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ENTIRE FUNCTIONS OF SMALL GROWTH THAT SHARE ONE
VALUE WITH ITS LINEAR DIFFERENTIAL POLYNOMIALS*'

JUN WANG AND HONGXUN Y1

Abstract

In this paper, we investigate the relationship between an entire function of small
growth f and its linear differential polynomial L(f) when they share one value by
applying value distribution theory and complex oscillation theory. As consequences of
the main result we can get the precise form of f.

1. Introduction and main results

Let f(z) and g(z) denote some non-constant meromorphic functions and a
be a finite value. We say f(z) =a—g(z) =a if z, (n=1,2,...) are the zeros
of f(z) — a with multiplicities v(n), and z, (n=1,2,...) are also zeros of ¢g(z) —a
with multiplicities at least v(n). If f —a and g — a have the same zeros with the
same multiplicities, then we say that f and g share « CM. By S(r, f) we denote
any quantity satisfying

S(V,f) ZO(T(r’f))v

as r — oo, possibly outside a set of r with finite linear measure. Then a
meromorphic function o(z) is said a small function of f if T(r,a) = S(r,f). In
addition, we shall assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna theory (e.g. see [5] or [7]).
Especially, we use o(f) to denote the order of growth of f(z).

On the problem of uniqueness of an entire function and its derivative that
share one value, the following results have been obtained.

THEOREM A ([12]). Let f be a non-constant entire function, k be a positive
integer. If f and f® share the value 1 CM, and if

N<fi> < (4 o())T(r, f)
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for some real constant ). € (0,1/4), then

e —1
-1 °

for some non-zero constant c.

THEOREM B ([11]). Let f be a non-constant entire function of finite order, and
let a # 0 be a finite constant, k be a positive integer. If f and ) share a CM,
then

for some non-zero constant c.

However, there are no corresponding results about the uniqueness of an
entire function and its linear differential polynomial that share one value. In this
paper, we note the precise result about growth of an entire function of small
growth (whose order is less than 1/2), so we have a try by applying complex
oscillation theory. In the sequel, we set

(1.1) L) = ar(2) P+ a1 f %+t az)f, (k=1)

where a;(z) (j=0,1,...,k) are polynomials and ax(z) #0. Indeed, we shall
prove the following theorems:

THEOREM 1. Let f be a non-constant entire function of order a(f) < 1/2 and
b(z) be a non-zero small function of f. If f—b(z) =0— L(f)—b(z) =0, then

LN =bE) _ .

where Q(z) is a non-zero polynomial.

THEOREM 2. Let f and b(z) be as in Theorem 1. If f —b(z) =0 — L(f) —
b(z) =0, then the following conclusions hold:

(@) If (dega; —dega;)/(j—i)<1/2 for any i# j (i,je{l,...,k}), then

L(f) —b(z)
HL =28 o),
e
where the non-zero polynomial Q(z) satisfies deg Q < max{dega;|j=0,...,k}.
(b) If b(z) =b+#0 and a; (j=0,1,...,k) are constants, then f = b,z" +
-~ biz+by (0 <m < k) where by, #0, b; (i=1,...,m) are constants with a; =
0(j=1,....m—1) and mla,b,, = b(1 — ap).

(1.3)

THEOREM 3. Let [ be a non-constant entire function of finite order satisfying
o(f) # 1 +n/k for any positive integer n, and let a #0 be a finite constant. If
f=a— % =a and
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(k) — 4) — —
i 10BN /Y =) = NS =a) 1
F— 00 log r 2

then

*) _ g4

(1L.4) / 7 =c,
—a

for some non-zero constant c.

In fact, f satisfying the hypothesis of Theorem 1 must be a solution of the
following equation

k
(1.5) > a4(2) /Y + (ao(z) = Q(2))f = b(z)(1 - Q(2)),
j=1

where a;(z) (j=0,1,...,k), O(z) and b(z) are as in Theorem 1. Hence, it is
natural to ask if there always exists any transcendental entire function of small
growth satisfying (1.5). Now, we give an affirmative answer. For example, let
S=1+37,2"/(3n)! and g(z) = (1/2)(cos z/* + cos iz'/4) = 1 + 327, 2" /(4n)),
then o(f) =1/3 and a(g) = 1/4. Moreover, they also respectively satisfy

