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Abstract

Let H(U) be the space of analytic functions in the unit disk U and let 9 =
{pe H(U) : p(0) =1,9(z) #0,z€ U}. For the functions ¢,¢p € Z we will determine
simple sufficient conditions such that

9(2) i
- 2) <k(z)= 1405, k(z),
TR <K@ > e, 1) < k(2
for all ke .4y, where
1/p

Lo L11E) = s | 0ot a

and /| sp Trepresents the class of 1/f-convex functions (not necessarily normalized).

In particular, we will give sufficient conditions on ¢ and ¢ so that the operators
T4 4.5, are averaging operators on certain subsets of H(U). In addition, some par-
ticular cases of the main result, obtained for appropriate choices of the ¢ and ¢
functions, will also be given.

1. Introduction

Let H(U) be the space of analytic functions in the unit disk U={ze C:
|z] <1} and let 2 ={pe H(U):p(0) =1,9(z) # 0,z U}. We denote by &/
the class of analytic functions in U and usually normalized, i.e.

o ={f e H(U): £(0) = 0,£'(0) = 1}.
If B,y e C with p # 0, for the functions ¢,p € & we will define the integral
operator Iy ,.p,: Hpp, — H(U) of the form

1/

(L.1) Ly /1(2) = [% j;f'/f(z)ﬂ-'go(z) al

where 4,5, = H(U) will be determined in Lemma 3.1, such that the integral
operator (1.1) is well defined.
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The first major result concerning this operator was given in [8], and some
particular cases were previously studied in a large number of papers.

For a set E < C let denote by co E the convex hull of E. In [10] and [4]
the authors introduced the concept of averaging (or mean-value) operator on an
arbitrary set K < H(U), like an operator 1: K — H(U) that satisfies

I[f](0) = f(0) and I[f](U) =co f(U), for all fek.

For f,ge H(U) we say that the function f is subordinate to g, written
f(z) <g(z), if g is univalent in U, f(0) =g¢(0) and f(U) = g(U).

By using several results involving differential subordinations and subordi-
nation chains techniques, we will determine simple sufficient conditions on
¢,p € P such that

/B

7(2) £) < k(=) = g g 1) < K(2),

$(2) + (1/7)2¢'(2)

for all ke . /8> where .| /p Tepresents the class of 1/f-convex functions (not
necessarily normalized) and is given by (2.2). In particular, we will give con-
ditions on ¢ and ¢ so that the operators Iy ,. 5, are averaging operators on certain
subsets of H(U), and in addition, some special cases of the main result obtained
for appropriate choices of the ¢ and ¢ functions will also be presented.

2. Preliminaries

In order to prove our main results, we will need the following definitions and
lemmas presented in this section.

Let denote by 2 the set of functions ¢ that are analytic and injective on
U\E(q), where

E(q) = {CG U : lln} q(z) = oc},
and such that ¢’({) # 0 for { € OU\E(q).

Lemma 2.1 [1]. Let qe 2, with q(0) =a, and let p(z) =a+ a,z"+--- be
analytic in U with p(z) £a and n>1. If p is not subordinate to q, then there
exist points zy € U and {y € JU\E(q), and an m > n > 1 for which p(|z| < |z|) =
q(U), and

(i) p(z0) = q(Lo)s
(i) zop'(z0) = mloq' (Co),

zop” (20) 204" (20)
(i) Re 2(z0) +1 ZmRe[ 70 + 1].

For o € R, a function f € H(U) with f(0) =0 and f’(0) # 0 is called to be
an a-convex function (not necessarily normalized), if
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Re|(1 _a)z{f’((zz))jw(z;/"((zz))“)] >0, zel,

and we denote this class by .#,. The class of a-convex functions was introduced

by P. T. Mocanu in [9]. Note that all a-convex functions are univalent and
starlike, and moreover [7],

(21) %aCE%ﬂC%O, for Oﬁg <1.
For o € R we denote by
(2.2)
' o #f'(2) #"(2)
M, = {feH(U) : £1(0) ;éO,Re[(l — o) 70 +a<f’(z) +1>] >0,zeU}7
and then
. r Y Zf"(Z)
v :%1—{feH(U).f(O)¢O,Ref/—(z)+1>0,zeU}

represents the class of convex functions (not necessarily normalized) in U.
The next lemma gives us a necessary and sufficient condition for an operator
to be an averaging operator.

