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Abstract

In this work we will consider compact submanifold Mn immersed in the Euclidean

sphere Snþp with parallel mean curvature vector and we introduce a Schrödinger

operator L ¼ �Dþ V , where D stands for the Laplacian whereas V is some potential on

Mn which depends on n; p and h that are respectively, the dimension, codimension and

mean curvature vector of Mn. We will present a gap estimate for the first eigenvalue m1

of L, by showing that either m1 ¼ 0 or m1 a�nð1 þH 2Þ. As a consequence we obtain

new characterizations of spheres, Cli¤ord tori and Veronese surfaces that extend a work

due to Wu [W] for minimal submanifolds.

1. Introduction

Let Mn be a closed Riemannian manifold, i.e. Mn is compact without
boundary, and denote by Snþp the Euclidean sphere of sectional curvature one.
For an immersion c : Mn ! Snþp we will denote by A its second fundamental
form whereas h stands for its mean curvature vector and the mean curvature is
defined by H ¼ jhj. We introduce on Mn the traceless tensor F ¼ A� hg, where
g stands for the induced metric on M and we consider FhðX ;YÞ ¼ hFðX ;YÞ; hi
for any tangent vector fields X ;Y on Mn. It is easy to check that jFj2 ¼ jAj2 �
nH 2. Moreover, jFj2 ¼ 0 if, and only if, cðMnÞ is totally umbilic. Now we
define constants Bp;h and r ¼ rðn; p; hÞ as follows

Bp;h ¼
1

ð2�1= pÞ ; if p ¼ 1 or h ¼ 0

1
ð2�1=ðp�1ÞÞ ; if p0 1

8<
:

and

r ¼ Bp;h nð1 þH 2Þ � nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p jFhj
( )

:
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When c : Mn ! Snþ1 is a hypersurface H. Alencar and M. do Carmo [AC]
have classified tori with constant mean curvature such that jFj2 a r. They work
was inspired by the ideas of the earlier papers due to J. Simons [Si], S. S. Chern,
M. do Carmo and S. Kobayashi [CdCK] and B. Lawson [L]. For codimension
bigger than one, supposing in addition that h is a parallel vector, W. Santos ([S],
p. 405) and H. Xu ([X], p. 494) have generalized, independently, the work due to
H. Alencar and M. do Carmo by showing that jFj2 a r implies either jFj2 ¼ 0 or
jFj2 ¼ r. Moreover, they have described all such Mn by showing that Mn is a
sphere in the first case and either one of the Cli¤ord tori or one of the Veronese
surface in the second case. On the other hand, introducing the Schrödinger
operator

L ¼ �D� 2 � 1

p

� �
jAj2;

where D stands for the Laplacian on Mn, C. Wu [W] has proved the following
result concerning a minimal submanifold of Snþp.

Theorem 1 [C. Wu]. Let Mn be an n-dimensional closed minimally immersed
submanifold in a unit sphere Snþp and let m1 be the first eigenvalue of L. If
m1 b�n then either m1 ¼ 0 and Mn is totally geodesic, or m1 ¼ �n and Mn is the
Veronese surface in S4 or the Cli¤ord torus in Snþ1.

The purpose of this paper is to extend the above result for closed sub-
manifold in a unit sphere with parallel mean curvature vector. Before announc-
ing our main result one introduces the following operator:

L2 ¼ �D� B�1
p;hjFj2 � nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p jFhj:

We point out that H ¼ 0 yields L2 ¼ L, where L is the operator considered by
C. Wu on [W]. Taking into account this fact we generalize Wu’s result ac-
cording to the following theorem:

Theorem 2. Let Mn be a closed submanifold of Snþp with mean curvature
vector h parallel and let m1 be the first eigenvalue of L2. Then either m1 ¼ 0 and

Mn is totally umbilic, or m1 a�nð1 þH 2Þ. Moreover, m1 ¼ �nð1 þH 2Þ if, and

only if, jFj2 ¼ r; in this case Mn is either the Veronese surface or the Cli¤ord
torus.

