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Abstract. We study the eigenvalue problem of the elliptic operator
which arises in the linearized model of the periodic oscillations of a homo-
geneous and isotropic elastic body. The square of the frequency agrees to the

eigenvalue. Particularly, we deal with a thin rod with non-uniform connected
cross-section in several cases of boundary conditions. We see that there ap-
pear many small eigenvalues which accumulate to 0 as the thinness parameter
ε tends to 0. These eigenvalues correspond to the bending mode of vibrations

of the thin body. We investigate the asymptotic behavior of these eigenvalues
and obtain a characterization formula of the limit equation for ε → 0.

1. Introduction.

In this paper we analyze the asymptotic behavior of small eigenvalues and eigen-

functions of the linearized elasticity eigenvalue problem of a thin rod with non-uniform

cross-section (see Figure 1).

There are many works on such type of spectral problems of singularly deformed do-

mains in these several decades (cf. Courant–Hilbert [9], Egorov–Kondratiev [13], Maz’ya–

Nazarov–Plamenevskij [20]). Particularly, eigenvalue problems of vibration of thin elastic

bodies like plates and rods are of much importance and interest from PDE theory and

engineering point of view (see for example Antman [1], Ciarlet [6], Cioranescu–Saint

Jean Paulin [8], Love [19], Nazarov [22]).

Ciarlet and Kesavan [7] pioneered ideas on elastic plates that would further be

adapted to the case of thin rods. To name some previous works, Kerdid [17] studied

the behavior of small eigenvalues of the linearized elasticity eigenvalue problem of a thin

rod with constant cross-section. Tambača [25] gives a result on the convergence of the

eigenvalues and eigenfunctions in the case of a thin curved rod. Both papers consider

that the ends of the rod are clamped. Kerdid [18] also considered a joint of two rods

with one of the ends without clamping.

The purpose of this paper is to give similar results of the behavior of small eigenvalues

in more general cases. We obtain the characterization formula, which is derived from a

fourth order ordinary differential equation system on the one-dimensional limit set of the

thin elastic body. We make full use of the variational characterization of the eigenvalues

as well as detailed analysis of the weak formulation of the eigenfunctions. Previous

works assumed that the cross-section of the rod was simply connected, constant and the

barycenter or “center of mass” to be constant. We will remove these restrictions, so
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the rod has non-uniform connected cross-section. Furthermore, we will consider the case

when both ends of the rod are clamped, and also the case when only one end is clamped.

In other similar works on linear elasticity problems that are related to the present

paper, Griso ([14] among other works) studies the asymptotic behavior of structures

made of junctions of curved rods, plates and combinations of both types. Irago–Viaño

[15] obtained higher order approximations of flexural eigenvalues of a thin straight rod

using an asymptotic expansion procedure. Irago–Kerdid–Viaño [16] studied the case of

high frequency vibrations related to stretching and torsional modes of thin rods. Nazarov

[21], Nazarov–Slutskii [23] and Buttazzo–Cardone–Nazarov [4], [5] provide an elaborate

research on asymptotic expansion methods for anisotropic and non-homogeneous elastic

thin rods and plates. The study of eigenvalue problems on thin multi-structures for

different equations is common and of much interest in the PDE theory. For example,

works like Bunoiu–Cardone–Nazarov [2], [3] deal with the case of the Poisson equation

for junctions of rods and a plate. For an extensive list of references see Ciarlet [6].

The present paper is organized as follows. First we explain the setting of the prob-

lem in Section 2. In Section 3 we introduce some notations and formulate the three-

dimensional eigenvalue problem along with the main result involving the order and the

asymptotic behavior of the eigenvalues. In Section 4 we present some preliminaries used

during the proof as well as the variational formulation of the main problem. The proof of

the order of the eigenvalue is given in Section 5. A lower bound of the limit eigenvalue is

shown in Section 6 while an upper bound is given in Section 7. In Section 8 Appendix we

give proof to some lemmas and further details on some computations stated in the main

body of the paper. Moreover, Sections 4, 5 and 6 are split into two parts, explaining the

differences between the two different boundary conditions we consider.

2. Setting.

Let Ω ⊆ R3 be a bounded domain. We want to study the oscillations of an elastic

body with the shape of Ω.

We denote by u = (u1, u2, u3) : Ω −→ R3 the displacement vector field associated

with the oscillations. Let λ1, λ2 be real constants corresponding to the mechanical prop-

erties of the elastic body. We assume λ1 > 0, λ2 > 0 in this paper. We define the

tensors

e(u) = (eij(u))1≤i,j≤3 =

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

))
1≤i,j≤3

,

σ(u) = λ1 tr(e(u)) Id3 +2λ2e(u),

where tr is the trace of a matrix and Id3 is the 3× 3 identity matrix. e(u) is called the

linearized strain tensor and σ(u) is the stress tensor derived from Hooke’s law in the

case of a homogeneous isotropic elastic body (cf. Ciarlet [6]).

With this notation, the operator of the elastic equation is defined as the 2nd order

linear elliptic operator
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L[u] = div σ(u), i.e. (L[u])i =
3∑

j=1

∂

∂xj
σij(u) (1 ≤ i ≤ 3),

and the oscillations of an elastic body can be described by the following wave equation

ϱ
∂2u

∂t2
= L[u] (1)

where ϱ > 0 is the density.

Now, we take ϱ = 1 and we assume that the oscillations are periodic of period 2π/ω

(ω > 0). In this case, we can write the displacement field as u(x, t) = eiωtv(x). Thus,

∂2u/∂t2 = −ω2u(x, t). Putting µ = ω2, the wave equation (1) becomes the eigenvalue

problem

L[v] + µv = 0. (2)

We now prepare the mathematical setting of our problem. We start presenting the

domain Ωε = Ω, where ε > 0 is a small parameter corresponding to the thickness of the

elastic body. Let l > 0 and let B ⊆ R2 be a connected bounded domain such that the

boundary is C3 with m ∈ N connected components. We consider the sets

S = B × (0, l), s
(−)
1 = B × {0},

s
(+)
1 = B × {l}, s2 = ∂B × (0, l).

Note that ∂S = s
(−)
1 ∪ s(+)

1 ∪ s2. Let F : R3 → R3 be a C3-diffeomorphism which satisfies

the following properties.

i) F (z) = (F1(z), F2(z), z3) (z = (z1, z2, z3) ∈ S).

ii) Fi(0, 0, z3) = 0 (i = 1, 2, 0 ≤ z3 ≤ l).

iii) The determinant of the Jacobian matrix of F is positive for all z ∈ S.

Let ε > 0 be a small positive parameter and define F ε(z) = (εF1(z), εF2(z), z3).

With this notation, we consider the following sets in R3.

Ωε = F ε(S), Γ
(−)
1,ε = F ε(s

(−)
1 ), Γ

(+)
1,ε = F ε(s

(+)
1 ), Γ2,ε = F ε(s2).

Figure 1. Example of Ωε.

We can think of Ωε as a slightly smoothly deformed thin cylinder (see Figure 1). It

is easy to see ∂Ωε = Γ
(−)
1,ε ∪Γ

(+)
1,ε ∪Γ2,ε. Moreover, we obtain Ω1, Γ

(−)
1,1 , Γ

(+)
1,1 , Γ2,1 just by

putting ε = 1 in the previous definition. Note that Ω1 = F (S).
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Let x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3) be the coordinates in the

sets Ωε, Ω1 and S, thus obtaining the relation between the coordinates
(x1, x2, x3) = (εy1, εy2, y3),

(y1, y2, y3) = (F1(z), F2(z), z3),

(x1, x2, x3) = (εF1(z), εF2(z), z3).

(3)

We want to study the small eigenvalues (low-frequency oscillations related to flexural

vibrations) associated with the thin elastic body Ωε. We denote by u = (u1, u2, u3) :

Ωε −→ R3 the displacement vector field associated with the oscillations.

With this notation, the main subject of the present paper is to study the eigenval-

ues and eigenfunctions when the parameter ε goes to zero of the following eigenvalue

problems. 
L[u] + µu = 0 in Ωε

u = 0 on Γ
(−)
1,ε ∪ Γ

(+)
1,ε

σ(u)n = 0 on Γ2,ε

(DD)


L[u] + µu = 0 in Ωε

u = 0 on Γ
(−)
1,ε

σ(u)n = 0 on Γ2,ε ∪ Γ
(+)
1,ε

(DN)

where n is the unit outward normal vector on ∂Ωε. The case (DD) corresponds to a thin

rod with both ends clamped while the case (DN), to a thin rod with only one clamped

end.

3. Some notations and main results.

In order to state the main results we first introduce several notations.

Denote dy′ = dy1dy2 and define the set Ω̂(y3) to be the cross-section of Ω1 = F (S)

at y3 ∈ [0, l ]. Furthermore, for 1 ≤ i, j ≤ 2, we define the functions

H(y3) =

∫
Ω̂(y3)

1dy′, Ki(y3) =

∫
Ω̂(y3)

yidy
′, Aij(y3) =

∫
Ω̂(y3)

yiyjdy
′ (y3 ∈ [0, l ])

and write Y = λ2(3λ1 + 2λ2)/(λ1 + λ2), known as the Young modulus.

Remark 3.1. Set first z′ = (z1, z2), dz
′ = dz1dz2. If we denote by

J(z) =

(
∂Fi

∂zj

)
1≤i,j≤3

=


∂F1

∂z1
∂F1

∂z2
∂F1

∂z3

∂F2

∂z1
∂F2

∂z2
∂F2

∂z3

0 0 1


the Jacobian matrix of F and by J∗(z) = det(J(z)) its determinant, then after a change

of variables we can also express the previous functions with
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H(z3) =

∫
B

J∗(z
′, z3)dz

′, Ki(z3) =

∫
B

Fi(z
′, z3)J∗(z

′, z3)dz
′,

Aij(z3) =

∫
B

Fi(z
′, z3)Fj(z

′, z3)J∗(z
′, z3)dz

′ (z3 ∈ [0, l]).

Remark 3.2. Note that the matrix (Aij(z3))1≤i,j,≤2 is positive definite.

If we denote by {µDD
k (ε)}+∞

k=1 and {µDN
k (ε)}+∞

k=1 the eigenvalues of problem (DD)

and (DN) respectively, it is known that for any ε > 0 there are infinite discrete sequences

of positive eigenvalues

0 < µDD
1 (ε) ≤ µDD

2 (ε) ≤ · · · ≤ µDD
k (ε) ≤ µDD

k+1(ε) ≤ · · · with lim
k→+∞

µDD
k (ε) = +∞

0 < µDN
1 (ε) ≤ µDN

2 (ε) ≤ · · · ≤ µDN
k (ε) ≤ µDN

k+1(ε) ≤ · · · with lim
k→+∞

µDN
k (ε) = +∞

which are arranged in increasing order, counting multiplicities (cf. Courant–Hilbert [9],

Edmunds–Evans [12], Egorov–Kondratiev [13]).

Now we present the main results of the paper.

Theorem 3.3 (Both ends clamped). Let µDD
k (ε) be the k-th eigenvalue of problem

(DD). Then the following statements hold for each k ∈ N.

a) µDD
k (ε) = O(ε2) as ε→ 0.

b) Moreover, we have the limit

lim
ε→0

µDD
k (ε)

ε2
= ΛDD

k ,

where ΛDD
k denotes the k-th eigenvalue of the 4th order ordinary differential operator

Y
d2

dτ2


(
A11(τ)A12(τ)−K1(τ)

A21(τ)A22(τ)−K2(τ)

)


d2η1
dτ2

d2η2
dτ2

dη3
dτ




= ΛH(τ)

(
η1
η2

)
(0 < τ < l),

d

dτ

(
H(τ)

dη3
dτ

)
=

d

dτ

(
K1(τ)

d2η1
dτ2

+K2(τ)
d2η2
dτ2

)
(0 < τ < l),

η3(0) = ηi(0) =
dηi
dτ

(0) = 0 (i = 1, 2),

η3(l) = ηi(l) =
dηi
dτ

(l) = 0 (i = 1, 2).

