe,(x)] = x2Fy(x). Such an F is a
versal unfolding of the isolated hypersurface singularity f;'(0). Let us define
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the function Gy(x,v) such that Go(x,v) +uyep(x) ;= Fo(x,u). Then G(x,v)=
x2Gy(x,v). By easy calculus, we obtain
6G0 6G0 6G()
RCs = == =2G - =0,.
¢ {(x, ) 0x1 0Xp_1 ot+x 0x,,
We deﬁnefﬁ‘RcG = df'x,v(&Go/@x], ceey 5G0/5X,,_1,2G0 + xn(éGo/é‘xn)) and @RDG =
Ox.v/Fo(GOrc,). We have to note that Orc, defines a complete intersection.
The first thing to see is that the codimension of RCg; is <n. Since

m,I?

we deduce from this that the dimension of RCg is <p — 1, and so RC; becomes
a (non-reduced) complete intersection of dimension p — 1. The consequence of
this is that Mg¢, is a free ¢,-module of rank p — 1. This also prove that we can
define Ogp, as done above.

We would like to know more about how to obtain some gemetrically
important sets for F from those corresponding to G. ~

Let x be the vector field on (C x C”,0) such that y o F(x,u) = —x2(3/dy) +
(0/0uy,) = dF - (0/0u,). Let us denote by W(y,u,t) the local flow of y, with the
initial condition W(y,u,0) = (y,v,2u,), then W(y,u,t) = (Po(y,u, 1), 0,1+ 2u,)
and

RCsN{vy =---=v,-1 =0} =supp

W(F(x,u),u,t) = (F(x,u) — tx2, 0,1 + 2u,).
Let ®(y,u) :="Y(y,u,—u,) = (Yo(y,u, —u,),u) = (Po(y,u),u). Then we have

Im(G) x C = ®(Im(F)) and ® is a well-defined diffeomorphism of C x C?
preserving the origin. Let Cr be the projection of RCr on (C" x CP7',0), in

forgetting the last coordinate u,. Then we have
®(F(RCr)) = ®(RDr) = G(Cr) x C.

Since RD¢g x {0} = RDp N {u, =0} and ®(y,v,0) = (»,v,0), from this, we deduce
that

RDg x {0} = RDp N {u, = 0} = ®(RDy N {u, = 0}) = G(Cr) x {0}.

This is the fundamental point to know whether or not RDp is a free divisor.
Now we state

THEOREM 2.8. RDg is a free divisor.
The next theorem follows from the proof of Theorem 2.8.
THEOREM 2.9. RDyg is a free divisor.
Proof of Theorem 2.8. The method to produce a generating family of vector

fields tangent to the discriminant of a projection of an isolated complete inter-
section singularity is now usual (see also [Brul], [Ter2] and [Go]). Note that
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Mpgc, is an O,-free module of rank p — 1. Then for each j=1,..., p, we have
Gx,zlej Za,j x e; in Mpc,,

which gives

? oG oG

z::a,j G(x,v)0; j]x; e,—i—kz_:lbk]xu)ax](—f—bj(x,v)x,,a—xnzo.

If A is the p x p-matrix with entries the (a; ;(v) — y9;;)’s, then det Ag = 0 is an

equation of the residual discriminant according to Theorem 1.4. Let y; € ®, , be

the following vector field

—1 6
1i(x,0) = aij(v) — G(x —|— Zbk} X,0) + b;(x, v)xna .

P Xn
Thus we have y;- G = —(ajp — Go; ) and 1w = Z,';ll [ai;j(v) — G(x,v)0; 10 =
(arj— GO, ;). Let n; be the vector field of ®, , defined by

hS]

p—1
0
n(y,0) = —(ap,;(v) — yép/ +Zau = ¥0ijl5— a0;

Then the #,’s are tangent to RDr(G) and dGX’, =n,0G. To conclude it is suf-
ficient to show that

Lemma 2.10.  The n;’s are the generators of the O, ,-module Ogp,.

Proof. The proof is inspired by that of [Go, Theorem 3.1]. First we
have to note that outside RDg the #;’s are linearly independant. Let # be any
vector field of ®,, tangent to the residual discriminant RDs. We form the
p X (p+ 1)-matrix whose p first columns are the coefficients of the vector fields
n;’s and the last one is given by the coefficients of #. To finish the proof of this
lemma we need the following

LemmA 2.11.  Ogp, is reduced.

Proof. Since RDg x C is isomorphic to RDp by @ then we have the fol-
lowing isomorhism of local C-algebras

: Orpy — Urpgxc = Orpg ®q, , Uy, u-
Let k € Ogp, such that k # 0 and k? = 0 for a positive integer 4. This implies
by the (@) '(k) =0 and so (®*)"'(k) =0, which ends the proof. O

End of proof of Lemma 2.10. By Lemma 2.11 and Theorem 1.4,
{det Ag = 0} gives a reduced equation of RDg. Each p x p minor containing
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the last column is of the form ¢,;(y,v)A(y,v), where {A(y,v) =0} is a reduced
equation of RDg. Thus the vector field # — Z” (=17 ¢, i) vanishes out51de
RDg, and since the #;’s are a free basis of the Vector ﬁelds in C x CP""\RDg,

by continuity 1 = 327 (~1)"" s O

To finish this subsection we give a basis of the vector fields tangent to
RDp. For any j=1,...,p, we have

oF

2

Fx;je; = fo,] x e + Zﬂh (x,u) —|—/)’j(x U)Xy =— o,

and thus

z oF oF

:H (o j(u xu),,xe,+2ﬂiju k+/3j(x,u)xna—xn.