272" + 542" + 6zf ' — zf =0,

64z4g™W + 28823g" 4+ 204z2g" + 6zg' — %zg =0.
Set  Ly(f)=273f"+ 5422f” + 6z — (z—=1)f, Ly(f) =2723f" + 5422f" +
6zf" + ¢c(2)f, L3( ) = 64z4g®) 1 28823¢" 4+ 204z%g" 4 629’ — ((1/4)z — 1)g and
Ly(g) = 64z%g¥) 4 28823¢" + 20422 ”+6zg +c(z )g where ¢(z) is any polyno-
mial. From this, we have
L4(9) 1

Li(f) —a(z) La(f) Li(g) —d(2)
— =1, =c(z)+z, —————==1, =c(z)+-2z,
/) R g D
where a(z) is any small function of f, d(z) is any small function of g. This

example also shows that the assumption of dega; in case (a) of Theorem 2 is
sharp. In general, we also can obtain the following

THEOREM 4. Let p and q be positive integers. Suppose that [ =1+
S 29/ (pn)!, then f satisfies the equation as

(1.6) Apz”f(”) + Ap,lz/"]f(”") + o Ayzf! =z,
where A; (j=1,2,...,p) are constants that depend only on p and q.
Clearly, f in Theorem 4 is an entire function of a(f) = ¢g/p. Take the right

p and ¢ such that o(f) < 1/2, from (1.6) we know that there really exist tran-
scendental entire functions of small growth satisfying (1.5).
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2. Preliminary lemmas

In this section, we present some lemmas which are necessary in this paper.

LemMma 1 ([9]). Let f(z) be a transcendental meromorphic function, and o > 1
be a given constant. Then there exist a set Ey < (1,400) of finite logarithmic
measure and a constant B > 0 that depends only on o and (m,n), (m,n are integers
with 0 < m < n) such that for all z satisfying |z| =r ¢ [0,1]UE;, we have

R

(log” r) log T'(ar, f))nm.

LemMma 2 ([1]). Let f(z) be an entire function of order o(f) =0 < 1/2 and
denote A(r) = inf|;_, log|f(z)|, B(r) =sup_log|f(z)|. If o <o <1, then

log dens{r: A(r) > (cos no)B(r)} > 1 —g,

where

togdens £ =t (| (ze(0)/) at) 1ogs

r— 00

log dens E = lim (J (xg(t)/1) dt) /log r
F—00 1
and yg(t) is the characteristic function of a set E.

LemMa 3 ([2]). Suppose that w(z) is a meromorphic function with a(w) =
p < oo. Then for any given ¢ > 0, there is a set E, = (1,400) that has finite
logarithmic measure, such that

w(z)| < exp{r’**}
holds for |z| =r¢[0,1]UE,, r— o0.
LemMa 4 ([4]). Suppose that T(r) is a continuous non-decreasing positive
Sunction on [rg, 00) (ro = 1) which satisfies T(r) — oo (r — o0). If there exists an

increasing sequence {r,}, r, 1 oo (n— o), such that lim,_,., log T(r,)/logr, <
U< +oo, then for any given t1(> 1) and (> 1), we have

log 73

logdens E5 > 1 _'ulog ,
08 dens .

where Ez = {r: T(tir) < 7, T(r)}.

LEMMA 5. Let f be a non-constant entire function of order o(f) = u < +o0,
and a(z),b(z) be small functions of f. Set F(z)= f(z)+a(z). Then for any
given t (0 <t<1), there is a set Eq = (1,4+00) satisfying logdens Eq > t, such
that
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M(r,b)
M(r, F)

— 0

holds for |z| =re€ E4, r — o0.

Proof. According to the hypothesis of f and by Lemma 4, there exists a
set Hy = {r|T(4r, f) <2KT(r, )} (k = max{4,[2u+ 1]}) with logdens H, > 1 —
2u/k where k is an integer. It is obvious that H; is a closed set. Set r| =
min{H; N[1,4+00)},ro = min{H; N [2r,+0)},...1, = min{H1 N[2ry—1,+00)},. ...
We can get a sequence {r,} (r, — +o0) and H1 = U2 [re, 21, so

v>1

o0
(2.1) logdens H; < logdens{ U [rv, 2r] }

By Lemma 3 and the definition of small function, there exists a set H, = (1,+0)
with finite linear measure, such that

T(ra) o T
T(r, f) T(r, f)
and a(z),b(z) have finite moduli for |z|=r¢[0,1]UH,, r— oo. Set Hz =
H\\H,, then logdens Hy = logdens H,.

