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FACTORIZATION OF THE POLAR CURVE AND THE
NEWTON POLYGON
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Abstract

Using the Newton polygon we prove a factorization theorem for the local polar
curves. Then we give some applications to the polar invariants and pencils of plane
curve singularities.

Introduction

Let C{X,Y} be the ring of complex power series in two variables X, Y.
We denote by ord /' and in f respectively the order and the initial form of
a nonzero power series f € C{X, Y}. By definition ord 0 = +o0 and in 0 =0.
Let f be a nonzero power series without constant term. If f = f" --- f"™ is a
decomposition of f into irreducible pairwise different factors f; € C{X, Y} then
we put fred = fi---fr. Let t(f) =ord(in f),q. Then #(f) is the number of
tangents to the local curve f =0. In the sequel we use the convention that a
sum (resp. a product) over the empty set equals zero (resp. one).
Write
S
in f = (a monomial) H(X —qY)™
i=1

with pairwise different ¢;, We put

S

d(f) =" (m—1)

i=1

and call d(f) degeneracy of f. 1If s=0 then in f reduces to a monomial and
d(f)=0. Note that d(f) =0 if and only if all tangents to f = 0 different from
the axes are of multiplicity 1.
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Assume that f has an isolated singularity at (0,0) € C? (this is equivalent to
the conditions ord f > 1 and f = fiq) and suppose that the line bX —aY =0 is
not tangent to f = 0. The generic polar of f is by definition the series Jf =
a(df JoX)+ b(of /0Y).

Let us consider the factorization df =[]/, h; with irreducible h; € C{X, Y}
and put (f,h), =dimc C{X, Y}/(f,h). According to Teissier [Tel] the quo-
tients (f,/%;),/ord h; are called polar invariants of the singularity f. The multi-
plicity m, of the polar quotient ¢ is defined to be m, = 3., ord h; where I, =
{i:(f,hi)y/ord h; = q}.

Teissier’s collection {(g,m,)} of polar invariants and their multiplicities is a
topological invariant of the singularity (see [Tel] and [Te2]). There are several
theorems on the factorization of the polar curve that enable calculation of
Teissier’s collection (see [M], [D], [G], [LP]). The aim of this note is to study the
factorization of the polar curve Jf associated with the Newton polygon A4} of
f. The main result (Theorem 1.1) is a refinement of the factorization theorem
given in [LP]. Using our theorem we calculate the minimal polar invariant
(Theorem 2.1) and prove a bound on the number of special values of the pencil
(f —tIV : te C) (Theorem 3.2). This bound is analogous to the estimation due
to Le Van Thanh and Mutsuo Oka (see [LO], Main result) given in the global
affine context.

1. Main result

Let f e C{X,Y} be a nonzero power series without constant term. Write
f=YcpX?YFe C{X,Y} and supp f = {(x.f) € N?:¢,5 #0}. The Newton
polygon A = A"(f) is the set of the compact faces of the boundary of the
convex hull A(f) of the set supp f + N?.  We call A(f) the Newton diagram of
f. For every Se /; we denote by |S|, and |S|, the lenghts of the projection
of S on the horizontal and vertical axes. We call |S|,/|S|, inclination of the
segment S. The power series f is elementary if ./ contains only one segment
with vertices on the axes. Let ||S|| = min{|S|,,|S|,} and denote as,bs the dis-
tances from S to the axes. Thus the vertices of S are (as,|S|, +bs) and
(IS|, + as,bs). Let a/a(S)+ /F(S) =1 be the equation of the line containing
S. Clearly oc( ), B(S) are rational numbers and «(S)/f(S) = |S|,/|S],- A seg-
ment S € A} is exceptional if 1 =S|, <|S|, and ag =0 or 1 =S|, <|S|, and
bs=0. A segment Se .47 (necessarily umque) is principal if |S|, =|S],. We
set A" = Ay\{exceptional segments} and A" = 47"\ {principal segment}. For
every segment Se ./ we define &(S )e{ 1,0, 1} by putting ¢(S) = -1 if
IS|, < |S], and as —0 or |S|, <|S|, and bs=0. If |S|, =S|, then &(S) =
1 — (number of vertices of S lying on the axes). We put &(S) =0 for all re-
maining cases. A segment S e 4} is of the first kind if &(S) =0, it is of the
second kind if ¢(S) = —1.