Now we define the vector fields A; in (C"”,0) and I} in (C x C?,0) for

i=1,...,p, by

p-1 ”

0
A=) oy (u —i—Z[)’iju + Bi(x, u)xn 5 —

i=1

Ly = —(op,j(u) — ¥9p,)) —|—Zoc,, — ¥0ij] ai .
We have dF - A; =T;0 F. When the y,’s, vector fields in (C" x C”~!,0), are
seen as vector fields in (C" x €' % C,0), we also have A;(x,v,0) = y,(x,v) and
that T3 o (G(x,v),v,0) =#, o (G(x,v), v), if we also consider the #,’s as vector
fields in (C x C"*1 x C,0). Now to finish to find a basis of the ¢, ,-module of
the vector field tangent to RDp we need to know the Jacobian matrix of @
denoted by 4 and its inverse A~!

00y o0y Xy o]
dy Ou; Oup ou,,
0 1 o --- 0
A:
1 0
| 0 0 I
Yoo V1 72 Vp
0 1 0 0
L :
o/ 0y
1 0
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where 7, = (0®o/dy)”" and p, = —y(0®o/du;) for 1<i<p. From
DOy(F(x,u),u) = G(x,v), we deduce

oD, 0D .
5, (F(x,u),u) = x; 3 (F(x,u),u, —u,) and so we obtain
0 0D\ ! oD o 0
- Y — (&0 it L. v
d(@ )au,,(y’”) (ay> (y,u)[ Gu, (y’”)ay“Lau,,
0 1
-1 —_— = |——
d(D )aup(G(X,U),u) {a% /ay)(}O(F(x,u),u).

Since y is tangent to RDr by the above computations and since the determinant
of the matrix formed by the I}’s and y is a reduced equation of the free divisor
RDp, then by Saito’s Lemma [Sal, Lemma 1.9], we have proved the following

PROPOSITION 2.12.  The vector fields Ty,...,I', and x of ©, , generate ]?eely
the O, ,-module of the vector fields tangent to RDp, and are liftable by F.

2.3. The free divisor case

We recall that a free divisor is a hypersurface whose module of tangent
vector fields (®;,.) is a free ¢,-module.

We say that a hypersurface H (or a principal ideal 7) is Euler if there is
a vector field E tangent to H such that E£-7=1. This means that we can
choose such a vector field such that, given a generator & of I, then E - h = h; we
denote this vector field by Ej,. In that case ®; .= @2 @ O, E,, where ®,? =
{&:&-h=0}, see [All, p. 2] or [DM, Lemma 3.3]. Then an Euler hypersurface
is a free divisor if and only if ®) is an ¢/,-free module.

Now we suppose that H is a free divisor and Euler. Let 4 be a given
reduced equation of H. Let &,...,&,_; be a system of generators of @2. The
next proposition is a kind of converse to Proposition 2.1. We need some nota-
tions to state it.

Let fy € Oy with dim¢ (O, /(&1 - fo,- -, ¢t - fo, En - fo)) finite.  Let us denote
by I' the 1-dimensional complete intersection {&; - fo =---=¢&,_; - fo =0}. Then
I' is a finite union of irreducible analytic curves I'f,...,I;. Fori=1,... s, let
») be a complex analytic parametrization of the curve Tj.

ProOPOSITION 2.13.  Let H be a free divisor and Euler with reduced equation h.
Let fye Oy with dime(Oy/(&y - fo,-- ., Eact - fo, En - fo)) finite. Let us consider
the following conditions:

i) & Sfo,--, &t S0, hois a regular sequence,
(i) TNH=TwU---UT, and for each i=1,...,t
dy®

dz (Z) € Span(él © V(i)(z)v RS én—l o y(i)(z)a Eh o V(Z>>7

(i) There exist a finite number of logarithmic strata of H which meet T.
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If fy satisfies one of the above conditions, then f := h’fy is of finite relative
codimension along H.

Proof. (i) T is one-dimensional and we can suppose it is irreducible and
parametrized by the analytic arc germ y, with y(0) = 0. By hypothesis TNH =
{0}. Then A(y(z)) =0 if and only if z=0

Let M(x) be the n x n-matrix whose rows are the coefficients of the vector
fields &;,...,&,-; and &, := E,. Let us denote by m;; the (n—1) x (n—1)
minor obtained from M by deleting the i-th row and the j-th column.
Remember that det M (x) = u(x)/h(x) where u is a unit. Along I'\{0}, the vector

fields &, ...,¢,_1 and Ej, are linearly independent. Thus for any k= 1,...,n we
have
a n
u@@h((2)) 50 v(2) = > (=D (9(2)E 0 9(2).

