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Chow rings of versal complete flag varieties
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Abstract. In this paper, we try to compute Chow rings of versal com-
plete flag varieties corresponding to simple Lie groups, by using generalized
Rost motives. As applications, we give new proofs of Totaro’s results for the
torsion indexes of simple Lie groups except for spin groups.

1. Introduction.

Let G and T be a connected compact Lie group and its maximal torus. Let Gy
and Ty be a split reductive group and split maximal torus over a field k& with ch(k) = 0,
corresponding to Lie groups G and T. Let By be a Borel subgroup containing T}.

Moreover we take k such that there is a Gg-torsor G which is isomorphic to a versal
Gy-torsor (for the definition of a versal Gy-torsor, see Section 4 below or see [Ga-Me-Se],
[Kal], [Me-Ne-Za], [Tol]). Then X = Gy /B is thought as the most twisted complete
flag variety. (We say that such X is a generically twisted or a versal flag variety [Kal],
[Me-Ne-Za].)

Let us fix a prime number p. In this paper, we study the p-localized Chow ring
CH* (X)) = CH*(X) ® Z¢,) and write it simply CH*(X), through this paper. We
also use the notation CH*(X)/p for CH*(X) ® Z/p. By Petrov—Semenov-Zainoulline
([Pe-Se-Za], [Se|, [Se-Zh]), it is known that the p-localized motive M (X)(,) of X is
decomposed as

M(X) ) = M(Gr/Bi)p) = @:R(Gy) © T

where T is the Tate motive and R(Gy) is some motive called generalized Rost motive.
(It is the original Rost motive ([Rol], [Ro2], [Vo2], [Vo3]) when G is of type (I) as
explained below [Pe-Se-Za)).

Let BBy, be the classifying space for Bi-bundles. (For an algebraic group Hy, we can
approximate the classifying space BH}, by a colimit of algebraic varieties, and C H*(BHy},)
is defined as a limit of Chow rings of these varieties, for details see [Pe-Se], [To3].) Since
G — X = G/By, is a By-bundle, we have the characteristic (classifying) map X — BBj.
Hence we have maps

split surj.

CH*(BBy) """ cr*(x) =" oHY(R(G)).

REMARK. In this paper, a map A — B (resp. A = B) for rings A, B means a ring
map (resp. a ring isomorphism). However CH*(R(Gy)) does not have a canonical ring
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structure. Hence a map A — CH*(R(Gy))/p (resp. A =2 CH*(R(Gg))/p) means only
a (graded) additive map (resp. additive isomorphism) even if CH*(R(Gy))/p has some
ring structure. For example, the above first map is a ring map but the second is not a
ring map.

From Karpenko [Kal], and Merkurjev—Neshitov—Zainoulline [Me-Ne-Za], we know
that the first map is also surjective when Gy is a versal Gg-torsor. We study what
elements in CH*(BBy,) = CH*(BTy) (Subsection 2.4, page 21 in [To3]) generate
CH*(R(Gy)).

For example, Petrov (Theorem 1 in [Pe]) computed CH*(Y") for the versal maximal
orthogonal Grassmannian Y corresponding to G = SO(2¢ + 1), £ > 0. It is torsion free
and is isomorphic to CH*(R(Gy,)) (see Theorem 7.13 below). Hence the restriction map
CH*(X) — CH*(Gy/By) is injective. Thus we know the ring structure of CH*(X)
from that of CH*(G}/By) ([Tod-Wa], [Vi]). These Petrov’s results can be very simply
written, when we consider the mod (2) Chow theories.

THEOREM 1.1. Let (G,p) = (SO(2¢ + 1),2) and X = Gy /By be a versal flag
variety. Then there are isomorphisms

CH*(R(Gy)) /2= Z/2]cy, ..., cl/(3,...,¢23) = Aca, ..., ),
CH*(X)/2=2St)/(2,c3,...,c7)

where ¢; = o;(t1,...,ts) is the i-th elementary symmetric function in
S(t)=CH*(BBy) 2 H*(BT) 2 Z[t1, . .., t4].

REMARK. We have an isomorphism CH*(X)/2 = H*(Sp(¢)/T;Z/2) for the sym-
plectic group Sp(¢) (see Corollary 7.9).

We give a new proof of the above theorem, which can work for other groups such
that Chow rings CH*(X) have p-torsion elements. The additive structures in the fol-
lowing theorem are known ([Ka-Me], [Me-Su], [Yad]). However, the ring structure of
CH*(X)/p was unknown except for (G, p) = (G2,2) ([Ya3]).

THEOREM 1.2.  Let G be of type (I) and rank(G) = €. Then 2p — 2 < ¢, and we
can take b; € S(t) = CH*(BBy,) for 1 <i </ such that there are isomorphisms

CH*(R(Gk>)/p = Z/p{bh . -;b2p72}7
CH*(X)/p=S(t)/(p,bibj,bx0 < i, j <2p—2 <k < ()

where Z/p{a,b,...} is the Z/p-free module generated by a,b,.... Moreover the ideal of
torsion elements in CH*(X) is generated by by, bs, ..., bap_3.

Here b; € H*(BT) are transgression images in the spectral sequence induced from
the fibering G — G/T — BT. These b; are explicitly known ([Na], [Tod2], [Tod-Wa]),
for example, when (G,p) = (G2,2), we can take by = 3 + t1to + t3 and by = #3 in
H*(BT) = Zlt1,t2] with |t;| = 2 (Theorem 5.3 in [Ya3]).

To explain the transgression and type (I) groups, we recall how to compute H*(G/T')
in algebraic topology. By Borel ([Bo], [Mi-Tod]), its mod(p) cohomology is (for p odd)
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H*(G;Z/p) = P(y)/p @ A1, .., 2¢), || = odd

where P(y) is a truncated polynomial ring generated by even dimensional elements y;,
and A(z1,...,x¢) is the Z/p exterior algebra generated by z1,...,2z,. When p = 2, we
consider the graded ring gr H*(G;Z/2) which is isomorphic to the right hand side ring
above.

When G is simply connected and P(y) is generated by just one generator, we say
that G is of type (I). Except for (FE7,p = 2) and (Fs,p = 2,3), all exceptional simple
Lie groups are of type (I) (see [Mi-Tod], [Pe-Se-Za]). The groups Spin(n), 7 < n < 10
are also of type (I). Note that in these cases, it is known rank(G) = £ > 2p — 2.

We consider the fibering ([Mi-Ni], [Na], [Tod2]) G = G/T - BT and the induced
spectral sequence

Ey* = H*(BT; H* (G;Z/p)) = H*(G/T;Z/p).

Here we can write H*(BT) = S(t) = Z[t1, . .., t¢] with [t;] = 2.

It is well known that y; € P(y) are permanent cycles (i.e., y; exist as nonzero
elements in £%*) and that there is a regular sequence (by,...,b,) in H*(BT)/(p) such
that d|;, +1(z;) = b; ([Mi-Ni], [Tod2]). The element b; is called the transgression image
of ;. We know that G/T is a manifold such that H*(G/T) = H®"*"(G/T) and H*(G/T)
is torsion free. We also see that there is a filtration in H*(G/T)(y) such that

grH*(G/T)py = P(y) ® S(t)/ (b1, ..., be)

where b; € S(t) with b; = b; mod (p). Here we note that we can take b; = 0 €
H*(G/T)/p, since b; =0 € EX? in the spectral sequence.

The transgression images b; in Theorem 1.2 are just b; above. When (G,p) =
(SO(2¢+1),2) we can take b; = ¢;. Hence by, ..., b generate the kernel I(p) of the map

H*(BT)/p= S(t)/p = 5(t)/(p, by, ..., be) C H(G/T)/p

(it is also isomorphic to the kernel of CH*(BBy)/p — CH*(Gy/Bk)/p)-
By giving the filtration on S(t) by b;, we can write

grS(t)/p =2 A® S(t)/(b1,...,be) for A=Z/plby,..., b

In particular, we have maps A 4 CH*(X)/p — CH*(R(Gy))/p. We easily see that
ia(A) D CH*(R(Gy))/p. In particular the above composition map is surjective. Suppose
that there are fi1(b),..., fs(b) € A such that CH*(R(Gy))/p = A/(f1(b),..., fs(D)).
Moreover if f;(b) = 0 also in CH*(X)/p, then we have the isomorphism

CH*(X)/p=S5t)/(f1(b), -, fs(b))-

The first isomorphism of Theorem 1.1 (resp. Theorem 1.2 when ¢ = 2p — 2) can be
rewritten

CH*(X)/2= S(1)/(12)P),  (resp. CH*(X)/p = 5(t)/(1(p)*))
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where 1(2)?l = Ideal(2?|z € 1(2)).
For other simple groups G, it seems that only few facts were known for
CH*(R(Gy))/p when * > 3. Hence we write down the fundamental facts here.

THEOREM 1.3. Let (G,p) = (SO(2¢ +1),2), (G',p) = (Spin(2¢ + 1),2), and 7 :
G’ — @G be the natural projection. Let ¢, = 7*(c;). Then ©* induces maps such that their
composition map s surjective

CH*(R(G)/(2,¢1) 2 Alca,...,c0) = CH*(R(G}))/2 — Z,/2{1, ¢}, ..., 4}

where £ = 0 — 1 if £ = 27 for some j > 0, otherwise { = £. Moreover Cor — 2C%k, k>0
are torsion elements in CH*(X).

The right hand side module in the above map seems some fundamental parts
in CH*(R(Gy))/2. For example, the groups Spin(7), Spin(9) are of type (I) and
CH*(R(Gy))/2 2 Z/2{1,ch,c4}. However, the group Spin(11) is not of type (I).

LEMMA 1.4.  For (G',p) = (Spin(11),2), we have the surjection
CH (R(G}))/2 — B/2{1, b, i,y ).

REMARK. Quite recently, Karpenko [Ka2] proved that the above surjection is an
isomorphism.

THEOREM 1.5. Let (G,p) = (E7,2), (Es,2) or (Es,3) so that £ = 7 for E; and
{ =38 for Eg. Then we have the surjective map

CH*(R(Gk))/p — Z[p{1,b1, ..., be}.
Moreover for (G,p) = (E7,2), (Es,3), we have
(CH*(R(Gy))/(Tor)) @ Z/p = Z/p{1, ba, ..., bs, babe}
where Tor is the submodule of CH*(R(Gy,)) generated by torsion elements.