Theorem 3.4 (Only one end clamped). Let µDN
k (ε) be the k-th eigenvalue of

problem (DN). Then the following statements hold for each k ∈ N.

a) µDN
k (ε) = O(ε2) as ε→ 0.
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b) Moreover, we have the limit

lim
ε→0

µDN
k (ε)

ε2
= ΛDN

k ,

where ΛDN
k denotes the k-th eigenvalue of the 4th order ordinary differential operator

Y
d2

dτ2


(
A11(τ)A12(τ)−K1(τ)

A21(τ)A22(τ)−K2(τ)

)


d2η1
dτ2

d2η2
dτ2

dη3
dτ




= ΛH(τ)

(
η1
η2

)
(0 < τ < l),

d

dτ

(
H(τ)

dη3
dτ

)
=

d

dτ

(
K1(τ)

d2η1
dτ2

+K2(τ)
d2η2
dτ2

)
(0 < τ < l),

η3(0) = ηi(0) =
dηi
dτ

(0) = 0 (i = 1, 2),

dη3
dτ

(l) =
d2ηi
dτ2

(l) =
d3ηi
dτ3

(l) = 0 (i = 1, 2).

Remark 3.5. Note that if the functions Ki ≡ 0 for i = 1, 2, then the ordinary dif-

ferential equations in Theorem 3.3 and Theorem 3.4 get simpler. Using the corresponding

boundary conditions, the equation

d

dτ

(
H(τ)

dη3
dτ

)
=

d

dτ

(
K1(τ)

d2η1
dτ2

+K2(τ)
d2η2
dτ2

)
(0 < τ < l)

yields η3 ≡ 0, and hence the ODE in Theorem 3.3 and Theorem 3.4 simplifies to

Y
d2

dτ2

(A11(τ)A12(τ)

A12(τ)A22(τ)

)
d2η1
dτ2

d2η2
dτ2


 = ΛH(τ)

(
η1

η2

)

with the respective boundary conditions.

4. Preliminaries and variational formulation.

In this section we will introduce some notation and some results we will need after-

wards during the proof of the main theorems as well as the variational formulation of

our main problems.

We start with Korn’s inequality (cf. Ciarlet [6], Dautray–Lions [10]).

Proposition 4.1 (Korn’s inequality). Let Ω be a bounded domain in R3. If Γ0

is a measurable subset of the boundary ∂Ω such that area Γ0 > 0, then there exists a

constant C > 0 such that
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∥v∥H1(Ω,R3) ≤ C

(
3∑

i,j=1

∥eij(v)∥2L2(Ω)

)1/2

for any v = (v1, v2, v3) ∈ H1(Ω,R3) with v|Γ0
= 0.

Definition 4.2. Let ϕ, ψ ∈ H1(Ωε,R3)\{0}. We define the bilinear form

Bε[ϕ, ψ] =

∫
Ωε

(
λ1 div ϕ divψ + 2λ2

3∑
i,j=1

eij(ϕ)eij(ψ)

)
dx

and the Rayleigh quotient by

Rε(ϕ) =
Bε[ϕ, ϕ]

∥ϕ∥2L2(Ωε,R3)

.

It is easy to see that the Rayleigh quotient satisfies Rε(cϕ) = Rε(ϕ) for all c > 0

(homogeneity condition).

From now on let k ∈ N. We set Hk−1( · ,R3) the set of all linear subspaces of

dimension k− 1 of L2( · ,R3). We now introduce the so-called Max-Min principle, which

we use to characterize the eigenvalues of (DD) and (DN).

Proposition 4.3 (Max-Min principle). Let Wε,W ′
ε be the function spaces

Wε =
{
ϕ ∈ H1(Ωε,R3) | ϕ = 0 on Γ

(−)
1,ε ∪ Γ

(+)
1,ε

}
,

W ′
ε =

{
ϕ ∈ H1(Ωε,R3) | ϕ = 0 on Γ

(−)
1,ε

}
.

Then the k-th eigenvalues are characterized as follows :

µDD
k (ε) = sup

X∈Hk−1(Ωε,R3)

inf{Rε(ϕ) | ϕ ∈ Wε\{0}, ϕ ⊥ X in L2(Ωε,R3)}, (4)

µDN
k (ε) = sup

X∈Hk−1(Ωε,R3)

inf{Rε(ϕ) | ϕ ∈ W ′
ε\{0}, ϕ ⊥ X in L2(Ωε,R3)}. (5)

Recall that x = (x1, x2, x3) and y = (y1, y2, y3) are used as the coordinates in Ωε

and Ω1 = F (S), respectively with the relation given in (3). We change the variables to

transform Ωε into F (S). We now compute the new stress and strain tensors in terms of

the new variables in F (S).

We begin to study the problem by variational methods. In order to consider the

stress and strain tensors in terms of y, we introduce the scaling and change of variable

u1 = εU1, u2 = εU2, u3 = ε2U3.

We obtain the following expressions of eij(u).

eij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2

(
1

ε

∂ui
∂yj

+
1

ε

∂uj
∂yi

)
=

1

2

(
∂Ui

∂yj
+
∂Uj

∂yi

)
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ei3(u) =
1

2

(
∂ui
∂x3

+
∂u3
∂xi

)
=

1

2

(
∂ui
∂y3

+
1

ε

∂u3
∂yi

)
=

1

2

(
ε
∂Ui

∂y3
+ ε

∂U3

∂yi

)
(1 ≤ i, j ≤ 2)

e33(u) =
∂u3
∂x3

=
∂u3
∂y3

= ε2
∂U3

∂y3
.

We observe that after the change of variables we just introduced, we rewrote the strain

tensor eij(u) in terms of U = (U1, U2, U3). Therefore, for 1 ≤ i, j ≤ 2 we can define

Eij(U) =
1

2

(
∂Ui

∂yj
+
∂Uj

∂yi

)
, Ei3(U) =

1

2

(
∂Ui

∂y3
+
∂U3

∂yi

)
, E33(U) =

∂U3

∂y3
.

Note also that since we have symmetry, i.e. eij(u) = eji(u) (1 ≤ i, j ≤ 3), we also define

E3i(U) = Ei3(U) (i = 1, 2). With this notation, we have the relation

eij(u) = Eij(U), ei3(u) = εEi3(U) (1 ≤ i, j ≤ 2), e33(u) = ε2E33(U). (6)

Furthermore, using (6), we proceed to write the divergence in terms of U .

div(u) =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= e11(u) + e22(u) + e33(u)

= E11(U) + E22(U) + ε2E33(U). (7)

Our next step is to rewrite the Rayleigh quotient and to describe the eigenvalues in

terms of y. We distinguish between the (DD) case and the (DN) case.

4.1. (DD) case.

Recall the set

Wε =
{
ϕ ∈ H1(Ωε,R3) | ϕ = 0 on Γ

(−)
1,ε ∪ Γ

(+)
1,ε

}
introduced in Proposition 4.3. For every ϕ ∈ Wε we set Bε[ϕ, ϕ] and Rε as in Def-

inition 4.2. We change the unknown variables ϕ = ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x)) into

Φ = Φ(y) = (Φ1(y),Φ2(y),Φ3(y)) by ϕi(x) = εΦi(y) (i = 1, 2), ϕ3(x) = ε2Φ3(y) ac-

cording to the coordinate change x = (εy1, εy2, y3) described in (3). Define now the

set

W1 =
{
Φ ∈ H1(F (S),R3) | Φ = 0 on Γ

(−)
1,1 ∪ Γ

(+)
1,1

}
. (8)

We want to describe the k-th eigenvalue µDD
k (ε) in terms of the new spaces and functions

after the change of variables. Note that ϕ ∈ Wε if and only if Φ ∈ W1. Thus, using

this fact together with the relations (6) and (7), and substituting them into Bε[ϕ, ϕ] and

Rε(ϕ), for every Φ ∈ W1 we define

B̃ε[Φ,Φ] =

∫
F (S)

{
λ1
(
E11(Φ) + E22(Φ) + ε2E33(Φ)

)2
+ 2λ2

(
2∑

i,j=1

Eij(Φ)
2 + 2ε2

2∑
i=1

Ei3(Φ)
2 + ε4E33(Φ)

2

)}
ε2dy, (9)
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R̃ε(Φ) =
B̃ε[Φ,Φ]∫

F (S)

(
ε2Φ2

1 + ε2Φ2
2 + ε4Φ2

3

)
ε2dy

. (10)

Furthermore, for all Φ,Ψ ∈ W1 we say that Φ ⊥ε Ψ if and only if∫
F (S)

(Φ1Ψ1 +Φ2Ψ2 + ε2Φ3Ψ3)dy = 0.

Due to this definition, ϕ ⊥ ψ if and only if Φ ⊥ε Ψ. For every Z ∈ Hk−1(F (S),R3) we

define the set

Z⊥ε = {Φ ∈ W1 | Φ ⊥ε Ψ for all Ψ ∈ Z},

which is a closed subspace of W1.

Using the Max-Min principle (Proposition 4.3), after the change of variables, the

characterization (4) of µDD
k (ε) can be rewritten as

µDD
k (ε) = sup

Z∈Hk−1(F (S),R3)

inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε}. (11)

4.2. (DN) case.

For the case of the eigenvalues µDN
k (ε), note that we can similarly characterize

µDN
k (ε) with

µDN
k (ε) = sup

Z∈Hk−1(F (S),R3)

inf{R̃ε(Φ) | Φ ∈ W ′
1\{0},Φ ∈ Z⊥ε} (12)

where

W ′
1 =

{
Φ ∈ H1(F (S),R3) | Φ = 0 on Γ

(−)
1,1

}
. (13)

5. Proof of the order of the eigenvalues.

5.1. (DD) case.

We begin showing that µDD
k (ε) = O(ε2) as ε→ 0. In order to do so, we will find an

upper bound of the eigenvalue µDD
k (ε) using the Max-Min principle and (11).

Let us take test functions Υ(s) = Υ(s)(y) = (Υ
(s)
1 (y),Υ

(s)
2 (y),Υ

(s)
3 (y)) (s ∈ N) as

follows:

Υ
(s)
1 (y) = η

(s)
1 (y3),

Υ
(s)
2 (y) = η

(s)
2 (y3),

Υ
(s)
3 (y) = η

(s)
3 (y3)− y1

dη
(s)
1

dy3
− y2

dη
(s)
2

dy3
,

where {η(s)1 , η
(s)
2 , η

(s)
3 }s∈N is a linearly independent system satisfying
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η
(s)
1 , η

(s)
2 ∈ H2((0, l)), η

(s)
3 ∈ H1((0, l)),

η
(s)
i (0) = η

(s)
i (l) = 0 (i = 1, 2, 3),

dη
(s)
i

dz3
(0) =

dη
(s)
i

dz3
(l) = 0 (i = 1, 2).