=1
Now we have

D (120) 09(2) = ho 7o dyoh () + HOE) i fo-'(2),

and using the above expression of the (0/0xx)’s we find

n

EH) o) = |01 [Z(—l)“"mk,n(«/(z))yua (f + Ev- fi) 0 (2).

k=1

We see that [S7_, (= 1)*"m, x(7(2))y4(2)] is the determinant of the n x n-matrix
whose (n — 1)-th first rows are the coefficients of &;,..., &, and the last one is
made with the coefficients of y’(z). Since the vector fields &, ..., &,_; are a basis
of the vector fields tangent to the levels of /s and since I'N H = {0} the curve y
is transverse to the levels {h=wp (# 0)} when wy is ranging a small open
punctured neighbourhood of the origin in C. Thus this determinant is non-zero.
Thus (2fy + Ej, - fo) o y(z) = 0 if and only if (8/0z)((h*fy) o y(z)) = 0 if and only
if fooy(z)=0. Then (2fo+ Ej- fy) o y(z) = 0 if and only if (E, - f) o y(z) = 0,
which is by hypothesis z = 0.

(ii) Let us suppose that t=1 and (2fy+ Ej, - fo) o y(z) =0, with y() =y
By hypothesis there are analytic functions in z ay,...,%, 1, such that

dWhon Zak (& fo) 0 7(2) + a2 (Er - fo) 0 ().

Thus we obtain the following differental equation 2a(z)fo o y(z) + (d(foo7y)/
dz)(z) = 0. Since fyop(0) =0, this implies that fyoy =0 and so E;- fooy=0
which a contradiction to the hypothesis we have on f.

(iii) We can suppose that there is only one logarithmic stratum which meets
I' and so we are in the case (ii). O
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We have the following

PrOPOSITION 2.14. When H is a free divisor, then residual Jacobian module
Mpgc, is a Cohen-Macaulay O, ,-module of dimension p.

Proof. Since Oy, is free as ¢-module (then ¢ = n), Mgc, is an O ,-module

canonically isomorphic to O, ,/(A4i,...,A4,). Since RCp is of dimension < p,
Oy u/(Ai,...,A,) is necessarily of dimension p. This means that 4;,...,4, is an
Oy ,~regular sequence and then the depth and dimension of O, ,/(4,,...,4,) as

O, ,-module are equal to p.

As it was done in the smooth case, given a mini-versal unfolding F of a finite
relative codimensional germ f along H, we introduce the truncated mini-versal
unfolding G and then we define, as in the smooth case, the (), ,-module Mgc,,
the analytic sets RCg and RDg and the local analytic algebras Orc, and Ogp,.
As in the smooth case we prove that RDp = RDg x C by an automorphism of
O,., built by means of the vector field y defined as y o F = dF(0/0u,).

Damon in his trilogy [Da-I], [Da-1I], [Da-Ill] computed discriminant and
bifurcation locus of a versal unfolding of a mapping C* — C! under various
equivalences preserving a variety (a free divisor or a free complete intersection)
at the source or at the target. He noticed that there are such varieties on which
there is no mapping whose discriminant is a free divisor. The explanation of this
is that the variety has to present what he called generic Morse-type singularities,
which is equivalent (when some conditions on k or / and numbers related to the
geometry of the logarithmic stratification of the variety are satisfied) to the exis-
tence of functions of (extended) codimension one for the equivalences he consid-
ered. This condition is sufficient to provide a reduced equation to the discrim-
inant by means of Fitting ideals, which here means the freeness. In our context
the same kind of phenomenon appears. Let us consider the following

Example 1. Let h(x,y) = x>+ y3. It defines an Euler free divisor in C?.
The tangent vector fields are generated by

1 0 0 5 0 , 0
E3<x+yay> and =y i s
Let fo(x,y) = x and f(x,y) = h’*fy. Then, f is of codimension 2 along the Euler
free divisor H := {h =0}. T.Z;(f) is the ideal generated by x> and y?h%. Let
Fo(x, y,u) = fo(x,y) +u1y +uy. Then F = h’>F, is a mini-versal unfolding of f.
Let G be the truncated mini-versal unfolding of f. We find that RCs := {x =
y =0} c C*®. So RDy is just the u;-axis in C>. When we compute a resolution
of Mgc, as an 0, ,,-module, where 7 is coordinate at the origin of the target
space (C,0). Then the matrix whose determinant is the 0-th Fitting ideal of the
resolution is 72 Id (this is the matrix of the ¢,,-endomorphism of Mgc, of mul-
tiplication by G). RDg is a free divisor, but the Fitting ideal does not provide a
reduced ideal. Note that RC; < H x C.
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Example 11. This is true for any Euler free divisor x* + y!, with k > 1> 2
and f(x,y) =x. The smallest relative codimension along H is / — 1. The trun-
cated residual discriminant is always the hyperplane of the truncated parameter
space. But the 0-th Fitting ideal is generated by #/~!, not reduced. In that case
RCG c H xC.