2. Preliminaries

Throughout this section we will introduce some basic facts and notations
that will appear on this paper. A Riemannian manifold of dimension k will be
denoted by Mk. Now let Mn be a closed submanifold immersed in a unit
Euclidean sphere Snþp. We use the following standard convention of index:
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1aA;B;C; . . . ;a nþ p; 1a i; j; k; . . . ;a n; nþ 1a a; b; g; . . . ;a nþ p:

We consider an adapted orthonormal local frame feAg and its associated
connection forms foAg on Snþp. Restricting those forms to M we get

oai ¼
X
j

ha
ijoj; h

a
ij ¼ ha

ji ;ð2:1Þ

A ¼
X
i; j;a

ha
ijoi noj noað2:2Þ

and

h ¼ 1

n

X
i;a

ha
ii ea:ð2:3Þ

If Rijkl and Rabkl stand for the tensor of curvature and normal curvature,
respectively, then Gauss, Ricci and Codazzi equations can be read, respectively,
as follows:

Rijkl ¼ dikdjl � dildjk þ
X
a

ðha
ikh

a
jl � ha

ilh
a
jkÞ;ð2:4Þ

Rabkl ¼
X
i; j

ðha
ikh

b
jl � ha

ilh
b
jkÞð2:5Þ

and

ha
ijk ¼ ha

ikjð2:6Þ
On the other hand, the traceless tensor F previously considered can be given

by

F ¼
X
i; j;a

Fa
ijoi noj n ea;

where Fa
ij ¼ ha

ij � ð1=nÞ tr Hadij and Ha ¼ ðha
ijÞ. Denoting by NðTÞ the squared

of the norm of a symmetric operator T , we have NðAÞ ¼ jAj2 ¼
P

i; j;aðha
ijÞ

2,

whereas NðFÞ ¼ jFj2 ¼
P

a trðF2
aÞ ¼ jAj2 � nH 2. We note also that the gradient

of F, denoted by ‘F, verifies

j‘Fj2 ¼
X
i; j;a

j‘Fa
ij j

2 ¼
X
i; j;k;a

ðFa
ijkÞ

2;ð2:7Þ

while the gradient of jFj2 satisfies the following identity:

j‘jFj2j2 ¼ 4
X
k

X
i; j;a

Fa
ijF

a
ijk

 !2

ð2:8Þ
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We will use also the following notation hDF;Fi ¼
P

i; j;a F
a
ijDF

a
ij , which

gives

1

2
DjFj2 ¼ hDF;Fiþ j‘Fj2:ð2:9Þ

3. Proof of Theorem 2

In order to show our theorem we will need some auxiliary results. At first
we will show two general lemmas. The first one can be read as follows:

Lemma 1. Let Mn be a Riemannian manifold isometrically immersed into
a Riemannian manifold N nþp. Consider C ¼

P
i; j;a C

a
ijoi noj n ea a traceless

symmetric tensor satisfying Codazzi equation. Then the following inequality holds

j‘jCj2j2 a 4n

ðnþ 2Þ jCj2j‘Cj2;

where jCj2 ¼
P

i; j;aðCa
ij Þ

2
and j‘Cj2 ¼

P
i; j;k;aðCa

ijkÞ
2. In particular the conclu-

sion holds for the tensor F defined in the introduction.