Note that the above b; # 0 is not a trivial fact. Indeed for groups of type (I), we
see b; =0 when 2p —2 < i < /.

To see the above elements are nonzero, we mainly use the torsion index t(G)(,).
For dimg(G/T) = 2d, the torsion index is defined as

t(G) = |H*}(G/T;72)/i*H**(BT;Z)|  for i:G/T — BT.

Let n(Gg) be the greatest common divisor of the degrees of all finite field extension &’
of k such that Gy becomes trivial over k’. Then by Grothendieck [Gr], it is known that
n(Gyg) divides t(G). Moreover, when Gy, is a versal Gy-torsor, we have n(Gg) = ¢(G)
([Ga-Me-Se], [To2]). Totaro determined ([Tol], [To2]) torsion indexes for all simply
connected compact Lie groups G. For example, t(Eg) = 26325.

For all exceptional simple groups G, we give another proofs of Totaro’s results by
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using arguments of the above transgression images b; (e.g., Lemma 11.11). However we
can not compute t(G) for G = Spin(2¢ + 1) by our arguments.

We also consider a field K of an extension of k such that R(Gy)|x is a direct
sum of the original Rost motives, and study the restriction map CH*(R(Gy))/p —
CH*(R(Gy)|k)/p (Theorems 7.12, 11.13, Propositions 10.8, 12.8). The first two theo-
rems relate to recent results by Smirnov—Vishik [Sm-Vi] and Semenov [Se] respectively.

The plan of this paper is the following. In Section 2, Section 3, we recall and
prepare the topological arguments for H*(G/T) and BP*(G/T). In Section 4, we recall
the decomposition of the motive of a versal flag variety. In Section 5, we recall the
torsion index briefly. In Section 6, we study U(m), Sp(m) and PU(p) for each p. In
Section 7, Section 8 we study SO(m) and Spin(m) for p = 2. In Section 9, we study the
cases that G is of type (I). In Section 10, Section 11, Section 12, we study the cases
(G,p) = (Fs,3),(Es,2) and (F7,2) respectively.

The author thanks the referees for their kind comments and suggestions.

2. Lie groups G and the flag manifolds G/T.

Let G be a connected compact Lie group. By Borel ([Bo], [Mi-Tod]), its mod(p)
cohomology is (for p odd)

H*(G;Z/p) 2 P(y)/p @ A(z1,...,2¢), £=rank(G) (2.1)
with  P(y) = Zgy[yr, -l /™)

where the degree |y;| of y; is even and |z;| is odd. When p = 2, a graded ring
grH*(G;Z/2) is isomorphic to the right hand side ring, e.g., x? = y;, for some y;,.
In this paper, H*(G;7Z/2) means this grH*(G;Z/2) so that (2.1) is satisfied also for
p=2.

Let T be the maximal torus of G and BT be the classifying space of T'. We consider
the fibering ([Mi-Ni], [Tod2]) G = G/T % BT and the induced spectral sequence

Ey* = H*(BT; H* (G;Z/p)) = H*(G/T;Z/p).

The cohomology of the classifying space of the torus is given by H*(BT) = S(t) =
Zlt1,...,tg] with |t;| = 2, where ¢; = pr{(c;) is the 1-st Chern class induced from

T=8"x-x8%5s cuQ)

for the i-th projection pr;. Note that ¢ = rank(G) is also the number of the odd degree
generators z; in H*(G;Z/p).

It is well known that y; are permanent cycles (i.e., d.(y;) = 0 for » > 2) and
that there is a regular sequence ([Mi-Ni], [Tod2]) (by,...,be) in H*(BT)/(p) such that
d);4+1(2;) = b;. Thus we get

E3’ = grH*(G/T:Z/p) = P(y)/p® S(t)/ (b, - ., be).

Moreover we know that G/T is a manifold such that H*(G/T) is torsion free, and
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hence

H*(G/T) ) = Zipy (1, - Y] @ S()/(f1o- -, frn b1, -, be) (2.2)

where b; = b; mod (p) and f; = yf” mod (tq,...,%).

Let BP*(—) be the Brown-Peterson theory with the coefficients ring BP* &
L [v1,v2,.. ], [vi| = —2(p'—1) ([Ha], [Ra]). Since H*(G/T) is torsion free, the Atiyah-
Hirzebruch spectral sequence collapses. Hence we also know

BP*(G/T) = BP*[y1,...,yx] @ S(t)/(fis- -+ frr b1y, be) (2.3)

where b; = b; mod (BP<°) and f; = f; mod (BP<Y).

Let G be the split reductive algebraic group corresponding to G, and T} be the
split maximal torus corresponding to 1. Let By be the Borel subgroup with T C Byg.
Note that G /By is cellular, and CH*(Gy/Ty) = CH*(Gy/By), since the fiber of the
map Gy /Ty — G /By is a unipotent group. Hence we have

CH*(Gk/Bk) gH*(G/T)(p), OH*(BBk) gH*(BT)(p)

Let Q*(—) be the BP-version of the algebraic cobordism ([Le-Mol]|, [Le-Mo2],
[Ya2], [Yad))

Q*(X) = MGL*™ (X)) ®umuy, BP*, Q'(X)®pp+ L) = CH*(X)

where MG’L*V*/(X) is the algebraic cobordism theory defined by Voevodsky with
MGL?**(pt.) = MU* the complex cobordism ring. There is a natural (realization)
map Q*(X) — BP*(X(C)). In particular, we have Q*(Gy/B;) = BP*(G/T). Let
I, = (p,v1,...,vp—1) and Ix = (p,v1,...) be the (prime invariant) ideals in BP*. We
also note

O (Gr/By)/Le = BP*(G/T)/ Lo = H*(G/T)p.

3. The Brown-Peterson theory BP*(G/T).

Recall that k(n)*(X) is the connected Morava K-theory with the coefficients ring
k(n)* = Z/p[v,] and p : k(n)*(X) — H*(X;Z/p) is the natural (Thom) map. Recall
that there is an exact sequence (Sullivan exact sequence [Ral, [Ya2])

c k() ROV (X) B k(n)*(X) B HY(XGZ/p) D
such that p - §(z) = Qn(z). Here the Milnor @; operation
Qi H*(X;Z/p) — H* ' ~1(X;Z/p)

is defined by Qo = 8 and Q;41 = P Q; — QiPpi for the Bockstein operation 8 and the
reduced power operation P7.
We consider the Serre spectral sequence
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Ey* = H*(B;H" (F;Z/p)) = H"(E;Z/p).

induced from the fibering F % E 5 B with H* (B) & He"*™(B).

LEMMA 3.1 (Lemma 4.3 in [Yal]). In the spectral sequence E;“*/ above, suppose
that there is x € H*(F;Z/p) such that

(¥) y=Qun(x)#0 and b=di(x)#0¢€ E‘*;loﬂ,

Moreover suppose that Emill >~ Z/p{x} = Z/p. Then there are y' € k(n)*(E) and

b € k(n)*(B) such that i*(y') =y, p(b') = b and that in k(n)*(E),
(xx) vy = AT*(V) for N#£0€Z/p.

Conversely if (xx) holds in k(n)*(E) for y =i*(y') # 0 and b = p(b') # 0, then there is
x € H*(F;Z/p) such that (x) holds.

ProOF. Let B’ = BT!"I-! be the |b| — 1 dimensional skeleton of BT, and E’ =
7~ 1(B’). Consider the Serre spectral sequence

By = HY(B'; H” (F; Z/p)) = H*(E';Z/p).

Since d,.(z) = b=0¢€ H*(B';Z/p), there is ' € H*(E';Z/p) such that i*(2’) = z. Let
Qn(z') =y so that i*y’ = y. Then y’ can be identified as §z’ € k(n)*(E’) from Q,, = pd.
By the Sullivan exact sequence, we see v,y = 0 in k(n)*(E’).

On the other hand, let B” = Bl’I=1 Ue, and E” = 7~ 'B” where ¢, is the normal
cell representing b. Then d,x = b # 0 € H*(B";Z/p). By the supposition in this
lemma, there does not exist 2" € H*(E";Z/p) such that i*(Q,x") = y, that is, for each
Yy’ € H*(E";Z/p) with m*y" =y, we see v,y” # 0 € k(n)*(E").

For j : E/ C E”, we can take an element 3" with j*(y”) = y’ by the following reason.
Consider the long exact sequence

o HY(E"Z/p) 5 H*(E';Z)p) S H*(E" B, Z/p) — -

Since z’ does not exist in H*(E";Z/p), we see d(z') # 0. Hence d(z') = b from
HIP(E"/E";Z/p) = Z/p{b}. So we see

A(y') = 0(Qn(2')) = Qu(b) = 0,

since b € H*(B). Hence y' € Im(j*).

Hence v,y = v,5*(y") = 0 € k(n)*(E’) but v,y” # 0 € k(n)*(E"). By dimensional
reason, v,y = Ab for A £ 0 € Z/p.

Conversely, suppose that v,y = 7*(0/) # 0in k(n)*(E). Then v,y’ = 0in k(n)*(E’)
and there is & € H*(E';Z/p) with Q,Z = y’. Then for i*(y') = y and i*(Z) = x, we see
Qn(z) =y. But Z does not exist in H*(E";Z/p). Hence d;+1(x) = b for A # 0 € Z/p,
by dimensional reason. O



8 N. YaGita

REMARK (Remark 4.8 in [Yal]). The above lemma also holds when k(0)*(X) =
H*(X;Zp)) and vy = p. This fact is well known (Lemma 2.1 in [Tod2]).