Choose an arbitrary Z ∈ Hk−1(F (S),R3) and let Z̃ = L.H.[Υ(1),Υ(2), . . . ,Υ(k)]

denote the minimal linear space that contains the set {Υ(1),Υ(2), . . . ,Υ(k)}. Since each

Υ(s) ∈ W1 (for all s ∈ N), we have that Z̃ ⊆ W1. Since dimZ < dim Z̃, there exist a

function Ψ ∈ Z̃ ∩ Z⊥ε and a vector (c1, . . . , ck) = (c1(ε), . . . , ck(ε)) ∈ Rk\{0} such that

Ψ =
k∑

s=1

cs(ε)Υ
(s). (14)

Note that since both Z̃ and Z⊥ε are subsets of W1, we have also that Ψ ∈ W1 and due

to the fact that (c1, . . . , ck) ∈ Rk\{0} we deduce that Ψ ∈ W1\{0}, so we can apply R̃ε

to Ψ (cf. (10)).

Using the definition of Υ(s) we compute

Eij(Υ
(s)) = 0, (15)

Ei3(Υ
(s)) =

1

2

(
∂Υ

(s)
i

∂y3
+
∂Υ

(s)
3

∂yi

)
=

1

2

(
dη

(k)
i

dz3
− dη

(k)
i

dz3

)
= 0 (1 ≤ i, j ≤ 2). (16)

Now we want to calculate R̃ε(Ψ). Using the linearity of the operator Eij , (15) and

(16), we see that

Eij(Ψ) =

k∑
s=1

cs(ε)Eij(Υ
(s)) = 0, Ei3(Ψ) =

k∑
s=1

cs(ε)Ei3(Υ
(s)) = 0 (1 ≤ i, j ≤ 2).

(17)

Hence, using (17) and the definition in (9), we get

B̃ε[Ψ,Ψ] =

∫
F (S)

{
λ1
(
E11(Ψ) + E22(Ψ) + ε2E33(Ψ)

)2
+ 2λ2

(
2∑

i,j=1

Eij(Ψ)2 + 2ε2
2∑

i=1

Ei3(Ψ)2 + ε4E33(Ψ)2

)}
ε2dy

=

∫
F (S)

(
λ1
(
ε2E33(Ψ)

)2
+ 2λ2

(
ε4E33(Ψ)2

))
ε2dy

= ε6
∫
F (S)

(λ1 + 2λ2)E33(Ψ)2dy.

Therefore, we have
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R̃ε(Ψ) =

ε6
∫
F (S)

(λ1 + 2λ2)E33(Ψ)2dy∫
F (S)

(
ε2Ψ2

1 + ε2Ψ2
2 + ε4Ψ2

3

)
ε2dy

=
ε6

ε4

∫
F (S)

(λ1 + 2λ2)E33(Ψ)2dy∫
F (S)

(
Ψ2

1 +Ψ2
2 + ε2Ψ2

3

)
dy

≤ ε2

∫
F (S)

(λ1 + 2λ2)E33(Ψ)2dy∫
F (S)

(
Ψ2

1 +Ψ2
2

)
dy

.

Now substitute the definition (14) into the previous equation to obtain

R̃ε(Ψ) ≤ ε2

∫
F (S)

(λ1 + 2λ2)
k∑

p,q=1

cp(ε)cq(ε)E33(Υ
(p))E33(Υ

(q))dy

∫
F (S)

k∑
p,q=1

cp(ε)cq(ε)
(
Υ

(p)
1 Υ

(q)
1 +Υ

(p)
2 Υ

(q)
2

)
dy

. (18)

Let us put

γpq =

∫
F (S)

E33(Υ
(p))E33(Υ

(q))dy, γ̂pq =

∫
F (S)

(
Υ

(p)
1 Υ

(q)
1 +Υ

(p)
2 Υ

(q)
2

)
dy.

Note that since we chose the system {η(s)1 , η
(s)
2 , η

(s)
3 }s∈N to be linearly independent and

by the symmetry γpq = γqp, γ̂pq = γ̂qp, we have that (γpq)1≤p,q≤k and (γ̂pq)1≤p,q≤k are

positive definite matrices. Therefore, all of its eigenvalues are positive. Let γ∗ be the

biggest eigenvalue of (γpq)1≤p,q≤k and γ̂∗, the smallest eigenvalue of (γ̂pq)1≤p,q≤k. With

this notation, we have the bounds

k∑
p,q=1

cp(ε)cq(ε)γpq ≤ γ∗(c1(ε)
2 + · · ·+ ck(ε)

2),

k∑
p,q=1

cp(ε)cq(ε)γ̂pq ≥ γ̂∗(c1(ε)
2 + · · ·+ ck(ε)

2).

Therefore, (18) becomes

R̃ε(Ψ) ≤ ε2

(λ1 + 2λ2)
k∑

p,q=1

cp(ε)cq(ε)γpq

k∑
p,q=1

cp(ε)cq(ε)γ̂pq

≤ ε2
(λ1 + 2λ2)γ∗(c1(ε)

2 + · · ·+ ck(ε)
2)

γ̂∗(c1(ε)2 + · · ·+ ck(ε)2)

= ε2
(λ1 + 2λ2)γ∗

γ̂∗
.

Put C = (λ1 + 2λ2)γ∗/γ̂∗. We obtained that for a certain Ψ ∈ W1 there exists

a positive constant C independent of ε and independent of the choice of Z such that
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R̃ε(Ψ) ≤ ε2C. Thus, taking the infimum, we have

inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε} ≤ R̃ε(Ψ) ≤ ε2C.

Since Z was arbitrary and C does not depend on the choice of Z, we can take the

supremum on both sides over Hk−1(F (S),R3) to obtain

0 ≤ µDD
k (ε) = sup

Z∈Hk−1(F (S),R3)

{
inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε}

}
≤ ε2C.

Here we used the characterization (11) deduced in the previous section. Therefore we

obtain

µDD
k (ε) = O(ε2) as ε→ 0

which proves Theorem 3.3-a).

5.2. (DN) case.

For the case of the eigenvalues µDN
k (ε), note that due to the definition of the sets

W1 and W ′
1 (see (8) and (13)), we see that W1 ⊆ W ′

1, therefore, the infimum over W ′
1 is

not greater than over W1. Thus 0 ≤ µDN
k (ε) ≤ µDD

k (ε) and Theorem 3.4-a) also holds.

6. Weak formulation and deduction of the limit ODE.

The weak formulation of the equation of (DD) and (DN) is∫
Ωε

(
λ1 div u div v + 2λ2

3∑
i,j=1

eij(u)eij(v)

)
dx = µ

∫
Ωε

3∑
i=1

uividx.

Here µ is an eigenvalue, u is the corresponding eigenfunction and v = (v1, v2, v3) ∈ Wε

(or W ′
ε) is a test function. By the change of the variable given in (3) together with

ui = εUi, vi = εVi (i = 1, 2) and u3 = ε2U3, v3 = ε2V3, the previous weak formulation is

rewritten in terms of y as follows.∫
F (S)

{
λ1
(
E11(U) + E22(U) + ε2E33(U)

) (
E11(V ) + E22(V ) + ε2E33(V )

)
+ 2λ2

(
2∑

i,j=1

Eij(U)Eij(V ) + 2ε2
2∑

i=1

Ei3(U)Ei3(V ) + ε4E33(U)E33(V )

)}
dy

= µ

∫
F (S)

(
ε2U1V1 + ε2U2V2 + ε4U3V3

)
dy. (19)

6.1. (DD) case.

The proofs for the (DD) case and the (DN) case are very similar. Therefore, for

simplicity, we will analyze the (DD) case and explain the main differences afterwards. In

this section, to simplify the notation, let us write µk(ε) instead of µDD
k (ε).

Let {Φ(k)
ε }+∞

k=1 = {(Φ(k)
1,ε ,Φ

(k)
2,ε ,Φ

(k)
3,ε)}

+∞
k=1 be the corresponding eigenfunctions of the
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eigenvalues {µk(ε)}+∞
k=1 and such that∫

F (S)

(
(Φ

(k)
1,ε)

2 + (Φ
(k)
2,ε)

2 + (Φ
(k)
3,ε)

2
)
dy = 1.

Now we put U = V = Φ
(k)
ε in (19) so that we get∫

F (S)

{
λ1

(
E11(Φ

(k)
ε ) + E22(Φ

(k)
ε ) + ε2E33(Φ

(k)
ε )
)2

+ 2λ2

(
2∑

i,j=1

Eij(Φ
(k)
ε )2 + 2ε2

2∑
i=1

Ei3(Φ
(k)
ε )2 + ε4E33(Φ

(k)
ε )2

)}
dy

= µk(ε)

∫
F (S)

(
ε2(Φ

(k)
1,ε)

2 + ε2(Φ
(k)
2,ε)

2 + ε4(Φ
(k)
3,ε)

2
)
dy. (20)

Note that by the choice of the {Φ(k)
ε }+∞

k=1 and by Theorem 3.3-a), i.e. µk(ε) = O(ε2)

as ε → 0, we can see that the right-hand side of (20) is O(ε4) as ε → 0. Therefore, the

left-hand side must also satisfy the same condition and we conclude that

Eij(Φ
(k)
ε ) = O(ε2), Ei3(Φ

(k)
ε ) = O(ε), E33(Φ

(k)
ε ) = O(1) (21)

in the L2(F (S),R3) sense for 1 ≤ i, j ≤ 2. Combining this fact with Korn’s inequality

(Proposition 4.1), we can see that Φ
(k)
ε is bounded in H1(F (S),R3). Let {εp}+∞

p=1 be any

positive sequence such that εp → 0 as p → +∞. Then, using the previous facts, there

exists a subsequence {εp(q)}+∞
q=1 such that

lim
q→+∞

Φ(k)
εp(q)

= Φ(k) weakly in H1(F (S),R3).

Moreover, from Rellich’s theorem, we have

lim
q→+∞

Φ(k)
εp(q)

= Φ(k) in L2(F (S),R3) with ∥Φ(k)∥L2(F (S),R3) = 1,

so we have non-trivial limit functions {Φ(k)}+∞
k=1 = {(Φ(k)

1 ,Φ
(k)
2 ,Φ

(k)
3 )}+∞

k=1, which form an

orthonormal basis of L2(F (S),R3). For 1 ≤ i, j ≤ 2, we now set

κεij =
1

ε2
Eij(Φ

(k)
ε ), κεi3 =

1

ε
Ei3(Φ

(k)
ε ), κε33 = E33(Φ

(k)
ε ).

Furthermore, we define κε3i = κεi3. We remark that for 1 ≤ i, j ≤ 3, each κεij depends

also on k. Due to (21) we have that κεij = O(1) (1 ≤ i, j,≤ 3) as ε → 0 in the

L2(F (S),R3) sense, that is, κεij are bounded in L2(F (S),R3). Therefore, there exists a

further subsequence {εp(q(n))}+∞
n=1 such that

lim
n→+∞

κ
εp(q(n))

ij = κij weakly in L2(F (S),R3) (1 ≤ i, j ≤ 3).

Note again, that each κij still depends on k. Furthermore, in virtue of Theorem 3.3-a)
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there exists a constant c such that µk(ε)/ε
2 ≤ c and we conclude that there exist an even

further subsequence {ζr}+∞
r=1 ⊆ {εp(q(n))}+∞

n=1 and a constant Λ̃k that satisfy

lim
r→+∞

µk(ζr)

ζ2r
= Λ̃k. (22)

This proves the existence of the limit for a subsequence of {εp}+∞
p=1.