Example 1I1. As above it is easy to see that when the Euler free divisor is
of the form x? 4 y*, k > 1, then this time everything works as in the smooth case.

The following proposition is a first step to understand what could be the
relevant phenomena seen above.

ProposITION 2.15. Let H be an Euler free divisor. Let f be a function of
finite relative codimension p along H and let G be a truncated mini-versal unfolding.
Then the following sequence of O, ,-modules is exact:

0— % — 00, % Mpc, — 0.

, U
Then
(i) & is the free O, L-module of rank p of the vector fields tangent to RDg
which are liftable along H x CP~'. Moreover & is a Lie algebra.
(i) Let F be a mini-versal unfolding giving the previous G. If the dimension
of RCyrN(H x CP) is <p—1, then any vector field tangent to RDy is liftable
by F.

Proof. (i) The freeness of ¥ comes from the fact that Mpc, is Cohen-
Macaulay of dimension p — 1 and is a free (¢/,-module of rank p. If we denote
by v, the coordinate y, the map o sends 0/dv; on e;. For a vector field { € ©,, v

«({) = 0 if and only if there exists a vector field # € ®, , tangent to H x cr!
such that dGy = (o G. Note that such an % is a Lie algebrd because of the last
equality, which goes through the Lie bracket (see [Da-I, 3.3 (ii)]).

(i) By hypothesis any vector field defined on C x C’\F(RCrN(H x C?))
can be uniquely extended to a vector field in ©,,, by the Hartogs Theorem since
A= (RCF (H x C?)) is of codimension 2. So any vector field { tangent to
RDp\A is liftable under F in the vector field # defined over C" x CP\X, where
¥ := F!(A), which is of codimension 2. So # can be uniquely extended to
C" x C?. O

So the previous proposition tells us that RDg (or RDy) is a free divisor if
any liftable vector field by G belongs to %.

The following proposition shows us that what could be a sufficient condition
to have a free divisor structure on the residual discriminant, with liftable vector
fields.

PROPOSITION 2.16. Let H be an Euler free divisor and let f be a function of
finite relative codimension p > 1 along H. Let F be a mini-versal unfolding of f,
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and let G be the truncated mini-versal unfolding of f coming from F. If dim RDgN
(HxCr'y=p-2. _Then RDg is a free divisor and the vector fields tangent to
RDg are liftable by G in vector fields tangent to H x CP~'.

Proof. In fact we show that any vector field tangent to RDg is liftable in
a vector field tangent to H x C”~'. The proof is exactly the same as that of
Proposition 2.15 (ii). So ®gp, = & and then is a free @, ,-module of rank p,
that is, RDg is a free divisor. O

Remark 2.2. 1) If dim RCpN(H x C”)=p—1, then Orc, is reduced,
since at any point which is not on H x C?, Oy is a basis of the vector fields of
the ambient space. By a coordinate change /# becomes an invertible coordinate.
So the argument of Lemma 2.5 provides a Zariski dense open set of points in
RCp at which the above structure is reduced. Thus the genericity criterion for a
Cohen-Macauley space of [dPGW, Corollary 1.18] gives the reduced structure
everywhere. This will be very important in the next section.

2) Under the hypotheses of the previous proposition, we obtain a free basis
of the 0, ,-module of the vector fields tangent to the (truncated) residual dis-
criminant RDg, in that case, in repeating the proof of Lemma 2.10, because, in
constructing the vector fields we want to be a basis of @gp,, we are sure that
the determinant of the matrix of these vector fields gives a reduced equation of
the residual discriminant, since this matrix is the matrix which appears in the
resolution of the residual Jacobian module (that obtained for G) as an 0, ,-
module, and so its determinant is a generator of the 0-th Fitting ideal of this
resolution.

In order to produce a basis of vector fields tangent to RDp, we just repeat
what have been done in the smooth case.

The following corollary is an analog of [Sa2, 1.5]. It will be very useful in
the next section to prove that the residual bifurcation set is a free divisor.

COROLLARY 2.17. If RC;N (H x C"™Y) is of dimension p — 2, then the fol-
lowing sum of O,-modules is direct

®y,v:@)RDGC'B@L‘{i i ¢ }

dy’ ovy’ " dvpy

Proof. This is a straightforward computation once we know a basis of the
vector fields tangent to RDg. O

In the case of a function germ f of finite relative codimension along H equal
to 1, there is the following

ProposiTION 2.18. Let H be an Euler free divisor such that there exists a
function f of finite relative codimension 1 along H. Let F be a mini-versal unfolding
of f. Then RDp is a free divisor.
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Proof. Note that F(x,u) = h*(x)(fo(x) + u) = h®(x)Fo(x,u). So the trun-
cated mini-versal unfolding is just f itself. Then in using the mutiplication map
by f in Mgc, to obtain a generator of the O-th Fitting ideal as in Theorem 1.4,
then the generator obtained is y. So this provides a reduced structure to RDg,
hence to RDy. O

COROLLARY 2.19. Under the previous hypothesis on H and f, then

(i) fo is a submersion.