Let in(f,S) =, pes X*YP. Clearly X“Y"s is the monomial of the
highest degree dividing in(f,S). Thus we can write in(f,S) = X% Y’ in(f,S)°
in C{X,Y}. Note that A (in(f,S)°) ={S’} where S’ is the segment with
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vertices (|S|;,0) and (0,|S|,). We define the degeneracy d(f,S) of f on S by
putting d(f,S) = ordin(f,S)° — ordin(f,S),q. Note that d(f,S) =0 if and
only if f is nondegenerate on S that is if the polynomial in(f,S) has no critical
points in the set (C\{0}) x (C\{0}). Recall that a series is nondegenerate if it
is nondegenerate on every segment of its Newton polygon. If S e 47" is of the
second kind then we let vg = X if |S]; < |S], and vg = Y if |S], < |S|;. Let S be
a segment of a Newton polygon. We call a power series S-elementary if it is
elementary and its unique segment is parallel to S. A line / = R? is a barrier of
A(f) if it has an equation vjo + v2f = w where v, v,,w > 0 are integers such that
vioe+ vaff > w for (o, f) € A(f) with equality for at least one point (o, ) € A(f).
Let us state the main result

THEOREM 1.1. Let f = f(X,Y) € C{X, Y} be a power series with an isolated
singularity at (0,0) € C2. Then for every line bX —aY =0 not tangent to the
curve [ =0 there is a factorization of the polar df = a(df /0X)+ b(df /0Y):

of = AB H AsBs in C{X,Y}
Se;”
such that

(i) ordA=1t(f)—1,ord B=d(f). Ifhis an irreducible factor of AB then
(f,h)y/ord h = ord f with equality if and only if h divides A.

(i) ord As = ||S|| +&(S) —d(f,S), ord Bs =d(f,S). If h is an irreducible
Sactor of AsBs then (f,h),/ord h > max(a(S),B(S)) with equality if and
only if h divides As.

(iii) If ord Bs > 0 then Bs is S-elementary. If ord As >0 and S is of the
first kind then As is S-elementary.

(iv) If ord As > 0 and S is of the second kind then there is a factorization
As = AGAS such that
- if ord A¢ > 0 then Ag is S-elementary.

- If ord A¢ > O then every barier of the Newton diagram of f parallel
to a segment of N'(A§) passes through the vertex of S lying on
the vertical (resp. horizontal) axis if Vs=X (resp. Vs=7Y).
If IS|, <|S|, (resp. |S|, <|S|y) themn for every T e A (AY):
IT1,/ITly < IS/1S]y (resp. 1S1/1S], < |T1,/1T).

The proof of Theorem 1.1 is given in Section 6 of this note.

COROLLARY 1.2. Let f= f(X,Y) e C{X, Y} be a power series with an iso-
lated singularity at (0,0) e C* such that N7 #0. Then

(i) Let Se A" be of the first kind. Then max(a(S),B(S)) is a polar in-
variant of the curve f =0. Its multiplicity is at least ||S||—d(f,S).

(ii) If S € N/ is of the second kind then max(a(S), f(S)) is a polar invariant
of f if and only if ordin(f,S).q > 1. Its multiplicity is at least ||S|| —
d(f,S)—1. Ifordin(f,S).q =1 then there is a polar invariant strictly
greater than max(«(S), 5(S)).
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Proof. Fix a segment Se /" It is easy to check that ord As = ||S|| +
e(S) —d(f,S) =ordin(f,S)q +&(S). If Sis of the first kind then &(S) = 0 and
(i) follows. If S is of the second kind then max(«(S), f(S)) is a polar invariant if
and only if ord As = ordin(f,S);q —1 > 0.

Example 1.3. Let f(X,Y)= (Y —X2)>+ X5, Then A} = {S} where S
is the segment with vertices (0,2) and (4,0). Clearly in(f,S)py =Y — X? is of
order 1. According to Corollary 1.2 we can only say that the curve f =0 has
a polar invariant greater than max(x(S),f(S)) = max(2,4) =4. Taking the
new system of coordinates X; =X, ¥Y; =Y — X% we get fi(X1, Y1) =Y+ X}
and using 1.2 to f} in coordinates (X;,Y)) we get that there is a unique polar
invariant equal to 5.

