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RESIDUAL DISCRIMINANT AND RESIDUAL BIFURCATION LOCUS

OF A FUNCTION GERM SINGULAR ALONG AN EULER FREE

DIVISOR

Vincent Grandjean

We are interested in a complex analytic function germ f de®ned in �C n; 0�
singular along a complete intersection germ �H; 0� of positive dimension, and
with singularities more complicated than those of H only at the origin of C n (that
is, f is of ®nite relative codimension on the right along H ). We know ([Pe1])
that such a function germ f admits a mini-versal unfolding F. We would like to
have informations about the objects which can control the analytic types of de-
formed function germs arising from f with singularities along H.

In the classical setting of isolated complete intersection singularities, it is well
known that the discriminant of its mini-versal unfolding is a free divisor (see [Sa1]
for hypersurfaces and [Lo] in the general case) and that the logarithmic strati®-
cation of this discriminant controls the analytic types of the deformations arising
from f (see [Wi], [Sa1] for hypersurfaces and [Ti] in the general case). It is also
known that the vector ®elds tangent to this discriminant are liftable and we know
how to produce a basis of such tangent vector ®elds (see [Sa2], [Bru1] or [Ter1]
for hypersurfaces and [Go] for the general case). The same kind of results are
also true for the bifurcation set of the mini-versal unfolding (see [Ter2] and [Bru2]
and [Go]).

Despite the existence of the right objects for these questions in the non-
isolated case, that is, RCF the residual critical locus, RDF the residual dis-
criminant and RBF the residual bifurcation locus introduced by Pellikaan [Pe2],
as far as the author knows, there are no such results in the case of hypersurface
germ of ®nite codimension on the right along a variety of positive dimension.

Such theorems for any complete intersection germ H (CI for short) of pos-
itive dimension, as given singular set, are not easy to ®nd.

In the ®rst section we recall some notations and basic facts about non-
isolated hypersurfaces singularities and state a theorem which enables to compute
an equation for the residual discriminant when this last one is a hypersurface. In
the second section, the main part of this paper, we suppose that H is a hyper-
surface and we show that such nonisolated singularities are closely related in
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some way with function germs with isolated singularities on H (see [BR]). We
suppose that H is a free divisor and is Euler (see Section 2.3 or [Al1, p. 2]). With
a ringed structure over the residual critical locus RCF di¨erent from that given
by Pellikaan [Pe2] and under the hypothesis that dim RCG V �H � C pÿ1� � pÿ 2
(where G is the truncated mini-versal unfolding associated with F and p is the
dimension of the parameter space of the mini-versal unfolding F ), we show that it
can be endowed with a reduced complete intersection structure of dimension p.
By means of Fitting ideals, the residual discriminant RDF becomes a reduced free
divisor. Moreover we show that the vector ®elds tangent to RDF are liftable by
~F (the unfolding mapping associated with F ). The same results are also true for
the residual bifurcation locus RBF .

In the last section, thanks to the lists of simple singularities given by Zaharia
([Za1], [Za2]) and when H is a smooth space of codimension 2, we exhibit a
family of ®nite relative codimension on the right along H (which is not a sus-
pension of any function germ singular along a smooth hypersurface) such that the
residual discriminant of any function germ of this kind is a complete intersection
of codimension 2.

1. Residual critical locus and residual discriminant, ®rst facts

1.1. Introduction
Let x :� �x1; . . . ; xn� denote coordinates at the origin of C n and y a co-

ordinate at 0 A C . Let Ox denote the local C-algebra of holomorphic function
germs at the origin of C n. Let I be the reduced ideal of a complete intersection
germ �H; 0�H �C n; 0�. We recall that RI is the subgroup of the automorphisms
of Ox which preserve the ideal I and RI ; e is the subgroup of the biholomorphisms
which preserve the ideal I (the target may move), and they act naturally on Ox

and I. We also recall that KI ; e denotes the subgroup of the extended contact
group Ke which preserves the ideal I.

If z denotes any system of coordinates at a point 0 of a smooth space (germ)
�C l ; 0� �l b 1�, we denote by Yz the Oz-free module of rank l of smooth vector
®eld germs on �C l ; 0�. If X is an analytic set germ in �C l ; 0� de®ned by a
reduced ideal J, then we denote by YX or YJ; e the Oz-module of the vector ®elds
tangent to X, see [Pe1].

Let f A I 2, which is equal to the primitive ideal associated with I, i.e., the
ideal of the holomorphic function germs vanishing over H and with their ®rst
derivatives vanishing over H (see [Pe1]). We assume that f is RI -®nitely deter-
mined (or of ®nite relative codimension on the right along H or just of ®nite
relative codimension along H when the context is clear). This means that
the complex vector space I 2=TeRI � f � is ®nite dimensional, with TeRI � f � :�
fx � f : x A YI ; eg.

Remark 1.1. Let f be of ®nite relative codimension along H, and let us
denote by �df � the Jacobian ideal of f . Then V�TeRI � f �� � V��df ��.
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Let F �x; u� :� f �x� �Pp
k�1 ukek�x� be a mini-versal unfolding of f , where

p is the dimension of the complex vector space I 2=TeRI � f � and fe1; . . . ; epg
is a basis of this vector space. Let us denote by ~I :� I nOx

Ox;u and by ~YI ; e :�
YI ; e nOx

Ox;u the Ox;u-module of the vertical vector ®elds tangent to �H � C p; 0�
(in the following the parameter space �C p; 0� can be seen as the horizontal space)
and by ~TeRI � f � the ideal in Ox;u generated by the ~x � F 's, where ~x A ~YI ; e. Then
by the Malgrange-Weierstrass Preparation Theorem, the Ox;u-module ~I 2= ~TeRI � f �
is an Ou-module ®nitely generated by e1; . . . ; ep. Let fu�x� :� F�x; u�. We want
to investigate where the fu's present at the origin some singularities more com-
plicated than the singularities of H. For this purpose we introduce the following
de®nitions.

Definition 1.1 ([Pe2, Section 2] and [Ji, Chapter 2.2]). The support in

�C n � C p; 0� of the analytic coherent sheaf generated by ~I 2= ~TeRI � f � is denoted

by RCF and is called the residual critical locus of F. We call ~I 2= ~TeRI � f � the
residual Jacobian module of F and denote it by MRCF

. The image RDF of RCF

by F � id�C p;0� is called the residual discriminant of F.

Our de®nitions use some ringed structure slightly di¨erent from those of
Pellikaan and Jiang, who are particulary interested in morsi®cation of a germ f
(with one-dimensional singular set, in order to ®nd the expected numbers of the
generic transversal singularities), but these di¨erences do not change the geo-
metric properties of these zero loci.

Let ~F :� F � id�C p;0� : �C n � C p; 0� ! �C � C p; 0� be the unfolding mapping
associated with the mini-versal unfolding of f , and let p be the projection on the
second factor �C p; 0�.

Now let us recall what the 0-Fitting ideal of a module is. Let M be any
®nitely generated A-module of ®nite presentation. Then there is an exact sequence

Ap !C Aq !M ! 0:

The 0-th Fitting ideal of M, denoted by F0�M�, is the ideal generated in A by
the q� q minors of the matrix of the linear mapping C : Ap ! Aq. This ideal
does not depend on the presentation and behaves well under base change (see

[To, I.2] and [Tei, Section 1]) and is such that F0�M�HAnnA�M� and
��������������
F0�M�

p ���������������������
AnnA�M�

p
, which is a key point, since it enables to provide some analytic ringed

structure (non reduced in general) to images of ®nite mappings (see [Tei]).

Lemma 1.2. With the above hypotheses, the following restriction germs are
®nite maps

~F jRCF
: RCF ! �C p � C ; 0� and pjRCF

: RCF ! �C p; 0�:

Proof. When RCF is endowed with the following ringed structure
Ox;u=F0�MRCF

� (since Ox=F0�I 2=TeRI � f �� is a ®nite dimensional complex vector
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space, it is a ®nitely generated Ou-module), so [Gu, Theorem 5] tells us that we
are in presence of a ®nite map. r

Since ~F jRCF
: RCF ! �C p � C ; 0� is a ®nite map, RDF is the germ of an

analytic space in �C p � C ; 0� de®ned (for instance) by the ideal F0� ~F��MRCF
�� in

Oy;u, where F0 is the 0-th Fitting ideal of the given module. Note that the
dimension of RCF is always smaller than or equal to p.

Remark 1.2. The modules sheaves generated by MRCF
, denoted by MRCF

,
and respectively by Ox;u=�dxF�, denoted by ~OS�F�, coincide on the open set

�C n � C p; 0�n�H � C p; 0�, where �dxF � is the ideal generated by qF=qx1; . . . ;
qF=qxn.

Definition 1.3. We denote by RBF the discriminant locus of the ®nite
analytic mapping pjRDF

: �RDF ; 0� ! �C p; 0� and RBF is called the residual
bifurcation locus of F, where p is the projection �y; u� ! u.

1.2. Providing an equation for the discriminant
The next result is a reformulation of [dPGW, Theorem 3.1] in more general

terms, which will be very useful when we want to ®nd some equations of the residual
discriminant and to lift the vector ®elds tangent to the residual discriminant.