Lemma 2.2 [10], [4, Lemma 2]. Let K < H(U) and let an operator
I1: K — H(U) that satisfies 1[f](0) = f(0) for all feK. A necessary and
sufficient condition for 1 to be an averaging operator on K is that

feK, k convex and f(z) < k(z) = I[f](z) < k(z).

Let ce C with Rec¢ >0, and let N = N(c) = (J¢]v1+2Rec+Imc)/Rec.
If y is the univalent function y(z) = 2Nz/(1 — z?), then we define the open door
function R. by

z+b
23 R.(z) = 23 U,
23) @=a(E5). ae

where b = y71(c).

Remark that R, is univalent in U, R.(0)=c¢ and R.(U)=y(U) is the
complex plane slit along the half-lines Rew =0, Imw >N and Rew =0,
Imw < —N.

LemMa 2.3 [3, Theorem 1]. Let ¢p,p€ P and let o, B, y and 6 be complex
numbers with f #0, a+0 =+ 7y and Re(a+35) > 0. If f e satisfies

() = (2)
T T

and the function F is defined by

+0< Ra+5(2>7
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z 18
(2.4) F(z)= [Z/):;r(zy) L f“(t)z‘Hgo(t) dz} =z4 -,

then Fe <o/, F(z)/z#0, Vze U and
zF'(z) | 24'(2)
Re| 15+ s

(All powers in (2.4) are principal ones.)

+y} >0, zel.

LEmMMa 2.4 [6, Lemma 1.2c]. Let n >0 be an integer and let y e C, with
Rey>—n. If f(z) =) ,s,amz™ is analytic in U and F is defined by
1 z
& = [ st ar

Zy()

then F(z) =3, ,anz"/(m+ ) is analytic in U.

Lemma 2.5 [2, Theorem 2], [4, Theorem 2]. Let k be convex (univalent) in U
and let A >0. Suppose M > 4/|h'(0)| and that B and D are analytic in U, with
D(0) =0 and

Re B(z) = A+ M|D(z)|, zeU.

If p is analytic in U with p(0) = k(0), and if p satisfies
AZ%p"(2) + B(2)zp(2) + p(2) + D(2) < k(2),
then p(z) < k(z).

A function L:U x [0,400) — C is called a subordination (or a Loewner)
chain if L(-;¢) is analytic and univalent in U for all £ > 0, and L(z;s) < L(z; 1),
when 0 <s <t

LemMmA 2.6 [11, p. 159]. The function L(z;t) = ai(t)z + ax(t)z* +---, with
ai(t) #0 for t =0, and lim,_, . |a\ ()| = o0, is a subordination chain if and only if
there exist constants r € (0,1] and M > 0 such that

(i) L(z;1) is analytic in |z| < r for each t > 0, locally absolutely continuous in
[0,00) for each |z| <r, and satisfies

|L(z;0)| < Mlay(2)|, for |z| <r and t >0

(i) there exists a function p(z,t) analytic in U for all t€[0,00) and mea-

surable in [0, 00) for each z € U, such that Re p(z,t) >0 for ze U, t€ [0, ), and
0L(z; 1) 0L(z; 1)

5 = o p(z,1), for |z| <r and for almost all t€ |0, ).

3. Main results

First we need to determine sufficient conditions on the ¢ and ¢ functions
such that the integral operators I, .z, are well defined.
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From the fact that
18

(3.1) I¢7w;ﬁ7~,¢f}<z>=(ﬁ) F(z), if 9 #0,

where

B ﬂ"_)} J~z p - :|l/ﬂ
F(z) = nHe’ ) de|
@ = |k o
in order to determine the subset %5, = H(U) so that the operator I .z, given
by (1.1) is well defined, we need to find the set %,z , such that F € H(U) for all

S € Hypy

Lemma 3.1. Let B,yeC with §#0, Re(f+y) >0 and let ¢,pcD. If
Ry, represents the open door function defined by (2.3) and if
#'(z) | z¢'(2)

7@ o)

Hpipy = {fe;zf:ﬁ +V<Rﬂ+y(z)}» Jor B #1,

and
Hp1,y =H(U), for p=1, if in addition Re y >0,
then the integral operator 1y ,.p ., is well-defined.