COROLLARY 3.2. In the spectral sequence converging to H*(G/T;Z/p), let b # 0

be the transgression image of x, i.e., dy+1(x) = b. Then we have the relation in
BP*(G/T)/I% such that

b= Zv,y(z)
i=0
where y(i) € H*(G/T;Z/p) with 7*y(i) = Q;x.
PROOF. Since b=0¢€ H*(G/T;Z/p), in BP*(G/T)/I%, we can write
b= py(0) + v1y(1) + v2y(2) + - --

If Qi(x) = y(i) # 0, then b = v;y(¢)" and take y(i) = y(¢)’. If Q;(x) =0, then b =0
mod (v?) in k(i)*(G/T). Otherwise b = v;y(i) with y(i)' # 0 in H*(G/T;Z/p) by
Sullivan exact sequence. Then Q;(x) = y(i)’ from the converse of the preceding lemma.
This is a contradiction. So let y(i) = 0 when Q;(z) = 0. O

Let G be a simply connected Lie group such that H*(G) has p-torsion. Then it is
known ([Mi-Tod]) that H*(G) has just (not higher) p-torsion in H*(G)(;,). It is also
known that there is m > 1 with

() Ppi(yi) =yip1 for 1<i<m—1, and PP (y,,) = 0.

(Here suffix ¢ is changed adequately from that defined in the preceding section (2.1).
Note m = 1 for type (I) groups.) Moreover |z1| = 3 and P!(z;) = —x9, and B(z2) = 1.
We can also take x;41 such that

(%) Qi(z1) =i,  Qo(Tit1) = yi-
Therefore from the preceding corollary, in BP*(G/T)/I%,, we have
by =viy(1) + -+ vmy(m)

with 7 (y(7)) = y;. We will study the above equation in more details.

Here we recall the Quillen (Landweber—Novikov) operation ([Hal], [Ra]). For a
sequence a = (a1, az,...), a; > 0 with |a| = >, 2(p’—1)a;, we have the Quillen operation
To : BP*(X) — BP*tl(X) such that

(1) p(rafz)) = xP*(p(z)) for p: BP*(X)— H*(X;Z/p),
where x is the anti-automorphism in the Steenrod algebra,

(2) ro(zy) = Z Tor (X))o (y) Cartan formula,

a=a'+a’’
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. n—i
(3)  ra(v )—{vi mod (1%)  if a=p'A,;=(0,...,0, p’,0,...,0).
0 mod (I%) otherwise.

We also note that Q*(X) has the same operation r, satistfying (2), (3) and (1) for
p Q(X) - CH*(X)/p and the reduced power operation P® on CH*(X)/p =
H?**(X;Z/p) defined by Voevodsky.

LEMMA 3.3. If |a| < 2(p’ — p'~1), then ro acts on BP*(X)/(I%,v;,...).

PROOF. Here note |v;—1| — |v;| = 2(p* — p*~1). In this case, we have 7, (vs) € IZ
for all s > 1. O

Let h*(—) be a mod(p) cohomology theory (e.g., H*(—;Z/p), k(n)*(—)). The prod-
uct G X G — G induces the map

p:GxG/T — G/T.

Here note h*(GxG/T) = h*(G)@p~h*(G/T), since h*(G/T) is h*-free. For x € h*(G/T),
we say that z is primitive ([Mi-Ni|, [Mi-Tod]) if

p(r)=r"(z)®1 + 1®x where 7:G — G/T.

It is immediate that if x is primitive, then so is ro(z). Of course b € BP*(BT)
are primitive but by; are not, in general. We can take y; as a primitive element (adding
elements if necessary) in BP*(G/T).

LEMMA 3.4. Let G be a simply connected Lie group satisfying (). Let y; be a
primitive element in BP*(G/T), and define yit1 = 1pin, (yi). Then we have

viy1 +v2y2 + -+ VY = b1 mod (1020)

PROOF. Note that v,y(n) = by € k(n)*(G/T) is primitive. We prove y,, = y(n)
mod (I%). Let us write

y(n) =y + >yt

with y € P(y), t € S(t), |t| > 2.
We will prove ¢t = 0. Consider the Atiyah—Hirzebruch spectral sequence

EX* = HY(Gik(n)*) = k(n)*(G).

The first non-zero differential is dopn_1(x) = v, Qn(x). Since |y| < |y,| —2 = 2p™, we see
that y is v,,-torsion free in k(n)*(G). This means if ¢ # 0, then

vy @t #0

in k(n)*(G) @k=n) k(n)*(G/T). Therefore t = 0 since y,, and v,y(n) are primitive. O]
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Applying ra, to the equation in Lemma 3.4, we have

LEMMA 3.5. In BP*(G/T)/(I%), we have

py1 + 01 P (1) + 2P (y2) + - 4 v P (ym) = P (b1) = bo.

4. Versal flag varieties.

Recall that Gy, is a nontrivial Gg-torsor. We can construct a twisted form of Gy, /By,
by

(Gk X Gk/Bk)/Gk = Gk/B/C.

We will study the twisted flag variety X = Gy /Bk.

Let P D T be a parabolic subgroup of GG. Petrov, Semenov and Zainoulline de-
veloped the theory of decompositions of motives M (Gy,/Py). They develop the theory
of generically split varieties. We say that L is a splitting field of a variety of X if
M(X|r) is isomorphic to a direct sum of twisted Tate motives T®¢ and the restriction
map i, : M(X) — M(X]|.) is isomorphic after tensoring Q. A smooth scheme X is said
to be generically split over k if its function field L = k(X) is a splitting field. Note that
(the complete flag) X = Gy /By, is always generically split, i.e., X|r, is cellular.

THEOREM 4.1 (Theorem 3.7 in [Pe-Se-Za]). Let Q) C Py be parabolic subgroups
of Gy which are generically split over k. Then there is a decomposition of motive

M(G/Qr) = M(Gy/Py) @ H*(P/Q).

By extending the arguments by Vishik [Vi] for quadrics to that for flag varieties,
Petrov, Semenov and Zainoulline define the J-invariant of G;. Recall the expression in
Section 2

(*) H*<G7Z/p) = Z/p[y1> .. ;ys]/(yi) ' P aygrs) 0 A(xla s 737@)'
Roughly speaking (for the accurate definition, see [Pe-Se-Za)), the J-invariant is defined
as Jp(Gg) = (j1,-..,Js) if j; is the minimal integer such that
v €Imrescn)  mod (y1,..,pi1,t,- -+ te)

for rescy : CH*(Gy/By) — CH*(Gy/By). Here we take |y1]| < |yz2| < --- in (x). Hence
0<j; <r; and J,(Gy) = (0,...,0) if and only if G, splits by an extension of the index
coprime to p. One of the main results in [Pe-Se-Za] is

THEOREM 4.2 (Theorem 5.13 in [Pe-Se-Za] and Theorem 4.3 in [Se-Zh]). Let G
be a Gy-torsor over k, X = Gy /By, and J,(Gi) = (j1,...,Js). Then there is a p-localized
motive R(Gy) such that

M(X)(p) = @UR(Gk) ® T®«,

Here T®% are Tate motives with C H* (@, T®%)/p = P'(y) @ S(t)/(b) where
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P'(y) =Z/ply?" W) C P(y) /.
S(6)/(b) = S(t)/(brs .. ,be).

The mod (p) Chow group of R(Gy) = R(Gy) ® k is given by

CH*(R(G)/p = Z/plyrs -yl ):
Hence we have CH*(X)/p = CH*(R(Gy,)) ® P'(y) ® S(t)/(b) and
CH*(X)/p= CH"(R(Gy)) ® P'(y) @ S(t)/(b)-

Let Py be a special parabolic subgroup of Gy, (i.e., any extension is split, e.g., By).
Let us consider an embedding of G, into the general linear group G Ly for some N. This
makes GLy a Gj-torsor over the quotient variety S = GLy/Gg. We define F' to be the
function field k(S) and define the versal Gy-torsor E to be the Gi-torsor over F given
by the generic fiber of GLy — S. (For details, see [Ga-Me-Se], [Kal], [Me-Ne-Za],
[To2].)

E m— GLy

l !

Spec(k(S)) —— S =GLN/Gy

The corresponding flag variety E/Py is called generically twisted or versal flag variety,
which is considered as the most complicated twisted flag variety (for given Gy, Py). It
is known that the Chow ring CH*(E/P;) is not dependent to the choice of generic
Gy-torsors E (Remark 2.3 in [Kal]).

Karpenko [Kal] proved the following theorem for C H*(X). Merkurjev—Neshitov—
Zainoulline [Me-Ne-Za] also stated this theorem.

THEOREM 4.3 (Karpenko Lemma 2.1 in [Kal], [Me-Ne-Zal]). Let h*(X) be an
oriented cohomology theory (e.g., CH*(X), Q*(X)). Let Py be a parabolic subgroup of
Gy and Gy /Py be a versal flag variety. Then the natural map h*(BPy) — h*(Gg/Py) is
surjective.

COROLLARY 4.4. The Chow ring CH*(Gy/By) is generated by elements t; in S(t).
In particular, for each x € CH*(Gy/By), the element p*z is represented by elements in
S(t) for a sufficient large s.

PrROOF. For some extension F'/k of order ap® with a coprime to p (i.e., (a,p) = 1),
the G-torsor Gy, splits. Hence p*y’ € Im(rescy : CH*(Gy/By) — CH*(G}./By)), which
is written by elements in S(t) by the above Karpenko theorem. 0

COROLLARY 4.5.  If Gy is versal, then J(Gg) = (r1,...,7s), i.e., r; = j;.

PROOF. If j; < r;, then 0 # 37" € res(CH*(X) — CH*(Gy/By)), which is
in the image from S(t) by the preceding theorem. This induces a contradiction since
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CH*(Gy/Ti; Z/p) = Ply)/p© S(t)/(b) and 0 £ 7" € P(y)/p. 0

Here we recall the (original) Rost motive R, (we write it by R,,) defined from a
nonzero pure symbol a in the mod(p) Milnor K-theory KM, (k)/p. When J(Gx) = (1)
(and G is simply connected), we know R(Gy) = Ry from [Pe-Se-Za]. We write R,, =
R, ® k. The Rost motive R,, is defined as a non-split motive but split over a field of
degree ap with (a,p) =1, and for |y| = 2b, =2(p" —1)/(p—1)

CH"(Ry) = Z[yl/(y"), Q" (Rn) = BP"[y]/(y").

THEOREM 4.6 ([Me-Su], [Vi-Yal, [Yad]). Let R,, be the (original) Rost motive
defined by Rost and Voevodsky ([Rol], [Ro2], [Vo2], [Vo3]). Then the restriction resq :

Q*(R,) — Q*(R,) is injective. Recall I,, = (p,...,vn—1) C BP*. The restriction image
Im(resq) is isomorphic to
BP {1} & I, @ Zy [y "/ (4")
= BP{lL,u;9' | 0<j<n—1,1<i<p—1} C BP*[y]/(y").