Example 1.4. Let f(X,Y)=Y"4+XY?-2X2Y°+X3y*-2Xx4y3+
X3Y?-2X"Y +X°. Then A;={E,S,U, T} where |E|/|E|,<]S|\/IS], <
|U|,/IUl, <|T|,/|T|,- Here E is exceptional, U is principal and A" = {S, T}
where S is of the first kind (¢(S) =0) and T is of the second kind (¢(7) =
—1). According to Theorem 1.1 there is a factorization df = ABAsBsArBr in
C{X,Y} where ord A =t(f)—1=2, ord B=d(f) =1, ord A5 = ||S| — d(f, S)
=1, ordBs=d(f,S)=1, ordAr =||T||-1—-d(f,T)=0, ord Br =d(f,T)
=1. We may assume that A7 =1 in C{X,Y} for A7 is a unit. The polar
df = 0 consists of the curve 4 = 0 of order 2 transverse to the curve f = 0 and of
four nonsingular branches A =0, B=0, Bs =0 and By =0. The polar in-
variants are ord f =7 (of multiplicity 2), (f, 4s), = max(a(S),(S)) =10 and
the numbers (f,B), >7, (f,Bs),>10 and (f,Br),>max(a(T),p(T)) =9. The
theorem does not give information as to whether the invariants (f, B),, (f, Bs),
and (f,Br), are equal or not.

Here is an improved version of the main result of [LP].

CoroLLARY 1.5 (see [LP], Theorem 1.1). Ler f = f(X,Y)eC{X,Y} be a
power series with an isolated singularity at (0,0) € C>.  Then for every line bX —
aY =0 not tangent to the curve f =0 there is a factorization of the polar 0f =
a(df JoX)+ b(of /0Y):

of =g I[ 9s in C{x, Y}

SeN ;

such that
(i) ordgs =S| +e&(S). If h is an irreducible factor of gs then
(f.h)/ord h = max(x(S), B(S)).
(i) The following conditions are equivalent:
(o) (f,h)y/ord h = max(a(S),B(S)) for every irreducible factor h of gs,
(B) the power series f is nondegenerate on S.
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(iif) One has ord g =1t(f)—1+d(f). Moreover (f,h),/ord h=ord [ for
every irreducible factor h of g if and only if d(f) =0.

Proof. We put g=AB and gs = AsBs. Then we use Theorem 1.1 (i)
and (ii).

Note that d(f) =0 if and only if the Newton polygon ./} has no principal
segment or the Newton polygon ./, has a principal segment and f is non-
degenerate on it. Therefore Corrolary 1.5 enables the calculation of Teissier’s
collection of a nondegenerate singularity by means of its Newton polygon.

Example 1.6. Let f(X,Y)=Y +X3Y3+Y*Y?>+X%Y. Then ;=
{S,U, T} where |S|,/|S], < |U|,/|Ul, <|T|,;/|T|, and f is nondegenerate. We
have &(S)=-1, &T)=0 and max(«(S),p(S)) = max(«(7T),p(T)) =8. The
segment U is principal. Therefore df = ggsgr where ordg=1t(f)—1=2,
ord gs =||S|| =1 =2, ordgr = ||T|| =1. Moreover if & is a prime divisor of
gs or gr then (f,h),/ord h=8. The polar invariants are 6 (of multiplicity
t(f) —1=2) and 8 (of multiplicity ord gsgr =2+ 1 = 3).

2. Contact exponent and minimal polar invariant

Let f = fi--- f, be an isolated singularity with branches f; =0 and let / =0
be a smooth curve (that is / is a series of order 1). Then we consider the contact
exponent of /=0 with /=0

o) =ip e}

and the contact exponent of f =0:
B . I =0 runs over the set of nonsingular
of) = sup{é(f 0): curves different from the branches f; = 0}

(see [BK] pp. 640-661 for Hironaka’s theory of maximal contact).
Note that 5(f) > 1 and J(f) =1 if and only if #(f) > 1.

THEOREM 2.1. Let f = f(X,Y) € C{X, Y} be a power series with an isolated
singularity at (0,0) e C>. Then

(i) if t(f) > 1 then the minimal polar invariant of f =0 is equal to ord f
and its multiplicity is t(f) — 1.

(i) Suppose that t(f) =1 and 6(f,Y) =0(f). Let F be the first segment of
the Newton polygon ANy. Then the minimal polar invariant of f =0 is
equal to o(F) and its multiplicity is ||F|| + &(F) — d(F, f).

(i) The minimal polar invariant of the singularity f =0 is equal to

(ord f)o(f).
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Proof. Part (i) of the theorem follows from Theorem 1.1 (i). To check (ii)
observe that from the assumptions it follows that the axis X = 0 is transverse to
the curve f =0. The Newton diagram of f has the vertex (0,ord f) and lies
strictly above the line o+ f = ord f. Hence all segments of ./ have the incli-
nation strictly greater than 1. In particular |F|, > |F|,. Recall that |F|,/|F|, =
o(f,Y)=05(f) and consider two cases.

Case 1. The power series f is not elementary. Then the segment F is of
the first kind and «(F) is a polar invariant of f =0. Using Theorem 1.1 we
check that all polar invariants of f different from «(F) are strictly greater than
o(F). Thus «(F) is the minimal polar invariant of f and its multiplicity equals
|F|l+e(F) — d(f, F).