Let M � N=L be a given Ox;u-module of ®nite type where N and L are some
®nitely generated submodules (or ideals) of O l

x;u for a positive integer l. Let

SM denote its support in �C n � C p; 0�. Let ~G � �G�x; u�; u� be a holomorphic
mapping with G A Ox;u. Let p be the projection on �C p; 0�. Note that if M is a
free Ou-module then ~GjSM

and pjSM
are ®nite mappings.

Theorem 1.4. Suppose that M is a free Ou-module of rank s. If a1; . . . ; as A
Ox;u project to a C-basis of M=�p � ~G��muM, then for each j � 1; . . . ; s, Gaj is
uniquely written as a �p � ~G��Ou-linear combination in a1; . . . ; as say

Gaj �
Xs

i�1

�p � ~G��ai; j � ai:�rj�

Let A :� �ai; j� and let d :� Is ÿ A. Then the following sequence is exact

0! O s
y;u !

d
O s

y;u !
p

M ! 0

where p�ei� is the projection of the i-th basis vector of Os
x;u. Moreover the ideal

hdet di of Oy;u de®nes the image ~GjSM
�SM�.

Proof. We claim that the module of the Oy;u-relations amongst the ai's
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is generated by the �rj�'s. Let Rel :� f�f1; . . . ; fs� A O s
y;u :

Ps
j�1�fj � ~G�aj � 0g.

Let Rj � yej ÿ
Ps

i�1 ai; jei then Rel � �R1; . . . Rs�Oy;u. To see this, let F �
�f1; . . . ; fs� A Rel. For j � 1; . . . ; s, we can decompose fj � bj � ygj, where
bj A Ou and gj A Oy;u. Thus for each j

~G �gj � aj �
Xs

i�1

�p � ~G��bi; j � ai

with bi; j A Ou. Let Sj � gjej ÿ
Ps

i�1 bi; jei, then we have Sj A Rel.

F �
Xs

j�1

�bj � ygj�ej �
Xs

j�1

bjej � y
Xs

j�1

Sj �
Xs

i�1

bi; jei

 !

�
Xs

j�1

bjej � y
Xs

j�1

Sj �
Xs

j�1

Xs

i�1

bi; j Ri �
Xs

k�1

ai;kek

 !

�
Xs

k�1

bk �
Xs

j�1

Xs

i�1

bi; jai;k

 !
ek � y

Xs

j�1

Sj �
Xs

j�1

Xs

i�1

bi; jRi:

Since Rj, Sj, and F are in Rel we obtain thatXs

k�1

�p � ~G��yk � ak � 0

where yk � bk �
Ps

j�1

Ps
i�1 bi; jai;k A Ou. Since the ak's form an Ou-free basis of

M, we deduce that yk � 0 for any k. Then F A my;u Rel � �R1; . . . ;Rs�Oy;u and
thus

Rel Hmy;u Rel � hR1; . . . ;RsiOy;u;

and then by Nakayama's Lemma Rel is a Oy;u-module (as module sheaf, we see
that Rel is coherent), ®nitely generated by R1; . . . ;Rs. Then the sequence of
Oy;u-modules

O s
y;u !

d
O s

y;u !
p

MRCF
! 0

is exact with dbj � Aj .
If d is not injective, there exists a vector y0 0 in ker d. Thus there is a

Zariski (analytic) open set on which y never vanishes. Then det d vanishes over
an open set, but this is a contradiction, since det d is a Weierstrass polynomial
in y of degree s with coe½cients in Ou. r

Remark 1.3. The previous theorem applies when the depth of MRCF
is equal

to p and with ~G � ~F , in which case it is a free Ou-module of rank p. So RDF is
a hypersurface.
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2. The hypersurface case

When the ideal I is principal �I � �h��, i.e., when we consider functions
singular along a (reduced) hypersurface H :� fh � 0g, we can say more in this
case than in the general case above.

2.1. Hypersurfaces singular along a given hypersurface H and
hypersurfaces with isolated singularities along H

Arnol'd, in [Ar], studied a function having isolated singularities along a
smooth hypersurface (the boundary). This was generalized by [Ly1] when the
boundary is an isolated hypersurface singularity. They have given classi®cations
of such isolated singularities and connected them to some groups generated by
re¯ections. They give also some lists of such simple singularities. The gen-
eral work dealing with functions having isolated singularities on a variety has
been done by Bruce and Roberts in [BR]. They study a function f0 with an
isolated singularity on an analytic set germ H, de®ned by a reduced ideal I,
and they de®ne a notion of right ®nite determinacy for these function germs.
They give necessary and su½cient (numerical) conditions to be of ®nite deter-
minacy (on the right) in that case, which is equivalent to the ®niteness of
dimC �Ox=�x1 � f0; . . . ; xt � f0��, where x1; . . . ; xt �t b n� denote a minimal generat-
ing system of YI ; e. In that case we say that f0 has an isolated singularity along
H or that f0 is of ®nite codimension on the right along H. This is stronger than
just having an isolated singularity at the origin, since it means that outside the
origin the hypersurface f ÿ1

0 �0� is tranverse to the leaves of the foliation given
by the vector ®elds tangent to H (the logarithmic strata of H ). In this context,
note that Dimca, in [Di], has given some conditions on any isolated hypersurface
singularity H to have simple functions (for functions with isolated singularities on
H ). In the same way TibaÆr has also given conditions for functions with isolated
singularities on an analytic germ H to be simple when H is an ICIS or, in some
other cases, when H has nonisolated singularities [Ti].

In the sequel we will show that under some additional hypotheses on H,
every function of ®nite relative codimension on the right along an hypersurface H
comes, in fact, from a function having an isolated singularity on H.

Let f be any function in I 2 of ®nite relative codimension and let h be a
generator of I. Then the following composition of Ox-modules homomorphisms
is onto:

I 2

TeRI � f � �!p0 I 2

TeKI � f � �!dh Ox

TeKI � f0� �!p1 Ox

TeK� f0� �!p2
0;

where f0 is the function germ such that f � h2f0, p0, p1 and p2 are the obvious
projection maps and dh is the homomorphism which maps h2a to a. This means
that f0 has an isolated singularity at the origin and that a basis of the ®nite
dimensional complex vector space I 2=TeRI � f �, say fh2e1; . . . ; h2epg, is mapped
onto a generating family of the ®nite dimensional complex vector space
Ox=TeK� f0�. Then the mini-versal unfolding F of f is of the form F � h2F0,
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where F0�x; u� :� f0�x� �
Pp

k�1 ukek�x� is a Ke-versal unfolding of f0. We can
suppose that ep�x� � ÿ1. We have xj � h � haj and xj � F � h2Aj for j � 1; . . . ; t.
We verify that Aj�x; u� � 2aj�x�F0�x; u� � xj�x� � F0�x; u�. Note that the Ox;u-
modules �h2�= ~TeRI � f � and Ox;u=�A1; . . . ;At� are canonically isomorphic. The
following proposition tells us more about f0 than being just an isolated hyper-
surface singularity.

Proposition 2.1. Let H be a hypersurface de®ned by a reduced equation
fh � 0g and with ®nite logarithmic strati®cation. If f � h2f0 is of ®nite relative
codimension along H, then the restriction of f0 to any logarithmic strata is a
submersion except at the origin, that is, dimC�Ox=�x1 � f0; . . . ; xt � f0�� <y.

Proof. The conclusion means that for every x0 A Hnf0g, there exists a
vector ®eld x tangent to H such that �x � f0��x0�0 0. Since dimC�Ox=�2a1 f0�
x1 � f0; . . . ; 2at f0 � xt � f0�� <y (by hypothesis), thus we obtain that dimC�Ox=
� f0; x1 � f0; . . . ; xt � f0; �� <y. If Ox=�x1 � f0; . . . ; xt � f0� is not a ®nite dimen-
sional vector space, then by the Curve Selection Lemma there is an analytic path
G on Hn0 (since outside H the xi's form a generating family of the vector ®elds
of the ambient space and f0 has only isolated singularities), such that 0 A G,
which is contained in the support of the coherent Ox-module sheaf induced from
Ox=�x1 � f0; . . . ; xt � f0�. We can suppose that G is contained in a single loga-
rithmic stratum, say S. Hence d� f0jS� vanishes along G. Since f0�0� � 0,
f0jS � 0. But this is a contradiction to dimC�Ox=� f0; x1 � f0; . . . ; xt � f0�� <y.

r

Bruce and Roberts were just interested in the ®nite determinacy on the right
on varieties. But it is easy to obtain from their work the notion of contact
equivalence along a given variety for function germs having isolated singularities
on the variety.