(i) There is a vector field X in Oy such that X - f = f.

(iii) Any vector field tangent to RDr is liftable by F in a vector field tangent
to Hx C?,

Proof. (i) We can suppose that H is Euler and all its tangent vector
fields are vanishing at the origin except, possibly, the Euler vector field E.
Then & - fo,..., &1 - fo, 2fo+ E - fy are generators of the maximal ideal m,.
Since &;(0) = (2fo + E - fo)(0) = 0, this implies that fy € m,\m? (otherwise m, =
E - fo+m?).

) (ii) Since fy € m,, then there is a vector field X € @ such that X - (h%f) =
h*fo.

(iii) By (ii) there is a vector field X € ®y such that X - f = f. This means
that the vector field y(d/dy) is liftable by G = f the truncated mini-versal
unfolding, and so that the ringed structure over RDg = {0} = C given by means
of the 0-th Fitting ideal is reduced. O

Remark 2.3. The problem we have is not to decide if the (truncated) residual
disriminant is a free divisor or not, but to decide if the vector fields tangent at the
(truncated) residual discriminant are liftable in vector fields tangent to a suspen-
sion of H, in which case the (truncated) residual discriminant is a free divisor.

As suggested by the very simple examples (and not quite representative of
the general situation) before, it seems that the key element is the way that the
truncated residual critical locus intersects the suspension of H (in fact the singular
set of H). We can think that informations about this are contained in the smallest
jets at the origin of the vector fields tangent to A which are non identically zero
of the vector fields tangent to H (see Damon and his conditions on the genericity
of Morse type singularities on the divisor [Da-I] and the genericity of the locally
liftable vector fields [Da-II]).

By now we are not able to find necessary conditions on the divisor H to
obtain that for any function germ of finite relative codimension along H in order
to be able to lift the vector fields tangent to the (truncated) residual discriminant
in vector fields tangent to the suspension of H.

2.4. Bifurcation sets and free divisor

Since we have proved that the residual discriminant of any function germ of
finite relative codimension along an Euler free divisor, and under the hypothesis
RCGN(H x CP™'Y is = p — 2, is a free divisor, it is natural to ask if the residual
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bifurcation set is also a free divisor as it is for an isolated hypersurface singularity
([Bru2], [Ter2] and [Go]).

Let WP (Y, a) be the Weierstrass polynomial of degree k, that is, WP, (Y,a) =
Y4+ a Y5 4. 4+ a1 Y + ai, where the a;’s are in C for 1 <i<k. Let us
denote by ITj : C x C*¥ — C* the projection on the a;’s plane. Let WA, be the
zero set (smooth) of WP, in C x C* and let WX, = C* be the discriminant of
WA which is also the discriminant of Hk'WAk' We recall that WX, is a free
divisor and that its smooth points are the u’s where WP, admits a double root
with k — 2 simple roots. Moreover the logarithmic stratification of WZ; is finite
and given by the Samuel stratification (see [DR] or [Me]).

Let D be a free divisor in (C”,0) and let 4 : (C x C"~',0) — (C x C?,0)
with (y,v) = A(y,v) = (y,a1(v),...,a,(v)) such that d(y,v) = WP,0 A(y,v) is
a reduced equation of D. Let us denote Op := 0, ,/00, ,. Since the singular
set X(D) of this free divisor is a determinantal space of codimension 2 in
(C x €"7',0) and since np :=1I1, |, is a ramified covering of degree p over
(€?71,0), then any smooth point of 7p(X(D)) is a smooth point of the dis-
criminant of zp which is Bif (D) = np({0 = d5/0y = 0}).

LemMma 2.20. If {0 = 06/0y = 0} = Z(D), then any vector field in ®,, tangent
to Bif (D), is liftable by I1,_1 to a vector field tangent to D.

Proof. The proof follows in applying [Ly2, Theorem 5] of Lyashko which
enables to lift a vector tangent to the bifurcation set (the discriminant of a linear
projection) to a vector field tangent to a discriminant, since our hypotheses satisfy
those of the quoted result, that is

. o6 9% . o0

Now we follow the steps of the proof of Terao to show that the bifurcation
set of an isolated hypersurface singularity is also a free divisor [Ter2]. For this
purpose from now we suppose that {6 = dd/dy = 0} = £(D). First we define the
O,-module of the IT,_;-lowerable vector fields that is

0
H ={€®,,: & v€0, i:1,...,p—1}:(9y,v@+6“u®v.

Let IIp be the following @,-module homomorphism (7,_1),: 4 NOp — O,.
Note that the kernel of Il is the submodule of ®, , generated by J(d/0y). Let
us denote by ¥ the ¢,-submodule of O, , generated by d/dy and the (0/0v;)’s.
We have ¥ < #. Now we can state and proof the following

Lemma 2.21.  Suppose that O, , = Op ®¢, 9 as O,-module. Then the O,-
module (I1,_1),(A# NOp) = Opy(py is free of rank p — 1.