Proof. 1If p#1, from (3.1) by using Lemma 2.3 for the case o« = f and
0 =7y we deduce the first part of the result.
If =1, denoting t = wz we have
1

= y+1 J . 7—1
F(z)=—| f(wz)p(wz)w’ " dw,
(@) =" | 0ot
and from (3.1) according to Lemma 2.4 we obtain the second part of our
result. O

Using Lemma 2.3, the previous result and the relation (3.1), respectively
Lemma 2.4 and the relation (3.1) we deduce the next two remarks:

Remark 3.1. Under the assumptions of Lemma 3.1, for f # 1, we have

F(z) ZF'(2) N z¢'(2)

Fe.d, F(z) 52

#0, zeU and Re[ﬁ +y >0, zel,

hence,

18
Ly g5, [f1(2) = (ﬁ) z+--- € H(U), Yfedyp, and f+#1.

Remark 3.2. Under the assumptions of Lemma 3.1, we have
L0551 /1(0) = £(0), Vf € App,y
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THEOREM 3.1. Let f,y € C with f > 0 and Re y > 0, let ¢, 9 € @ and suppose
that

(i) Re[z;ﬁ;g)ﬂ] >0, zeU.
Let ke dly,; and f € Hpp,. Then
p(2) 18
#(z) + (1/y)z¢’(z)] J(2) <k(z) = Tpip [11(2) < K(2).

Proof. Since ff #0 and Re(f+7y) >0, according to Lemma 3.1, the op-
erator Iy .5, is well-defined on the set %5 ,.

From the assumption [p(z)/(4(z)+(1/7)z¢'(2))]/’f(z) < k(z) we have
f(0) =k(0). If f#1 then fe.o/, hence k(0) = f(0) =0 ie. ke.# ), so it
follows that k is univalent in U. If =1 then ke #' = ./}, hence k is a
convex (and univalent) function in U.

If we denote by F(z) =1y .5,[f](z), then by Remark 3.2 we have F(0) =
f(0) and

o(2) Ve pa|fE@ L
(3-2) ¢&H<uwmvﬁ‘”)‘F‘4yF@ Ao Y
where
1)
H(z) —l—l—y e .

Remark that the assumption (i) implies H(z) # 0 for all z e U.
Thus, we need to prove the next implication:

BzF'(z) 1 1/
(3.3) (2) ) F(z) H +1| <k(z)= F(z) < k(2).

For the particular case f =1, the implication (3.3) becomes

F(z)+

1 /
VH(Z) zF'(z) < k(z) = F(2) < k(2).
According to Lemma 2.5 for 4 =0 and D(z) = 0, and by using the inequality (i)
we deduce that the above implication holds.

Now we will prove our result for the case f # 1. Without loss of gen-
erality we can assume that k satisfies the conditions of the theorem on the closed
disk U and k'({) # 0 for |[{| =1. If not, then we replace f, k, ¢ and ¢ with
fi(z) = f(rz), ke(z) = k(rz), ¢.(z) = ¢(rz) and ¢,(z) = p(rz) where 0 <r < 1, and

then k. is univalent on U. Since
1/p

2r(2) 72 <k(2),

¢,(2) + (1/7)24,(2)
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we would then prove that
Fi(2) = F(rz) =14, .5, /](z) < ki(z), for 0 <r <1,

and by letting r — 1~ we obtain F(z) < k(z).

If we suppose that the implication (3.3) is not true, i.e. F(z) X k(z), then
from Lemma 2.1 there exist points zp € U and {, € dU, and a number m > 1,
such that

(3-4) F(z0) = k(o)
and
(3.5) 20F'(z0) = m&ok' (Lo).
To prove the implication (3.3) we define the function L: U x [0, 0) — C by
(3.6) L(z;6) = k(2) [5’)/"/(2) L, 1}1//3: @ (f)z + -
’ 7 k(z) H(z) ’

and we will show that L(z;¢) is a subordination chain.

From the fact that zk'(z)/k(z)|._, = | and the assumptions (i) and § > 0, we
have
P zk'(z) 1
Re = >0,
v k(z) |.oo H(z0)

hence L(z;¢) is analytic in |z| <r <1, for sufficient small r >0 and for all
t>0. We also have that L(z;¢) is continuously differentiable on [0, c0) for each
lz| <r< 1.
A simple calculus shows that
~ 0L(0;1)

/B

and because k'(0) # 0, from (i) and f > 0 we deduce

B
Re |-t
L H(z))
hence a;(¢) #0, V¢t >0. From (i) we have (B/y)t(1/H(z)) # 0, Vzoe U and
V>0, so we obtain that lim, . |a;(f)] = co.
Using the definition (3.6), by a directly computation we obtain

Re [z ZZZ] — if Re [(1 - %) ZZS) +% (1 + Z/f//;(zz))ﬂ + Re[yH(z)].