Let a; (s=1,2,...,n(3r,,a4)) and b, (im=1,2,... 1(3r,,b)) denote the
poles of a(z) and the poles of b(z) in |z| < 3r, respectively. By the Boutroux-
Cartan Theorem, we have

n(3ry,a) " (3ry,a) n(3ry,b) ; n(3r,,b)
v v
COI | TR G R | TR Y

s=1 m=1

(2.2)

except some z in two groups of disks (y;) + (y,), and the sum of their radii is no
larger than r,/2%72.  Therefore, there exist |z| = p that have no intersection with
(y1) + (7,) in 1, < |z] < 21y, then we have (2.3) on |z| = p. Let E; denote the set
of those values of p, then mes E7 > (1 — 1/2%3)r,.  Applying the Poisson-Jensen
formula (see [5]), we have

(2.4) log™la(z)] <

m(3ry, a) Z log

lag| <3r,

3ry 3rytp
3r, —p

3rb s)

where |z| = p e E. Substituting (2.3) into (2.4), we obtain

3" +pm(3rv, a) 4+ n(3r,,a) log(3 - 2KHe)
3rv 4

< CT(4r,,a) < CT(4r,, f) < C2XT(r,, f) < C2F log* M(p, f)

log” |a(z)|

IA

where C is some positive constant and |z| =pe E\H,, v — co. From the
above inequality and (2.2), it is easy to see
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log™ M(p,a) 3.0k T (4ry,q)
log" M(p.f) =~ " T(n, /)

where |z| = pe Ef\H,, v — oo. In fact, since r, <p <2r, and p e EF\H,, we
have

(2.5) -0,

4r, + p 6r,
+ v ory
log" M(p,a) < yra— T(4rp,a) < 3 T (4r,,a)
and
1
log" M(p, f) = T(re. /) = 5 T(re. ).
Similarly, we obtain
+
(2.6) w 0,
log"™ M(p, f)

where |z| =pe E\H,, v— oo. Since f is a non-constant entire function, we
have M(r,f) — oo (r — o). Considering (2.5), (2.6) and this, we have
M(p,a) M(p,b)

—

M(p,f) 7 Mp.f)

where |z| =pe Ef\Hy, v— . We know F(z) = f(z)+a(z), so M(r,F) >
M(r,f)— M(r,a) for r¢ H,. From above argument, for pe ES\H,, v — o0,
we obtain

(2.7)

— 0,

M(p.b) _ M(p,b)
M(p,F) = (1+0(1))M(p, )

Set E4= ), E;\H>, then logdens E4=logdens|) E;. Moreover,
there exists a sequence {r,}, r,1 (n— oo0) such that

— 0.

(2.8)

log dens E4 = lim (J n()(&(t)/t) dt> /log r.
- I

n—oo
For every E;, we have

ro+(1/25 3, 1 )

2r,
(2.9) J (xe:(1)/1) dzzlogz—J ?dt:log T2

Fy Fy

Now we discuss the following two cases.

Case 1. Suppose that r) € [ry,,2r,,] for some v,. Clearly we have

JP G (/0 do I G (0/0) di-

2.10
(2.10) log 7} - log 2r,,
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Case 2. Suppose that r} ¢ | ).~ [rs,2r,]. Let ry, be the closest to r) of {r,}
and r, >r,, then

S (s, (0)/2) d G (0/0) dr
log ! = log ry,

(2.11)

Set mes Hy =9, from (2.9) we have

Fop va—=1 p2r,
J (1 (D)/1) dz>ZJ (xe: (0)/1) dt—é

r
1 2wl 5
> 1 5
= log 2 0g 1+ 1/2](73 Uzzl: J\rv (XH3 (t)/l) dt p

Combining this with (2.10) and (2.11), we obtain

u\ 1 2
1 E > (1-2F 1
log dens 4—( k>10g2 112k

We know that ¢(x) = (1/log2) log (2/(1 4 1/2%3))(1 —2u/x) is continuous

n [3,00) and tends to 1 (x — o0). Hence, for a given 7 (0 < ¢ < 1), there
must exist N* such that ¢(x) >¢ for x> N*. When k> [N*+1], then
logdens E4 > t.