If we were interested in the contact ®nite determinacy of nonisolated hy-
persurface (that is dimC�I 2=TeKI � f �� <y), then as a consequence of the above
discussion and of the previous proof, we have

Corollary 2.2. Let f � h2f0 A I 2. Then f is of contact ®nite determinacy
relative to H if and only if f0 is of ®nite contact determinacy along H. Moreover
if the logarithmic strati®cation of H � fh � 0g is ®nite then f0 is ®nitely deter-
mined on the right relative to H if and only if f0 is of ®nite contact determinacy
along H, i.e.,

dimC
Ox

TeRI � f0� <y if and only if dimC
Ox

TeKI � f0� <y:

2.2. The smooth case
In this section we deal with functions singular along a smooth hypersurface

through the origin, i.e., I :� �xn�. That is the ®rst (and simplest) case to work
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with, and it really behaves as does any function with an isolated singularity along
H :� fxn � 0g. The Ox-module YI ; e is freely generated by q=qx1; . . . ; q=qxnÿ1

and xn�q=qxn�. We have a converse to Proposition 2.1.

Proposition 2.3. Let f0 be a function with an isolated singularity at the
origin along the hypersurface fxn � 0g. Then the function f � x2

n f0 is of ®nite
relative codimension along fxn � 0g.

Proof. Let G be the zeros set of qf0=qx1; . . . ; qf0=qxnÿ1. It is a one-
dimensional locus whose intersection with H is reduced to the origin. We have
to show that f2f0 � xn�qf0=qxn� � 0gVG is just the origin. Let G � G1 U � � � U
Gk, where each Gi, for i � 1; . . . ; k, is an irreducible curve germ at the origin with
holomorphic parametrization g i�z�. We can suppose that k � 1. By an easy
calculus we ®nd that

d

dz
��x2

n f0� � g��z� � gn�z�
dgn

dz
�z� 2f0 � xn

qf0

qxn

� �
� g�z�

� �
:

Since Gi goes through H only at the origin, if z0 0 then gn�z��dgn=dz��z�0 0.
Thus

2f0 � xn
qf0

qxn
� 0

� �
VG � d

dz
��x2

n f0� � g� � 0

� �
� f�x2

n f0� � g � 0g � f f0�g� � 0g
which implies that f2f0 � xn�qf0=qxn� � 0gVG � f�xn�qf0=qxn�� � g � 0g � f0g
since qf0=qxn 0 0 when all the other derivatives are vanishing outside H. r

We have to remember that any f0 which admits an isolated singularity along
fxn � 0g can be written as g0�x1; . . . ; xnÿ1� � xng1�x�, where g0 admits an isolated
singularity at the origin in �C nÿ1; 0�, and g1 is such that there is a non-negative
integer k such that �qk

1 g=qxk
n ��0�0 0, or there exists an i A f1; . . . ; nÿ 1g such

that �qg1=qxi��0�0 0. These are necessary conditions on g0 and g1, but we do
not think there are su½cient to produce a f0 with an isolated singularity along
fxn � 0g.

Proposition 2.4. With the above assumptions and notations, RCF is a
smooth analytic set germ of dimension p and thus RDF is a hypersurface.

Proof. We see that

RCF :� qF0

qx1
� � � � � qF0

qxnÿ1
� 2F0 � xn

qF0

qxn
� 0

� �
:

It is clear that F0 is a versal deformation of the isolated hypersurface singu-
larity f ÿ1

0 �0�. So we can write F0�x; u� � f0�x; u� �
Ppÿ1

k�1 ukek�x� ÿ up. By [Tei,
Section 5.5], we know that fqF0=qx1 � � � � � qF0=qxnÿ1 � 0g is smooth. Then it
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is clear that RCF is also smooth, since f2F0 � xn�qF0=qxn� � 0g is a graph and
tranverse to fqF0=qx1 � � � � � qF0=qxnÿ1 � 0g. r

Remark 2.1. Note that Ox;u=�qF0=qx1; . . . ; qF0=qxnÿ1; 2F0 � xn�qF0=qxn�� is
a reduced algebra. From now we denote it by ORCF

.
Let ORDF

be de®ned by the 0-th Fitting ideal of the Oy;u-module ~F��ORCF
�.

As usual, to know the structure of the discriminant with this structure sheaf, we
need to know what the generic points of the discriminant are. Since there is only
one logarithmic stratum contained in H (H itself ), f0jHn0 is a submersion.

Let ~O be the sheaf of holomorphic function germs on C n � C p.

Lemma 2.5. Let f � x2
n f0 of ®nite relative codimension along fxn � 0g. Let

F � x2
nF0 be its mini-versal unfolding. Then there is a Zariski open dense subset

of RCF of points �x0; u0� � �x0; u
�1�
0 ; . . . ; u

� p�
0 � such that

dimC

~O�x0;u0�
�qf0=qx1; . . . ; qf0=qxnÿ1; 2f0 � xn�qf0=qxn�; u1 ÿ u

�1�
0 ; . . . ; up ÿ u

� p�
0 �
� 1:

Proof. We ®nd that

RCF V fxn � 0g � qF0

qx1
� � � � � qF0

qxnÿ1
� F0 � xn � 0

� �
:

Since f0 � k0�x1; . . . ; xnÿ1� � xnk1�x� such that k0 admits an isolated singularity
at the origin of �C nÿ1; 0�, then we can write

F0�x; u� � K0�x1; . . . ; xnÿ1; u� � xnK1�x; u�:
It is obvious that K0 is a Ke-versal unfolding of the isolated hypersurface
singularity kÿ1

0 �0�. Thus

RCF V fxn � 0g � qK0

qx1
� � � � � qK0

qxnÿ1
� K0 � xn � 0

� �
:

This is a smooth germ in �C nÿ1 � 0� C p; 0� of dimension pÿ 1. This exactly
means that

RCF V fxn 0 0g � qF

qx1
� � � � � qF

qxn
� 0 : xn 0 0

� �
:

Then the set outside fxn 0 0g where the fu's have only Morse singular points
with p distinct critical values is a Zariski dense open subset of RCF V fxn 0 0g.
Since RCF is irreducible and dim RCF V fxn � 0ga pÿ 1, there is a Zariski
dense open subset of RCF where the fu's have only Morse singular points with p
distinct critical values, which ends the proof. r

So, for a function germ f of ®nite relative codimension along H equal to
1, we obtain that the maximal ideal of Ox, mx � �qf0=qx1; . . . ; qf0=qxnÿ1; 2f0�
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xn�qf0=qxn��. If f0 A m2
x, then since 2f0 � xn�qf0=qxn� A m2

x, we obtain that mx H
�qf0=qx1; . . . ; qf0=qxnÿ1� �m2

x and so by Nakayama's Lemma mx � �qf0=qx1; . . . ;
qf0=qxnÿ1� which is impossible. Since the previous dimension is positive, we
deduce that f0 A mxnm2

x with �qf0=qxn��0�0 0. In expanding f0 as a power
series in xn and in making explicit the equations of �qf0=qx1; . . . ; qf0=qxnÿ1; 2f0�
xn�qf0=qxn�� � mx, we ®nd that f0�x� � k0�x1; . . . ; xnÿ1� � xnk1�x� where k0 is a
Morse function in the variables x1; . . . ; xnÿ1, and k1 is invertible.

Proposition 2.6. The residual discriminant RDF endowed with the ringed
structure ORDF

� Oy;u=F0� ~F�ORCF
� is irreducible and reduced.

Proof. The irreducibility comes from the smoothness of RCF . To show
that ORDF

is reduced, there is just to see that it is reduced at a smooth point, see
[dPGW, Corollary 1.18]. Let f �x� � x2

n�xn � x2
1 � � � � � x2

nÿ1� be a generic point
of the residual discriminant. Then F �x; u� � x2

n�xn � x2
1 � � � � � x2

nÿ1 ÿ u� is a

mini-versal unfolding of f . We see that ORCF
� Ox;u=�x1; . . . ; xnÿ1; 3xn ÿ 2u�,

and by computations we have F0� ~F�ORCF
� is generated by yÿ �4=27�u3, hence

reduced. r

Another important question about the geometry of the (residual) discrim-
inant is to exhibit a basis of the vector ®elds tangent to the (residual) discriminant
in order to know if it is a free divisor, and if such vector ®elds are liftable by the
unfolding map associated to the mini-versal unfolding, since this is the case for
isolated complete intersection singularities (see [Lo, Corollary 6.13] and [Go,
Theorem 3] or [Sa1], [Ter1], [Bru1] for hypersurfaces). As in the isolated sin-
gualirity case, instead of considering the mini-versal unfolding we consider the
truncated mini-versal unfolding:

Definition 2.7. Let f � h2f0 be a function of ®nite relative codimension
along fxn � 0g equal to p. Let h2e1; . . . ; h2ep be a C-basis of I 2=TeRI � f �, with
ep�x� � ÿ1. Then the unfolding G�x; v� � h2�x�� f0�x� �

Ppÿ1
i�1 viei�x�� is called

the truncated mini-versal unfolding of f .

Now we return to the case h�x� � xn. To make the distinction between the
truncated mini-versal unfolding G and the mini-versal unfolding F of f , we will
denotes RCG, RCF , RDG and RDF their respective residual critical loci and dis-
criminants.