Proof. First we fix ea and define Ca as the a-component of C. Now we
take an orthonormal frame feai g of eigenfunctions of Ca with correspondent
eigenvalues ma

i . Hence we have

j‘jCaj2j2 ¼ 4
X
k

X
i; j

Ca
ijC

a
ijk

 !2

¼ 4
X
k

X
i

ma
i C

a
iik

 !2

:ð3:1Þ

By using Cauchy-Schwarz inequality we have

j‘jCaj2j2 a 4
X
i

ðma
i Þ

2
X
i;k

ðCa
iikÞ

2:

This can be rewritten as

4jCaj2
X
i

ðCa
iiiÞ

2 þ
X

i;k; i0k

ðCa
iikÞ

2

 !
b j‘jCaj2j2:ð3:2Þ

Now we fix an index i. Taking into account that trðCaÞ ¼ 0, we conclude that
Ca

iii ¼ �
P

k;k0i C
a
kki. By using Cauchy-Schwarz inequality again we haveX

i

ðCa
iiiÞ

2 ¼
X
i

X
k;k0i

Ca
kki

 !2

a ðn� 1Þ
X

k; i;k0i

ðCa
iikÞ

2:ð3:3Þ

Hence we obtain from inequalities (3.2) and (3.3) that

j‘jCaj2j2 a 4njCaj2
X

i;k; i0k

ðCa
iikÞ

2:ð3:4Þ
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On the other hand Ca
ik ¼ Ca

ki implies Ca
iki ¼ Ca

kii. In view of Codazzi equa-
tion we obtain

Ca
iik ¼ Ca

iki ¼ Ca
kii:ð3:5Þ

Since j‘Caj2 ¼
P

i; j;kðCa
ijkÞ

2 andX
i; j;k

ðCa
ijkÞ

2 ¼
X
i

ðCa
iiiÞ

2 þ
X

i;k; i0k

ððCa
iikÞ

2 þ ðCa
ikiÞ

2 þ ðCa
kiiÞ

2Þ þ 6
X
i< j<k

ðCa
ijkÞ

2

we may use (3.5) to conclude

jCaj2j‘Caj2 ¼ jCaj2
X
i

ðCa
iiiÞ

2 þ 3
X

i;k; i0k

ðCa
iikÞ

2 þ 6
X
i< j<k

ðCa
ijkÞ

2

 !
:

It follows from this last equation the next inequality

jCaj2j‘Caj2 b 2jCaj2
X

i;k; i0k

ðCa
iikÞ

2 þ jCaj2
X

i;k; i0k

ðCa
iikÞ

2 þ
X
i

ðCa
iiiÞ

2

 !
:

Combining the first term of the right hand side of this last inequality with
(3.4) and the second term with (3.2) we derive

jCaj2j‘Caj2 b 1

2n
j‘jCaj2j2 þ 1

4
j‘jCaj2j2:

Since j‘jCj2j2 ¼
P

a j‘jCaj2j2 and jCaj2 a jCj2 it follows from the last in-
equality that

j‘jCj2j2 a 4n

nþ 2
jCj2j‘Cj2;

which finishes the proof of the Lemma 1.

Now we consider the di¤erentiable function fe ¼ ðjFj2 þ eÞ1=2 defined on
Mn, where F is the traceless tensor previously defined in the introduction, e is a
positive number and we prove the following lemma concerning this function.

Lemma 2. Let Mn be a Riemannian manifold immersed in Snþp and let fe be
the function above defined. Then the Laplacian of fe satisfies the inequality

feD fe b
2ðjFj2 þ eÞ�1

ðnþ 2Þ jFj2j‘Fj2 þ hDF;Fi:

Proof. Since D fe ¼ divð‘ feÞ and ‘ fe ¼ ððjFj2 þ eÞ�1=2=2Þð‘jFj2Þ we have

feD fe ¼
1

2
DjFj2 � ðjFj2 þ eÞ�1

4
h‘jFj2;‘jFj2i:
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Using (2.9), we may conclude

feD fe ¼ ðjFj2 þ eÞ�1 j‘Fj2ðjFj2 þ eÞ � 1

4
j‘jFj2j2

� �
þ hDF;Fi:ð3:6Þ

On the other hand, Lemma 1 yields ð1=4Þj‘jFj2j2 a ðn=ðnþ 2ÞÞjFj2j‘Fj2. Since
jFj2 þ eb jFj2 we have