We will characterize {Λ̃k}+∞
k=1. We take particular test functions and deduce several

conditions for the limit functions Φ(k) and κij . Now put U = Φ
(k)
ζr

, ε = ζr, substitute

them into (19) and after dividing both sides by ζ2r we obtain∫
F (S)

{
λ1(κ

ζr
11 + κζr22 + κζr33)

(
E11(V ) + E22(V ) + ζ2rE33(V )

)
+ 2λ2

(
2∑

i,j=1

κζrijEij(V ) + 2ζr

2∑
i=1

κζri3Ei3(V ) + ζ2rκ
ζr
33E33(V )

)}
dy

= µk(ζr)

∫
F (S)

(
Φ

(k)
1,ζr

V1 +Φ
(k)
2,ζr

V2 + ζ2rΦ
(k)
3,ζr

V3

)
dy (23)

for any test function V = (V1, V2, V3) ∈ W1. By letting r → +∞ in (23), we get∫
F (S)

(
λ1(κ11 + κ22 + κ33) (E11(V ) + E22(V )) + 2λ2

2∑
i,j=1

κijEij(V )

)
dy = 0. (24)

Next we choose V2 = 0. We see that E22(V ) = 0, and since κ12 = κ21, (24) becomes∫
F (S)

{
λ1

3∑
p=1

κpp
∂V1
∂y1

+ 2λ2

(
κ11

∂V1
∂y1

+ κ12
∂V1
∂y2

)}
dy = 0

∫
F (S)

{(
λ1

3∑
p=1

κpp + 2λ2κ11

)
∂V1
∂y1

+ 2λ2κ12
∂V1
∂y2

}
dy = 0. (25)

By integration by parts in (25) we obtain

−
∫
F (S)

{
∂

∂y1

(
λ1

3∑
p=1

κpp + 2λ2κ11

)
V1 +

∂

∂y2
(2λ2κ12)V1

}
dy = 0

−
∫
F (S)

{
∂

∂y1

(
λ1

3∑
p=1

κpp + 2λ2κ11

)
+

∂

∂y2
(2λ2κ12)

}
V1dy = 0.

In fact, due to the arbitrariness of V1 we have

∂

∂y1

(
λ1

3∑
p=1

κpp + 2λ2κ11

)
+

∂

∂y2
(2λ2κ12) = 0 (26)
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in the distribution sense. Similarly, letting V1 = 0 we also deduce that∫
F (S)

{
(2λ2κ12)

∂V2
∂y1

+

(
λ1

3∑
p=1

κpp + 2λ2κ22

)
∂V2
∂y2

}
dy = 0, (27)

∂

∂y1
(2λ2κ12) +

∂

∂y2

(
λ1

3∑
p=1

κpp + 2λ2κ22

)
= 0. (28)

We write

α1 = λ1

3∑
p=1

κpp + 2λ2κ11, α2 = 2λ2κ12,

β1 = 2λ2κ12, β2 = λ1

3∑
p=1

κpp + 2λ2κ22,

(29)

so that (25), (26), (27) and (28) become∫
F (S)

(
α1
∂V1
∂y1

+ α2
∂V1
∂y2

)
dy = 0,

∫
F (S)

(
β1
∂V2
∂y1

+ β2
∂V2
∂y2

)
dy = 0, (30)

∂α1

∂y1
= −∂α2

∂y2
,

∂β1
∂y1

= −∂β2
∂y2

. (31)

Note however that the functions V1 and V2 in (30) are arbitrary test functions. Therefore,

for every ϕ ∈ H1(F (S)) with ϕ = 0 on Γ
(+)
1,1 ∪ Γ

(−)
1,1 , we have∫

F (S)

(
α1

∂ϕ

∂y1
+ α2

∂ϕ

∂y2

)
dy = 0,

∫
F (S)

(
β1

∂ϕ

∂y1
+ β2

∂ϕ

∂y2

)
dy = 0. (32)

We will now use the following lemma.

Lemma 6.1. Assume that properties (31) and (32) are satisfied. Then the following

statements hold.

a) There exist functions h1, h2 ∈ L2(F (S)) such that ∂hp/∂yj ∈ L2(F (S)) for 1 ≤ j,

p ≤ 2 and

∂h1
∂y1

= −α2,
∂h1
∂y2

= α1,
∂h2
∂y1

= −β2,
∂h2
∂y2

= β1. (33)

Moreover, h1, h2 take values on the boundary and hp|Γ2,1
∈ L2(Γ2,1) for p = 1, 2.

b) Write Γ2,1 = g1 ∪ · · · ∪ gm where each gi is the i-th connected component of Γ2,1

(m ∈ N, i = 1, . . . ,m). Then, for i = 1, . . . ,m the functions h1|gi , h2|gi do not

depend on (y1, y2) along gi.

For the proof of this lemma see Section 8 Appendix. Let us use the functions h1
and h2 given by this lemma. From (29) and (33), we note
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∂h1
∂y1

+
∂h2
∂y2

= β1 − α2 = 0, (34)

∂h1
∂y2

− ∂h2
∂y1

= α1 + β2 = 2λ1

3∑
p=1

κpp + 2λ2(κ11 + κ22). (35)

For brevity, let us write

Q =
∂h1
∂y2

− ∂h2
∂y1

.

We rewrite the equality (35) with Q and we calculate

Q = 2

(
λ1

3∑
p=1

κpp + λ2(κ11 + κ22)

)
= 2

(
(λ1 + λ2)

3∑
p=1

κpp − λ2κ33

)

λ1Q = 2

(
λ1(λ1 + λ2)

3∑
p=1

κpp − λ1λ2κ33

)

λ1Q+ 2λ2(3λ1 + 2λ2)κ33 = 2(λ1 + λ2)

(
λ1

3∑
p=1

κpp + 2λ2κ33

)
.

Eventually, we obtain

λ1
2(λ1 + λ2)

Q+
λ2(3λ1 + 2λ2)

λ1 + λ2
κ33 = λ1

3∑
p=1

κpp + 2λ2κ33. (36)

This computation will be useful afterwards.

We go back to (23) with some particular test functions. Take functions ρ1 = ρ1(y3),

ρ2 = ρ2(y3), ρ3 = ρ3(y3) such that

ρ1, ρ2 ∈ H2((0, l)), ρ3 ∈ H1((0, l)),

ρi(0) = ρi(l) = 0 (i = 1, 2, 3),

dρi
dy3

(0) =
dρi
dy3

(l) = 0 (i = 1, 2),

and put a test function V = (V1, V2, V3) ∈ W1 by

V1(y) = ρ1(y3),

V2(y) = ρ2(y3),

V3(y) = ρ3(y3)− y1
dρ1
dy3

− y2
dρ2
dy3

.

For this test function we note that Eij(V ) = 0, Ei3(V ) = 0 for 1 ≤ i, j ≤ 2 (see the

computations in (15) and (16)). Substituting the new test function into (23), dividing

both sides by ζ2r , letting r → +∞ and using (22) we deduce
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∫
F (S)

(
λ1

3∑
p=1

κpp + 2λ2κ33

)
E33(V )dy = Λ̃k

∫
F (S)

(
Φ

(k)
1 ρ1 +Φ

(k)
2 ρ2

)
dy. (37)

Now we begin the next step to characterize the behavior of the eigenvalue limit. We

substitute (36) into (37) to get∫
F (S)

(
λ1

2(λ1 + λ2)
Q+

λ2(3λ1 + 2λ2)

λ1 + λ2
κ33

)
E33(V )dy = Λ̃k

∫
F (S)

(
Φ

(k)
1 ρ1 +Φ

(k)
2 ρ2

)
dy.

(38)

Using the above test function V , we have

E33(V ) =
∂V3
∂y3

=
dρ3
dy3

− y1
d2ρ1
dy23

− y2
d2ρ2
dy23

. (39)

Define dy′ = dy1dy2 and let Ω̂(y3) be the the cross-section of F (S) at y3 ∈ [0, l]. We now

look into equation (38) and we rewrite∫
F (S)

QE33(V )dy =

∫ l

0

∫
Ω̂(y3)

Q

(
dρ3
dy3

− y1
d2ρ1
dy23

− y2
d2ρ2
dy23

)
dy′dy3

=

∫ l

0

(∫
Ω̂(y3)

Q
dρ3
dy3

dy′ +

∫
Ω̂(y3)

Qy1
d2ρ1
dy23

dy′ +

∫
Ω̂(y3)

Qy2
d2ρ2
dy23

dy′

)
dy3

=

∫ l

0

(
dρ3
dy3

∫
Ω̂(y3)

Qdy′ +
d2ρ1
dy23

∫
Ω̂(y3)

Qy1dy
′ +

d2ρ2
dy23

∫
Ω̂(y3)

Qy2dy
′

)
dy3. (40)

We will now use the following lemma (see the proof in Section 8 Appendix).

Lemma 6.2. With the same notation as above, for every y3 ∈ [0, l] it holds that∫
Ω̂(y3)

Qdy′ = 0,

∫
Ω̂(y3)

Qyidy
′ = 0 (i = 1, 2).

Using this lemma, we see that (40) becomes∫
F (S)

QE33(V )dy = 0.

As a consequence, (38) simplifies to∫
F (S)

λ2(3λ1 + 2λ2)

λ1 + λ2
κ33E33(V )dy = Λ̃k

∫
F (S)

(
Φ

(k)
1 ρ1 +Φ

(k)
2 ρ2

)
dy. (41)

We will now proceed to compute κ33. Recall that κ33 = E33(Φ
(k)). We know by (21)

that Eij(Φ
(k)) = Ei3(Φ

(k)) = 0 for 1 ≤ i, j ≤ 2. This will help us find a more explicit

form of the functions Φ(k). In order to solve the partial differential equation in the weak

sense for Φ(k), we first write
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Eij(Φ
(k)) =

1

2

(
∂Φ

(k)
i

∂yj
+
∂Φ

(k)
j

∂yi

)
, Ei3(Φ

(k)) =
1

2

(
∂Φ

(k)
i

∂y3
+
∂Φ

(k)
3

∂yi

)
.

For i = 1, 2, from Eii(Φ
(k)) = 0 we have ∂Φ

(k)
i /∂yi = 0 and therefore we deduce that

Φ
(k)
i does not depend on yi. By E12(Φ

(k)) = 0, we see

∂Φ
(k)
1

∂y2
+
∂Φ

(k)
2

∂y1
= 0 and thus

∂Φ
(k)
1

∂y2
= −∂Φ

(k)
2

∂y1
in F (S).

Note that since Φ
(k)
i does not depend on yi, ∂Φ

(k)
1 /∂y2 does not depend on y1 and

∂Φ
(k)
2 /∂y1 does not depend on y2. Due to the relation we found in the previous equation,

we conclude that there exists a function ξ(k)(y3) ∈ L2((0, l)) depending only on y3 such

that

∂Φ
(k)
1

∂y2
= −∂Φ

(k)
2

∂y1
= −ξ(k)(y3).

For further details see Section 8 Appendix Proposition 8.1. Hence, there exist functions

η
(k)
1 (y3), η

(k)
2 (z3) ∈ H1((0, l)) that depend only on y3 such that

Φ
(k)
1 (y) = −ξ(k)(y3)y2 + η

(k)
1 (y3), Φ

(k)
2 (y) = ξ(k)(y3)y1 + η

(k)
2 (y3) (i = 1, 2).

Applying the boundary conditions, we see ξ(k)(0) = 0. Moreover, due to Ei3(Φ
(k)) = 0,

∂Φ
(k)
3

∂y1
= −∂Φ

(k)
1

∂y3
= y2

dξ(k)

dy3
− dη

(k)
1

dy3
,

∂Φ
(k)
3

∂y2
= −∂Φ

(k)
2

∂y3
= −y1

dξ(k)

dy3
− dη

(k)
2

dy3
.