Hence writing v;y' = ¢;(y"), |cj(y")| = 2ib, — 2(p’ — 1), we have
CH(Rn)/p = Z/p{1,¢;(y") | 0<j<n—1,1<i<p—1}
ExaMpPLE. In particular, we have isomorphisms

CH*(R1)/p = Z/p{1,co(y), ..., coy’ )},
CH*(R2)/p =2 Z/p{1,co(y), c1(y),- .. Leo(y?™Y), er (g L)

5. Torsion index.

Let dimg(G/T) = 2d. Then the torsion index is defined as
tG) = |[H*!(G/T: Z)/i" H*(BT; L)

for i : G/T — BT. Let n(Gy) be the greatest common divisor of the degrees of all
finite field extension k' of k such that Gj becomes trivial over k. Then by Grothendieck
[Gr], it is known that n(Gy) divides ¢(G). Moreover, there is a Gj-torsor Gg over some
extension field F' of k such that n(Gp) = t(G) (in fact, this holds for each versal G-
torsor [Kal], [Me-Ne-Za], [To2]). Note that t(G1 x G2) = t(G1) - t(G2). It is well
known that if H*(G) has a p-torsion, then p divides the torsion index #(G). Torsion
indexes for simply connected compact Lie groups are completely determined by Totaro
[Tol], [To2]. For example, t(Es) = 26325.

Hereafter in this paper, we assume that Gy, is a versal Gi-torsor and X = Gy, /By,
is the versal flag variety. Recall that

grH*(G/T;Z/p) = P(y)/p @ S(t)/(b)
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where S(¢t)/(b) = S(t)/(b1,...,be), P(y)/p = Z/ply1,.-.. ,‘yﬁ}/(yfrl s yP7). Recall
Corollary 4.5, and then we see J(Gy) = (r1,...,75), e.g., y¥ "~ & S(t).
Giving the filtration on S(t) by b;, we have the isomorphism

grS(t)/p = Z/plbi, ..., be) @ S(t)/(b1,. .., be).
Let us write for NV > 0
AN =Z/p{bi, -+ bi | |biy |+ -+ [bs | < N} C grS(t).
Of course H*(G/T) = 0 for * > 2d = dimg(G/T), so we have a map
grS(t)/p — Aza @ 5(t)/(b) = grCH"(X)/p.
LEMMA 5.1.  The composition map is a surjection
Aoy = CH*(X)/p = CH"(R(Gr))/p.

PROOF.  Recall the decomposition M (X)) = @;R(G)®T*. Since the restriction
map rescy : CH*(T*)/p — CH*(T*")/p is an isomorphism, we have
CH*(@,T)/p = CH"(®;T*)/p
= CH*(Gi/Tx)/(p, P(y)") = S(1)/(p,b).
Thus we can write CH*(T*") = Z,{u;} for some u; # 0 € S(t)/(p,b). Hence CH*(X)/p
is generated by elements which are product b-u in CH*(X)/p for b € CH*(R(Gg)) C
CH*(X)/p and v € S(t)/(p,b). Note bu # 0if b # 0 in CH*(X)/p.

On the other hand, since CH*(X) is versal and generated by images from S(t),
which is generated by b'u for ¥’ € Im(Ay — CH*(X)/p). When s; # 0 (i.e., [u| > 2), we
see pr(b'u) = 0 for the projection pr: CH*(X)/p — CH*(R(Gy))/p. Hence we have the
lemma. O

From the arguments in the proof of preceding lemma, we have

COROLLARY 5.2. If b € Ker(pr), then we can write b = Y b'v/ with V' € Aag,
0#£vu € S@®)/(p,b), and |v/| > 0.

COROLLARY 5.3.  Ifb; #0 in CH*(X)/p, then so in CH*(R(Gy))/p.

PrROOF. Let pr(b;) = 0. Then b = > b for |[v/| > 0, and hence V' €
Ideal(by,...,b;—1). This contradicts (b1, ...,bs) being regular. O

Let us write
re_q
Ytop = i1y} (resp. tiop)

the generator of the highest degree in P(y) (resp. S(t)/(b)) so that f = yioptiop is the
fundamental class in H24(G/T).
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LEMMA 5.4.  The following map is surjective
An —» CH*(R(Gy))/p  where N = |yiopl.

PROOF. In the preceding lemma, Ay ®u for |u| > 0 maps zero in CH*(R(Gy))/p.
Since each element in S(t) is written by an element in Ay ® S(t)/(b), we have the
corollary. 0

REMARK. In Section 7 in [Pe-Se], Petrov and Semenov show
CH*(BBy)/p = CHg, (Gi/Bk)/p = @CHg, (Rp,c,(Gk))/p

where CHE, (—) is the Gi-equivariant Chow ring and R, g, (Gy) is the G-equivariant
generalized Rost motive. Hence we have

CHka (RP,GI« (Gk))/p A = Z/p[blv v 7b4]‘
Now we consider the torsion index.

LEMMA 5.5. Letb=b;, -+ b;, in S(t) such that in H*(G/T)

b=p° (ytop+2yt> ; [t>0
for some y € P(y) and t € S(t). Then the torsion index t(G) ) < p°.

PROOF.  Suppose p* < t(G)(). We can assume t(G) = p**' multiplying p* if
necessary. Since tty,, =0 € S(t)/(b), we see

ttiop € Ideal(by, ..., bs) C Ideal(p).

Therefore p* Y yttiop € Ideal(p™t). So it is in S(t), by Karpenko’s theorem. Hence
D’ Yroptiop € S(t). So t(G) < p® and this is a contradiction. O

COROLLARY 5.6.  In the preceding lemma, assume p° = t(G),). Then for each
subset (i},...,4},) C (i1,...,1), the element b;,l b, #0€ CH*(X)/p.

PRrROOF. Let us write I’ = (¢},...,4),) C I = (i1,...,4x), I'UI" = I, and by =
bi, -+ - by, It is immediate by # 0 € CH*(X)/p since by = bpby» #0€ CH*(X)/p. O

From the above corollary, when ¢(G), is big enough and there is b in the preceding
lemma, we can find many nonzero elements in CH*(X)/p whose restriction images are
zero in CH*(X)/p.

6. The groups GL(n), Sp(n) and PU(p).

Some results in this section are known. However we write them down since results
and arguments are used in other sections. We consider the Lie group G = U({) at first.
Note that its cohomology has no torsion. Recall that
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H*(U(0)) = A(z,...,2¢) with |ay] =2i— 1.

So P(y)/p = Z/p, and CH*(R(Gy)/p = CH*(R(Gy))/p = Z/p, that is, there is no
twisted form of G} /By. Moreover CH*(X)/p = S(t)/(p, b1, ..., be) for djg,41(xs) = bi.
It is well known that we can take b; = ¢; the i-th elementary symmetric function on
S(t) 2 Zty, ...t

PROPOSITION 6.1.  Let G =U({) (i.e., Gx = GLy) and p is a prime number. Let
X = Gk/Bk Then

CYI{*()()/pg S(t)/(p7cla"'acé)
where ¢; is the Chern class in H*(BT) = S(t) by the map T C U(¥).

ProOOF. We consider the fibering G/T — BT — BG. The composition of the
induced maps H*(BG) — H*(BT) — H*(G/T) is zero. The first map induces the
isomorphism

H*(BG) = H*(BT)Ve(M) = 7Zlcy, ... ¢
Thus (b1,...,b¢) D (c1,...,ce). By dimensional reason, we have the proposition. O
Next consider in the case G’ = Sp(¢) and recall that
H*(Sp(t)) = A(z),...,z)) with || =4i—1.

So P(y)'/p = Z/p, and there is no twisted form of G,/ By,. Moreover we have d|,/ 11 (z}) =
p; the Pontryagin class. Hence we have

PROPOSITION 6.2.  Let G' = Sp(¢) and X' = G},/By. Then for each prime number
p, we have

CH*(X')/p= 5(t)/(p,p1,-- - p)-
In particular, when p = 2, we have CH*(X')/2 =2 S(t)/(2,¢c3,...,c).

Now we consider in the case (G, p) = (PU(p), p), which has p-torsion in cohomology,
but it is not simply connected. Its mod (p) cohomology is

H*(G;Z/p) = Z/ply]/ (") @ Mz1,...,2p-1) |yl =2, |2i| =20 - 1.

So P(y)/p = Z/ply]/(y?) with |y| = 2. This fact is given by the fibering U(p) —
PU(p) — BS' and the induced spectral sequence

By = B (BS' B (U(p); 2/p) = H*(PU(p): Z/p).

Here we use that H*(BS';Z/p) = Z/p|y] and dapz, = yP.
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Since G is not simply connected, G is not of type (I) while P(y) is generated by only
one y. (However CH*(X)/p quite resembles that of type (I). Compare Theorem 6.5 and
Theorem 9.4 below.)

We consider the map U(p—1) — U(p) — PU(p) where the maximal tori of U(p—1)
and PU(p) are isomorphic, i.e., Tyr(p—1) = Tpy(p). By using the map U(p—1) — PU(p),
we know da;(z;) = ¢;. Hence we have

grH™(G/T; Z/p) = Z/plyl/(y") @ S(t)/(c1, - .., €p-1)-

LEMMA 6.3. Let X split over a field k' over k of index p* - a for (a,p) = 1. Then
for all y € CH*(X), we see p'y € Im(rescy).

PrROOF. Using the fact that res®Q is isomorphic, there is s such that p®y = res(z)
for some € CH*(X). Then for the trace map tr, we see

y).

p°res - tr(y) = res - tr - res(z) = res(ap'z) = ap
Since CH*(X) is torsion free, we have res - tr(a~1y) = p'y. O
LEMMA 6.4.  We have py' = ¢; € H*(G/T) ().