Proof. As in [Ter2, Lemma 3.5] the key arguments of the proof are the
freeness of ®p and the (), direct sum in hypothesis.
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The natural map # NOp — # /% is an O,-isomorphism and since # /¥ =~
0,../0,, we have the following diagram

2
0— @y_,v<5Day> L aney I J(1y) — 0
Ci  Op
0, 0,

The isomorphism between # N®p and 0O, ,/0, is given by & — [¢-y] (the
bracket meaning the residue class). So we have an (,-isomorphism
Op
o Im(IT) — o
I(¢) — &¢- y mod 0,.

Since J is reduced and 7p finite, as C local algebras we have

0 — op0y , — — 0.

0
Up -~ c{»} .
Oy (»?)
And by Nakayama’s Lemma [1], [y],...,[y?"!] generate freely the @,-module Op.
So Op/0, is freely generated over ¢, by [y],...,[»”"!], which ends the proof.

O

THEOREM 2.22. Bif(D) is a free divisor.

Proof. This is immediate since any vector fields # which is tangent to the
bifurcation set is liftable under I1,_; in a vector field tangent to D. Then by the
last lemma we conclude. O

Let D = RDg be the residual discriminant of a truncated mini-versal unfolding
G of a function germ f singular along an Euler free divisor H < (C",0) whose
reduced ideal is 1. Let p be the dimension of 1?/T,%;(f). By now, we suppose
that the dimension of RCs N (H x CP~') is equal to p —2. So the dimension of
RCrN(H x C?) is equal to p—1. We have the following

ProPOSITION 2.23.  Let dp(y,u) be the reduced equation of RDp, provided
by the determinant of the matrix whose columns are the coefficients of the previous
basis of the vector fields tangent to RDp. Then {0 = 00p/0y = 0} = £(RDp).

Proof. Let O be the sheaf of holomorphic function germ on a small neigh-
bourhood Q of the origin of C" x C”. Let # = Q\H x C” and let V" = 7,(Q).

We recall that the ¢-module sheaves .# := Mrc, and AN := Uy are equal
on . Since Mgc, := N,0) is U,-free with basis ey, ...,e,, we can suppose that
Q is small enough to have representatives of the e¢; = (0F/du;)’s over Q.

The Malgrange-Weierstrass Preparation Theorem insures us that for any
up € W~ the complex vector space A7/(Uj, ..., U,) is a finite dimensional ((Uj, ...

)
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U,) is a system of local coordinates at uy in C”), and is generated by ey, ..., e,.
This means that F'is a versal unfolding of the function germ f, with an isolated
singularity at xo. The Morse points form a Zariski open dense subset of any
neighbourhood of (xg,u) € RCFN¥. Since RCrNH x C? is of codimension 1
in RCp, this shows that the subset of RCr of the (xo,up) such that f, is a Morse
function is open and dense in RCp.

Now we use an argument similar to [Tei, Section 5.5] to control, on the
residual dicriminant, the vanishing locus of the partial derivatives of dz in the
directions of the unfolding parameters by the vanishing of the partial derivative
of 6 along the y-axis.

Note that or o Flze, =0. By the reduced structure of RCr, we obtain that

" a;(x, u)
= (x)

or o F(x,u) = Ei(x) - F(x,u).

Thus we obtain that

o _20roF) _Jnai A& F)
B au/ B i—1 h? au./

mod T,%;(f),

0=¢&-(OpoF) = Z—;fj (& - F) mod T.%;(f).
-
We easily see that the n x m-matrix [¢- (& - F)] is conjugated to the Hessian
matrix of f, , and so, we deduce that g; is vanishing over RCr N~ Since RCr
is endowed with a reduced Cohen-Macauley ringed structure it is equidimensional
and RCrN" is an open dense subset of RCr. Then a; vanishes over RCFr,
which means that a; belongs to T.%;(f). So we obtain

o(dr o F) 3 oF a5

o) - 3, © Flrer:

O: —,\—OF| -—_
oy Rer Juy RC uj

RCp

Since RDy is by definition F (RCF) the above equality proves that

00 0Of 00F 00F
Sp =k _YOF _ _YF _ g\ _Js _YF_
{ " T Ouy } { "oy }
which is the desired result. O

Let G be the truncated mini-versal unfolding of /. Since ®(RDr) = RDg x C
with ®(y,v,u,) = (¢o(»,u),v,u,), we have ®(X(RDr)) = Z(RDg) x C. We also
have the following commutative diagrams

1

— —1
C"xC'xC -2 Cc"xCc’' RDGxC -2— RDy

.| [ I

c'xc 4 corlxe 4 e
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where p, and p, are the obvious linear projections on C? = C*~' x C. Note
that the form of ® gives us that RB; x C = RBr. From this we deduce that
pl|RD(,><C is a difftfomorphism at the point (y,u) = (y,v,u,) if and only if
pyo @ |RD is also a diffeomorphism at the point @' (y,v,u,) = (®")y, v, ).
This means that the critical set of p; is exactly £(RDg). So by Theorem 2.22
Bif (RDg) = RBg is a free divisor. So we have proved the following

THEOREM 2.24. Let f be a function germ of finite codimension p relatively
to an Euler free divisor H. Let f be its mini-versal unfolding. Then the residual
bifurcation set of F is a free divisor.