j‘Fj2ðjFj2 þ eÞ � 1

4
j‘jFj2j2

� �
b jFj2j‘Fj2 1 � n

ðnþ 2Þ

� �
;

that is

j‘Fj2ðjFj2 þ eÞ � 1

4
j‘jFj2j2

� �
b

2jFj2j‘Fj2

ðnþ 2Þ :ð3:7Þ

Putting together equations (3.6) and (3.7) we have

feD fe b
2ðjFj2 þ eÞ�1

ðnþ 2Þ ðjFj2j‘Fj2Þ þ hDF;Fi;

which finishes the proof of the Lemma 2.
Now let L2 be the Schrödinger operator considered in the introduction. We

will prove the next proposition concerning to the first eigenvalue of L2, which
extends a result derived by C. Wu [W] in the minimal case.

Proposition 1. Let Mn be a closed submanifold immersed in Snþp with
parallel mean curvature vector h in such way that Mn is not totally umbilic. If m1

is the first eigenvalue of L2 then

m1 a�nð1 þH 2Þ � 2

ðnþ 2Þ

Ð
M
j‘Fj2 � 1Ð

M
jFj2 � 1

;

where �1 stands for the form of volume of Mn.

Proof. If we define the set G ¼ f f A CyðMÞ : f 0 0g then Rayleigh quo-
tient yields m1 ¼ inf f AGð

Ð
M

fL2 f � 1=
Ð
M

f 2 � 1Þ. We consider now fe ¼ ðjFj2 þ
eÞ1=2 the di¤erentiable function given in the previous lemma. Since Mn is not
totally umbilic we get lime!0

Ð
M

f 2
e � 1 ¼

Ð
M
jFj2 � 1 > 0. Thus we may use fe as

a test function to compute m1. On the other hand, since h is parallel W. Santos
([S], p. 405) has showed the following inequality

hDF;FibLjFj2;ð3:8Þ

where L ¼ fnð1 þH 2Þ � ðnðn� 2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
ÞjFhj � B�1

p;hjFj2g.
Therefore we may combine Lemma (2) and inequality (3.8) to obtain

feD fe b
2

ðnþ 2Þ ðjFj2 þ eÞ�1jFj2j‘Fj2 þLjFj2:
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Since feL2 fe ¼ � feD fe � B�1
p;hjFj2 f 2

e � ðnðn� 2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
ÞjFhj f 2

e , we get

feL2 fe a� 2ðjFj2 þ eÞ�1ðjFj2j‘Fj2Þ
ðnþ 2Þ � nð1 þH 2ÞjFj2ð3:9Þ

þ nðn� 2ÞjFj2jFhjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p þ B�1
p;hðjFj2Þ2

� nðn� 2ÞjFhjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p ðjFj2 þ eÞ � B�1
p;hðjFj2 þ eÞjFj2:

From where we obtain

feL2 fe a�nð1 þH 2ÞjFj2 � 2ðjFj2 þ eÞ�1

ðnþ 2Þ jFj2j‘Fj2:ð3:10Þ

Since m1 a ð
Ð
M

feL2 fe � 1=
Ð
M

f 2
e � 1Þ and H is constant inequality (3.10) yields

m1 a�nð1 þH 2Þ
Ð
M
jFj2 � 1Ð

M
ðjFj2 þ eÞ � 1

� 2

ðnþ 2Þ

Ð
M
ðjFj2 þ eÞ�1jFj2j‘Fj2 � 1Ð

M
ðjFj2 þ eÞ � 1

:

Making e ! 0 on the last inequality, we obtain

m1 a�nð1 þH 2Þ � 2

ðnþ 2Þ

Ð
M
j‘Fj2 � 1Ð

M
jFj2 � 1

;

which completes the proof of the desired result.
On the next proposition we consider the case when Mn is not pseudo-

umbilical. By a pseudo-umbilical submanifold Mn into Snþp we mean that h
is an umbilic direction of the second fundamental form A of Mn. Now let
L3 ¼ �D� ðn=2

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ÞjAj2 be a new Schrödinger operator and let us prove an

estimate concerning to its first eigenvalue according to the following proposition.