PROOF. By induction on i, we will prove py® = ¢;. It is known from [Pe-Se-Za]
that R(Gy) = Ry (note Gy is versal). From the preceding lemma, py € Im(rescy).
By Karpenko’s theorem, py’ is represented by elements in CH*(BT). Since py' €
Ideal(cy,...,c;), we can write, for t(j) € S(t), A € Z,

py' = cht(j) + A¢i.

j<i

If A\ =0¢€Z/p, we see py' = > py’t(j) by inductive assumption, and this is a contradic-

tion, since CH*(X) is p-torsion free. O
THEOREM 6.5. Let G = PU(p) and X = Gy, /By. Then there are isomorphisms

CH*(R(Gy))/p = CH"(R1)/p = Z/p{1, 1, .., cpa},
CH*(X)/p=5(t)/(p,cici[1 <i,j <p—1).

PROOF. From [Pe-Se-Za], recall R(Gy) = R;. Hence the second isomorphism
follows from py’ = ¢; and (Example of) Theorem 4.6,

CH*(RI)/p = Z/p{l,p% . 7pyp_1}'
From the main theorem of [Pe-Se-Za], we have the additive isomorphism
CH*(X)/p = Z/p{1,py,...,py"" '} ® S(t)/(b)

where b; = ¢;. Note c;c; = p?y™ = pc;y; in Q*(X). Since resq : Q*(X) — Q*(X) is
injective, we see ¢;c; =0 € CH*(X)/p.
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Of course we have an additive isomorphism

St)/(p,cic;) 2 Z/p{l,c1,...,cp—1} R S()/(c1, - cp_1)-

Moreover we have a surjective ring map S(t)/(p, cic;) - CH*(X)/p. From the additive
isomorphism, its kernel is zero, which induces the ring isomorphism of the theorem. 0O

Since CH*(X) is torsion free, we also get the above theorem by considering the
restriction map CH*(X) — CH*(X).

We note here the following lemma for a (general) split algebraic group Gy and a
Gg-torsor Gy,.

LEMMA 6.6. The composition of the following maps is zero for * > 0
CH*(BGy)/p — CH*(BBg)/p — CH*(Gy/By)/p.

Proor. Take U (e.g., GLy for a large N) such that U/G}) approximates the
classifying space BGy, [To3]. Namely, we can take Gy = f*U for the classifying map
f: Gy /Gy — U/Gy. Hence we have the following commutative diagram

Gk/Bk E— U/Bk
Spec(k) 2 Gy /Gy —— U/Gy
where U/By, (resp. U/Gy) approximates BBy, (resp. BGy). Since CH*(Spec(k))/p = 0
for * > 0, we have the lemma. O
7. The orthogonal group SO(m) and p = 2.

We consider the orthogonal groups G = SO(m) and p = 2 in this section. The mod
2-cohomology is written as (see for example [Mi-Tod], [Ni])

grH*(SO(m);Z/2) =2 A(x1, 22, .., Tm—1)

where |x;| = 4, and the multiplications are given by 22 = x5,. We write Y2(odd) = xgdd.
Hence we can write

with  P(y) = ©5_oZ/2[yairo]/ (Wiita),  97P(y) = Al@a, 24, ..., 2p)

for adequate integers m,m’, s, r;. For ease of argument, at first, we only consider the
case m = 2¢ + 1 so that

H*(G,Z/2) = P(y) ® A(:L‘17$3, R ,xzzfl)
g?"P(y)/2 = A(y27 s ay2l)7

letting yo; = x2; hence yy4; = y%z Here the suffix means its degree in this section.
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The Steenrod operation is given as Sq¢*(z;) = (;) (zi+x). The Q;-operations are
given by Nishimoto [Ni]

QnT2i_1 = Yoj_ont1_9, Qny2: = 0.

Considering the maps U (¢) — SO(2¢) — SO(2¢+1), we see that b; = ¢; mod (2) for
the transgression ds;(x2;,_1) = b; and ¢; which is the i-th elementary symmetric function
on S(t), from Proposition 6.1 in the preceding section. Moreover we see Qo(Z2;—1) = Y2
in H*(G;Z/2). From Lemma 3.1 or Corollary 3.2, we have

2y22‘ = C; mod (4)

in H*(G/T). Indeed, the cohomology H*(G/T) is computed completely by Toda—
Watanabe [Tod-Wa)].

THEOREM 7.1 ([Tod-Wa]). There are yo; € H*(G/T) for 1 < i < ¢ such that
7 (y2i) = y2: for m: G — G/T, and that we have an isomorphism

H*(G/T) = Zti, yail/(ci — 2y2i, J2:)

where Jgi = 1/4(23;0(—1)j6j02i_j> = Y4; — 20<j<2i(_1)jy2jy4i—2j letting Y25 = 0 fO?”
j>L.

By using Nishimoto’s result for Q;-operation, from Corollary 3.2, we have

COROLLARY 7.2. In BP*(G/T)/I2,, we have

c; = 2ya; + Z vy (20 + 27T - 2)
n>1

for some y(j) with 7*(y(7)) = y;.

It is known by Marlin and Merkurjev (see [To2] for details) that the torsion index
of SO(2¢+ 1) (and SO(2¢ + 2)) is 2¢. Here we give an another proof.

THEOREM 7.3. t(G) =t(SO(2( + 1)) = 2°.
PrROOF. We consider in H*(G/T)
c1---eo = (2y2)(2a) - (2y2¢) = 2Yop

where yiop = Yo - - - y2r. Hence t(G) < 2°.
Conversely, let 271y, =t in S(t). Then t = 0 € H*(G/T;Z/2) and hence t is in
the ideal (c1,...,¢7) in S(t). So we can write t = Y, ¢;t(¢). Then we have

2e*1ytop =2 Z y2it(i)

which implies 272y, = ° y2,t(i) since H*(G/T) has no torsion.
Continue this argument. Then we have a relation y;,p, = Y yt with ¢ € S(¢) where
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the number of y9, in each monomial in y is less or equal to £ — 1, while the number for
Ytop 15 €. This is a contradiction. O

Let W = Wgo(2¢41)(T) be the Weyl group. Then W = Stft is generated by permu-
tations and change of signs so that \Sﬂ = 2¢/\. Hence we have

H*(BT)W 2 Zy)[p1,....p) C H*(BT) 2 Zy)[t1,... te), |t:| =2

where the Pontryagin class p; is defined by II;(1 + t7) = >, pi- Consider the maps

0T CU@0)—=S0(20+1) B U@+ 1).

Then cq;(n) = p; € CH*(BT)W which is also the image of cg;(12) in CH*(BSO(2(+1)).

On the other hand, p; = ¢;(n1)?> mod (2), where c;(n;) = o; is the elementary
symmetric function in S(¢). Now we consider a versal torsor G; and the versal flag
X = Gg/By. From Lemma 6.6, the composition of the following maps

CH*(BGy,)/2 — CH*(BBy,)/2 — CH*(X)/2

is zero for x > 0, we get ¢;(m1)* = 0?7 =0 in CH*(X)/2.
This fact is also seen directly from considering the natural inclusion SO(2¢ + 1) —
Sp(2¢ + 1) and Proposition 6.2.

LEMMA 7.4. We have ¢ =0 in CH*(X)/2.
LeEMMA 7.5.  There is an additive injection
Z)2[c, ... ci/(c3, ..., c3) = Nei,...,ce) C CH*(R(Gy))/2.

PROOF. At first we note that ¢;---¢p # 0 in CH*(X)/2. Otherwise, it is rep-
resented by 25(¢) since CH*(X) is generated by elements from S(t). It means that
26" y0p = 1/2(c1 - c0) € S(t). Hence t(G) < 2° and it is a contradiction.

For I = (iy,...,ix) C (1,...,€),let ¢ = c¢iy - - ¢4, and y; = yoi, - -~ Y24, and |I| = k.
Suppose ¢y € Ker(pr) for pr: CH*(X)/2 — CH*(R(Gy))/2. Then from Corollary 5.2, we

can write
cr = chu(.])
J

with w(J) € S(¢) and |u(J)| > 0 for some J, since ¢y is not zero in CH*(X)/2.

Then we have 2//ly; = 3 2l/ly u(j). Since H*(G/T) has no 2-torsion, dividing
by min(2/!,2171), we have a contradiction since H*(G/T;7Z/2) = P(y) ® S(t)/(b). Thus
cr # 0 in also CH*(R(Gy))/2. O

THEOREM 7.6. Let (G,p) = (SO(2¢ +1),2) and X = Gy/Bg. Then there are
isomorphisms

CH*(X)/2=25(t)/(2,c%,...,¢2), CH*(R(Gy))/2= A(cy,...,co).
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ProoF. We have the additive and surjective map
gr(St)/(2,¢i,....c})) Z Aer, ... .ce) @ S(1)/(ca, .- cr)
— CH*(X)/2=2 CH"(R(Gy)) @ S(t)/(2,¢1, ..., co).

Therefore we see CH*(R(Gy))/2 = Alcy,...,c¢e) from the preceding lemma. From
Lemma 7.4, we have the ring homomorphism

St)/(2,c3,...,c2) — CH*(X)/2,
which induces the ring isomorphism from the additive isomorphism. O
COROLLARY 7.7.  In the above theorem, CH*(X) is torsion free.

PROOF. Let us write Az(a1,...,am) = Z{a;, ---a; |1 <i3 < --- <is <m}. We
consider the restriction maps

CH*(R(Gy)) = Ag(cr, ... c0) )T —2s CH*(R(Gy)) = As(yo, - .., y20)

<2>l <3>lmj.

CH*(X) @, CH*(X).

for some module J. The map (1) (and (4)) is given by ¢; — 2y2;, and since the last map
(4) is a ring map, we see that (4)(2) maps ¢;, ---¢;, — 2°y;, -+ y;_, which is injective.
Hence the first map (1) is (additively) injective and J = 0. Thus CH*(R(Gy)) is torsion
free, and so is CH*(X) from the theorem by Petrov, Semenov and Zainoulline such that
M(X)(g) = EBZR<(G]€) ®Ti®. O

REMARK. The above lemmas, theorem and corollary are also given from a result
by Petrov (Theorem 1 in [Pe], see also Theorem 7.13 below).

COROLLARY 7.8. Let (G',p) = (50(2¢),2) and X' = G},/By, so that G' C G =
SO(20 +1). Then t(G') =271, and

CH*(R(GL))/2 = CH*(R(Gy))/ (2, ¢e) = Act, ..., co1),
CH*(X')/2= CH*(X)/(2,¢0) = S(1)/(2,65, ..., ¢f_1, o).