LemMa 6 ([9]). Let f(z) be a transcendental meromorphic function with finite
order p, and let T' = {(ky, j1), (ka, o), ..., (kq, Jq)} be a finite set of distinct pairs of
integers satisfying k; > j; =0 for i=1,...,q. For any given constant ¢ > 0, then
there exists a set Es <= [0,2r) that has linear measure zero such that if
Vo €[0,27) — Es, then there is a constant Ry = Ro(\y) > 1 such that for any z
satisfying arg z =, and |z| = Ry, and for any (k,j) e we have

f (2)

Z

|(k Np=1+e)

For the next lemma, denote J(p,6) = o cosnf — f sin nf, where p(z)=
(«+if)z" +--- is a polynomial with « and f real.

LemMa 7 ([3]). Let p(z) be a polynomial of degree n > 1, w(z) (#£0) be a
meromorphic function of order less than n. Set g = we’, then there exists a set
H, < [0,2%) of linear measure zero, such that if 6 € [0,2n) — (H, U H;), we have

(1) if o(p,0) > 0, then there exists an r(0) > 0, such that for any r > r(0),

) 1
o(re)] > exp 300,007
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(2) if o(p,0) <0, then there exists an r(0) > 0, such that for any r > r(0),

; 1
o(re)] < exp 300007 ).
where Hy = {0 :6(p,0) =0,0 <0 <2z} is a set of linear measure zero.

Proof.  Writing p(z) = (o + if)z" + ps_1(2), we see that g(z) = h(z)e*+h)="
where /(z) is a meoromorphic function with o(h) =s <n. By lemma 6, there
exists a set H; of linear measure zero such that for any given ¢ >0 and 0 €
[0,27) — Hy, when r > ri(0)) we have

h,(rem) (s—1+¢)
h(re'?) =7 '
Since
) r h’(te“’) )
log h(re) = _ dt + log h(roe™
og hire") = | G dic+1og hire”),

so |log h(re™)| < r**¢ 4+ ¢ where ¢ is a constant. When r > r2(6) > r((0), we have
llog|h(re™)| | < |log h(re™)| < r*+%.

Take s+ 2¢ <n. Note that for z =re”’ we have [et#)"| = PO 5o when
r>r(0)

exp(—r**% +0(p, O)r") < |g(re”)| < exp(r*** +d(p, O)r").

It is easy to see that the conclusions hold from the above inequality.

LemMa 8 ([8]). If g is an entire function of order o, then

where vy(r) is the central index of g.

3. Proof of Theorem 1

Suppose that f is a polynomial, then L(f) is also a polynomial. We
know that the small function of a polynomial is constant, so the result holds
clearly. Therefore we may assume that f is transcendental in the following
argument.

Under the hypothesis of Theorem 1 and by the Hadamard factorization
theorem, it is easy to get

(3.1) — "= 0(2),
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where Q(z) is an entire function of order o(Q) = 1 < 1/2. Hence, by Lemma 2,
for any o satisfying x4 < o < 1/2, there exists a set E; with logdens E; > 1 — u/a
such that

(3-2) |0(re™)| = M(r, Q)°,

for |z| =re E;, where { =cosno > 0. Set F(z) = f(z) — b(z), from (3.1) we
have

(3.3) arF® +ap  FED 4 i F' 4 (ag — Q)F = bo(2),

where by(z) = —Z;‘ZO bUa; + b is a small function of f. Rewrite (3.3) as
F) FU=1) F' bo(z)

(3.4) G+ @i ——+ e Fa g+ (00— Q) =——.

By Lemma 1, there are a set E» = (1, 0) of a finite logarithmic measure and a
constant B > 0 such that for all z satisfying |z| =r ¢ [0,1]U E,, we have

‘ FW (z)
F(z)

Take ¢ to satisfy 0 <2e<1—pu/o. By Lemma 5, there is a set E; with
log dens E3 > pt/o.+ ¢ such that

(3.5) < Bl T2r, F)™, (j=1,2,...,k).

M(r, bo)

(3.6) i

— 0

holds for |z| =re€ Es, r — 0.
We assert that E| intersects E3 with logdens(E; N E3) > 0. In fact, if not,
we obtain

1 + ¢ <logdens E, + logdens E; < logdens(E; UE3;) <1

a contradiction. Moreover,

log dens E) + log dens E3 — log dens(E; N E3)

< logdens(E, — (E\ N E3)) 4 logdens E5 < 1.