Differentiating the first equation with respect to y2 and the second equation with respect

to y1 and comparing the two results, we see that dξ(k)/dy3 = 0, and therefore, ξ(k) is

a constant. However, by the boundary condition we know that ξ(k)(0) = 0, thus we see

that in fact ξ(k) ≡ 0. Hence,

∂Φ
(k)
3

∂y1
= −dη

(k)
1

dy3
,

∂Φ
(k)
3

∂y2
= −dη

(k)
2

dy3
.

Since (∂/∂y2)(−dη
(k)
1 /dy3) = (∂/∂y1)(−dη

(k)
2 /dy3) = 0 we can solve for Φ

(k)
3 , and we get

the solution

Φ
(k)
1 (y) = η

(k)
1 (y3),

Φ
(k)
2 (y) = η

(k)
2 (y3),

Φ
(k)
3 (y) = η

(k)
3 (y3)− y1

dη
(k)
1

dy3
− y2

dη
(k)
2

dy3
.

(42)

Now we are able to compute

κ33 = E33(Φ
(k)) =

dη
(k)
3

dy3
− y1

d2η
(k)
1

dy23
− y2

d2η
(k)
2

dy23
. (43)
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For commodity, let us put Y = λ2(3λ1 + 2λ2)/(λ1 + λ2). We substitute (39) and (43)

into (41), so it becomes∫
F (S)

Y

(
dη

(k)
3

dy3
− y1

d2η
(k)
1

dy23
− y2

d2η
(k)
2

dy23

)(
dρ3
dy3

− y1
d2ρ1
dy23

− y2
d2ρ2
dy23

)
dy

= Λ̃k

∫
F (S)

(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dy. (44)

Let us now analyze the integrals of (44). For 1 ≤ i, j ≤ 2 let us define the following

functions.

H = H(y3) =

∫
Ω̂(y3)

1dy′, Ki = Ki(y3) =

∫
Ω̂(y3)

yidy
′,

Aij = Aij(y3) =

∫
Ω̂(y3)

yiyjdy
′ (y3 ∈ [0, l]) .

(45)

With this notation and using integration by parts accordingly, we have∫
F (S)

dη
(k)
3

dy3

dρ3
dy3

dy =

∫ l

0

H
dη

(k)
3

dz3

dρ3
dz3

dz3 = −
∫ l

0

d

dz3

(
H

dη
(k)
3

dz3

)
ρ3dz3,

∫
F (S)

yi
dη

(k)
3

dy3

d2ρi
dy23

dy =

∫ l

0

Ki
dη

(k)
3

dz3

d2ρi
dz23

dz3 =

∫ l

0

d2

dz23

(
Ki

dη
(k)
3

dz3

)
ρidz3,

∫
F (S)

yi
d2η

(k)
i

dy23

dρ3
dy3

dy =

∫ l

0

Ki
d2η

(k)
i

dz23

dρ3
dz3

dz3 = −
∫ l

0

d

dz3

(
Ki

d2η
(k)
i

dz23

)
ρ3dz3,

∫
F (S)

yiyj
d2η

(k)
i

dy23

d2ρj
dy23

dy =

∫ l

0

Aij
d2η

(k)
i

dz23

d2ρj
dz23

dz3 =

∫ l

0

d2

dz23

(
Aij

d2η
(k)
i

dz23

)
ρjdz3,

Λ̃k

∫
F (S)

(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dy = Λ̃k

∫ l

0

H
(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dz3.

Plugging this into (44) and rearranging it we obtain

Y

∫ l

0

{
d2

dz23

(
A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23
−K1

dη
(k)
3

dz3

)
ρ1

+
d2

dz23

(
A12

d2η
(k)
1

dz23
+A22

d2η
(k)
2

dz23
−K2

dη
(k)
3

dz3

)
ρ2

+
d

dz3

(
K1

d2η
(k)
1

dz23
+K2

d2η
(k)
2

dz23
−H

dη
(k)
3

dz3

)
ρ3

}
dz3=Λ̃k

∫ l

0

H
(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dz3.

(46)

Choosing ρ1, ρ2 = 0, we see that
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Y

∫ l

0

d

dz3

(
K1

d2η
(k)
1

dz23
+K2

d2η
(k)
2

dz23
−H

dη
(k)
3

dz3

)
ρ3dz3 = 0. (47)

Note now that (47) holds for all ρ3 ∈ H1
0 ((0, l)), so we deduce that

d

dz3

(
K1

d2η
(k)
1

dz23
+K2

d2η
(k)
2

dz23
−H

dη
(k)
3

dz3

)
= 0,

and thus

d

dz3

(
H

dη
(k)
3

dz3

)
=

d

dz3

(
K1

d2η
(k)
1

dz23
+K2

d2η
(k)
2

dz23

)
. (48)

Plugging (47) into (46), we get

Y

∫ l

0

{
d2

dz23

(
A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23
−K1

dη
(k)
3

dz3

)
ρ1

+
d2

dz23

(
A12

d2η
(k)
1

dz23
+A22

d2η
(k)
2

dz23
−K2

dη
(k)
3

dz3

)
ρ2

}
dz3=Λ̃k

∫ l

0

H
(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dz3.

(49)

Now taking ρ2 = 0 in (49), we see

Y

∫ l

0

d2

dz23

(
A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23
−K1

dη
(k)
3

dz3

)
ρ1dz3 = Λ̃k

∫ l

0

Hη
(k)
1 ρ1dz3.

Since ρ1 is arbitrary, we conclude that

Y
d2

dz23

(
A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23
−K1

dη
(k)
3

dz3

)
= Λ̃kHη

(k)
1 . (50)

Similarly, with the same argument but taking ρ1 = 0, we get

Y
d2

dz23

(
A21

d2η
(k)
1

dz23
+A22

d2η
(k)
2

dz23
−K2

dη
(k)
3

dz3

)
= Λ̃kHη

(k)
2 . (51)

Combining the equations (48), (50) and (51) we obtain the system of differential equations
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Y
d2

dz23


(
A11 A12 −K1

A21 A22 −K2

)


d2η1
dz23
d2η2
dz23
dη3
dz3




= Λ̃H

(
η1
η2

)
(0 < z3 < l),

d

dz3

(
H

dη3
dz3

)
=

d

dz3

(
K1

d2η1
dz23

+K2
d2η2
dz23

)
(0 < z3 < l).

(52)

We now discuss the boundary conditions of the functions η
(k)
i for i = 1, 2, 3 for the

(DD) case, that is, the case with both ends clamped. Then, we know that Φ(k)(y1, y2, 0) =

0 and Φ(k)(y1, y2, l) = 0. From (42) we can deduce that
η
(k)
3 (0) = η

(k)
i (0) =

dη
(k)
i

dz3
(0) = 0

η
(k)
3 (l) = η

(k)
i (l) =

dη
(k)
i

dz3
(l) = 0

(i = 1, 2). (dd)

Let {Λk∗}+∞
k∗=1 be the set of eigenvalues of problem (52) with (dd) boundary con-

ditions. Then, we have proved that Λ̃k ∈ {Λk∗}+∞
k∗=1, and more generally {Λ̃k}+∞

k=1 ⊆
{Λk∗}+∞

k∗=1. Thus, we can assure that

Λ̃k ≥ Λk (k ≥ 1). (53)

It still remains to prove that Λ̃k ≤ Λk for k ≥ 1 (cf. Section 7).

6.2. (DN) case.

We will cover now the case of µDN
k (ε). The proof is pretty similar to the case of

µDD
k (ε) with some minor changes, specially on the boundary.

The function space W1 changes to

W ′
1 =

{
ϕ ∈ H1(F (S),R3) | ϕ = 0 on Γ

(−)
1,1

}
,

and the test functions chosen during the proof, now only vanish on Γ
(−)
1,1 . In particular,

ρi(0) = 0 for i = 1, 2, 3 and dρi/dz3(0) = 0 for i = 1, 2. Let us now discuss the boundary

conditions of the functions η
(k)
i for i = 1, 2, 3. With the same argument as before, on

the clamped end, we easily see that η
(k)
i (0) = 0 for i = 1, 2, 3 and dη

(k)
i /dz3(0) = 0 for

i = 1, 2. We go back to (44) and put ρ2 = 0 and ρ3 = 0, to obtain

Y

∫
F (S)

(
−dη

(k)
3

dy3
+ y1

d2η
(k)
1

dy23
+ y2

d2η
(k)
2

dy23

)
y1

d2ρ1
dy23

dy = Λ̃k

∫
F (S)

η
(k)
1 ρ1dy.

Using the definition (45) of the functions H, Ki and Aij for 1 ≤ i, j ≤ 2, we transform

the previous equation into
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Y

∫ l

0

(
−K1

dη
(k)
3

dz3
+A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23

)
d2ρ1
dz23

dz3 = Λ̃k

∫ l

0

Hη
(k)
1 ρ1dz3. (54)

To simplify notation we write

Pi(z3) = −Ki(z3)
dη

(k)
3

dz3
+Ai1(z3)

d2η
(k)
1

dz23
+Ai2(z3)

d2η
(k)
2

dz23
(i = 1, 2),

P3(z3) = H(z3)
dη

(k)
3

dz3
−K1(z3)

d2η
(k)
1

dz23
−K2(z3)

d2η
(k)
2

dz23
.

We use integration by parts two times in (54) to obtain

Y

([
P1(z3)

dρ1
dz3

]l
0

−
[
dP1

dz3
ρ1(z3)

]l
0

+

∫ l

0

d2P1

dz23
ρ1dz3

)
= Λ̃k

∫ l

0

Hη
(k)
1 ρ1dz3.

Using (50), we see that the previous equation becomes

Y

([
P1(z3)

dρ1
dz3

]l
0

−
[
dP1

dz3
ρ1(z3)

]l
0

)
= 0.

Note that in the (DD) case, we can see that all terms above vanish. However, in the

(DN) case we have that ρ1(0) = 0 and dρ1/dz3(0) = 0. Therefore

P1(l)
dρ1
dz3

(l)− dP1

dz3
(l)ρ1(l) = 0.

Using proper test functions ρ1, we conclude P1(l) = 0 and dP1/dz3(l) = 0. In a similar

fashion, choosing ρ1 = 0 and ρ3 = 0, we deduce P2(l) = 0 and dP2/dz3(l) = 0. Fi-

nally, taking ρ1 = 0 and ρ2 = 0, we get P3(l) = 0. Moreover, from (48), we also get

dP3/dz3(l) = 0. Thus, we have seen that Pi(l) = 0 and dPi/dz3(l) = 0 for i = 1, 2, 3 and

therefore solving the systems we obtain

d2η
(k)
i

dz23
(l) =

d3η
(k)
i

dz33
(l) = 0 (i = 1, 2),

dη
(k)
3

dz3
(l) =

d2η
(k)
3

dz23
(l) = 0. (55)

To sum up, we have the boundary conditions
η
(k)
3 (0) = η

(k)
i (0) =

dη
(k)
i

dz3
(0) = 0

dη
(k)
3

dz3
(l) =

d2η
(k)
3

dz23
(l) =

d2η
(k)
i

dz23
(l) =

d3η
(k)
i

dz33
(l) = 0

(i = 1, 2). (dn)

Remark 6.3. It can be shown that the condition dη
(k)
3 /dz23 = 0 is not independent

and can be deduced from the other conditions and equations. Thus we can drop it when

stating the result.
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7. Upper bound for the limit eigenvalues.