Proor. This corollary is easily shown from H*(G';Z/2) = H*(G;Z/2)/(y2e)-
For example, grP(y) = A(yz, ..., y2_2) and t(G') = 2¢~1. O

From Proposition 6.2 and Theorem 7.6, we note

COROLLARY 7.9. Let G” = Sp(20+1) and X" = G}//By/. Then the natural maps
G — G" D Sp(¢) induce the isomorphisms

CH*(X)/22 CH*(X")/(2,;]i > €) = H*(Sp(0)/T; Z/2).
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We now study CH*(X |k )/2 for some interesting extension K over k. Let K be an
extension of k£ such that X does not split over K but splits over an extension over K of
degree 2a, (a,2) = 1. Suppose that

(%) wy2; € Resk, for 1<i<{—1

where Reskg = Im(res : CH*(X|g)/2 — CH*(X)/2). We want to consider the case
Yo2e & Resk.

LEMMA 7.10.  Suppose (x) and £ # 2™ — 1 for n > 0. Then yas € Resk.

Proor. We see that if £ # 2" — 1, then each ya¢ is a target of the Steenrod
operation S¢**. Recall S¢**(y2;) = (1)¥2(i+k)- It is well known that if i = Y- i,2% and
k =>"ks2° for is, ks =0 or 1, then (in mod (2))

(o) = () i)~ G

Note that if ¢ = 2™ — 1, then all iy = 1 (for s < n). Otherwise there is s such that i = 1
but 7,1 = 0. Take k =251 and i/ =4 —25"!. Then ¢/ + k = ¢ and

7 _fim =1 i,=0\/1 o) 1
k) \ 0 ks =0)\1 o)
This means Sq%* (yos) = yo; if i # 2" — 1. O

LEMMA 7.11.  Suppose (x) and £ = 2™ — 1. Then elements pyas, V1Yae,- - -, Un—1Y2¢
are all in Im(resq) where resq : *(X)/2 — Q*(X)/2.

ProOOF. From Corollary 7.2, we see
Co-ait1 = 2y(2(0 = 27 +2°)) +ory(2(6 = 27 +21) + -+ v;(y(20))
=v;(y2¢) mod (Y2,Y4,- .., Y20—2)-
Hence we have resq(co—(2i-1)) = vj(y2¢) mod (y2,Ya, ..., Y20—2). O
Thus we have

THEOREM 7.12.  Suppose (x) and £ =2™ — 1. Then
CH*(R(Gg)|k)/2 = Aya, ..., y20—2) @ CH*(R,,) /2,

with CH*(Ry)/2 =2 Z/2{1,c0(y2¢), - -, cn—1(y20)} = Z/2{1, pyas,...,vn_1Yy20}. More-
over we have

resi (CH*(R(Gy))/2) = CH"(Ry)/2 C CH*(R(Gy)|k)/2-

The restriction maps are given c¢; — ¢s(y2e) = vsy2e if 7 = £ — (p® — 1), and ¢; — 0
otherwise.
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At last of this section, we consider the case X (C) = G/P with
G=85S02(+1) and P=U({).

Let us write this X by Y, i.e., Y = Gi/P;. From the fibering SO(2¢ + 1) — Y (C) —
BU(¢), we have the spectral sequence

B = H*(SO(20 +1);Z/2) ® H* (BU(())
~ Py) @ Aay, ..., 220-1) ®Z/2]cy, . .., ci] => H*(Y(C); Z/2).

Here the differential is given as da;(22;,—1) = ¢;. Hence
CH*(Y;Z/2) = H*(Y(C);Z/2) = P(y)/2.

This case is studied by Vishik [Vi] and Petrov [Pe] as maximal orthogonal (or quadratic)
grassmannian. (see Theorem 5.1 in [Vi]). From Theorem 7.6, we have

THEOREM 7.13 ([Pe], [Vi]). Let G = SO(2¢+ 1) and Gy be a versal Gy-torsor.
Let Y = G /U(£). Then

CH*(Y)/2 2 CH"(R(Gy))/2 22 Alcy, ... co).

REMARK. Petrov computes the integral Chow ring for more general situations
[Pe]. From the above theorem, we note that CH*(R(Gy))/2 has the ring structure in
this case.

In [Vi], Vishik originally defined the J-invariant J(q) of a quadratic form ¢ which
corresponds to the quadratic grassmannian (see Definition 5.11, Corollary 5.10 in [Vi])
by

J(q) = {ir|y2i, € Rescu} C {0,...,¢}.

Let I be the fundamental ideal of the Witt ring W (k) so that grW (k) = @, " /I =
KM(k)/2 where KM (k) is the Milnor K-theory of k. Smirnov and Vishik (Proposi-
tion 3.2.31 in [Sm-VIi]) prove that

g€ I™ ifandonlyif {0,...,2"7!' -2} C J(q).

Hence the condition (*) in Theorem 7.12 is equivalent to ¢ € I" for the quadratic form ¢
corresponding to Y|x. We also note that G = Spin(m) cases correspond to ¢ € I°® from
1,92,ys € Rescu (see (8.1) below). This fact is of course, well known.

8. The spin group Spin(2£ + 1) and p = 2.

Throughout this section, let p = 2, G = SO(2¢ + 1) and G’ = Spin(2¢ + 1). By
definition, we have the 2 covering 7 : G’ — G. It is well known that 7* : H*(G/T) =
H*(G'/T") where T' is a maximal torus of G’. However the twisted flag varieties are not
isomorphic.

Let 28 < ¢ < 2!+ ie. t = [logy ¢]. The mod 2 cohomology is
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H*(G';Z)2) 2 H* (G;Z/2)/(z1,y2) @ A(2)
~ P(y) @ A(zs, zs5,...,200-1) @ A(2), |2] =221
where P(y) 2 Z/2[y)/ (42 )@ P(y)'. (Here the element z is defined by dor+2(z) = 32
for 0 # yo € H?(BZ/2;Z/2) in the spectral sequence induced from the fibering G/ —
G — BZ/2.) Hence

grP(y)" = Qo201 My2i) = Ays, Y10, Y125 - - - Yoi) (8.1)

where ¢ = ¢ — 1 if £ = 27, and ¢ = ¢ otherwise. The Q; operation for z is given by
Nishimoto [Ni]

Q)= > vz, Qn(z)= > Y2iY2;
i+j:2t+1,i<j i+j:2t+1+2"+1—2,i<j

for n > 1.
We know that

grH*(G/T)/2= Py ® Zly] /(43 ) © S()/ (2.1, 2. )
grH*(G'/T") /2= P(y) @ S(t')/(2,¢5, ..., ¢, C%HI).

Here ¢ = n*(¢;) and daet2(2) = 2™ in the spectral sequence converging H*(G'/T").

These are additively isomorphic. In particular, we have

LEMMA 8.1.  The element m*(y2) = ¢1 € S(t') and 7*(t;) = c1 +t; for 1 < j < L.

Take k such that Gy, is a versal Gy-torsor so that G}, is also a versal G}-torsor. Let
us write X = Gy /By and X' = G}, /Bj,. Then

CH*(R(G}))/2 = P(y)' /2, and CH*(R(Gy))/2= P(y)/2.

THEOREM 8.2. Let (G,p) = (SO(2¢ +1),2), (G',p) = (Spin(2¢ + 1),2), and 7 :
G’ — G be the natural projection. Let ¢; = 7*(c;). Then ©* induces maps such that their
composition map s surjective

CH*(R(Gk))/(2,¢1) 2 A(ca, - -, e0) T CH*(R(G})) /2 — Z/2{1,¢h, ..., &5}
where { =0 — 1 if { =27 for some j > 0, otherwise { = {.

PrOOF. From Corollary 5.3, we only need to show ¢} # 0 in Q*(G},/T})/ (I -
Im(resq)). In fact, when i # 27, in H*(G'/T")/4, we have
2y0; = C;» S S(t)

which is nonzero in BP*(G/T) /(I -Im(resq)). Because yo; € P(y)" and yo; & Im(rescn)
from Lemma 4.5 since X is a versal flag variety.
When i = 27, we note yo; = yo5 € S(t'), in fact yp; & P(y)’. But in BP*(G'/T") /12,
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we have
2y9; +v1(y(2i +2)) + -+ + v, (y(2i + 2" —2)) + ... = ¢, € BP*(BT").
When i + 1 < ¢, this element is nonzero in BP*(G/T)/I - Im(resy) because
&= 0 (y(2i +2)) £ 0 € K1) (G/T)/(v1 - Tm(resy))

where resy(1) : k(1)*(X’) — k(1)*(X). Otherwise y(2i + 2) € Im(rescn), and this is
a contradiction since ysi 1o ¢ Im(rescy), which follows from yej+2 € P(y)’ and Corol-
lary 4.5.

When 27 = /¢, we note

CH*(R(G}))/2 = CH*(R(G}))/2 for G" = Spin(2¢ — 1),
in fact yop = yos & CH*(R(G)},)). From a theorem by Vishik-Zainoulline (Corollary 6 in
[Vi-Za]), we get CH*(R(G},))/2 = CH*(R(G}))/2. Hence we can take ¢, = 0. O

/

COROLLARY 8.3.  The elements ¢, = c}; — c¥, j > 0 are torsion elements in

CH*(X) ().

PROOF. Note that resq(cl;) € BP<?- Q*(X), and rescu(ch;) = 0 € CH*(X). It is
well known that rescy ® Q is isomorphic. Hence ¢}, must be torsion. O

EXAMPLE. Let G = SO(7) and G’ = Spin(7), i.e., £ = 3. Their cohomologies are
H*(G;Z/2) = Z/2[ya, ye]/(y§7 y(23> ® A(w1, 23, 25),
H*(G';2/2) = L/2[ys]/ (y5) ® Azs, x5, 27).
The cohomologies of flag manifolds are

H*(G/T;Z/2) = Z/2[y2, ye]/ (y3, y3) @ S(t)/(c1, c2, c3),
H*(G'/T';2/2) = 7./2[ys] / (yg) ® S(t)/(ch, ¢, cf).