To finish, as Terao in [Ter2] and Bruce in [Bru2], we can describe a basis of
the vector fields tangent to RBr = Bif (RDr). The proof of that kind of result is
now well known (see also [Go, Section 4]). We begin by producing some vector
fields tangent to RBg.

For any j=1,...,p—1 we have in 0y,

B
~G/h? = G'h%e, —Zy,,f, G+ 7Ep - G+ h(x [Zcu v)e; + ¢(v)e ]

i=1
Now we define the vector fields y; in (cr10), j=1,....,p—1

p—1 a
= Zbi,]’(v) s

THEOREM 2.25.  The vector fields p, for j=1,...,p—1, form a free basis of
®RBG-

Proof.  We build the vector fields ¢y,...,4, ; € A NOgp, such that
HRDG(¢1),...,HRDG(¢[)_1) form a free basis of @gp, if and only if [¢, - ¥],...,
[¢,—1 - ¥] is an O,-free basis of Op/0, (see [Ter2, Theorem C]). Now we use the
basis of ®grp, given previously to define inductively ¢, (1 <i<p—1) by

p—1
¢1=mn, and ¢, = yp,_,+ Z(¢i—l 'Uj)’7j~
i=1

Thusforanyi=1,...,p—1 ¢;istangent to RDg. Fork=1,..., p—1 we obtain

p—1
i vk = iy v+ Y (hiy v vk
=

= ¢t vk + (diy v (are —y) + Z $i1 - V),

J#t

p—1
= Zakj((/ﬁ,l
=1
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and this proves that ¢, € # N Ogp, and that Igp,(¢;) = ;. To finish, we have
P
¢~y = y(di Z v7)(—=aj,p) = y(#;_; - y) mod 0.

Thus we find that [, - y] = [y72¢, - ¥] = [y2(y — @, ,(v))] € Orp, /O, and thus
(¢ - ¥],-. (4,1 - y] is a free Op-generating family of Orp,. O

COROLLARY 2.26. det|u;, ..., 1, 1| is a reduced equation of RBg.

Proof.  Since ..., 1, | form a free basis of RBg, then the determinant of
the matrix of their coefficients is only vanishing over RBg. By Saito’s Lemma
([Sal, Lemma 1.9]) we conclude. O

CorOLLARY 2.27.  The vector fields w;, for j=1,...,p—1, and 0/0u, form
a free basis of Ogp,.

2.5. Comments on the non-Euler free divisor case

Let H = (C",0) be a free divisor which is not necessarily Euler and given
by a reduced equation 4 e @,. To produce an Euler free divisor from H with
the same geometry, there is just to apply the trick of the good defining equation
(see [DM, Section 3]), that is, we look at H in C" x C (as a source space with
coordinates (x,w)) as the hypersurface H = H x C which is now Euler and free
since

H= {il(x, w) =e"h(x) =0} and Opf = (O ®p, Oy ) ® Oy, w%.

Such an he Oy, provides a reduced equation of H x C and is called a good
defining equation.

We would like to know if, given a non-Euler free divisor H and a function
of finite codimension relatively to H, say f, there is a way to find a function g
associated with f which will be of finite codimension relatively to H and which
will provide a residual discriminant obtained as a one-dimensional fibration along
that of /. In the case of isolated hypersurface singularities such a notion exists,
which is the stably equivalence in the terminology of Arnol’d.

Let f = h*(x)fo(x) be of finite codlmensmn relatively to H and let k(x, w)
e2h(x)*ko(x,w) with ko(x,w) = fo(x) + w2 From the point of view of the iso-
lated singularities along a variety the functlons fo and ko are stably equivalent.
The 0, w-;nodule ®/ defined as the submodule of the vector fields tangent to the
levels of / is freely generated by ){l(x w) = &(x) — 2a;(x)(0/ow) for i =1,.
So the vector fields 0/0w and the y,’s form an 0O, ,-free basis of the Vector ﬁelds
tangent to H.
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Since
(h)z ~ @x,w
TR (f) — (& - fo+2aifo,w)’
n? O

Te%(i,)(k) = (éz ko + 2a,~ko,k0 + W) '

Note that the following ideals in O, (T.#(,w) = (/0,<& - fo+ 2aifo,w) and
T, 9{/ = (ko, &; - ko + 2aiko, ko + w) are equal. But we do not know if the above

local C -algebras are isomorphic or not.

3. Counter-example when H is a smooth space of codimension 2

Let I = (x1,x2). Then @y, the O,-module of the vector fields tangent to I,
is generated by 0/0xs,...,0/0x,, and x1(0/0x1), x2(0/0x1), x1(0/0x2), x2(0/0x2).
In his papers ([Zal] and [Za2]) Zaharia gives some normal forms of the simple
nonisolated singularities along a smooth space of codimension 2. We give just
below two of these classes where the respective residual critical loci are rather
different. Let z; =x; for i=1,2 and w; = x;» for j=1,...,n—2.