CaSE 2. The power series f is elementary. Then F is the unique segment
of 7. Using the criterion of maximal contact (see [BK], Lemma 5, p. 649) we
get that in(f,F) is not of the form (bY —aX*)", ab # 0. Therefore by our
main result «(F) = max(a(F),f(F)) is the minimal polar invariant of f and its
multiplicity is ||F|| +&(F) —d(f,F).

To check (iii) we note that o(F)/ord f = a(F)/p(F) = |F|,/|F|, =(f) and
use (ii).

Example 2.2. Suppose that f is an irreducible power series with charac-
teristic Sy, fy, ..., B, (see for example [M]). If the axis ¥ =0 has the maximal
contact with f =0 then 4} = {F} where F is the segment with vertices (0, /)
and (f,,0). Let e; = GCD(fy,f;). Then in(f,F) = (bXF/er — cYh/e)® with
bc #0 and an easy calculation shows that the minimal polar invariant equals
max(fy, ;) =, and is of multiplicity f,/e; — 1 (here &(F) = —1). Thus we
have got the first of Merle’s formulas [M].

The reasoning like that in the proof of Theorem 2.1 shows

THEOREM 2.3. Suppose that f =0 has exactly one polar invariant. If
o(f,Y)=0(f) and (f,X),=ord f then Ny ={F} and f is nondegenerate on
F. The segment F has vertices (0,n) and (m,0) or (0,n) and (m,1) with m > n.

If two isolated singularities f =0 and g =0 have the same Newton diagram
and are nondegenerate then they are topologically equivalent. On the other
hand for every isolated singularity there is a system of coordinates such that
in Theorem 2.3. Therefore we get the following classification result due to
Eggers.

CorOLLARY 2.4 ([E], p. 16). If f =0 has exactly one polar invariant then
f =0 is topologically equivalent to a plane curve singularity of type Y" — X™ =0
or of type Y"—YX™ =0.
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3. Special values of plane curve pencils

When studying the singularities at infinity of a polynomial in two complex
variables of degree N > 0 one considers the pencils of plane curves of the form
fi=f—1tIY, te C where f and [ = bX — aY are coprime (such pencils are called
in [C] Iomdin Lé deformations). Let u,(f) = (df/0X,df/0Y), be the Milnor
number of the local curve /' =0. Recall that y,(f) = +co if and only if f has
a multiple factor. The number ) € C is a special value of the pencil (f;, e C)
if po(fr,) > inf{pe(f;) : € C}. The set of special values is finite. Using our
main result we will give a bound on the number of special values in terms of the
Newton diagram of the series. Let r(f,S) be the number of irreducible factors
of in(f,S)° and put r(S) = GCD(|S|,,|S|,).

Lemma 3.1. One has r(S)—r(f,S)=r(S)/IIS|Nd(f,S). In particular
r(f,S) < r(S) with equality if and only if f is nondegenerate on S.

Proof.  Write

in(fa S)O = IL[(ij‘Sll/r(S) — aiY‘S‘z/"<S))mz

i=1

with pairwise linearly independent (a;,b;) € C*>. Then r(f,S)=r and r(S)=
> iym;. Now

d(f,S) =ordin(f,S)" — ordin(f, ),y
e IS =T sl
—;mzm_;@_m(r(s)_r(fvs))
and the lemma follows.

The following result is a local counterpart of the Le Van Thanh and Oka
theorem giving an estimation for the number of critical values at infinity (see
[LO], Main Theorem).

Let ¢(S) = max(«(S), B(S)) for any Se A7". We put / =bX —aY and sup-
pose that the line /=0 is not tangent to f = 0.

THEOREM 3.2. Let N # ord f be a strictly positive integer. The number of
nonzero special values of the pencil (f —tIN :te C) is less than or equal to

Y. WS =r(f. )+ Yo (/.9

S:q(S)<N S:q(S)=N

Recall that a sum over the empty set equals zero. If f is a nondegenerate power
series then the sum above reduces to
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r(S).
S:q(S)=N

Note also the bound for all series with the given Newton polygon.

COROLLARY 3.3. The number of the nonzero special values of (f — tIV:
teC) (N #ord f) is less than or equal to

> H(S).

S:q(S)<N

In connection with the above corollary recall the following well-known fact: the
number of branches of the curve f = 0 different from the axes is less or equal to
>-s7(S) (with equality for nondegenerate curves).