Then RCG is the support of the coherent Ox; v-module sheaf generated by

MRCG
:� I 2 nOx

Ox; v

fY � G : Y A YH nOx
Ox; vg

and RDG is the image of RCG by ~G :� G � id�C pÿ1;0�.
Let F �x; u� � x2

n � f0�x� �
Ppÿ1

i�1 uiei�x� � upep�x�� � x2
nF0�x�. Such an F0 is a

versal unfolding of the isolated hypersurface singularity f ÿ1
0 �0�. Let us de®ne
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the function G0�x; v� such that G0�x; v� � upep�x� :� F0�x; u�. Then G�x; v� �
x2

nG0�x; v�. By easy calculus, we obtain

RCG � �x; v� :
qG0

qx1
� � � � � qG0

qxnÿ1
� 2G0 � xn

qG0

qxn
� 0

� �
:

We de®ne ORCG
:� Ox; v�qG0=qx1; . . . ; qG0=qxnÿ1; 2G0 � xn�qG0=qxn�� and ORDG

:�
Ox; v=F0� ~G�ORCG

�. We have to note that ORCG
de®nes a complete intersection.

The ®rst thing to see is that the codimension of RCG is an. Since

RCG V fv1 � � � � � vpÿ1 � 0g � supp
mxI 2

TeRI � f � � f0g

we deduce from this that the dimension of RCG is apÿ 1, and so RCG becomes
a (non-reduced) complete intersection of dimension pÿ 1. The consequence of
this is that MRCG

is a free Ov-module of rank pÿ 1. This also prove that we can
de®ne ORDG

as done above.
We would like to know more about how to obtain some gemetrically

important sets for F from those corresponding to G.
Let w be the vector ®eld on �C � C p; 0� such that w � ~F �x; u� � ÿx2

n�q=qy��
�q=qup� � d ~F � �q=qup�. Let us denote by C�y; u; t� the local ¯ow of w, with the

initial condition C�y; u; 0� � �y; v; 2up�, then C�y; u; t� � �C0�y; u; t�; v; t� 2up�
and

C� ~F �x; u�; u; t� � �F�x; u� ÿ tx2
n ; v; t� 2up�:

Let F�y; u� :� C�y; u;ÿup� � �C0�y; u;ÿup�; u� � �F0�y; u�; u�. Then we have
Im� ~G� � C � F�Im� ~F�� and F is a well-de®ned di¨eomorphism of C � C p

preserving the origin. Let CF be the projection of RCF on �C n � C pÿ1; 0�, in
forgetting the last coordinate up. Then we have

F� ~F�RCF �� � F�RDF � � ~G�CF � � C :

Since RDG � f0g � RDF V fup � 0g and F�y; v; 0� � �y; v; 0�, from this, we deduce
that

RDG � f0g � RDF V fup � 0g � F�RDF V fup � 0g� � ~G�CF � � f0g:
This is the fundamental point to know whether or not RDF is a free divisor.
Now we state

Theorem 2.8. RDG is a free divisor.

The next theorem follows from the proof of Theorem 2.8.

Theorem 2.9. RDF is a free divisor.

Proof of Theorem 2.8. The method to produce a generating family of vector
®elds tangent to the discriminant of a projection of an isolated complete inter-
section singularity is now usual (see also [Bru1], [Ter2] and [Go]). Note that
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MRCG
is an Ov-free module of rank pÿ 1. Then for each j � 1; . . . ; p, we have

Gx2
nej �

Xp

i�1

ai; j�v�x2
nei in MRCG

;

which givesXp

i�1

�ai; j�v� ÿ G�x; v�di; j�x2
nei �

Xnÿ1

k�1

bk; j�x; v� qG

qxk
� bj�x; v�xn

qG

qxn
� 0:

If AG is the p� p-matrix with entries the �ai; j�v� ÿ ydi; j�'s, then det AG � 0 is an
equation of the residual discriminant according to Theorem 1.4. Let wi A Yx; v be
the following vector ®eld

wj�x; v� �
Xpÿ1

i�1

�ai; j�v� ÿ G�x; v�di; j � q

qvi
�
Xnÿ1

k�1

bk; j�x; v� q

qxk

� bj�x; v�xn
q

qxn
:

Thus we have wj � G � ÿ�aj;p ÿ Gdj;p� and wj � ul �
Ppÿ1

i�1 �ai; j�v� ÿ G�x; v�di; j �di; l �
�al; j ÿ Gdl; j�. Let hi be the vector ®eld of Yy; v de®ned by

hj�y; v� � ÿ�ap; j�v� ÿ ydp; j� q

qy
�
Xpÿ1

i�1

�ai; j�v� ÿ ydi; j� q

qvi
:

Then the hi's are tangent to RDF �G� and d ~Gwi
� hi � ~G. To conclude it is suf-

®cient to show that

Lemma 2.10. The hi's are the generators of the Oy; v-module YRDG
.

Proof. The proof is inspired by that of [Go, Theorem 3.1]. First we
have to note that outside RDG the hi's are linearly independant. Let h be any
vector ®eld of Yy; v tangent to the residual discriminant RDG. We form the
p� �p� 1�-matrix whose p ®rst columns are the coe½cients of the vector ®elds
hi's and the last one is given by the coe½cients of h. To ®nish the proof of this
lemma we need the following

Lemma 2.11. ORDG
is reduced.

Proof. Since RDG � C is isomorphic to RDF by F then we have the fol-
lowing isomorhism of local C-algebras

F� : ORDF
! ORDG�C � ORDG

nOy; v
Oy;u:

Let k A ORDG
such that k 0 0 and kd � 0 for a positive integer d. This implies

by the �F��ÿ1�kd� � 0 and so �F��ÿ1�k� � 0, which ends the proof. r

End of proof of Lemma 2.10. By Lemma 2.11 and Theorem 1.4,
fdet AG � 0g gives a reduced equation of RDG. Each p� p minor containing
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the last column is of the form fj�y; v�D�y; v�, where fD�y; v� � 0g is a reduced

equation of RDG. Thus the vector ®eld hÿPp
j�1�ÿ1�pÿjfjhj vanishes outside

RDG, and since the hi's are a free basis of the vector ®elds in C � C pÿ1nRDG,
by continuity h �Pp

j�1�ÿ1�pÿjfjhj. r

To ®nish this subsection we give a basis of the vector ®elds tangent to
RDF . For any j � 1; . . . ; p, we have

Fx2
nej �

Xp

i�1

ai; j�u�x2
nei �

Xnÿ1

k�1

bk; j�x; u�
qF

qxk
� bj�x; u�xn

qF

qxn

and thus

0 �
Xp

i�1

�ai; j�u� ÿ F �x; u�di; j�x2
nei �

Xnÿ1

k�1

bk; j�x; u�
qF

qxk
� bj�x; u�xn

qF

qxn
:

Now we de®ne the vector ®elds Li in �C n�p; 0� and Gi in �C � C p; 0� for
i � 1; . . . ; p, by

Lj �
Xpÿ1

i�1

�ai; j�u� ÿ F�x; u�di; j� q

qui
�
Xnÿ1

k�1

bk; j�x; u�
q

qxk
� bj�x; u�xn

q

qxn
;

Gj � ÿ�ap; j�u� ÿ ydp; j� q

qy
�
Xpÿ1

i�1

�ai; j�u� ÿ ydi; j� q

qui
:

We have d ~F �Li � Gi � ~F . When the wi's, vector ®elds in �C n � C pÿ1; 0�, are
seen as vector ®elds in �C n � C pÿ1 � C ; 0�, we also have Li�x; v; 0� � wi�x; v� and
that Gi � �G�x; v�; v; 0� � hi � �G�x; v�; v�, if we also consider the hi's as vector
®elds in �C � C pÿ1 � C ; 0�. Now to ®nish to ®nd a basis of the Oy;u-module of
the vector ®eld tangent to RDF we need to know the Jacobian matrix of F
denoted by A and its inverse Aÿ1

A �

qF0

qy

qF0

qu1

qF0

qu2
� � � qF0

qup

0 1 0 � � � 0

..

. . .
. . .

. . .
. ..

.

..

. . .
.

1 0

0 � � � � � � 0 1

26666666664

37777777775

Aÿ1 � 1

qc0=qy

g0 g1 g2 � � � gp

0 1 0 � � � 0

..

. . .
. . .

. . .
. ..

.

..

. . .
.

1 0

0 � � � � � � 0 1

26666664

37777775
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where g0 � �qF0=qy�ÿ1 and gi � ÿg0�qF0=qui� for 1 a i a p. From
F0�F �x; u�; u� � G�x; v�, we deduce

qF0

qup
�F�x; u�; u� � x2

n

qF0

qy
�F�x; u�; u;ÿup� and so we obtain

d�Fÿ1� q

qup
�y; u� � qF0

qy

� �ÿ1

�y; u�
�
ÿ qF0

qup
�y; u� q

qy
� q

qup

�
d�Fÿ1� q

qup
�G�x; v�; u� � 1

qF0=qy
w

� �
� �F�x; u�; u�:

Since w is tangent to RDF by the above computations and since the determinant
of the matrix formed by the Gi's and w is a reduced equation of the free divisor
RDF , then by Saito's Lemma [Sa1, Lemma 1.9], we have proved the following

Proposition 2.12. The vector ®elds G1; . . . ;Gp and w of Yy;u generate freely

the Oy;u-module of the vector ®elds tangent to RDF , and are liftable by ~F .