These cohomologies are isomorphic by 7*(y2) = ¢;. The torsion indexes are ¢(G) = 23
and t(G’) = 2. The Chow rings of versal flag varieties are

CH*(X)/225(t)/(2,¢2,¢2,c3), CH*(R(Gy))/2 2 A(cy, 2, c3),
CH*(X')/2 22 5(t)/(2, (ch)?, ches, (c3)?,¢1),  CH*(R(G}))/2 = Z/2{1, ¢y, ¢}

Here 7*(t;) = ¢1+t; so that 7*(¢;) = 0 mod (2). For the third and the last isomorphisms,
see Corollary 9.5 below. In fact G’ is a group of type (I).

LEMMA 8.4 (Marlin’s bound).  The torsion index t(G') divides 2¢~110g241-1,

Proor. It follows from

— 2[72571 /

Hi;ézj ¢ = Hi;éQJ (2y2i) top
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where y;,, is the generator of top degree elements in P(y)’. O

The exact value of t(G") is determined by Totaro, namely t(G') = £— [logz((egl) +1)]
or that expression plus 1. (It is known #(Spin(2¢+ 1)) = ¢(Spin(2£ + 2))).

Marlin’s bound fails first for Spin(11). This fact was first found by using a property
of 12-dimensional quadratic forms [To2]. However we show it using the Qo-operation.

LEMMA 8.5. For (G',p) = (Spin(11),2), we have t(G') = 2 and the surjection
CH*(R(G}))/2 — Z/2{1, ¢y, c5, ¢y, ck, chely, 5}
Proor. Recall the cohomology
H*(G';2/2) = Z/2[ys, y10]/ (Y5 Y1) @ Mz, x5, 27, %9, 215).

By 1\HShiIIlOtO7 we know Q0(215) = YsY10- It implies 23/62/10 = d16(215) = C?. Since y;op =
Y6Y10, we have t(G’) = 2. (Note that c§ # 0 € CH*(R(G))/2, otherwise t(G’) = 1.)

We will show chey # 0 € CH*(X)/2. The elements ¢, 5, ¢} in CH*(R(G},))/2
correspond to v1Ys, 2ys, V1910 in Q*(R(G},)) respectively. In particular che) corresponds
to viysyio. If chey = 0 € CH*(R(G},))/2, then viysyio must be in Resq. This means
v1Yey10 = b” for some b € BP*(BT'). However there is no z € H'3(G’; Z/2) such that

Ql({L‘) = YsY10 with dlz(l‘) = b//. O

REMARK. Quite recently, Karpenko ([Ka2]) showed that the above surjection is
an isomorphism.

In most cases, from the result of Totaro, we see II, .5;¢; = 0. However from [To2]
when ¢ = 8, we know that 26~ (o201 — 24 — #(Spin(17)). (Note y15 — 2ysy10 € S(t)
but y16 € S(t) when £ = 8.) Hence we have

LEMMA 8.6. Let > 8 and G' = Spin(2¢+ 1), and X' = G}, /By,. Then we have
cchCech, dycyegch #£0€ CH*(X')/2.
PrOOF. When ¢ = 8, we see that elements
chchchch = 2 ysyioy12y14 = 24y20p and cscycgch = 23vlygop

are BP*-module generators in BP*(G/T)/(I - Im(resq)). Hence these elements are
nonzero in CH*(X")/2 for £ = 8. We get cases £ > 8 from the map Spin(17) — Spin(2¢+
1). O

9. The exceptional group Eg and p = 5.

In this section, we consider the case (G,p) = (Fs,5). The similar arguments also
hold for (G,p) = (G2,2),(F4,3). The mod (5) cohomology of G = Eg ([Mi-Tod]) is
given by

THEOREM 9.1.  The mod (5) cohomology H*(Eg;Z/5) is isomorphic to
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Z/5[y12]/(y§2) ® A(Z?n 2115 %15, 2235 2275 2355 239, 247)
where suffix means its degree. The cohomology operations are given
B(z11) = 112, Bl(z23) = yia, Bl235) = yia, Blzar) = yia
Plzg =211, Plzi5 =203, Plaoy =235, Plagg = 27,

We use the notation such that y = y12 and 1 = z3,..., x5 = 247 as used in Section 2.
Hence we can rewrite the cohomology as

H*(G;Z/p) = Z/plyl/(y") @ A(z1,. .., T2p—2)

for (G,p) = (Es,5). The above isomorphism also holds for (G,p) = (G2,2), (Fy,3).
So hereafter in this section, we assume (G, p) is one of (Gs,2), (Fy,3) or (Es,5). The
cohomology operations are given as

B =y, Plizei_q— xo; for 1<i<p-—1.
Hence the @); operations are given
Q1(w2i—1) = Qo(wa) =y’ for 1<i<p-—1.
Therefore we have the following lemma, by using Lemma 3.1 or Corollary 3.2.
LEMMA 9.2.  In BP*(G/T)/I%, we have

py" = by mod (ba, ba, ..., b2i_2),

vyt = bgi_1 mod (b, bz, ..., b2i—2).

PROOF. First note that Qoz2; = y* and d,.(w2;) = by;. From Corollary 3.2, there
is y(2i) € BP*(G/T)/I2, such that py(2i) = by; and 7*(y(2i)) = ¥, that is

y(2i) =y' + > _yt())

j<i

where t(j) € S(¢) |t(j)| > 2. By induction on ¢, we get the first equation.
From Ql(IQi_l) = yl and dr/ (SCQi_l) = bgi_l, there is y(Zz—l) such that Uly(Q’L—l) =
ba;_1 and 7*(y(2i — 1)) = y*. Hence we get the second equation similarly. O

The fundamental class is written y?~1t;,, € H*(G/T), i.e., yiop = y?~ 1. Since
pyP~t = byy_o € S(t), we see t(G) ) = p.

By Petrov—Semenov—Zainoulline, it is known when G is one of (Gg,2), (F4,3) or
(Es,5), the motive R(Gy) in Theorem 4.2 is just the original Rost motive Ry defined
by Rost and Voevodsky. (Recall Theorem 4.6.) The restriction resqr : Q*(R(Gg)) —
O*(R(Gyg)) is injective. Hence the following restriction is also injective

resq : Q*(X) — Q*(X) = BP*(G/T).
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COROLLARY 9.3. We see
CH*(R2)/p = CH*(R(Gg))/p = Z/p{1,b1,...,bop_2}.

In particular, bs # 0 € CH*(X)/p. Moreover for 1 < s,r < 2p — 2, we see bsb, = 0 in
CH*(X)/p.

PrROOF. Recall Corollary 5.3. We will prove by # 0 € CH*(X). Other cases are
proved similarly. Note by = v1y € Q*(X). If by € BP<?-Im(resq), then y € Im(resq)
and this is a contradiction. So b; # 0 in

CH*(X) = Q*(X)/(BP<"-Q*(X)) = Im(resq)/(BP<" - Im(resq)).

For the last isomorphism, we used the injectivity of resg. We prove b? = 0 €
CH*(X). We see

b3 = (11y)? = vy® = viby € BP*(G/T).

This element is contained in BP<? - Im(resq). Hence b? is zero in CH*(X) as above.
The other cases can be proved similarly. O

THEOREM 9.4. Let (G,p) = (G2,2), (F4,3) or (Es,5), and let X = Gy /Ty. Then
there is an isomorphism

CH*(X)/p=S(t)/(p,bibj|1 <1i,j <2p—2).
ProOOF. From the preceding corollary we have the surjection
S(8)/(p, bibj) — CH(X)/p.
On the other hand, it is immediate that there is an additive isomorphism
S(8)/(p,bib;) = Z/p{1,b1, ..., bop—2} ® S(t)/(p, D).

There is an injection from the above right hand side module into Q*(X)/(BP<° -
Im(resq)). Hence we have the theorem. O

EXAMPLE. Let G = Fy and p = 3. We note G’ = Spin(9) C G and
H*(BG")/3 = H*(BT"\V" /3= 7Z/3[p1, ..., pi]

for the Pontryagin classes p; [Tod1]. So H*(G"/T")/3 = S(¢)/(3,p1,...,p4). By using
the induced map from G” C G, we can see b; = p; in CH*(X)/3. Hence

CH*(X)/3=5(t)/(3,pip;|0 < 4,5 < 4).

Let G’ be of type (I). Then it is well known ([Mi-Tod]) that there is a nat-
ural embedding ¢ : G C G where (G,p) = (Gs2,2),(Fy,3) or (Fs,5) such that
i*: H*(G';Z/p) — H*(G;Z/p) is surjective. Moreover the polynomial rings P(y) and
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P(y)' are isomorphic by this map i*. This means CH*(R(Gy)) & CH*(R(G},)). This
fact implies

CH"(R(Gy)) = CH"(R(Gy))
from a theorem by Vishik and Zainoulline (Corollary 6 in [Vi-Za]). Thus we have
COROLLARY 9.5.  Let G’ be of type (I). Then there are isomorphisms
CH*(R(Gy))/p £ Z/p{1,b1,...,bayp_2},
CH*(X")/p= S(t)/(p,bibj,be|l <i4,7 <2p—2, 2p—1<k <).

PrOOF. We only need to show that for 2p — 1 < k, we can take by such that
by =0¢€ CH*(X')/p. Since by, = 0 in BP*(G/T)/Is = H*(G/T)/p, in BP*(G/T)/I2,,

we can write
b =Y _py't(i) + > viy't(i)

where t(i),¢(i) € BP*® S(t). Take new by by by, — > be;t(i) — > be;—1t(¢)’. Then b =0
in BP*(G/T)/IZ. O

EXAMPLE. Recall the case (G',p) = (Spin(7),2) and (G,p) = (G2,2). Then we
can take by = ch, by = ¢}, and by = c}, in fact

CH*(X')/22 S()/((ch)*, chch, (c5)*,ct), CH*(X)/2= CH*(X')/(c1).

10. The case G = Eg and p = 3.

In this section, we study the case (G,p) = (Es,p = 3). The cohomology H*(Es;Z/3)
is isomorphic to ([Mi-Tod))

Z/3[y87 yzo}/(yg, ygo) ® A(Z?n 27, %215, 219, 227, 235, 239, 247)-

Here the suffix means its degree, e.g., |z;| = i. By Kono-Mimura [Ko-Mi] the actions of
cohomology operations are also known.