Proposition 2. Let Mn be a closed submanifold immersed in Snþp with
parallel non null mean curvature vector h in such way that Mn is not pseudo-
umbilical. If m1 is the first eigenvalue of L3 then

m1 a�n� 2

ðnþ 2Þ

Ð
M
j‘Fnþ1j2 � 1Ð

M
jFnþ1j2 � 1

;

where Fnþ1 ¼ Fnþ1
ij enþ1, Fnþ1

ij ¼ ðhnþ1
ij �HdijÞ and enþ1 ¼ h=H.

Proof. The proof is similar to the previous proposition. Indeed, let us

consider j‘ðFnþ1Þj2 ¼
P

i; j;kðFnþ1
ijk Þ2 and hDðFnþ1Þ;Fnþ1i ¼

P
i; j F

nþ1
ij DFnþ1

ij .

Now it is enough to define ge ¼ ðjFnþ1j2 þ eÞ1=2 and to proceed as before.
Following the same computation as that one of the Lemma 2 we have
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geDge ¼ j‘ðFnþ1Þj2 � 1

4
ðjFnþ1j2 þ eÞ�1j‘jFnþ1j2j2 þ hDðFnþ1Þ;Fnþ1i:ð3:11Þ

On the other hand a similar result like that one of Lemma 1 is also true for
Fnþ1, that is,

j‘jFnþ1j2j2 a 4n

ðnþ 2Þ jF
nþ1j2j‘ðFnþ1Þj2:ð3:12Þ

From (3.11) and (3.12) it follows that

geDge b
2ðjFnþ1j2 þ eÞ�1

ðnþ 2Þ jFnþ1j2j‘ðFnþ1Þj2 þ hDðFnþ1Þ;Fnþ1i:ð3:13Þ

Since tr Hnþ1 ¼
P

i h
nþ1
ii ¼ nH and H is constant we have

P
i Dh

nþ1
ii ¼ 0.

This yieldsX
i; j

hnþ1
ij Dhnþ1

ij ¼
X
i; j

Fnþ1
ij DFnþ1

ij þH
X
i

Dhnþ1
ii ¼ hDðFnþ1Þ;Fnþ1i:ð3:14Þ

We use also the following inequality obtained by Z. Hou ([H], p. 39)

X
i; j

hnþ1
ij Dhnþ1

ij b njFnþ1j2 1 � jAj2

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
 !

:ð3:15Þ

From (3.13), (3.14) and (3.15) we have

geDge b jFnþ1j2 2ðjFnþ1j2 þ eÞ�1

ðnþ 2Þ j‘ðFnþ1Þj2 þ n� njAj2

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
 !

:

Since geL3ge ¼ �geDge � ðn=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ

p
ÞjAj2g2

e we obtain

geL3ge a�njFnþ1j2 þ njAj2jFnþ1j2

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p � njAj2

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ðjFnþ1j2 þ eÞ

� 2ðjFnþ1j2 þ eÞ�1

ðnþ 2Þ ðjFnþ1j2j‘ðFnþ1Þj2Þ;

that is,

geL3ge a�njFnþ1j2 � 2ðjFnþ1j2 þ eÞ�1

ðnþ 2Þ ðjFnþ1j2j‘ðFnþ1Þj2Þ:

Since Mn is not pseudo-umbilical lime!0

Ð
M
g2
e � 1 ¼

Ð
M
jFnþ1j2 > 0. Therefore

using again the characterization of m1 given by Rayleigh quotient we obtain

m1 a� 2

ðnþ 2Þ

Ð
M
jFnþ1j2ðnðnþ 2Þ=2 þ ðjFnþ1j2 þ eÞ�1j‘ðFnþ1Þj2Þ � 1Ð

M
ðjFnþ1j2 þ eÞ � 1

:

Making e ! 0 in the last inequality we have
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m1 a�n� 2

ðnþ 2Þ

Ð
M
j‘ðFnþ1Þj2 � 1Ð
M
jFnþ1j2 � 1

;

which concludes the proof of the proposition.
We consider now the case when Mn is pseudo-umbilical and has codimen-

sion pb 2. Introducing the Schrödinger operator L4 ¼ �D� ð3=2ÞjFj2 we
derive the following proposition.