To get Theorem 3.2 from the main result we need a few lemmas. The
lemma below is a local version of the description of critical values at infinity
given in [LOJ (pp. 410-411). Let f/h be a meromorphic fraction with coprime
f,heC{X,Y} and let p = p(X,Y) e C{X, Y} be irreducible power series such
that p does not divide h. Let (x(u), y(u)) € C{u}?, (x(0), y(0)) = (0,0) be a
parametrization of the branch p =0. Then we put

£\, ), )
(h)“’) = T, yw)) |, < CUIH

LemMA 3.4.  The set of nonzero special values of the pencil (f —tIV : te C) is
equal to the set

{(f/I™)(p): p is irreducible factor of j(f,l) such that (f,p)y/(l, p)y = N}.
Proof. See [MM] Théoreme 1 or [GB-P] Proposition 2.2.
Let r9(¢) be the number of irreducible factors of the series ¢.

LemMa 3.5. Suppose that ¢ is S-elementary. Then

r(S
(@) < (ord §) TS
S]]
Proof. Let r=ro(¢). Then ¢ =[], #; with irreducible ¢,, The power
series ¢; are S-elementary. Therefore the unique segment of /7(¢;) joins the
points (k;|S|,/r(S),0) and (0,k;|S|,/r(S)) for an integer k; > 1. Consequently

S, 8, o 181

ord g = min (ki 5k ) = 1

for all i=1,...,r. We get
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ord ¢ = Zord ;= Jﬁ'g;”o((/ﬁ)
i=1

and the lemma follows.

LEMMA 3.6. Let us keep the notation from Theorem 1.1. Then

(i) If ord B> 0 then Ny has a principal segment U and ord B =r(U) —
r(f, U).

(ii) If ord Bs > 0 then ry(Bs) < r(S) —r(f,S).

(iif) If ord As > 0 and S is of the first kind then ro(As) < r(f,S).

Proof.

(i) Itis easy to see that if d(f) > 0 then ./#; has a principal segment U and
d(f)=r(U)—r(f,U). Use Theorem 1.1 (i).

(i) Suppose that ord Bsg > 0. Then by Theorem 1.1 (ii) we get ord By =
d(f,S). Now Lemmas 3.5 and 3.1 give

o) < (ord Bs) [ = d(1.) T = 1(S) = 1(1.5).

(iii) Suppose that ord As >0 and S is of the first kind. Then ord 45 =
IS — d(f,S) by Theorem 1.1 (ii) and using Lemmas 3.5 and 3.1 we
get

r(S)

1Sl

= (IS - d(f. S))%: "(f.S).

Lemma 3.7. Suppose that ord As >0 for a segment S e N of the second
kind. Let N = max(a(S),(S)). Let As = AcAS be the faclorzzatlon of As such
that in Theorem 1.1 (iv). Then

(i) ro(dg) <r(f,8)—1,

(ii) for every prime factor p of A%: (f/I")(p) = (f/I1V)(vs).

Proof. By Theorem 1.1 (ii) we get ord As = ||S||— 1 —d(f,S) (&(S) = -1
for the segments of second kind) and consequently, like in the proof of Lemma
3.7 we obtain

ro(As) < (ord As) =

.8 - < hrs).

r()<Ag) ( dA )Q < (ord S) ||S||

r(S) _
ISl = IS

Since ro(A%) and r(f,S) are integers we get ro(Ag) <r(f,S)—1. To prove the
second part of Lemma 3.7 assume that S = F is the first segment of A} (if S=L
is the last segment then the proof is similar). Then vgs=vr =X. Let p be a
prime factor of A7. We may assume that the branch p = 0 is different from the
axis X =0. Note that |Fj|/|F>| <1 and N = B(F). Let (x(u), y(u)) be the in-
jective parametrization of the branch p =0. Put m = ord x(u) and n = ord y(u).
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The series p is elementary, the unique segment of .4/, joins the points (n,0) and
(0,m) and is of inclination n/m < |F|,/|F|, <1 by Theorem 1.1 (iv). The line
supporting the Newton diagram of f of slope —m/n passes through the point
(0,8(F)) = (0,N) and, consequently, has the equation mo + nff = nN. It inter-
sects the Newton diagram of f exactly at point (0,N). Therefore

f(X,Y)=con YN+ Z Cop X * Y?  with coy # 0.
ma+nf>nN
The line /(X,Y) =bX —aY is not tangent to f=0. Then a # 0 and
f(x(u), y(u)) = cony(u)™ + terms of order > nN

I(x(u), y(u)) = (—a)"y(u)" + terms of order > nN

(R (e

Now we give the proof of Theorem 3.2.
Let

Consequently

of = AB H AsBs

Se Jf*’

be a factorization of Jf such that in Theorem 1.1.
According to Lemmas 3.4 and 3.7 the number of nonzero special values of
(f =tV :teC) is equal to

#{(f/I")(p): p is a prime factor of df and (f,p),/ord p = N}
<ord B+ Z ro(Bs) + Zl ro(As) + ZH (ro(4g) +1)

S:q(S)<N S:q(S)=N S:q(S)=N

where the symbols 37 resp (3.”) mean that the summation is carried over the
segments of the first kind (of the second kind). The theorem follows from
Lemmas 3.6 and 3.7.