The first case is given by the normal form 114, : f(z,w) = w1z} + waz3 +
212wyt The family {2122w3}{k 051} is 2 C-basis of the Vector space
I?/T.%;(f), and thus F(x,u) = wizi + waz3 —i—zlzz(w3+ +ugwy” et uy).
Let us denote (wi™ +wuywi™' + - +u;) by Ou(ws). After computatlons we
obtain that

Teﬁl(f) = {212,z%,zlzzQu(W3),zlzzQ;(W3),zlzzw,- i # 3},
T2:1(f) N (2122) = (2122) (21, 22, Qu(w3), 2w; i # 3).

We see that among the generators ziz3,z1zow3, .. zlzzwg U of Mgc, there is an

O,-relation whereas any subfamily of (s—1) elements is O,-free:
21z2[(s + )0y — x30L) = z1z2[2ugwi " 4 Bupwi 2 - 4 (s 4+ Dy
= 0mod T,%;(f).

Thus RCr = {z; =z = Qu(w3) = Q/(w3) =w; =wp, =0} and it is a complete
intersection of dimension s — 1, so the residual discriminant RDp is necessarily
of codimension at least 2 in (C x C*,0). We can verify that the residual dis-
criminant of IIA4; is actually the discriminant of A; embedded in 0 x C*. We can
also verify that in the classes I/4 — D — E ([Za2]) there is always an (,-relation
between the ¢, generators of Mgc,, but every subfamily is ¢,-free. The residual
critical locus is still a complete intersection of dimension s — 1 contained in H,
and so the corresponding residual discriminant is in 0 x C°.

These facts are quite general since we have by staightforward calculus ([Gr])
the following
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PROPOSITION 3.1.  Let f(z,w) = z{wy + z3wa + z1229(z, w), with g such that
(0g/ow1)(0)(0g/ow2)(0) # 1. Then f is finitely determined relatively to H =
{z1 = z2 =0} if and only if gy the restriction of g to {zy = zo = w; = wp = 0}, has
an isolated singularity at the origin of (C"*,0).

PROPOSITION 3.2.  Let f be a finitely determined germ relatively to the smooth
space H ={zy =z, =0} and f is of the form z}wi + z3wy + z1229(z,w). When
(dg/ow1)(0)(0g/dw2)(0) # 1 then

(i) RCp is a smooth complete intersection of dimension dim¢(12/T,#;(f)) — 1 =
s—1.

(i) RDr =0 x A(go) = 0 x C?, where A(go) is the discriminant of the isolated
hypersurface singularity go.

It is easy to show that for any function germ singular along H = {z| =
zp =0} and of finite relative codimension which can be written as f(z,w) =
23wy + 23wy + z1229(z, w), then (in passing to jets) the condition (dg/dow;)(0) -
(0g/ow2)(0) # 1 is a generic condition for such function germs.

The next normal form is IIB; : f(z,w) = waziz2 + wlzl2 + z%(zz +wj). Then
z3,23wy, ..., z3wi™ ! is a C-basis of I%/T,%;(f) and thus F(x,u) = wyzizy+
wizi +23(z2 + wi +wwi '+ +uy). Let us denote (w{+uwi™'+-- +u)
by Qu(wi). A system of generators for T,%;(f) are zz2,z7 +23Q.(w1),
z2(3z2 +2Qu(w1)), waz3 and ziw;. We find that the residual critical locus is

RCp ={z1 = wy = 20/ (w1) = 322+ 2Q,(w1) = w1 Q.,(w1)0}
={zi=wr=0/(w) =322+20,(w1) =0}U{zy =wr =2,
=w; =u; =0} = Cg 1 UCgro.

Note that Cg; is a graph of codimension 4 and not contained in H, while Cg, is
smooth of codimension 5 and so contained in H but not in Cg (then Mgc,
cannot be a free @,-module). Note that we have Lz(F) = Cg ;. That kind of
result is also quite general for function germs of finite relative codimension which
can be written as f(z,w) = waziza + w1z + z3g(z,w) and with the condition
(8g/dw1)(0) + ((8g/w2)(0))* = 0 (otherwise they can be written in the generic
form above by means of a change of coordinates which preserves the origin and
H). In that case the residual critical locus RCf is the union of two distinct
complete intersections Cg ; and Cg > of respective dimensions dimc (7 2T (1))
and dimc(1?/T,%;(f)) — 1. In that case with the notations of the above prop-
ositions gy is still a function with an isolated singularity (which was expected in
looking at the above generic function germs), but this is not enough at all to have
f of finite relative codimension (for a bit more see [Gr]).

We have some open questions about this last case. For instance we do not
know if the hypersurface F (Cg,1) is a free divisor. What are necessary and suf-
ficient conditions on g for f of the form wyziz; + wlzl2 + z%g(z, w) to be of finite
relative codimension ? Do the residual discriminant of any such function f of
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finite relative codimension control, by its partition into logarithmic strata, the
analytic types of the germs obtained by deformation of f? (A positive answer
to this last question could explain the impossible adjacencies occuring in the list
given by Zaharia [Za2]).
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