Clearly, from this we have logdens(E; N E3) >¢> 0. From (3.2) to (3.6), we
know that for re (E, NE3) — (E,U[0,1]), we have

(3.7) M(r, Q)¢ < kBr[T(2r, F)* 2,

where 4 =1+ max{dega;,j=0,...,k}. In fact, (3.7) and o(F) < oo imply
that there exists a sequence r, — 400 such that

log M(r,, Q) = O(logr,), n— oo,

which shows that Q cannot be transcendental.
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4. Proof of Theorem 2

As in the proof Theorem 1, we can get

L) = b))
(1) =06

where Q(z) is a non-zero polynomial. When f is a non-constant polynomial, it
is easy to see the conclusion (a) holds. Therefore, we may assume that f is
transcendental in the following.

It follows from (1.1) and (4.1) that

42)  afY +afCV ot af + (a0 - Q)f =b(=)(1- ().
Rewrite (4.2) as

(k) (k—1) / B
(4.3) akaJFak—lff +-~~+a1f7+(a0Q)w_

It is easy to see that b(z)(1 — Q(z)) is a small function of f. Therefore, by
Lemma 5 there exists a set E; with logdens E; > 0, such that

M(r,b(z)(1 - Q))
M(r, f)

for |zl =re E;, r — oo. From the Wiman-Valiron Theory (see [6], [8] or [10]),
we have

196 _ (Y, -
(4.5) 70 ( z >(1+ (1), (=12,....k),

where |z| =r, |f(2)| = M(r,f), r¢ E, which has a finite logarithmic measure.
Substituting (4.5) and (4.4) into (4.3), we obtain

(4.6) 2" (W'?(’)Y(l +o(1)) + dj_ 12" (”fT(r))kl (1+0(1))

4 _|_d02”°(1 + 0(1)) = 0(1)

(4.4)

— 0,

where ag — Q = doz™(1 +o(1)) and a; =diz"(1+0(1)), d; (j=0,1,---,k) are
constants and dj # 0, vs(r) is the central index of f. Since any solution of an
algebraic equation is a continuous function of the coefficients, therefore v (r) is
asymptotically equal to a solution of the equation

7)o () di (e () 26D gz =0,
From the argument used in [10, pp. 106-108], for sufficiently large r, we have

(4.8) vr~co-1?, reE—E
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where ¢o(> 0) is constant and ¢ is a rational number. It follows from (4.7) and
(4.8) that the degrees (in z) of all terms of (4.7) are respectively

(49) k(O’—l)—l—l’lk,(k—1)(0‘—1)—&-”](,1,...,}’10.

If (degaj—dega;)/(j—1i)<1/2 for i#j (i,j=1,...,k), we know that any
two of (4.9) except ny are distinct. In fact, if there exist iy and j, such that

(4.10) io(c — 1) +ny, = jo(o — 1) +n,

we have o =1 — (nj, — n;,)/(jo —io) = 1/2, a contradiction. Hence, we can con-
clude that ny is equal to one of {k(¢ — 1) +ng,...,(6—1)+n}. We assume
ng=j.(oc—1)+n, (1<j.<k). Set Q(z)=pyz"(1+0(1)), By is a non-zero
constant. Now we discuss the following two subcases.

Subcase 1. Suppose h < degag, then h < max{dega;|;j=0,...,k} holds
clearly.

Subcase 2. Suppose h > degag, thus we have h=ny= j.(o—1)+n;.
Hence,

h < n;, = deg a;, <max{dega;|j=0,...,k}.

Next, we consider the case (b). According to the case (a), clearly Q(z) is a
non-zero constant ¢. We assume that f is transcendental. Rewrite (4.3) as

F® fk=1) ! b(l—c¢)
4.11 ar——+ aj_; —+ -4+ a =+ (ag—c) = — .
(4.11) 7 7 7 ( ) 7
From [8, pp. 33-35], we know that vs(r) is increasing, right-continuous and also
tends to +oo as r — co. In addition, it follows from Lemma 8 that v/(r) < r'/?
for sufficiently large r. Therefore, we have

wi (O <o (),

Now we discuss the following two subcases.
Subcase 1. Suppose o(f) > 0, then there exists a sequence {r,} (r, — +00,
r ¢ E) satisfying