Remark 3.8. An obvious modification of the above proof shows that the
pencil (f —t°% :te C) has at most #(f) — 1 nonzero special values.

Example 3.9. Let 1 <n<m be integers such that d = GCD(m,n) < n.
Put weight X = m, weight ¥ =n and let f(X,Y) = (bX"/ — aY’"/")d + terms
of weight >mn, (ab # 0) be a power series with an isolated singularity at 0 € C>.
Using Theorem 3.2 we check that the pencil f; —tY"™, t e C has at most one
nonzero special value. One can prove that this value always exists.
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4. Preliminary lemmas

Let p=¢(X,Y)eC{X,Y} be a nonzero power series without constant
term and A = bX — aY be a linear form. Put dp = a(dp/0X) + b(dp/dY) (we do
not assume that in ¢(a,b) # 0!) and note that ord dp = ord ¢ — 1 if and only if
in ¢ # const. 4°7°.

It is easy to check the following two properties:

(i) if dp =0 (mod ¢) then ¢ =0 (mod 4),

(i) if ¢ = A% in C{X, Y}, ¢ without constant term and i # 0 (mod A)

then dp = AX0y and Y # 0 (mod A).

LEMMA 4.1. Let k > 0 be the greatest integer such that J* divides o and let
0= )qu)]m‘ - with s > 0 irreducible and pairwise coprime ¢; € C{X,Y}. Then
m|—1 .

0p = ik(poq)l o™l in C{X,Y} and ¢,p, are coprime.

m

Proof. Differentiating the product ¢ = lk(ol <ol we get

dp =gt !
where ¢y = mi(0p,)p, - Qs+ -+ @1 - @, ms(0p,). If ¢; (i #0) were a factor
of ¢, then ¢; would be a factor of dgp,. This implies ¢; =0 (mod 1) by property
(i), which is impossible because A does not divide ¢;. To check that 1 does not
divide ¢, we use property (ii).

Remark. Tt is easy to check that ord ¢y = >"7 , ord ¢; — (ord ¢ — ord dp).
The following is well-known (see Section 5, Lemma 5.2).

Lemma 4.2, Ifin f =" --- 9" with ¢; linear pairwise linearly independent
then f=fi---f; in C{X,Y} and in f; = ¢/" for i=1,... 1.

Using the above lemmas we will prove

Lemma 4.3. Let of =a(of/0X)+b(0f/0Y) with (a,b) e C? such that
in f(a,b) #0. Then 0f = AA in C{X,Y} where ordA=1¢t(f)—1, ord A=
ord f — t(f) and for every irreducible factor h of of: (f,h),/ord h = ord f if and

only if h divides A.

Proof. Let in f=¢" - -9/, ¢; linear and ¢=1¢(f). Then in(df)=
a(in f) = pop™ - p/" in C{X, Y} with coprime ¢,, in f. By Lemma 4.2
we get a factorization Jf = gog;---g, where ingy =g, and ing; = (o;”"*l for
i=1,...,t. By Remark to Lemma 4.1 we get

t
ordgo=» ordp;,—1=t—-1=¢f)—-1.
i=1
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Put A =gyo, A=g1---¢g;. Let h be an irreducible factor of of, if i divides 4
then the curves /=0, # =0 are transverse and (f,/), = (ord f)(ord h). If h
divides 4 they are not, thus (f,%), > (ord f)(ord k).

5. Newton polygon and factorization of power series

Let us keep the notation introduced in Section 1. The following two
lemmas are well-known.

Lemma 5.1. Let f=f(X,Y) be a nonzero power series without constant
term. Then there is a factorization

f=uxty® I fs in C{X, Y}

Se N

where u is a unit, such that
(1) A (fs) ={S'} where S’ is the segment with vertices (|S|,,0) and (0, |S],),
(ii) in(fs,S’) = const.in(f, S)°.

LemMa 5.2. Suppose that N (f) = {S} where S is a segment with vertices
on the axes. Suppose that in(f,S) = -, with coprime ;. Then there is a
factorization

f = fl T f;n
such that A A
i) A(fi)= {SD} where S is a segment parallel to S,
(i) in(f;, S) =y, for i=1,...,m.