We now start to prove that Λ̃k ≤ Λk. Consider the system of ordinary differential

equations

Y
d2

dz23


(
A11 A12 −K1

A21 A22 −K2

)


d2η1
dz23
d2η2
dz23
dη3
dz3




= ΛH

(
η1
η2

)
(0 < z3 < l),

d

dz3

(
H

dη3
dz3

)
=

d

dz3

(
K1

d2η1
dz23

+K2
d2η2
dz23

)
(0 < z3 < l).

(56)

where Y = λ2(3λ1+2λ2)/(λ1+λ2). In a very similar fashion as before, we first consider

the (DD) case, so we assume the functions satisfy the (dd) boundary condition.

Let Λk be the k-th eigenvalue of the problem (56) with (dd) boundary condition and

η(k) = (η
(k)
1 , η

(k)
2 , η

(k)
3 ) its associated eigenfunction. By the relation we have in (56), η

(k)
3

satisfies (d/dz3)(H(dη
(k)
3 /dz3)) = (d/dz3)(K1(d

2η
(k)
1 /dz23) +K2(d

2η
(k)
2 /d2z23)).

We recall that Λ̃k = limr→+∞(1/ζ2r )µk(ζr) (see (22)) and the eigenvalue µk(ε) can

be characterized by the Rayleigh’s quotient via

µk(ε) = sup
Z∈Hk−1(F (S),R3)

inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε}

(see (11)). We want to show that Λ̃k ≤ Λk.

We multiply the system (56) by (η1, η2) and integrate over the interval (0, l).

Applying the integration by parts we obtain

Y

∫ l

0

(
2∑

i,j=1

Aij
d2ηi
dz23

d2ηj
dz23

−
2∑

i=1

Ki
d2ηi
dz23

dη3
dz3

)
dz3 = Λ

∫ l

0

H
(
η21 + η22

)
dz3.

Using the relationship between η3 and (η1, η2) we have in (52), we deduce that

Y

∫ l

0

(
2∑

i,j=1

Aij
d2ηi
dz23

d2ηj
dz23

− 2
2∑

i=1

Ki
d2ηi
dz23

dη3
dz3

+H

(
dη3
dz3

)2)
dz3 = Λ

∫ l

0

H
(
η21 + η22

)
dz3.

Therefore, if η(k) = (η
(k)
1 , η

(k)
2 ) is the k-th eigenfunction of the ordinary differential

equation (56), we have that

Λk =

Y

∫ l

0

 2∑
i,j=1

Aij
d2η

(k)
i

dz23

d2η
(k)
j

dz23
− 2

2∑
i=1

Ki
d2η

(k)
i

dz23

dη
(k)
3

dz3
+H

(
dη

(k)
3

dz3

)2 dz3

∫ l

0

H

((
η
(k)
1

)2
+
(
η
(k)
2

)2)
dz3

. (57)
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Recall now the Rayleigh’s quotient R̃ε introduced in (10). We now try new test

functions Θ(y) = Θ = (Θ1,Θ2,Θ3), ϕ(y) = ϕ = (ϕ1, ϕ2, ϕ3) given by

Θi = ηi + ε2ϕi (i = 1, 2),

Θ3 = η3 − y1
dη1
dy3

− y2
dη2
dy3

+ εϕ3,

where the functions ηi for i = 1, 2, 3 depend only on y3. The choice of these test functions

comes from the fact that we want Eij(Θ) to satisfy (21). Indeed, since for 1 ≤ i, j ≤ 2

we have Eij(η) = 0 and Ei3(η) = 0, we calculate

Eij(Θ) = ε2Eij(ϕ),

Ei3(Θ) =
1

2

(
ε2
∂ϕi
∂y3

+ ε
∂ϕ3
∂yi

)
(1 ≤ i, j ≤ 2),

E33(Θ) =
dη3
dy3

− y1
d2η1
dy23

− y2
d2η2
dy23

+ ε
∂ϕ3
∂y3

.

For brevity we write N = dη3/dy3 − y1(d
2η1/dy

2
3) − y2(d

2η2/dy
2
3). Knowing this, we

compute R̃ε(Θ).

R̃ε(Θ) =

∫
F (S)

(
λ1

(
ε2
∂ϕ1
∂y1

+ ε2
∂ϕ2
∂y2

+ ε2N + ε3
∂ϕ3
∂y3

)2
+ 2λ2

2∑
i,j=1

ε4Eij(ϕ)
2

)
dy

∫
F (S)

(
ε2(η1 +ε

2ϕ1)
2 + ε2(η2 +ε

2ϕ2)
2 + ε4

(
η3 − y1

dη1
dy3

− y2
dη2
dy3

+ εϕ3

)2)
dy

+

∫
F (S)

2λ2

(
2ε2

2∑
i=1

1

4

(
ε2
∂ϕi
∂y3

+ ε
∂ϕ3
∂yi

)2
+ ε4

(
N + ε

∂ϕ3
∂y3

)2
)
dy

∫
F (S)

(
ε2(η1 +ε

2ϕ1)
2 + ε2(η2 +ε

2ϕ2)
2 + ε4

(
η3 − y1

dη1
dy3

− y2
dη2
dy3

+ εϕ3

)2)
dy

.

Multiplying by 1/ε2 and taking the limit ε→ 0, we see

lim
ε→0

1

ε2
R̃ε(Θ) =

∫
F (S)

λ1

(
∂ϕ1
∂y1

+
∂ϕ2
∂y2

+N

)2

dy∫
F (S)

(η21 + η22)dy

+

∫
F (S)

2λ2

(
2∑

i,j=1

Eij(ϕ)
2 +

1

2

2∑
i=1

(
∂ϕ3
∂yi

)2

+N2

)
dy∫

F (S)

(η21 + η22)dy

. (58)

We want to find the ϕ = (ϕ1, ϕ2, ϕ3) that minimizes the numerator in (58)
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M(ϕ)=

∫
F (S)

λ1(∂ϕ1
∂y1

+
∂ϕ2
∂y2

+N

)2

+ 2λ2

 2∑
i,j=1

Eij(ϕ)
2 +

1

2

2∑
i=1

(
∂ϕ3
∂yi

)2

+N2

dy.

In order to minimize M, we put the test function ϕ as follows.

ϕi(y) =
2∑

p,q=1

α(i)
pq ypyq +

2∑
p=1

β(i)
p yp (i = 1, 2), (59)

ϕ3(y) = 0 (60)

where α
(i)
pq and β

(i)
p depend only on y3 for 1 ≤ p, q, i ≤ 2 and satisfy α

(i)
12 = α

(i)
21 for

i = 1, 2.

If we substitute this test function into M, we obtain an expression that can be

written as a polynomial of degree 2 on the variables α
(i)
pq and β

(i)
p for 1 ≤ i, p, q ≤ 2 (in

total there are 10 variables). Thus, it can be further rewritten as
∫ l

0
(αTXα + Yα)dy3

for a certain matrix valued function X and a certain vector valued function Y (for the

explicit forms of X and Y see Appendix Remark 8.2) with

α =
(
α
(1)
11 , α

(1)
12 , α

(1)
22 , α

(2)
11 , α

(2)
12 , α

(2)
22 , β

(1)
1 , β

(1)
2 , β

(2)
1 , β

(2)
2

)T
.

Since we want the minimum, we differentiate the expression
∫ l

0
(αTXα + Yα)dy3 with

respect to α and solve the linear system 2Xα + Y = 0 for α. After long but simple

calculations we obtain

α
(1)
11 =

1

4

λ1
λ1 + λ2

d2η1
dy23

, α
(1)
12 =

1

4

λ1
λ1 + λ2

d2η2
dy23

, α
(1)
22 = −1

4

λ1
λ1 + λ2

d2η1
dy23

,

α
(2)
11 = −1

4

λ1
λ1 + λ2

d2η2
dy23

, α
(2)
12 =

1

4

λ1
λ1 + λ2

d2η1
dy23

, α
(2)
22 =

1

4

λ1
λ1 + λ2

d2η2
dy23

,

β
(1)
1 = −1

2

λ1
λ1 + λ2

dη3
dy3

, β
(2)
2 = −1

2

λ1
λ1 + λ2

dη3
dy3

.

In fact, the matrix X in the system is degenerate and we additionally obtain the condition

β
(2)
1 + β

(1)
2 = 0. It can also be checked that the minimum obtained is always the same,

so to simplify, we put β
(2)
1 = 0 and β

(1)
2 = 0. Therefore, recalling (59), we obtain

ϕ1(y) =
1

4

λ1
λ1 + λ2

(
d2η1
dy23

y21 + 2
d2η2
dy23

y1y2 −
d2η1
dy23

y22 − 2
dη3
dy3

y1

)
,

ϕ2(y) =
1

4

λ1
λ1 + λ2

(
−d2η2

dy23
y21 + 2

d2η1
dy23

y1y2 +
d2η2
dy23

y22 − 2
dη3
dy3

y2

)
, (61)

ϕ3(y) = 0.

Substituting (61) into (58) and after long but elementary computations, we obtain the

minimum
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lim
ε→0

1

ε2
R̃ε(Θ) =

∫
F (S)

λ2(3λ1 + 2λ2)

λ1 + λ2
N2dy∫

F (S)

(η21 + η22)dy

. (62)

Substituting (η1, η2, η3) = (η
(k)
1 , η

(k)
2 , η

(k)
3 ) and the definition of N into (62) and integrat-

ing by parts, we have

lim
ε→0

1

ε2
R̃ε(Θ) =

Y

∫ l

0

 2∑
i,j=1

Aij
d2η

(k)
i

dz23

d2η
(k)
j

dz23
− 2

2∑
i=1

Ki
d2η

(k)
i

dz23

dη
(k)
3

dz3
+H

(
dη

(k)
3

dz3

)2 dz3

∫ l

0

H

((
η
(k)
1

)2
+
(
η
(k)
2

)2)
dz3

,

which, from (57), turns out to be

lim
ε→0

1

ε2
R̃ε(Θ) = Λk. (63)

Our next goal is to use the Max-Min method to prove the desired inequality Λ̃k ≤ Λk.

First, we consider the eigenfunction η(k) = (η
(k)
1 , η

(k)
2 , η

(k)
3 ) corresponding to the eigen-

value Λk of problem (56) with (dd) boundary condition. We also choose the functions

η(k) so that ∫
F (S)

(
η
(k)
1 η

(k′)
1 + η

(k)
2 η

(k′)
2

)
dy = δ(k, k′), (64)

where δ is the Kronecker delta. We define

Nk =
dη

(k)
3

dy3
− y1

d2η
(k)
1

dy23
− y2

d2η
(k)
2

dy23
. (65)

Using the weak formulation of (56), we know that

Y

∫
F (S)

NkNk′dy = Λkδ(k, k
′). (66)

Let us consider the test functions

Φ
(s)
i = η

(s)
i + ε2ϕ

(s)
i (i = 1, 2),

Φ
(s)
3 = η

(s)
3 − y1

dη
(s)
1

dy3
− y2

dη
(s)
2

dy3
,

with s ∈ N and

ϕ
(s)
1 =

1

4

λ1
λ1 + λ2

(
d2η

(s)
1

dy23
y21 + 2

d2η
(s)
2

dy23
y1y2 −

d2η
(s)
1

dy23
y22 − 2

dη
(s)
3

dy3
y1

)
, (67)
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ϕ
(s)
2 =

1

4

λ1
λ1 + λ2

(
−d2η

(s)
2

dy23
y21 + 2

d2η
(s)
1

dy23
y1y2 +

d2η
(s)
2

dy23
y22 − 2

dη
(s)
3

dy3
y2

)
. (68)

Choose an arbitrary Z ∈ Hk−1(F (S),R3) and let Z̃ = L.H.[Φ(1),Φ(2), . . . ,Φ(k)] be the

minimal linear space that contains the set {Φ(1),Φ(2), . . . ,Φ(k)}. Note that dim Z̃ = k

and that each Φ(s) ∈ W1 (for all s ∈ N), so we have that Z̃ ⊆ W1. Since dimZ <

dim Z̃, we know that there exist a function Ψ = (Ψ1,Ψ2,Ψ3) ∈ Z̃ ∩ Z⊥ε and a vector

(c1, . . . , ck) = (c1(ε), . . . , ck(ε)) ∈ Rk\{0} such that

Ψ =
k∑

s=1

cs(ε)Φ
(s).