2.3. The free divisor case
We recall that a free divisor is a hypersurface whose module of tangent

vector ®elds �YI ; e� is a free Ox-module.
We say that a hypersurface H (or a principal ideal I ) is Euler if there is

a vector ®eld E tangent to H such that E � I � I . This means that we can
choose such a vector ®eld such that, given a generator h of I, then E � h � h; we
denote this vector ®eld by Eh. In that case YI ; e � Y0

h lOxEh, where Y0
h :�

fx : x � h � 0g, see [Al1, p. 2] or [DM, Lemma 3.3]. Then an Euler hypersurface
is a free divisor if and only if Y0

h is an Ox-free module.
Now we suppose that H is a free divisor and Euler. Let h be a given

reduced equation of H. Let x1; . . . ; xnÿ1 be a system of generators of Y0
h . The

next proposition is a kind of converse to Proposition 2.1. We need some nota-
tions to state it.

Let f0 A Ox with dimC �Ox=�x1 � f0; . . . ; xnÿ1 � f0;Eh � f0�� ®nite. Let us denote
by G the 1-dimensional complete intersection fx1 � f0 � � � � � xnÿ1 � f0 � 0g. Then
G is a ®nite union of irreducible analytic curves G1; . . . ;Gs. For i � 1; . . . ; s, let
g�i� be a complex analytic parametrization of the curve Gi.

Proposition 2.13. Let H be a free divisor and Euler with reduced equation h.
Let f0 A Ox with dimC �Ox=�x1 � f0; . . . ; xnÿ1 � f0;Eh � f0�� ®nite. Let us consider
the following conditions:

(i) x1 � f0; . . . ; xnÿ1 � f0, h is a regular sequence,
(ii) GVH � G1 U � � � UGt and for each i � 1; . . . ; t

dg�i�

dz
�z� A span�x1 � g�i��z�; . . . ; xnÿ1 � g�i��z�;Eh � g�z��;

(iii) There exist a ®nite number of logarithmic strata of H which meet G.
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If f0 satis®es one of the above conditions, then f :� h2f0 is of ®nite relative
codimension along H.

Proof. (i) G is one-dimensional and we can suppose it is irreducible and
parametrized by the analytic arc germ g, with g�0� � 0. By hypothesis GVH �
f0g. Then h�g�z�� � 0 if and only if z � 0.

Let M�x� be the n� n-matrix whose rows are the coe½cients of the vector
®elds x1; . . . ; xnÿ1 and xn :� Eh. Let us denote by mi; j the �nÿ 1� � �nÿ 1�
minor obtained from M by deleting the i-th row and the j-th column.
Remember that det M�x� � u�x�h�x� where u is a unit. Along Gnf0g, the vector
®elds x1; . . . ; xnÿ1 and Eh are linearly independent. Thus for any k � 1; . . . ; n we
have

u�g�z��h�g�z�� q

qxk
� g�z� �

Xn

l�1

�ÿ1�l�k
ml;k�g�z��xl � g�z�:

Now we have

d

dz
��h2f0� � g�z�� � h � g�z��2f0 dg�z�h � g 0�z� � h�g�z�� dg�z� f0 � g 0�z��;

and using the above expression of the �q=qxk�'s we ®nd

d

dz
��h2f0� � g� � h

u
� g�z�

� � Xn

k�1

�ÿ1�k�nmk;n�g�z��g 0k�z�
" #

��2f0 � Eh � f0� � g�z��:

We see that �Pn
k�1�ÿ1�k�nmn;k�g�z��g 0k�z�� is the determinant of the n� n-matrix

whose �nÿ 1�-th ®rst rows are the coe½cients of x1; . . . ; xnÿ1 and the last one is
made with the coe½cients of g 0�z�. Since the vector ®elds x1; . . . ; xnÿ1 are a basis
of the vector ®elds tangent to the levels of h and since GVH � f0g the curve g
is transverse to the levels fh � w0 �0 0�g when w0 is ranging a small open
punctured neighbourhood of the origin in C . Thus this determinant is non-zero.
Thus �2f0 � Eh � f0� � g�z� � 0 if and only if �q=qz���h2f0� � g�z�� � 0 if and only
if f0 � g�z� � 0. Then �2f0 � Eh � f0� � g�z� � 0 if and only if �Eh � f0� � g�z� � 0,
which is by hypothesis z � 0.

(ii) Let us suppose that t � 1 and �2f0 � Eh � f0� � g�z�1 0, with g�1� � g.
By hypothesis there are analytic functions in z a1; . . . ; anÿ1; a such that

d� f0 � g�
dz

�z� �
Xnÿ1

k�1

ak�z��xk � f0� � g�z� � a�z��Eh � f0� � g�z�:

Thus we obtain the following di¨erental equation 2a�z� f0 � g�z� � �d� f0 � g�=
dz��z� � 0. Since f0 � g�0� � 0, this implies that f0 � g1 0 and so Eh � f0 � g1 0,
which a contradiction to the hypothesis we have on f0.

(iii) We can suppose that there is only one logarithmic stratum which meets
G and so we are in the case (ii). r
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We have the following

Proposition 2.14. When H is a free divisor, then residual Jacobian module
MRCF

is a Cohen-Macaulay Ox;u-module of dimension p.

Proof. Since YI ; e is free as Ox-module (then t � n), MRCF
is an Ox;u-module

canonically isomorphic to Ox;u=�A1; . . . ;An�. Since RCF is of dimension a p,
Ox;u=�A1; . . . ;An� is necessarily of dimension p. This means that A1; . . . ;An is an
Ox;u-regular sequence and then the depth and dimension of Ox;u=�A1; . . . ;An� as
Ox;u-module are equal to p. r

As it was done in the smooth case, given a mini-versal unfolding F of a ®nite
relative codimensional germ f along H, we introduce the truncated mini-versal
unfolding G and then we de®ne, as in the smooth case, the Ox; v-module MRCG

,
the analytic sets RCG and RDG and the local analytic algebras ORCG

and ORDG
.

As in the smooth case we prove that RDF GRDG � C by an automorphism of
Oy;u built by means of the vector ®eld w de®ned as w � ~F � d ~F �q=qup�.

Damon in his trilogy [Da-I], [Da-II], [Da-III] computed discriminant and
bifurcation locus of a versal unfolding of a mapping C k ! C l under various
equivalences preserving a variety (a free divisor or a free complete intersection)
at the source or at the target. He noticed that there are such varieties on which
there is no mapping whose discriminant is a free divisor. The explanation of this
is that the variety has to present what he called generic Morse-type singularities,
which is equivalent (when some conditions on k or l and numbers related to the
geometry of the logarithmic strati®cation of the variety are satis®ed) to the exis-
tence of functions of (extended) codimension one for the equivalences he consid-
ered. This condition is su½cient to provide a reduced equation to the discrim-
inant by means of Fitting ideals, which here means the freeness. In our context
the same kind of phenomenon appears. Let us consider the following

Example I. Let h�x; y� � x3 � y3. It de®nes an Euler free divisor in C 2.
The tangent vector ®elds are generated by

E � 1

3
x

q

qx
� y

q

qy

� �
and x � y2 q

qx
ÿ x2 q

qy
:

Let f0�x; y� � x and f �x; y� � h2f0. Then, f is of codimension 2 along the Euler
free divisor H :� fh � 0g. TeRI � f � is the ideal generated by xh2 and y2h2. Let
F0�x; y; u� � f0�x; y� � u1y� u2. Then F � h2F0 is a mini-versal unfolding of f .
Let G be the truncated mini-versal unfolding of f . We ®nd that RCG :� fx �
y � 0gHC 3. So RDG is just the u1-axis in C 2. When we compute a resolution
of MRCG

as an Ot;u1
-module, where T is coordinate at the origin of the target

space �C ; 0�. Then the matrix whose determinant is the 0-th Fitting ideal of the
resolution is t2 Id (this is the matrix of the Ou1

-endomorphism of MRCG
of mul-

tiplication by G ). RDG is a free divisor, but the Fitting ideal does not provide a
reduced ideal. Note that RCG HH � C .
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Example II. This is true for any Euler free divisor xk � yl , with k > l > 2
and f �x; y� � x. The smallest relative codimension along H is l ÿ 1. The trun-
cated residual discriminant is always the hyperplane of the truncated parameter
space. But the 0-th Fitting ideal is generated by tlÿ1, not reduced. In that case
RCG HH � C .

Example III. As above it is easy to see that when the Euler free divisor is
of the form x2 � yk, k > 1, then this time everything works as in the smooth case.

The following proposition is a ®rst step to understand what could be the
relevant phenomena seen above.

Proposition 2.15. Let H be an Euler free divisor. Let f be a function of
®nite relative codimension p along H and let G be a truncated mini-versal unfolding.
Then the following sequence of Oy; v-modules is exact:

0!L! Op
y; v !

a
MRCG

! 0:

Then
(i) L is the free Oy; v-module of rank p of the vector ®elds tangent to RDG

which are liftable along H � C pÿ1. Moreover L is a Lie algebra.
(ii) Let F be a mini-versal unfolding giving the previous G. If the dimension

of RCF V �H � C p� is apÿ 1, then any vector ®eld tangent to RDF is liftable
by ~F .