6. Proof of the main result

We will prove our theorem for polars df = a(df/0X) + b(df /0Y) such that
abin f(a,b) #0. Ifa=0or b =0 butin f(a,b) # 0 then the proof needs some
modifications (see [LP]|, p. 318). By Lemma 5.1 we may write

(1) & =uX* Y [Tre )@ )7 in C{X, Y} where u is a unit and

(2) (0f)y is an elementary power series; A"((df);) = {T'} where T’ is the

segment with vertices (|7],0) and (0,|7T],),

(3) in((df)y, T") = const.in(df, T)°.

The proposition below is already proved in [LP] but it is not stated there ex-
plicitly.

ProOPOSITION 6.1.  Suppose that f e C{X,Y} has an isolated singularity at
(0,0) € C2.  Then there is a factorization

of =y H gs in C{X,Y}

ok
Se Ny
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such that
() ordg=d(f)+1(f)~1, ord g5 = S| +&(S) for SeN}",
(i) IfSe N7 is a segment of the first kind then there is a segment T € Nor
(necessarily unique) parallel to S. We have gs = (0f ).
(iii) Suppose that S e N7 is a segment of the second kind. Then
(a) for every T € N'(gs) the power series (Of ), divides gs.
(B) If |S|y < IS, (resp. |S|; <|S|,) then for every T € A (gs) :|T|,/|Tl,
< IS1y/IST, (resp. [S1,/IS], < I T1,/IT1y).
(y) Every barier of the Newton diagram of f parallel to a segment of
N'(gs) passes through the vertex of S lying on the axis vs = 0.
©) If there is no segment of N(gs) parallel to a segment of N7 then
d(f,s)=0.

Proof. 1f N =0 then d(f)+t(f)=ord f, thus we may assume that
NF# 0. According to [LP], Theorem 1.1 p. 310 there is a factorization
4) of = UHSGM_H gs in C{X, Y} such that
(5) ord gs = ||S|| +&(S) for every Se A},
(6) if ord v >0 then ordv=1 and (f,i7)0 =ord f.
Moreover, by the definition of v given in [LP], p. 317 we have
(7) ord v > 0 if and only if in f = const. X* Y% for some o, f, > 0.
To define the power series g we consider two cases.

Casg 1. The initial form in f is not a monomial. Then there exists the
principal segment Ue ./ and inf=in(/,U). It is easy to see that
ordin(f, U),q = t(f) — 1 —&(U). Consequently

d(f) =d(f,U) = U] = ordin(f, U)req = |Ull +&(U) = (e(f) = 1)

and ord gy = ||U|| +&(U) =d(f) +t(f) — 1 by (5). Put g =wvgy. Note that v
is a unit by (7) hence ord g = ord gy = d(f) + ¢(f) — L.

Casg 2. The initial form in f is a monomial. If in /" = const. X4/ or
in f = const. Y°4/ then d(f)+#(f) —1=0. Weputg=vo. By (7) visa unit
and consequently ord g =0. If in f = const. X* Y% with oy >0 and g, >0
then d(f)+¢(f)—1=1. We put g=v. By (6) and (7) we get ordg = 1.

By the definition of the series g we can rewrite (4) in the form

(8) of = gllse-gs. ordg=d(f)+1(f)—1
The conditions (ii) and (iii) («), (f), () follow immediately from the definition of
gs given in [LP] p. 317. To check (iii) () we observe that by [LP], Lemma 2.3
the initial form in(f,S) is the sum of two monomials. Thus d(f,S)=0.

PrOPOSITION 6.2.  Let Se N[ and T € Ny be parallel.  Then there is a
factorization '

(of)y = AsBs in C{X, Y}
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such that
() If ord As >0 then As is S-elementary. Suppose that ord As >0 and
let NV(As) ={S}. Then the power series in(As,S) and in(f,S) are
coprime.
(i) We have ord B =d(f,S). If ord Bs >0 then Bs is S-elementary.
Suppose that ord Bs > 0 and let N (Bs) = {S}. Then the power series

in(Bs,S) divides in(f,S).