Note that since both Z̃ and Z⊥ε are subsets of W1, we have also that Ψ ∈ W1 and due to

the fact that (c1(ε), . . . , ck(ε)) ∈ Rk\{0} we deduce that Ψ ∈ W1\{0}, so we can apply

R̃ε to Ψ. We compute

Eii(Ψ) = −ε2
k∑

s=1

cs(ε)
1

2

λ1
λ1 + λ2

Ns, Ei3(Ψ) = ε2
k∑

s=1

cs(ε)Ei3(ϕ) (1 ≤ i ≤ 2),

E12(Ψ) = E21(Ψ) = 0, E33(Ψ) =
k∑

s=1

cs(ε)Ns.

Using these computations, the numerator of the Rayleigh quotient R̃ε(Ψ) is

∫
F (S)

λ1(ε2( k∑
s=1

cs(ε)
λ2

λ1 + λ2
Ns

))2

+ 2λ2

 2∑
i=1

ε4

(
k∑

s=1

cs(ε)
1

2

λ1
λ1 + λ2

Ns

)2
 dy

+

∫
F (S)

2λ2

2ε4
2∑

i=1

1

4

(
ε2

k∑
s=1

cs(ε)Ei3(ϕ)

)2

+ ε4

(
k∑

s=1

cs(ε)Ns

)2
dy

= ε4
k∑

p,q=1

cp(ε)cq(ε)

∫
F (S)

Y NpNqdy + ε6
k∑

p,q=1

cp(ε)cq(ε)κ̃(p, q, ε) (69)

for some functions κ̃(p, q, ε) = O(1) as ε→ 0. Note that these functions κ̃(p, q, ε) do not

depend on the choice of Z. Due to (66), it follows that (69) becomes

ε4
k∑

p,q=1

cp(ε)cq(ε)

∫
F (S)

Y NpNqdy + ε6
k∑

p,q=1

cp(ε)cq(ε)κ̃(p, q, ε)

= ε4
k∑

p=1

cp(ε)
2Λp + ε6

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε). (70)

Note also that the denominator of Rε(Ψ) satisfies
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ε2
∫
F (S)

(
Ψ2

1 +Ψ2
2 + ε2Ψ2

3

)
dy ≥ ε2

∫
F (S)

(
Ψ2

1 +Ψ2
2

)
dy

= ε2
∫
F (S)

( k∑
s=1

ck(ε)(η
(s)
1 + ε2ϕ

(s)
1 )

)2

+

(
k∑

s=1

ck(ε)(η
(s)
2 + ε2ϕ

(s)
2 )

)2
dy

= ε2
∫
F (S)

k∑
p,q=1

cp(ε)cq(ε)

(
2∑

n=1

(η(p)n + ε2ϕ(p)n )(η(q)n + ε2ϕ(q)n )

)
dy

= ε2
k∑

p,q=1

cp(ε)cq(ε)

∫
F (S)

(η
(p)
1 η

(q)
1 + η

(p)
2 η

(q)
2 )dy + ε4

k∑
p,q=1

cp(ε)cq(ε)κ̂(p, q, ε) (71)

for certain functions κ̂(p, q, ε) = O(1) as ε→ 0. Note again that the functions κ̂(p, q, ε) do

not depend on the choice of Z. By the homogeneity property of the Rayleigh’s quotient

we may assume without loss of generality that
∑k

p=1 cp(ε)
2 = 1. Thus we have |cp(ε)| ≤ 1

for 1 ≤ p ≤ k. Combining this fact with the orthogonality in (64), we get

ε2
k∑

p,q=1

cp(ε)cq(ε)

∫
F (S)

(η
(p)
1 η

(q)
1 + η

(p)
2 η

(q)
2 )dy + ε4

k∑
p,q=1

cp(ε)cq(ε)κ̂(p, q, ε)

= ε2
k∑

p=1

cp(ε)
2 + ε4

k∑
p,q=1

cp(ε)cq(ε)κ̂(p, q, ε) = ε2 + ε4
k∑

p,q=1

cp(ε)cq(ε)κ̂(p, q, ε)

≥ ε2 − ε4
k∑

p,q=1

|cp(ε)||cq(ε)||κ̂(p, q, ε)| ≥ ε2 − ε4
k∑

p,q=1

|κ̂(p, q, ε)|. (72)

Therefore, with (71) and (72), we deduce that

ε2
∫
F (S)

(
Ψ2

1 +Ψ2
2 + ε2Ψ2

3

)
dy ≥ ε2 − ε4

k∑
p,q=1

|κ̂(p, q, ε)|. (73)

Using (70) and the bound (73), we obtain

1

ε2
R̃ε(Ψ) ≤ 1

ε2

ε4
k∑

p=1

cp(ε)
2Λp + ε6

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε)

ε2 − ε4
k∑

p,q=1

|κ̂(p, q, ε)|

≤

Λk

k∑
p=1

cp(ε)
2 + ε2

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε)

1− ε2
k∑

p,q=1

|κ̂(p, q, ε)|

≤

Λk + ε2
k∑

p,q=1

|κ̃(p, q, ε)|

1− ε2
k∑

p,q=1

|κ̂(p, q, ε)|

(74)

provided that the denominator is positive (this is possible because ε is a small real
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parameter). Let us denote the right hand side of the previous inequality

Lk(ε) =

Λk + ε2
k∑

p,q=1

|κ̃(p, q, ε)|

1− ε2
k∑

p,q=1

|κ̂(p, q, ε)|

.

Note once again that Lk(ε) does not depend on the choice of Z. We know from (74) that

1

ε2
inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε} ≤ 1

ε2
R̃ε(Ψ) ≤ Lk(ε).

Since Z ∈ Hk−1(F (S),R3) was arbitrary, we take the supremum over Hk−1(F (S),R3),

so we obtain the upper estimate

1

ε2
µk(ε) ≤ Lk(ε).

Taking the limit ε→ 0 and using (22), we have

Λ̃k ≤ lim sup
ε→0

1

ε2
µk(ε) ≤ lim sup

ε→0
Lk(ε) = Λk,

which agrees to the desired inequality Λ̃k ≤ Λk (k ≥ 1). We combine this fact together

with (53) to conclude that

Λ̃k = Λk (k ≥ 1).

We only proved limr→+∞ µk(ζr)/ζ
2
r = Λ̃k for a certain subsequence {ζr}+∞

r=1 ⊆
{εp}+∞

p=1, but note that we have shown that Λ̃k = Λk independently of the first cho-

sen sequence {εp}+∞
p=1. Since this sequence was arbitrary, we can see that in fact for every

k ≥ 1 we have

lim
ε→0

µk(ε)

ε2
= Λ̃k.

Similarly, we prove the same result in the case (DN).

8. Appendix.

In this appendix we give the proofs of Lemma 6.1 and Lemma 6.2 and some additional

facts which we used before in the proof of the main results.

Proof of Lemma 6.1. a) Let ϕ, ψ ∈ C+∞
0 (R) such that

∫
R ψ(t)dt = 1 and∫

R ϕ(t)dt = 1. For any Φ ∈ C+∞
0 (R3) with supp(Φ) ⊆ F (S), we construct h1 such

that

⟨h1,Φ⟩ =
(
α2, Φ̂

)
L2(F (S))

−
(
α1,

∫
R

̂̂
Φ(s, y2, y3)ds ϕ(y1)

)
L2(F (S))
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where

Φ̂(y) =

∫ y1

−∞

(
Φ(t, y2, y3)−

(∫
R
Φ(s, y2, y3)ds

)
ϕ(t)

)
dt,

̂̂
Φ(y) =

∫ y2

−∞

(
Φ(y1, τ, y3)−

(∫
R
Φ(y1, t, y3)dt

)
ψ(τ)

)
dτ.

Note ⟨h1, ·⟩ denotes the linear functional on C+∞
0 (F (S)). With these definitions, the

following holds.

∂̂Φ

∂y1
= Φ(y),

̂̂
∂Φ

∂y1
= 0,

̂̂
∂Φ

∂y2
= Φ(y).

Using these facts and combining it with property (31), we can see after some computations

that ⟨
h1,

∂Φ

∂y1

⟩
= (α2,Φ)L2(F (S)) and

⟨
h1,

∂Φ

∂y2

⟩
= − (α1,Φ)L2(F (S))

which proves ∂h1/∂y2 = α1 and ∂h1/∂y1 = −α2 in the distribution sense. Moreover, it

can also be shown that |⟨h1,Φ⟩| ≤ C∥Φ∥L2(F (S)) for some constant C > 0. Using that

C+∞
0 (F (S)) is dense in L2(F (S)) and Riesz’s Theorem we deduce that h1 ∈ L2(F (S)).

Furthermore, since ∂h1/∂y1, ∂h1/∂y2 belong to L2(F (S)), we can take values on the

boundary and h1|∂F (S)
∈ L2(∂F (S)). Similar arguments can be done for h2. This proves

item a) of the lemma.

b) We change variables according to (3) and work with z in S. Before beginning

with the proof of this item we introduce some notation. Recall that B was an arbitrary

connected bounded domain in R2 and that s2 = ∂B × (0, l). Write ∂B = b1 ∪ · · · ∪ bm
where bi are its connected components. With this notation, for i = 1, . . . ,m we define

ςi = bi × (0, l) so that s2 = ς1 ∪ · · · ∪ ςm. We parametrize the boundary ∂B by the

arclength θ and, accordingly, each bi by θi. Through this notes, n = (n1, n2, n3) will

denote the unit outward normal vector on s2.

Let h̃1(z) = h1(F (z)) and let ϕ̃ = ϕ̃(z) ∈ C+∞(S) be a smooth test function such

that ϕ̃(z1, z2, 0) = ϕ̃(z1, z2, l) = 0, namely, ϕ̃|s(+)
1 ∪s

(−)
1

= 0. We compute

∫
s2

h̃1
∂ϕ̃

∂θ
dA =

∫
s2

h̃1

(
∂ϕ̃

∂z1

∂z1
∂θ

+
∂ϕ̃

∂z2

∂z2
∂θ

)
dA =

∫
s2

h̃1

(
−n2

∂ϕ̃

∂z1
+ n1

∂ϕ̃

∂z2

)
dA

=

∫
s2

(
n1h̃1

∂ϕ̃

∂z2
− n2h̃1

∂ϕ̃

∂z1

)
dA

=

∫
S

(
∂

∂z1

(
h̃1

∂ϕ̃

∂z2

)
− ∂

∂z2

(
h̃1

∂ϕ̃

∂z1

))
dz1dz2dz3=

∫
S

(
∂h̃1
∂z1

∂ϕ̃

∂z2
− ∂h̃1
∂z2

∂ϕ̃

∂z1

)
dz.