Proof. (i) The freeness of L comes from the fact that MRCG
is Cohen-

Macaulay of dimension pÿ 1 and is a free Ov-module of rank p. If we denote
by vp the coordinate y, the map a sends q=qvi on ei. For a vector ®eld z A Yy; v,

a�z� � 0 if and only if there exists a vector ®eld h A Yx; v tangent to H � C pÿ1

such that d ~Gh � z � ~G. Note that such an L is a Lie algebra because of the last
equality, which goes through the Lie bracket (see [Da-I, 3.3 (ii)]).

(ii) By hypothesis any vector ®eld de®ned on C � C pn ~F�RCF V �H � C p��
can be uniquely extended to a vector ®eld in Yy;u by the Hartogs Theorem since
D :� ~F�RCF V �H � C p�� is of codimension 2. So any vector ®eld z tangent to
RDFnD is liftable under ~F in the vector ®eld h de®ned over C n � C pnS, where

S :� ~Fÿ1�D�, which is of codimension 2. So h can be uniquely extended to
C n � C p. r

So the previous proposition tells us that RDG (or RDF ) is a free divisor if
any liftable vector ®eld by ~G belongs to L.

The following proposition shows us that what could be a su½cient condition
to have a free divisor structure on the residual discriminant, with liftable vector
®elds.

Proposition 2.16. Let H be an Euler free divisor and let f be a function of
®nite relative codimension p > 1 along H. Let F be a mini-versal unfolding of f,
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and let G be the truncated mini-versal unfolding of f coming from F. If dim RDG V
�H � C pÿ1� � pÿ 2. Then RDG is a free divisor and the vector ®elds tangent to
RDG are liftable by ~G in vector ®elds tangent to H � C pÿ1.

Proof. In fact we show that any vector ®eld tangent to RDG is liftable in
a vector ®eld tangent to H � C pÿ1. The proof is exactly the same as that of
Proposition 2.15 (ii). So YRDG

�L and then is a free Oy; v-module of rank p,
that is, RDG is a free divisor. r

Remark 2.2. 1) If dim RCF V �H � C p� � pÿ 1, then ORCF
is reduced,

since at any point which is not on H � C p, YH is a basis of the vector ®elds of
the ambient space. By a coordinate change h becomes an invertible coordinate.
So the argument of Lemma 2.5 provides a Zariski dense open set of points in
RCF at which the above structure is reduced. Thus the genericity criterion for a
Cohen-Macauley space of [dPGW, Corollary 1.18] gives the reduced structure
everywhere. This will be very important in the next section.

2) Under the hypotheses of the previous proposition, we obtain a free basis
of the Oy; v-module of the vector ®elds tangent to the (truncated) residual dis-
criminant RDG, in that case, in repeating the proof of Lemma 2.10, because, in
constructing the vector ®elds we want to be a basis of YRDG

, we are sure that
the determinant of the matrix of these vector ®elds gives a reduced equation of
the residual discriminant, since this matrix is the matrix which appears in the
resolution of the residual Jacobian module (that obtained for G ) as an Oy; v-
module, and so its determinant is a generator of the 0-th Fitting ideal of this
resolution.

In order to produce a basis of vector ®elds tangent to RDF , we just repeat
what have been done in the smooth case.

The following corollary is an analog of [Sa2, 1.5]. It will be very useful in
the next section to prove that the residual bifurcation set is a free divisor.

Corollary 2.17. If RCG V �H � C pÿ1� is of dimension pÿ 2, then the fol-
lowing sum of Ov-modules is direct

Yy; v � YRDG
lOv

q

qy
;

q

qv1
; . . . ;

q

qvpÿ1

� �
:

Proof. This is a straightforward computation once we know a basis of the
vector ®elds tangent to RDG. r

In the case of a function germ f of ®nite relative codimension along H equal
to 1, there is the following

Proposition 2.18. Let H be an Euler free divisor such that there exists a
function f of ®nite relative codimension 1 along H. Let F be a mini-versal unfolding
of f. Then RDF is a free divisor.
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Proof. Note that F�x; u� � h2�x�� f0�x� � u� � h2�x�F0�x; u�. So the trun-
cated mini-versal unfolding is just f itself. Then in using the mutiplication map
by f in MRCG

to obtain a generator of the 0-th Fitting ideal as in Theorem 1.4,
then the generator obtained is y. So this provides a reduced structure to RDG,
hence to RDF . r

Corollary 2.19. Under the previous hypothesis on H and f, then
(i) f0 is a submersion.
(ii) There is a vector ®eld X in YH such that X � f � f .

(iii) Any vector ®eld tangent to RDF is liftable by ~F in a vector ®eld tangent
to H � C p.

Proof. (i) We can suppose that H is Euler and all its tangent vector
®elds are vanishing at the origin except, possibly, the Euler vector ®eld E.
Then x1 � f0; . . . ; xnÿ1 � f0, 2f0 � E � f0 are generators of the maximal ideal mx.
Since xi�0� � �2f0 � E � f0��0� � 0, this implies that f0 A mxnm2

x (otherwise mx �
E � f0 �m2

x).
(ii) Since f0 A mx, then there is a vector ®eld X A YH such that X � �h2f0� �

h2f0.
(iii) By (ii) there is a vector ®eld X A YH such that X � f � f . This means

that the vector ®eld y�q=qy� is liftable by G � f the truncated mini-versal
unfolding, and so that the ringed structure over RDG � f0gHC given by means
of the 0-th Fitting ideal is reduced. r

Remark 2.3. The problem we have is not to decide if the (truncated) residual
disriminant is a free divisor or not, but to decide if the vector ®elds tangent at the
(truncated) residual discriminant are liftable in vector ®elds tangent to a suspen-
sion of H, in which case the (truncated) residual discriminant is a free divisor.

As suggested by the very simple examples (and not quite representative of
the general situation) before, it seems that the key element is the way that the
truncated residual critical locus intersects the suspension of H (in fact the singular
set of H ). We can think that informations about this are contained in the smallest
jets at the origin of the vector ®elds tangent to H which are non identically zero
of the vector ®elds tangent to H (see Damon and his conditions on the genericity
of Morse type singularities on the divisor [Da-I] and the genericity of the locally
liftable vector ®elds [Da-II]).

By now we are not able to ®nd necessary conditions on the divisor H to
obtain that for any function germ of ®nite relative codimension along H in order
to be able to lift the vector ®elds tangent to the (truncated) residual discriminant
in vector ®elds tangent to the suspension of H.

2.4. Bifurcation sets and free divisor
Since we have proved that the residual discriminant of any function germ of

®nite relative codimension along an Euler free divisor, and under the hypothesis
RCG V �H � C pÿ1� is � pÿ 2, is a free divisor, it is natural to ask if the residual
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bifurcation set is also a free divisor as it is for an isolated hypersurface singularity
([Bru2], [Ter2] and [Go]).

Let WPk�Y ; a� be the Weierstrass polynomial of degree k, that is, WPk�Y ; a� �
Y k � a1Y kÿ1 � � � � � akÿ1Y � ak, where the ai's are in C for 1 a i a k. Let us
denote by Pk : C � C k ! C k the projection on the ai's plane. Let WDk be the

zero set (smooth) of WPk in C � C k and let WSk HC k be the discriminant of
WDk which is also the discriminant of PkjWDk

. We recall that W Sk is a free
divisor and that its smooth points are the u's where WPk admits a double root
with k ÿ 2 simple roots. Moreover the logarithmic strati®cation of WSk is ®nite
and given by the Samuel strati®cation (see [DR] or [Me]).

Let D be a free divisor in �C p; 0� and let A : �C � C pÿ1; 0� ! �C � C p; 0�
with �y; v� ! A�y; v� � �y; a1�v�; . . . ; ap�v�� such that d�y; v� �WPp � A�y; v� is
a reduced equation of D. Let us denote OD :� Oy; v=dOy; v. Since the singular
set S�D� of this free divisor is a determinantal space of codimension 2 in
�C � C pÿ1; 0� and since pD :� Ppÿ1jD is a rami®ed covering of degree p over
�C pÿ1; 0�, then any smooth point of pD�S�D�� is a smooth point of the dis-
criminant of pD which is Bif �D� � pD�fd � qd=qy � 0g�.

Lemma 2.20. If fd � qd=qy � 0g � S�D�, then any vector ®eld in Yu, tangent
to Bif �D�, is liftable by Ppÿ1 to a vector ®eld tangent to D.