Proposition 3. Let Mn be a closed submanifold immersed in Snþp such that
Mn is pseudo-umbilical with parallel mean curvature vector h. If Mn is not totally
umbilic, pb 2 and m1 is the first eigenvalue of L4, then

m1 a�nð1 þH 2Þ � 2

ðnþ 2Þ

Ð
M
j‘Fj2 � 1Ð

M
jFj2 � 1

:

Proof. Taking into account that Mn is pseudo-umbilical we may use the
following inequality due to Hou ([H], p. 42)

hDF;Fib jFj2 nð1 þH 2Þ � 3

2
jFj2

� �
:ð3:16Þ

Therefore considering again fe ¼ ðjFj2 þ eÞ1=2 the Lemma 2 yields

feD fe b jFj2 2ðjFj2 þ eÞ�1j‘Fj2

ðnþ 2Þ þ nð1 þH 2Þ � 3

2
jFj2

 !
:

Since feL4 fe ¼ � feD fe � ð3=2ÞjFj2 f 2
e we get

feL4 fe a�nð1 þH 2ÞjFj2 � 2ðjFj2 þ eÞ�1

ðnþ 2Þ jFj2j‘Fj2:ð3:17Þ

On the other hand since Mn is not totally umbilic we have

lime!0

ð
M

f 2
e � 1 ¼

ð
M

jFj2 � 1 > 0:

Hence we may use fe as a test function to estimate m1. Taking into account that
m1 a

Ð
M

feL4 fe � 1=
Ð
M

f 2
e � 1 and H is constant we derive from (3.17) that

m1 a�nð1 þH 2Þ � 2

ðnþ 2Þ

Ð
M
j‘Fj2 � 1Ð

M
jFj2 � 1

;

which completes the proof of the Proposition 3.
We point out now that to derive the Theorem 2 it is enough to apply the

Proposition 1 with the result obtained independently by W. Santos and H. Xu.
In fact, from that proposition we get m1 ¼ 0 if, and only if, Mn is totally umbilic,
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otherwise m1 a�nð1 þH 2Þ. Suppose now that jFj2 ¼ r0 0. Then L2 ¼ �D�
nð1 þH 2Þ and m1 ¼ �nð1 þH 2Þ. On the other hand, it follows again from
Proposition 1 that j‘Fj ¼ 0 provided m1 ¼ �nð1 þH 2Þ. Therefore F and jFhj
are constants. Hence we conclude that

m1 ¼ �ðBp;hÞ�1jFj2 � nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p jFhj:

From where we have jFj2 ¼ r. In order to complete the rest of the proof
of the theorm we may apply a theorem due to Santos ([S], p. 405) or Xu ([X],
p. 494) presented in the introduction that describes all submanifolds Mn im-
mersed in the Euclidean sphere Snþp with parallel mean curvature vector h and
jFj2 ¼ r. More precisely, they have proved:

If r ¼ 0 then Mn is a sphere, otherwise Mn is either one of the
Cli¤ord tori or one of the Veronese surfaces in Snþp.