With the change of variables (y1, y2, y3) = (F1(z), F2(z), z3) and (31), with some compu-

tations it can be seen that
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∫
S

(
∂h̃1
∂z1

∂ϕ̃

∂z2
− ∂h̃1
∂z2

∂ϕ̃

∂z1

)
dz = −

∫
F (S)

(
α2

∂ϕ

∂y2
+ α1

∂ϕ

∂y1

)
dy

where ϕ ∈ C+∞(F (S)). Due to (32), we conclude∫
s2

h̃1
∂ϕ̃

∂θ
dA =

m∑
j=1

∫
ςj

h̃1
∂ϕ̃

∂θj
dA = 0. (75)

For any i = 1, . . . ,m, choose a test function ϕ̃ such that ϕ̃|ςj ≡ 0 for j ̸= i. Then (75)

becomes

m∑
j=1

∫
ςj

h̃1
∂ϕ̃

∂θj
dA =

∫
ςi

h̃1
∂ϕ̃

∂θi
dA = 0. (76)

We will now show that h̃1|ςi does not depend on (z1, z2) over ςi for i = 1, . . . ,m. Let

ϕ = ϕ(θ, z3) ∈ C+∞(s2) be a test function such that ϕ(θ, 0) = ϕ(θ, l) = 0. We define ϕ̂

and χ such that for i = 1, . . . ,m

ϕ̂|ςi = ϕ|ςi −
∫
bi

ϕ(θ̃, z3)dθ̃, χ|ςi =
∫ θi

0

ϕ̂(θ̂, z3)dθ̂.

We compute∫
s2

h̃1ϕ(θ, z3)dA =
m∑
j=1

∫
ςj

h̃1ϕ(θj , z3)dA

=
m∑
j=1

∫
ςj

h̃1

(
ϕ(θ, z3)−

∫
bj

ϕ(θ̃, z3)dθ̃ +

∫
bj

ϕ(θ̃, z3)dθ̃

)
dA

=

m∑
j=1

∫
ςj

h̃1

(
∂χ

∂θj
(θj , z3) +

∫
bj

ϕ(θ̃j , z3)dθ̃

)
dA. (77)

From (75), we can easily see that for any j = 1, . . . ,m∫
ςj

h̃1
∂χ

∂θj
(θj , z3)dA = 0.

Therefore, we continue the computations in (77) and we obtain

m∑
j=1

∫
ςj

h̃1ϕ(θj , z3)dA =
m∑
j=1

∫
ςj

h̃1(θj , z3)

(∫
bj

ϕ(θ̃j , z3)dθ̃

)
dθdz3

=

m∑
j=1

∫
ςj

ϕ(θ̃, z3)

(∫
bj

h̃1(θj , z3)dθj

)
dθ̃dz3
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=

m∑
j=1

∫
ςj

ϕ(θj , z3)

(∫
bj

h̃1(θ̃, z3)dθ̃

)
dθdz3,

where we used Fubini’s Theorem and we renamed the variables θj and θ̃. Sending it all

to the left-hand side, we see

m∑
j=1

∫
ςj

(
h̃1(θj , z3)−

∫
bj

h̃1(θ̃, z3)dθ̃

)
ϕ(θj , z3)dθjdz3 = 0.

For any i = 1, . . . ,m, we choose a test function ϕ such that ϕ|ςj ≡ 0 for j ̸= i so that the

previous equation becomes∫
ςi

(
h̃1(θi, z3)−

∫
bi

h̃1(θ̃, z3)dθ̃

)
ϕ(θi, z3)dθidz3 = 0.

Since ϕ|ςi is arbitrary, we conclude that

h̃1|ςi =
∫
bi

h̃1(θ̃, z3)dθ̃,

hence h̃1|ςi does not depend on θi, that is, it does not depend on (z1, z2) along ςi.

Therefore, using the regularity of F , we conclude that h1|gi does not depend on (y1, y2)

along gi. All of the above calculations can be made similarly to prove that h2|gi does

not depend on (y1, y2) along gi. □

Proof of Lemma 6.2. Let n = (n1, n2) be the unit outward normal vector on

∂Ω̂(y3) and write ∂Ω̂(y3) = ĝ1(y3) ∪ · · · ∪ ĝm(y3), where ĝj(y3) are the connected com-

ponents of ∂Ω̂(y3) (j = 1, . . . ,m). We use the divergence theorem for the 2-dimensional

bounded domain enclosed by ĝj(y3) to see that for every y3 ∈ [0, l] and j = 1, . . . ,m we

have ∫
ĝj(y3)

nidL = 0, (i = 1, 2) (78)∫
ĝj(y3)

y2n1dL = 0,

∫
ĝj(y3)

y1n2dL = 0, (79)∫
ĝj(y3)

(y2n2 − y1n1)dL = 0. (80)

Throughout the next computations, we will use the fact that for j = 1, . . . ,m we

have that h1|ĝi(y3)
, h2|ĝi(y3)

do not depend on y′ = (y1, y2) along ĝi(y3) (see Lemma 6.1-

b)), so we can write hp|ĝj(y3)
= hp|ĝj(y3)

(y3) for p = 1, 2. Using the divergence theorem,

we first calculate∫
Ω̂(y3)

Qdy′ =

∫
Ω̂(y3)

(
∂h1
∂y2

− ∂h2
∂y1

)
dy′ =

∫
∂Ω̂(y3)

(h1n2 − h2n1) dL
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=
m∑
j=1

∫
ĝj(y3)

(h1n2 − h2n1) dL

=
m∑
j=1

(
h1|ĝj(y3)

∫
ĝj(y3)

n2dL− h2|ĝj(y3)

∫
ĝj(y3)

n1dL

)
= 0.

The last equality is due to (78). We have seen that∫
Ω̂(y3)

Qdy′ = 0. (81)

We now proceed to prove that
∫
Ω̂(y3)

Qyidy
′ = 0 for i = 1, 2. For that purpose, from

(33) and (34), we see that∫
Ω̂(y3)

(
∂h1
∂y1

+
∂h2
∂y2

)
y1dy

′ = 0∫
∂Ω̂(y3)

(y1h2n2 + y1h1n1) dL−
∫
Ω̂(y3)

h1dy
′ = 0

m∑
j=1

(
h2|ĝj(y3)

∫
ĝj(y3)

y1n2dL+ h1|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
−
∫
Ω̂(y3)

h1dy
′ = 0

m∑
j=1

(
h1|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
−
∫
Ω̂(y3)

h1dy
′ = 0

where we used (79) in the last step. Therefore

m∑
j=1

(
h1|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
=

∫
Ω̂(y3)

h1dy
′. (82)

Similarly, again from (34), we see∫
Ω̂(y3)

(
∂h1
∂y1

+
∂h2
∂y2

)
y2dy

′ = 0

and we get

m∑
j=1

(
h2|ĝj(y3)

∫
ĝj(y3)

y2n2dL

)
=

∫
Ω̂(y3)

h2dy
′. (83)

Using integration by parts and (79) again, we compute∫
Ω̂(y3)

Qy1dy
′ =

∫
Ω̂(y3)

(
∂h1
∂z2

− ∂h2
∂z1

)
y1dy

′ (84)

=

∫
∂Ω̂(y3)

(y1h1n2 − y1h2n1) dL−
∫
Ω̂(y3)

−h2dy′
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=

m∑
j=1

(
h1|ĝj(y3)

∫
ĝj(y3)

y1n2dL− h2|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
+

∫
Ω̂(y3)

h2dy
′

=
m∑
j=1

(
−h2|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
+

∫
Ω̂(y3)

h2dy
′. (85)

Using the relation found in (83) and property (80), the equation (84) becomes

m∑
j=1

(
−h2|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
+

∫
Ω̂(y3)

h2dy
′

=
m∑
j=1

(
−h2|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
+

m∑
j=1

(
h2|ĝj(y3)

∫
ĝj(y3)

y2n2dL

)

=

m∑
j=1

(
h2|ĝj(y3)

∫
ĝj(y3)

(y2n2 − y1n1)dL

)
= 0

and we see that
∫
Ω̂(y3)

Qy1dy
′ = 0. In a similar way, using (79), (80) and (82), we can

prove that
∫
Ω̂(y3)

Qy2dy
′ = 0. □

Proposition 8.1. Let Ω̃ be a domain in R2 and let V1(y1, y2), V2(y1, y2) ∈ D′(Ω̃).

If

∂Vi
∂yj

+
∂Vj
∂yi

= 0 for 1 ≤ i, j ≤ 2

in the distribution sense, then there exist constants C1, C2, C3 ∈ R such that

V1(y1, y2) = −C3y2 + C1, V2(y1, y2) = C3y1 + C2.

Proof. The idea of the proof is to use a 2-dimensional version of the fact that if

for V = (V1, V2, V3) and 1 ≤ i, j ≤ 3 we have Eij(V ) = (∂Vi/∂yj + ∂Vj/∂yi)/2 = 0, then

V = Oy+C, where O ∈M3×3(R) is an anti-symmetric matrix and C ∈ R3 is a constant

vector. In addition, this can be shown using that

∂2Vi
∂yj∂yk

=
∂Eik(V )

∂yj
+
∂Eij(V )

∂yk
− ∂Ejk(V )

∂yi
(1 ≤ i, j, k ≤ 3).

Further details can be seen in Duvaut–Lion [11] and Schwartz [24]. □

Remark 8.2. We present here the explicit forms of the matrix X and the vector

Y used in Section 7 in order to find a minimum.

X =

(
X1 X2

X T
2 X3

)
, Y =

(
Y1

Y2

)
,

where
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X1=


(4λ1+8λ2)A11 (4λ1+8λ2)A12 0 0 4λ1A11 4λ1A12

(4λ1+8λ2)A12 4λ2A11+(4λ1+8λ2)A22 4λ2A12 4λ2A11 (4λ1+4λ2)A12 4λ1A22
0 4λ2A12 4λ2A22 4λ2A12 4λ2A22 0
0 4λ2A11 4λ2A12 4λ2A11 4λ2A12 0

4λ1A11 (4λ1+4λ2)A12 4λ2A22 4λ2A12 (4λ1+8λ2)A11+4λ2A22 (4λ1+8λ2)A12

4λ1A12 4λ1A22 0 0 (4λ1+8λ2)A12 (4λ1+8λ2)A22

,

X2 =


(2λ1+4λ2)K1 0 0 2λ1K1

(2λ1+4λ2)K2 2λ2K1 2λ2K1 2λ1K2

0 2λ2K2 2λ2K2 0
0 2λ2K1 2λ2K1 0

2λ1K1 2λ2K2 2λ2K2 (2λ1+4λ2)K1

2λ1K2 0 0 (2λ1+4λ2)K2

, X3 =

(
(λ1+2λ2)H 0 0 λ1H

0 λ2H λ2H 0
0 λ2H λ2H 0

λ1H 0 0 (λ1+2λ2)H

)
,

Y1 =


4λ1γ1

4λ1γ2

0
0

4λ1γ1

4λ1γ2

 , Y2 =

( 2λ1γ0

0
0

2λ1γ0

)
with


γ0 = H dη3

dy3
−K1

d2η1

dy2
3
−K2

d2η2

dy2
3
,

γ1 = K1
dη3

dy3
−A11

d2η1

dy2
3
−A12

d2η2

dy2
3
,

γ2 = K2
dη3

dy3
−A12

d2η1

dy2
3
−A22

d2η2

dy2
3
.
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