Proof. The proof follows in applying [Ly2, Theorem 5] of Lyashko which
enables to lift a vector tangent to the bifurcation set (the discriminant of a linear
projection) to a vector ®eld tangent to a discriminant, since our hypotheses satisfy
those of the quoted result, that is

dim d � qd

qy
� q2d

qy2
� 0

( )
< dim d � qd

qy
� 0

� �
: r

Now we follow the steps of the proof of Terao to show that the bifurcation
set of an isolated hypersurface singularity is also a free divisor [Ter2]. For this
purpose from now we suppose that fd � qd=qy � 0g � S�D�. First we de®ne the
Ov-module of the Ppÿ1-lowerable vector ®elds that is

K � fx A Yy; v : x � vi A Ov i � 1; . . . ; pÿ 1g � Oy; v
q

qy
� OvYv:

Let PD be the following Ov-module homomorphism �ppÿ1�� : KVYD ! Yv.
Note that the kernel of PD is the submodule of Yy; v generated by d�q=qy�. Let
us denote by G the Ov-submodule of Yy; v generated by q=qy and the �q=qvi�'s.
We have GHK. Now we can state and proof the following

Lemma 2.21. Suppose that Yy; v � YD nOv
G as Ov-module. Then the Ov-

module �Ppÿ1���KVYD�HYBif �D� is free of rank pÿ 1.

Proof. As in [Ter2, Lemma 3.5] the key arguments of the proof are the
freeness of YD and the Ov direct sum in hypothesis.
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The natural map KVYD !K=G is an Ov-isomorphism and since K=GG
Oy; v=Ov, we have the following diagram

0 �! Oy; v dD
q

qy

� � �! KVYD �!PD I�PD� �! 0

0 �! dDOy; v �! Oy; v

Ov
�! OD

Ov
�! 0:

The isomorphism between KVYD and Oy; v=Ov is given by x! �x � y� (the
bracket meaning the residue class). So we have an Ov-isomorphism

a : Im�P� ! OD

Ov

P�x� ! x � y mod Ov:

Since d is reduced and pD ®nite, as C local algebras we have

OD

Ov
!@ Cfyg
�yp� :

And by Nakayama's Lemma [1], �y�; . . . ; �ypÿ1� generate freely the Ou-module OD.
So OD=Ov is freely generated over Ov by �y�; . . . ; �ypÿ1�, which ends the proof.

r

Theorem 2.22. Bif �D� is a free divisor.

Proof. This is immediate since any vector ®elds h which is tangent to the
bifurcation set is liftable under Ppÿ1 in a vector ®eld tangent to D. Then by the
last lemma we conclude. r

Let D � RDG be the residual discriminant of a truncated mini-versal unfolding
G of a function germ f singular along an Euler free divisor H H �C n; 0� whose
reduced ideal is I. Let p be the dimension of I 2=TeRI � f �. By now, we suppose
that the dimension of RCG V �H � C pÿ1� is equal to pÿ 2. So the dimension of
RCF V �H � C p� is equal to pÿ 1. We have the following

Proposition 2.23. Let dF �y; u� be the reduced equation of RDF , provided
by the determinant of the matrix whose columns are the coe½cients of the previous
basis of the vector ®elds tangent to RDF . Then fdF � qdF=qy � 0g � S�RDF �.

Proof. Let ~O be the sheaf of holomorphic function germ on a small neigh-
bourhood W of the origin of C n � C p. Let W � WnH � C p and let V � pp�W�.

We recall that the ~O-module sheaves M :�MRCF
and N :� ~OS�F � are equal

on W. Since MRCF
:�N�0;0� is Ou-free with basis e1; . . . ; ep, we can suppose that

W is small enough to have representatives of the ei � �qF=qui�'s over W.
The Malgrange-Weierstrass Preparation Theorem insures us that for any

u0 A W the complex vector space N=�U1; . . . ;Up� is a ®nite dimensional (�U1; . . . ;
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Up� is a system of local coordinates at u0 in C p), and is generated by e1; . . . ; ep.
This means that F is a versal unfolding of the function germ fu0

with an isolated
singularity at x0. The Morse points form a Zariski open dense subset of any
neighbourhood of �x0; u0� A RCF VW. Since RCF VH � C p is of codimension 1
in RCF , this shows that the subset of RCF of the �x0; u0� such that fu0

is a Morse
function is open and dense in RCF .

Now we use an argument similar to [Tei, Section 5.5] to control, on the
residual dicriminant, the vanishing locus of the partial derivatives of dF in the
directions of the unfolding parameters by the vanishing of the partial derivative
of dF along the y-axis.

Note that dF � ~F jRCF
1 0. By the reduced structure of RCF , we obtain that

dF � ~F�x; u� �
Xn

i�1

ai�x; u�
h2�x� xi�x� � F�x; u�:

Thus we obtain that

0 � q�dF � ~F�
quj

�
Xn

i�1

ai

h2

q�xi � F�
quj

mod ~TeRI � f �;

0 � xj � �dF � ~F� �
Xn

i�1

ai

h2
xj � �xi � F � mod ~TeRI � f �:

We easily see that the n� n-matrix �x � �xj � F�� is conjugated to the Hessian
matrix of fu0

, and so, we deduce that ai is vanishing over RCF VW. Since RCF

is endowed with a reduced Cohen-Macauley ringed structure it is equidimensional
and RCF VW is an open dense subset of RCF . Then ai vanishes over RCF ,
which means that ai belongs to ~TeRI � f �. So we obtain

0 � q�dF � ~F�
quj

����
RCF

� qdF

qy
� ~F jRCF

� qF

quj

����
RCF

� qdF

quj
� ~F jRCF

:

Since RDF is by de®nition ~F�RCF � the above equality proves that

dF � qdF

qy
� qdF

qu1
� � � � � qdF

qup
� 0

� �
� dF � qdF

qy
� 0

� �
which is the desired result. r

Let G be the truncated mini-versal unfolding of f . Since F�RDF � � RDG�C
with F�y; v; up� � �f0�y; u�; v; up�, we have F�S�RDF �� � S�RDG� � C . We also
have the following commutative diagrams

C n � C pÿ1 � C ���!Fÿ1

C n � C p

p1

???y ???yp2

C pÿ1 � C ���!id
C p

RDG � C ���!Fÿ1

RDF

p1

???y ???yp2

C pÿ1 � C ���!id
C p
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where p1 and p2 are the obvious linear projections on C p � C pÿ1 � C . Note
that the form of F gives us that RBG � C � RBF . From this we deduce that
p1jRDG�C is a di¨eomorphism at the point �y; u� � �y; v; up� if and only if

p2 �Fÿ1jRDF
is also a di¨eomorphism at the point Fÿ1�y; v; up� � ��Fÿ1�0; v; up�.

This means that the critical set of p1 is exactly S�RDG�. So by Theorem 2.22
Bif �RDG� � RBG is a free divisor. So we have proved the following

Theorem 2.24. Let f be a function germ of ®nite codimension p relatively
to an Euler free divisor H. Let f be its mini-versal unfolding. Then the residual
bifurcation set of F is a free divisor.

To ®nish, as Terao in [Ter2] and Bruce in [Bru2], we can describe a basis of
the vector ®elds tangent to RBF � Bif �RDF �. The proof of that kind of result is
now well known (see also [Go, Section 4]). We begin by producing some vector
®elds tangent to RBG.

For any j � 1; . . . ; pÿ 1 we have in Ox; v

ÿG jh2 � G jh2ep �
Xnÿ1

i�1

gi; jxj � G � gjE�h� � G � h�x�
Xpÿ1

i�1

ci; j�v�ej � cj�v�ep

" #
:

Now we de®ne the vector ®elds mj in �C pÿ1; 0�; j � 1; . . . ; pÿ 1

mj �
Xpÿ1

i�1

bi; j�v� q

qvi
:

Theorem 2.25. The vector ®elds mj, for j � 1; . . . ; pÿ 1, form a free basis of
YRBG

.

Proof. We build the vector ®elds f1; . . . ; fpÿ1 A KVYRDG
such that

PRDG
�f1�; . . . ;PRDG

�fpÿ1� form a free basis of YRDG
if and only if �f1 � y�; . . . ;

�fpÿ1 � y� is an Ov-free basis of OD=Ov (see [Ter2, Theorem C]). Now we use the
basis of YRDG

given previously to de®ne inductively fi �1 a i a pÿ 1� by

f1 � hp and fi � yfiÿ1 �
Xpÿ1

j�1

�fiÿ1 � vj�hj :

Thus for any i � 1; . . . ; pÿ 1 fi is tangent to RDG. For k � 1; . . . ; pÿ 1 we obtain

fi � vk � yfiÿ1 � vk �
Xpÿ1

j�1

�fiÿ1 � vj�hj � vk

� yfiÿ1 � vk � �fiÿ1 � vk��ak;k ÿ y� �
Xp

j0t

�fiÿ1 � vj�ak; j

�
Xpÿ1

j�1

ak; j�fiÿ1 � vj�;
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and this proves that fi A KVYRDG
and that PRDG

�fi� � mi. To ®nish, we have

fi � y � y�fiÿ1 � y� �
Xpÿ1

j�1

�fiÿ1 � vj��ÿaj;p� � y�fiÿ1 � y� mod Ov:

Thus we ®nd that �fi � y� � �yiÿ2f1 � y� � �yiÿ2�yÿ ap;p�v��� A ORDG
=Ov and thus

�f1 � y�; . . . ; �fpÿ1 � y� is a free Ov-generating family of YRBG
. r

Corollary 2.26. detjm1; . . . ; mpÿ1j is a reduced equation of RBG.