4. Applications

In this section we will present two applications of our main theorem. We
point out now that jFj2 ¼ r has two main consequences: either L2 ¼ �D, or
L2 ¼ �D� nð1 þH 2Þ. In fact, the former case comes from r ¼ 0, whereas the
last one comes from r0 0. Hence, we may derive from the theorem due to
Santos ([S]) or Xu ([X]) and the Theorem 2 the following theorem:

Theorem 3. Let Mn be a closed submanifold of Snþp, pb 2, with non null

parallel mean curvature vector h and let L3 ¼ �D� ðnjAj2=2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
Þ be the op-

erator with first eigenvalue m1. If nb 3 and Mn is not pseudo-umbilical then
m1 a�n. Moreover, m1 ¼ �n if, and only if, Mn is the Cli¤ord torus S1ðrÞ�
Sn�1ðsÞ ,! Snþ1 ,! Snþp, with s2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
Þ�1

and r2 ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
Þ�1.

If n ¼ 2 then M 2 is a totally umbilical sphere S2ð1=ð1 þH 2ÞÞ.

Proof. By using Proposition 2 we infer that if Mn is not pseudo-
umbilical then m1 a�n. We note that jAj2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
implies L3 ¼ �D� n.

From where we conclude m1 ¼ �n. Conversely, if m1 ¼ �n, Proposition 2 shows

that j‘ðFnþ1Þj ¼ 0. Hence jFnþ1j2 and jAnþ1j2 ¼ jFnþ1j2 þ nH 2 are constants.
Using (3.15) and the assumption jAnþ1j2 is constant we derive

jAj2 b 2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
:

In fact, since ð1=2ÞDjAnþ1j2 ¼
P

i; j;kðhnþ1
ijk Þ2 þ

P
i; j h

nþ1
ij Dhnþ1

ij we have

0 ¼
X
i; j;k

ðhnþ1
ijk Þ2 þ

X
i; j

hnþ1
ij Dhnþ1

ij b njFnþ1j2 1 � jAj2

2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
 !

;

which gives the desired inequality.
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On the other hand if G ¼ f f A CyðMÞ : f 0 0g then Rayleigh quotient

yields m1 ¼ inf f AGð
Ð
M

fL3 f � 1=
Ð
M

f 2 � 1Þ. Since jAj2 b 2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
and m1 ¼ �n

we conclude that jAj2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
. Thus, if nb 3 then Mn is isometric to a

Cli¤ord torus according to a result due to Hou ([H], p. 40).
For n ¼ 2 the same result yields that M 2 is a totally umbilical sphere in

S2þp. This completes the proof of the theorem.
Finally we treat the case when Mn is pseudo-umbilical with parallel mean

curvature vector. More precisely we have the following theorem.

Theorem 4. Let Mn be a closed submanifold immersed in Snþp with par-
allel mean curvature vector h and pb 2. Suppose in addition that Mn is also
pseudo-umbilical and let m1 be the first eigenvalue of L4 ¼ �D� ð3=2ÞjFj2. If Mn

is totally umbilical, then m1 ¼ 0. Otherwise m1 a�nð1 þH 2Þ. Furthermore, if
m1 ¼ �nð1 þH 2Þ we have: a) Either Mn is the Cli¤ord torus

SkðrÞ � Sn�kðsÞ ,! Snþ1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þH 2

p
� �

,! Snþ2 ,! Snþp

b) Or else, Mn is the Veronese surface M 2 ,! S4ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þH 2

p
Þ ,! S5 ,! Snþp.

Proof. From Proposition 3 we get m1 ¼ 0 if, and only if, Mn is totally
umbilic, otherwise m1 a�nð1 þH 2Þ. Now suppose jFj2 ¼ ð2=3Þnð1 þH 2Þ, then
the operator L3 becomes L3 ¼ �D� nð1 þH 2Þ while m1 ¼ �nð1 þH 2Þ. Con-
versely, if m1 ¼ �nð1 þH 2Þ it follows from Proposition 3 that j‘Fj2 ¼ 0. Hence
F is constant, and so, in view of (3.16) we obtain jFj2 ¼ ð2=3Þnð1 þH 2Þ. Now
the conclusion of the theorem is a consequence of the Proposition 2 of Z. Hou
([H], p. 42).
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