(4.13) M(ro, f) = (1+o(1)) exp(ry"/) %)

for sufficiently large r, and &>0. In fact, it is well known that o(f) =
lim,_,., loglog M(r, f)/logr since f is entire. According to the definition of
upper limit, we know that there exists a sequence {r]} (r, — oo) such that
o(f) = lim,_, loglog M(r}, f)/logr,. Set Im E, =5 >0, where Im E, denotes
the logarithmic measure of E,. We can take r, € [r], e"r]]\ E>, then

loglog M(ry, /) _ loglog M(r;, f)
log r, - log e'r! '
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Let d; (0 < j <k) be the first non-zero complex number of dy = ap — ¢, d = aj,

dry =a,...,dy = a, and let di be the second non-zero complex number with
j' > j. Substituting (4.5), (4.12) and (4.13) into (4.11), we have

(r, J b(1 —
(4.14) |d,-(1+o(1))(“f(’ )> < il C)Lm_,

z (I+o(1)) exp(ry ")

where |z| =r,, |f(2)| = M(r,,f) and r¢ E,. If f is non-constant, the vy(r,)
must be unbound. When ¢ # 1, from (4.14) we have vy(r,) — 0. It is a con-
tradiction. In the following, we treat the case ¢ = 1. From the Wiman-Valiron
Theory, we have

(4.15) | (1+ o(1)ry =D > |

where |z| = r, ¢ Ey, |fY)(2)] = M(r,, f17)). Tt is easy to see that (4.15) is absurd.

Subcase 2. Suppose o(f) =0, then we know that there exists a sequence
{r,} tending to oo such that M(r,, f) =r". Using the similar argument as
above, we also get a result about r, like (4.15), which leads to a contradiction.

Hence, f is a non-constant polynomial. From (4.11), if ay # ¢, clearly it is
impossible. Therefore, ap = ¢ and deg f < k. Suppose f = b,z +---+ bz +
by (0 <m <k) where b; (i=0,1,...,m) are constants and b,, #0. It follows
from (4.11) that ;=0 (j=1,...,m—1) and mla,,b,, = b(1 — ap).

5. Proof of Theorem 3

Under the assumption of Theorem 3 and by using the Hadamard Facto-
rization Theorem, we easily get

S —a
f—a

where p(z) is a polynomial, and Q(z) is an entire function of order ¢(Q) < 1/2.
Set F(z) = f/a—1. From (5.1) we have

(5.2) F® — QelF = 1.

(5.1) = Qe’,

If p(z) is a non-constant polynomial, from (5.2) we can know that F has
infinite order by using the similar argument in [11] and Lemma 6. It leads to a
contradiction. Hence p(z) is a constant. By using the similar argument in the
proof of Theorem 1, we can know that Q(z) is a non-zero polynomial. Rewrite
(5.2) as

F®) 1
5.3 N =—
(53) 7 cQ 7
where ¢y is a non-zero constant. From the Wiman-Valiron Theory and by using
similar argument in the proof of Theorem 2, we obtain for r ¢ E; which has a
finite logarithmic measure.



ENTIRE FUNCTIONS OF SMALL GROWTH 257

(5:4) ()= (1 + o(1)) + ="(1 + o(1)) = o(1)

where —coQ(z) = fz"(1 +0(1)), f#0 is a constant. From (5.4) we deduce
logvs(r) = (n/k +14o0(1)) logr for r¢ E. It thus follows o(f)=1+n/k.
On the other hand, we assume that n is different from any positive integer.
From this n must be zero, so that Q(z) is a constant, which completes the proof
of Theorem 3.

6. Proof of Theorem 4
Since f=1+>.",z%/(pn)!, we have
s x© (qn)!zq”_j .
f</): VY2 ]:172751))
2 oo
Substituting this into (1.6), we get

2 A qn qu” O zq(n+1) 0 Zzan
(6.1) / = = —_—

— ; (gn— j)!(pn)! ; (pn)! ;(p(n - 1)
From this, there must be

P Ai(gn)! 1

6.2 A% - L (n=1,2,..).
©2) 2 T )i~ G ¢ )
It means
(6.3) Aygn+ Axgn(gn — 1) + Asgn(gn — 1)(gn — 2)

+ o+ Apgn(gn — 1)(gn —2) - (gn — p+ 1)
=pn(pn—1)(pn —2)---(pn—p+1).

We can consider it as the comparison between two polynomials of degree p in
n. So clearly 4, = (p/q)?, then take it into (6.3) we can get another comparison
between two polynomials of degree p — 1 in n. Similarly as above we can solve
A./ (J: 1727"'7177 1)
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