Proof. Since m1; . . . ; mpÿ1 form a free basis of RBG, then the determinant of
the matrix of their coe½cients is only vanishing over RBG. By Saito's Lemma
([Sa1, Lemma 1.9]) we conclude. r

Corollary 2.27. The vector ®elds mj, for j � 1; . . . ; pÿ 1, and q=qup form
a free basis of YRBF

.

2.5. Comments on the non-Euler free divisor case
Let H H �C n; 0� be a free divisor which is not necessarily Euler and given

by a reduced equation h A Ox. To produce an Euler free divisor from H with
the same geometry, there is just to apply the trick of the good de®ning equation
(see [DM, Section 3]), that is, we look at H in C n � C (as a source space with
coordinates �x;w�) as the hypersurface ~H � H � C which is now Euler and free
since

~H � f~h�x;w� � ewh�x� � 0g and Y ~H � �YH nOx
Ox;w�lOx;w

q

qw
:

Such an ~h A Ox;w provides a reduced equation of H � C and is called a good
de®ning equation.

We would like to know if, given a non-Euler free divisor H and a function
of ®nite codimension relatively to H, say f , there is a way to ®nd a function g
associated with f which will be of ®nite codimension relatively to ~H and which
will provide a residual discriminant obtained as a one-dimensional ®bration along
that of f . In the case of isolated hypersurface singularities such a notion exists,
which is the stably equivalence in the terminology of Arnol'd.

Let f � h2�x�f0�x� be of ®nite codimension relatively to H and let k�x;w� �
e2wh�x�2k0�x;w� with k0�x;w� � f0�x� � w2. From the point of view of the iso-
lated singularities along a variety the functions f0 and k0 are stably equivalent.
The Ox;w-module Y

�0�
~h

de®ned as the submodule of the vector ®elds tangent to the
levels of ~h is freely generated by wi�x;w� � xi�x� ÿ 2ai�x��q=qw� for i � 1; . . . ; n.
So the vector ®elds q=qw and the wi's form an Ox;w-free basis of the vector ®elds
tangent to ~H.
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Since

�h�2
TeR�h�� f � G

Ox;w

�xi � f0 � 2ai f0;w� ;

�~h�2
TeR�~h��k�

G
Ox;w

�xi � k0 � 2aik0; k0 � w� :

Note that the following ideals in Ox;w, �TeK�h�;w� � � f0; xi � f0 � 2ai f0;w� and
TeK�~h� � �k0; xi � k0 � 2aik0; k0 � w� are equal. But we do not know if the above

local C-algebras are isomorphic or not.

3. Counter-example when H is a smooth space of codimension 2

Let I � �x1; x2�. Then YI ; e, the Ox-module of the vector ®elds tangent to I,
is generated by q=qx3; . . . ; q=qxn, and x1�q=qx1�, x2�q=qx1�, x1�q=qx2�, x2�q=qx2�.
In his papers ([Za1] and [Za2]) Zaharia gives some normal forms of the simple
nonisolated singularities along a smooth space of codimension 2. We give just
below two of these classes where the respective residual critical loci are rather
di¨erent. Let zi � xi for i � 1; 2 and wj � xj�2 for j � 1; . . . ; nÿ 2.

The ®rst case is given by the normal form IIAs : f �z;w� � w1z2
1 � w2z2

2 �
z1z2ws�1

3 . The family fz1z2wk
3 gfk�0;...; sÿ1g is a C-basis of the vector space

I 2=TeRI � f �, and thus F �x; u� � w1z2
1 � w2z2

2 � z1z2�ws�1
3 � u1wsÿ1

3 � � � � � us�.
Let us denote �ws�1

3 � u1wsÿ1
3 � � � � � us� by Qu�w3�. After computations we

obtain that

~TeRI � f � � fz2
1 ; z

2
2 ; z1z2Qu�w3�; z1z2Q 0u�w3�; z1z2wi i0 3g;

~TeRI � f �V �z1z2� � �z1z2��z1; z2;Qu�w3�; 2wi i 0 3�:
We see that among the generators z1z2; z1z2w3; . . . ; z1z2wsÿ1

3 of MRCF
there is an

Ou-relation whereas any subfamily of �sÿ 1� elements is Ou-free:

z1z2��s� 1�Qu ÿ x3Q 0u� � z1z2�2u1wsÿ1
3 � 3u2wsÿ2

3 � � � � � �s� 1�us�
� 0 mod ~TeRI � f �:

Thus RCF � fz1 � z2 � Qu�w3� � Q 0u�w3� � w1 � w2 � 0g and it is a complete
intersection of dimension sÿ 1, so the residual discriminant RDF is necessarily
of codimension at least 2 in �C � C s; 0�. We can verify that the residual dis-
criminant of IIAs is actually the discriminant of As embedded in 0� C s. We can
also verify that in the classes IIAÿDÿ E ([Za2]) there is always an Ou-relation
between the Ou generators of MRCF

, but every subfamily is Ou-free. The residual
critical locus is still a complete intersection of dimension sÿ 1 contained in H,
and so the corresponding residual discriminant is in 0� C s.

These facts are quite general since we have by staightforward calculus ([Gr])
the following
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Proposition 3.1. Let f �z;w� � z2
1w1 � z2

2w2 � z1z2g�z;w�, with g such that
�qg=qw1��0��qg=qw2��0�0 1. Then f is ®nitely determined relatively to H �
fz1 � z2 � 0g if and only if g0 the restriction of g to fz1 � z2 � w1 � w2 � 0g, has
an isolated singularity at the origin of �C nÿ4; 0�.

Proposition 3.2. Let f be a ®nitely determined germ relatively to the smooth
space H � fz1 � z2 � 0g and f is of the form z2

1w1 � z2
2w2 � z1z2g�z;w�. When

�qg=qw1��0��qg=qw2��0�0 1 then
(i) RCF is a smooth complete intersection of dimension dimC �I 2=TeRI � f ��ÿ 1 �

sÿ 1.
(ii) RDF � 0� D�g0�H 0� C s, where D�g0� is the discriminant of the isolated

hypersurface singularity g0.

It is easy to show that for any function germ singular along H � fz1 �
z2 � 0g and of ®nite relative codimension which can be written as f �z;w� �
z2

1w1 � z2
2w2 � z1z2g�z;w�, then (in passing to jets) the condition �qg=qw1��0� �

�qg=qw2��0�0 1 is a generic condition for such function germs.
The next normal form is IIBs : f �z;w� � w2z1z2 � w1z2

1 � z2
2�z2 � ws

1�. Then
z2

2 ; z
2
2w1; . . . ; z2

2wsÿ1
1 is a C-basis of I 2=TeRI � f � and thus F�x; u� � w2z1z2�

w1z2
1 � z2

2�z2 � ws
1 � u1wsÿ1

1 � � � � � us�. Let us denote �ws
1 � u1wsÿ1

1 � � � � � us�
by Qu�w1�. A system of generators for ~TeRI � f � are z1z2; z

2
1 � z2

2Q 0u�w1�,
z2

2�3z2 � 2Qu�w1��, w2z2
2 and z2

1w1. We ®nd that the residual critical locus is

RCF � fz1 � w2 � z2Q 0u�w1� � 3z2 � 2Qu�w1� � w1Q 0u�w1�0g
� fz1 � w2 � Q 0u�w1� � 3z2 � 2Qu�w1� � 0gU fz1 � w2 � z2

� w1 � us � 0g � CR;1 UCR;2:

Note that CR;1 is a graph of codimension 4 and not contained in H, while CR;2 is
smooth of codimension 5 and so contained in H but not in CR;1 (then MRCF

cannot be a free Ou-module). Note that we have SR� ~F � � CR;1. That kind of
result is also quite general for function germs of ®nite relative codimension which
can be written as f �z;w� � w2z1z2 � w1z2

1 � z2
2g�z;w� and with the condition

�qg=qw1��0� � ��qg=qw2��0��2 � 0 (otherwise they can be written in the generic
form above by means of a change of coordinates which preserves the origin and
H ). In that case the residual critical locus RCF is the union of two distinct
complete intersections CR;1 and CR;2 of respective dimensions dimC �I 2=TeRI � f ��
and dimC�I 2=TeRI � f �� ÿ 1. In that case with the notations of the above prop-
ositions g0 is still a function with an isolated singularity (which was expected in
looking at the above generic function germs), but this is not enough at all to have
f of ®nite relative codimension (for a bit more see [Gr]).

We have some open questions about this last case. For instance we do not

know if the hypersurface ~F�CR;1� is a free divisor. What are necessary and suf-
®cient conditions on g for f of the form w2z1z2 � w1z2

1 � z2
2g�z;w� to be of ®nite

relative codimension ? Do the residual discriminant of any such function f of
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®nite relative codimension control, by its partition into logarithmic strata, the
analytic types of the germs obtained by deformation of f ? (A positive answer
to this last question could explain the impossible adjacencies occuring in the list
given by Zaharia [Za2]).
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