From the above relation, by using the fact that k € ./ sp and the assumption
(i), we deduce that

+1} >1>0, V=0,

0L/oz
>
Re[ZO“L/Ot] >0, VzeU, V>0,
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and according to Lemma 2.6 we conclude that L(z;¢) is a subordination chain.
This implies in particular:

(3.7) k(z) = L(z;0) < L(z;t), Vi=0.
Using the equality (3.2) and the relations (3.4) and (3.5) we obtain
o(z0) W [BaE ) 1 1
revEtEy e AR e il
B k@) 1 17
=k e+

:L(COam)a m = 17
and then, according to (3.7) we deduce that

i ]l/ﬁf(Zo) = L(Co;m) ¢ k(U)

#z0) + (1/7)209'(20) : |
This last relation contradicts the assumption [p(z)/(d(z) + (1/)z¢'(2))]Pf(2) <
k(z), then we finally conclude that F(z) < k(z). O

4. Particular cases

In this section we will discuss several particular cases of Theorem 3.1 ob-
tained for appropriate choices of the ¢ and ¢ functions.

1. For a given function ¢ € 2, taking ¢(z) = ¢(z) + (1/y)z¢'(z) in Theorem
3.1, then ¢(0) =1 and the assumption (i) of the theorem is equivalent to

Re[y%} >0, zel.

Since ¢(z) # 0, Vz € U, from the above inequality it follows that ¢ € Z and then
we obtain:

COROLLARY 4.1. Let §,y € C with f >0 and Re y > 0, let ¢ € @ and suppose
that

B Re [Z<(>)

Let ke, and f € Ay p-p.p,, Then
f(Z) < k(Z) = I¢,¢+(l/y):¢’;[$’,7[f](z) < k<2)a

+y] >0, zel.

where

1/
(4.1) Ty gy 1)) = [

e e WO CORRAUNEY
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Using this corollary in the special case k(z) = f(z) we obtain the next
example:

Example 4.1. Let f,ye C with >0 and Rey > 0, let ¢ € Z and suppose
that
24'(2)
9(2)

(1) Re[ —|—y]>07 zeU.
If S € Hget1pyzpspy N M1 yp then

Ly g mzp:polf1(2) < f(2),
where 1; 4. (1/5)-4.5,1f] 18 given by (4.1).

Our next result deals with a general class of averaging integral operators.

COROLLARY 4.2. Let B,y e C with f > 1 and Re y > 0, let ¢ € & and suppose
that

2'(2)

9(2)
Then the integral operator 1; 4.4, given by (4.1) is an averaging operator on
Ho(1 /0457

(1) Re[ +y]>0, ze U.

Proof. 1f f € Ay (1/,)-4.p,5» then from Remark 3.2 we have Iy 4.1 /5)-4.5,
[f1(0) = f(0). Let consider an arbitrary convex function k such that f(z) <
k(z).
( )For the case f =1 we have k € #' = /| and, according to Corollary 4.1
we deduce that Iy 4. (1/,)-4.1,/1(2) < k(z).

For the case > 1, since f(z) <k(z) and f € A5, (1/).4.p, then k(0) =
f(0)=0. From (2.1) we have ke ./ <.,y < .4}, for f>1, and using
Corollary 4.1 we obtain that I, 4,1 /,-4.5,0f1(z) <k(z) for > 1.

Now, from Lemma 2.2 we conclude that in the both two cases the integral
operator Iy ;. (/,)-4'.5,, 1S an averaging operator on (i -4’z ;- O

Remark 4.1. Remark that this corollary generalizes Theorem 1 of [5] that
may be obtained for the particular case ¢(z) = 1.