Proof. Let 0=a(0/0X)+b(0/0X) with abin f(a,b) #0. We may as-
sume that |S]; < |S],. By [LP], Theorem 2.1 (5), p. 313 we get
(9) in(ef. T) = a(2/oX) in(f, ).
Let us consider the factorization
(10) in(f,S) = X Y”Sx//fl S with irreducible, pairwise coprime ;e
C{x,Y}
and let A=Y. We apply Lemma 4.1 to in(f,S) and A
(11) (8/6X) in(f,S) = Yhsyppxmax(as=1Ony =ty
where Y, and in(f,S) are coprime. By (2), (3) and (11) we get
(12) in((@f) 7, T") = ot "+ ™"
Clearly the power series V,,...,¥,, and v, (if ord y, > 0) are S-elementary.
According to Lemma 5.2 we get the factorization
(13) (3f)7 =9gog1---gm in C{X, Y} such that
ord go > 0 if and only if ord y, > 0. If ord gy >0 then gy is S-
elementary, ./ (go) = {S(¥} and in(go, S©) = ¥,
- ordg; >0 1if and only if k; > 1 (for j=1,...,m). If ord g; > 0 then
g; is S-elementary, A" (g;) = {SU} and A"(g;, SV)) = lﬂ}cf*l.
Let A5 =go and Bs =gi---gm._ By (13) we get (df); = AsBs. Suppose that
ord As > 0. Then A'(4s)={S} where §=S® and in(4s,S) = in(go,S?)
=, consequently in(A4g,S) and in(f,S) are coprime. On the other hand

m m

ord Bsg = Zord g = Z(kj — 1) ord y;
=1 =1
=2 kordy; =3 ¥
=1 =1

=ordin(f,S)" —in(f,S)pq = d(f.S).

Suppose that ord Bs > 0. The power series Bg is S-elementary as a product of
S-elementary power series. If 4(Bs) = {S} then in(Bs, S) = 17 lﬂ;(jil divides
in(/,5).

PROPOSITION 6.3. Let Se A" and let h be an irreducible factor of gs.
Then (f,h),/ord h > max(«(S),S(S)). The inequality (f,h),/ord h > max(«(S),
PB(S)) holds if and only if the following two conditions are fulfiled
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(a) the power series h is S-elementary, R
(b) if S is the unique segment of N, then the system of equations in(h,S) = 0,
in(f,S) =0 has a solution in (C\{0}) x (C\{0}).

Proof. Proposition 6.3 follows from [LP], Lemma 3.2, p. 316 which remains
true when we replace the phrase “if the pair f,/ is nondegenerate” by ‘“if and
only if the pair f,/ is nondegenerate”.

Now we can give the proof of Theorem 1.1. Let us consider the facto-
rization

of =g [[ 9s in C{X,Y}

Se .Af

such that in Proposition 6.1.

Let S e A7 be a segment of the first kind. Then by Proposition 6.1 (ii) we
have gg = (df); where T € AN is a segment parallel to S. Let gs = (0f); =
AsBg be the factorization of (Jf), such that in Proposition 6.2. Then
ord Bs = d(f,S) by Proposition 6.2 (ii) and consequently ord A5 = ord gs —
ord Bs = ||S|| +&(S) — d(f,S) by Proposition 6.1 (i). Moreover if ord 4g >0
(resp. ord Bg > 0) then Ag (resp. Bg) is S-elementary. Let / be an irreducible
factor of AsBs =gs. Then (f,h),/ord h > max(a(S),f(S)) by Proposition 6.3.
Using Proposition 6.2 we check that 4 divides By if and only if / fulfils conditions
(a) and (b) from Proposition 6.3. Thus (f,h),/ord i > max(a(S), #(S)) if and
only if /4 is a divisor of Bg. Summing up, we have checked that the factorization
gs = AsBs where S eﬂ/j}* is of the first kind, satisfies all conditions stated in
Theorem 1.1. Now suppose that S e /" is of the second kind. We consider
two cases.

Case 1. There is no segment T € ./, parallel to S. Then d(f,S) =0 by
6.1 (iii) (0) and we put As = A5 =1, A =gs and Bg=1. Using Proposition
6.1 we check that the factorization gs = A¢A¢Bs has all properties needed in
Theorem 1.1.

Case 2. There is a segment 7T € ./ parallel to S. Then by Proposition
6.2 we get

(0f )y = A4Bs in C{X, Y},
On the other hand (df); divides gs by Proposition 6.1 (iii) and we can write
gs = Ag(df)r in C{X, Y}

Thus we get gs = AsBs with Ag = AcA¢. As in the case of the segment of
the first kind we check that the factorizations gs = AsBs, As = A5Ag have all
properties stated in Theorem 1.1. To finish the proof it suffices to check that
there is a factorization g = AB in C{X, Y} with ord 4 = #(f) — | such that / is
an irreducible factor of g with property (f,%),/ord h=ord f if and only if A
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divides A. To this purpose we apply Lemma 4.3 to the series 0f and observe
that if /2 is an irreducible factor of HSG(/‘,}-M gs then (f,h),/ord h > max(a(S), 5(S))

for a segment Se /" and max(«(S),B(S)) > ord f.
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