2. Taking ¢(z) = ¢(z) = ¢** with 1€ C in Theorem 3.1, then ¢ = ¢ € Z and
the condition (i) of the theorem reduces to Re(4z+y) >0, Vze U. Since this
inequality holds whenever Re y > |1|, we obtain:

CoROLLARY 4.3. Let B,ye C with >0 and Rey >0. For a number
A€ C, suppose in addition that Re y > |1|. Let k e %i/ﬁ and f € Ay, Then
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y 1/p
(m) f(2) <k(z) = 1o oz, [ f1(2) < K(2),

where

L eop /1) = { 7 J;fﬂ() 71 it dt} 1/p

ZVE/LZ

By the same reasons, if we take ¢(z) = ¢(z) = e** with A€ C in Corollary
4.2, we have:

COROLLARY 4.4. Let f,ye C with f>0 and Rey>0. For a number
/€ C, suppose in addition that Re y > [A|. Then the integral operator 1, .4,
given by

Y - " y—1 Az Az Az "
Ie’-Z‘e/"v:qL(iz/y)e’-:;/f,7[f](Z) = |5 ,J S (t)l e —|—7€' ds

7z
z’e*s |y

is an averaging operator on Ag.g .

Remark 4.2. Note that this corollary also extends Theorem 1 of [5] that
may be obtained for the special case A =0.

3. Considering ¢(z) =1+ Az, A€ C, then ¢(0) =1 and for |4| <1 we have
#(z) #£0, Vze U, ie. ¢ 2.
It is easy to check that the condition (i) of Theorem 3.1 becomes

Az
(42) Re |:m + y:| > 07 ze U.

Letting x({) = {/(1 + ), since x'(0) # 0 and

409 1-¢

+1=Re——>0, (<],
70 e
the function y is a convex function in D= {{e C:|{| < [A|}, if || <1. From
the fact that y({) = 7({), { € D, we deduce that the function y maps the disk D
onto the convex domain y(D) that is symmetric with respect the real axis.
Hence

Re

. Az |4
I — 1(—|A) = f 1
in {1 i zeU} t(—|A]) -1 or |4 <1,

which shows that the condition (4.2) holds whenever Rey > |4|/(1 — |4|), for
|Z] < 1. From here, by using Theorem 3.1 we have:

COROLLARY 4.5. Let f,ye C with >0 and Rey > 0. Let pe 2 and for
a number A € C with |1 < 1, suppose in addition that
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]
R > .
TETN

Let ke iy, and [ € Ayp,. Then

1/p

7(2) £ <) = Try gy [11(2) < ().

L+ ((y+1)/)iz

By the same reasons, if we take ¢(z) = 1 + Az with |A| < 1 in Corollary 4.2,
we have:

COROLLARY 4.6. Let f,y€ C with f >0 and Rey > 0. For a number A€ C
with |1 < 1, suppose in addition that

2
R .
TET-]

Then the integral operator 1y ;. \4((41)/y)izp.y given by

1 1/p
e e 1) = |l [0 (147500 o

is an averaging operator on Hii((+1)/y)izp,y-

Remark 4.3. This corollary also extends Theorem 1 of [5] that can be
obtained for the particular case A= 0.

4. If we take ¢(z) = (1 +z)* with @ < 0 in Theorem 3.1, then the condition
(i) of the theorem reduces to

Re{zaz +y} >0, zel.
1+z

If a < 0, the function y(z) = 2az/(1 + z) maps the unit disk U onto the half-
plane A = {we C:Rew > a}, and we deduce that the above inequality holds if
and only if Rey > —a.

If @ =0, the same inequality holds for all y € C with Re y > 0, hence we
obtain the next result:

COROLLARY 4.7. Let ,y€ C with f >0 and Rey > 0. Let pe 2 and for
a number a <0 suppose in addition that

Rey > —a.
Let ke iy, and [ € Hyp,. Then
1/p
¢(2)
z) < k(z % z) < k(z).
T | 1O <HO = L 1) < K62
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Similarly, by taking ¢(z) = (1 +z)** with @ <0 in Corollary 4.2 we have:

COROLLARY 4.8. Let 5,y € C with f >0 and Re y > 0. For a number a <0
suppose in addition that
Rey > —a.

Then the integral operator I(1+Z)Za’(l+z)2u—l<1+((20+y)/7)z>;ﬂ7y given by

Lty (1) (a1 (2)
. 2asyy
=|— | P! 1+12“—1<1+—z) dr
Z”/(l—i—z)Z“Jo e ) l4

is an averaging operator on Ji?lﬂ)zm<1+((2a+},)/y)z>:ﬂ_y.
Remark 4.4. For the particular case « =0 we remark that this corollary

represents Theorem 1 of [5].
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