THEOREM 10.1 ([Ko-Mi]). We have P3ys = ya9, and

Bz ys, 215 Ys, 210 & Y2, 227 — YsY20,
235 y§y20, Z39 y%o, 247 ygygo,
Pl 23> 27, 215 > 219, 235 > 239,
P3 27— 219, 215 Fr 297 ¥ —239, 235 > 247.

We use notations y = yg,y’ = Y20, and z1 = 23,...,28 = z47. Then we can rewrite
the isomorphisms

H*(Gy2/3) = Z/3[y,y']/(v*, (')*) @ Az, ..., xs).
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grH*(G/T;2/3) = Z/3[y,y']/(v*, (y')*) ® S(1)/ (b1, - .- , bs)-
From Lemma 3.4, we have

COROLLARY 10.2.  We can take by € BP*(BT) such that in BP*(G/T)/I%,
vy + vay' = by.

From the preceding theorem, we know that all y*(y')? except for (i,7) = (2,2) are
(B-image. Hence we have

COROLLARY 10.3.  For all nonzero monomials u € P(y)/3 except for (yy')?, it
holds 3u € S(t). That is, for 2 < k =i+3j+1<38,0 < i <2 we can take in
H*(G/T)/(3%)

be = bitsje1 =3y'(y').

LEMMA 10.4. Let (G,p) = (Fs,3) and X = Gy /Ty,. In BP*(X), there are b; € S(t)
such that b; #0 € CH*(X)/3 and in BP*(G/T)/I%

v1y + voy’ if k=1
bk = bi+3j+1 = ?)yi(yl)j Zf 0 S 1 S 1, 2 S k
32(y') + o ()T if =2

PROOF.  Applying 7a, to the equation v1y + vay’ = by in BP*(X)/I%,, we have

3y + V1T A, (y) + varA, (y/) =T (bl)

Note Pl(y),Pl(y') € S(t)/3 in H*(G/T;Z/3) since they are primitive. Hence
v1ra, (¥), vara, (v') € BP* @ S(t) mod (I%). So we have 3y = by in BP*(G/T)/IZ.
Applying 734, to the equation 3y = by € BP*(X)/I%,, we have 3y’ = r3a, (b2), which is
written by bs.

Next we study the element 3y? in BP*(X)/I2 . Since 3y? = bz in H*(X)/(9), we
have in BP*(X)/I2,

3y2 + vl(al) + UQ((LQ) = bg.

We can take a; =y’ by using Q1 (z3) = ¢ and the relation v1y+wv2y’ = b;. (For example,
when a; =y + yb, we use viyb = —vay’b.) Since vaasy is primitive in k(2)*(G/T)/(I12)
(Recall the proof of Lemma 3.4), we can take ay = 0. Otherwise if ax = > y'(y’)?b, for
i =1,2, then

vay' @ (y')b # 0 € k(2)*(G) @rez)+ k(2)*(G/T).

Hence we get 3y? + v1y’ = bz in BP*(X)/I%.

Applying 734, and rga, to the above equation, we have the formulas for yy’ and (y')?.
Here we used that rsa, (y) = v/, and 7,4, (y') € BP*(BT)/(I2) since it is primitive.
Similar arguments work for the element 3%y’, and we can get the formula for y(y')2. O
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COROLLARY 10.5.  The torsion index t(Es) ) = 3%

PROOF. The fundamental class f (localized at 3) is given by f = yiopt = y*(y')?t
for t = tyop € S(t). Since babs = (3y)(3y(y')?) = 3*yrop € S(t), we see t(Eg)(3) = 3 or 3°.
Suppose t(Es) ) = 3, namely, 3y*(y’)? = b € S(t). From Lemma 3.1, this implies
that there is * € H*(G;7Z/3) such that Qo(r) = y?(y')? and d,.(z) = b’. But such = does
not exist from Theorem 10.2. O

Recall that Ay = Z/3{b;, - - b;||biy| + -+ + |bi.| < N}. From Lemma 5.4, we have
the surjection Ay ® S(t)/(b) - CH*(X)/3 for M = |(yy')?| = 56.

THEOREM 10.6. Let (G,p) = (Es,3) and Gy, is a versal Gy-torsor. Then we have
surjective maps

Asg — CH*(R(Gy))/3 — Z/3{1,by, ..., bs, bibg, bibs, babs},

PROOF.  Since t(Es)(3) = 3% and X is a versal flag variety, we see 3(yy')* f & rescu.
It follows 3(yy')? & rescu. Therefore 9(yy')?, 3v1(yy')?, 3va(yy')? are BP*-module
generators in Resq = Im(resq). Since the restriction resq is written as

(b2bs) — 9(yy')?,  (bibs) — 3vi(yy')?,  (bibs) — 3va(yy')?,

we have the theorem. O

COROLLARY 10.7. Let Tor C CH*(R(Gy)) be the module of torsion elements.
Then we have the isomorphism

(CH*(R(Gk))/TOI') X Z/3 = Z/3{17 bQ, ey bs, bgbg}.

PROOF.  Let us write by b; = py(;) for i > 2. Let yu)y) # y%(y’)?. Then there

is k such that yu)y(;) = yw). Hence bb; = 3by in CH*(X). So b;b; — 3by, is a torsion
element because rescy ® Q is isomorphic. Il

We recall that there is an embedding Fy C Eg. Let K/k be a field extension of
degree 3a with (3,a) = 1 such that the flag variety X |x = (G /T})|x is still twisted but
X | is split for an extension K'/K of degree 3a’ with (3,a’) = 1. Note P3y =y and if
y € resg, then so is ¢'. Since X|x is twisted, we see y’ € resE but y is not. Hence the
J-invariants are

J(Gg) = (1,0) but J(Gy) = (1,1).

(See also 4.1.3 in [Pe-Se-Za], [Se] for Eg, 1 > ji > ja).

We know that the generalized Rost motive for Fy and p = 3 is just the original Rost
motive Rs. Hence the natural map ¢ : Fy — FEg induces the isomorphism of Chow groups
over K of Ry and R(G). By Vishik-Zainoulline ([Vi-Za]), we have the isomorphism

CH*(R,)/3 =~ CH*(R(Gk))/3.
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ProrosiTION 10.8.  Let us write the restriction map resf
CH*(R(Gy))/3 = CH*(R(Gy)|x)/3 = CH*(R2) @ Z/3[y']/((y')°)-
Then we have Im(resy ) = Z/3{1,by, ba, bs, bs, bg, bs }.

PRrOOF. This proposition is proved by considering the restriction on Q*(X). For
example, bg = 3y(y')? # 0 in CH*(X|x)/3, but babg = 3 - (3y)(y’)? = 0. In particular,
we use the fact that by = 3y’,b7 = 3(y’)? are in Ker(res). O

11. The case G = Eg and p = 2.

In this section, we consider the case (G,p) = (Fs,2). The mod (2) cohomology
H*(FEg;7Z/2) is given [Mi-Tod] as

7.)2[z3, 25, 29, T15)/ (238, 28, 25, 215) ® A(217, 223, 227, 229)-
Here we consider a graded algebra gr H*(Es; Z/2) identifying yo; = 22 for i = 3,5,9, 15.
THEOREM 11.1.  The cohomology grH*(Es;Z/2) is given
Z/2[Ys, y10: Y18, Y30]/ (U3 Y10 Yiss Y30) © Al23, 25, 20, 215, 217, 223, 227, 229).

Let us write y1 = y6,...,y4 = y30 and x1 = 23,29 = 25,...,%g = 299. For ease of
argument, let x4 = 217 and x5 = z15. Hence we can write

QTH*(E872/2) = Z/2[y17y27y37 y4]/(y§vy§7y§7yz) ® A(mlv ey xS)'

LEMMA 11.2.  The cohomology operations acts as

2 4 8

Sq Sq Sq

Tr1 =23 —— X9 =25 —> X3 =29 — T4 = 217
Sq® Sq* Sq?

Ty =215 ——— Tg = 223 ——— L7 = 27 —— T§ = 229
qu

T5 = 215 —— T4 = 217.

The Bockstein acts Sq*(zi41) = yi for 1 <i <3, Sq'(zg) = ys4 and
S 1. _ _ 4 _
q  Ts =215 = Y1Y2, Te = 223 = Y1Ys + Y1, Tr = Za2r — Y2U3.
Then we see from Lemma 3.4

COROLLARY 11.3. In BP*(X)/I2,, we can take y1 such that for roa,(y1) = yo
and r4n, (y2) = y3, we have for by € BP*(BT)

v1Y1 + V2y2 + v3Y3 = b1.
From Lemma 3.1 and the Sq' action in Lemma 11.2, it is immediate that

LEMMA 114. Let (G,p) = (Fs,2) and X = Gy/Tyx. In H*(X)/(4), there are
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b; € S(t) such that

2y(1) (resp. 2y(2), 2y(3)) if k=2 (resp. k=3,4)
bi = ¢ 2y(1,2) (resp. 2y(1,3), 2y(2,3)) if k=5 (resp. k=6,7)
2(4) if k=S8,

where ©y(i) = vy, ©™y(i,7) = vy, for the map 7 : G — G/T.

We will study b; by using the Quillen operation r,. In particular recall pr,(z) =
xP*(p(x)) for p: BP*(X) — H*(X;Z/2). The anti-automorphism y is defined by

x(Sq°) = Sq°, ZSqix(Sq”_i) =0 for n>0.
For example, (when Sq' = 0) x(P?) = P! for i = 1,2 and x(P3) = P?P!, (P3 = P1P?),
and y(P*) = P* + P?2P2.
LEMMA 11.5. In BP*(X)/IZ, we have

2y1 + va(yd) +v3(y3) if i=2
bi =< 2ys +v1(y3) +vs(yl) if i=3
2y3 + v1(y3) if i=4.

PrOOF. Applying the operation ra, to the equation v1y; + vays + vsys = b1, we
get

2y1 +vira, (Y1) + vara, (y2) + vara, (y3) = ra, (b1)-

Recall that P!(y;) are primitive in H*(G/T;Z/2). In fact, by Kono-Ishitoya, we know
(Theorem 5.9 in [Ko-Is2])

P'(y) € S(t), P'(y2) =yi, P'(ys) = 5.

Thus we have 2y; + v2(y?) + v3(y3) = ba. (Note also Qa(x2) = y3, Q3(x2) = y3.)
Applying roa, to this formula, we have

by = 2y + 01 (y7) +va(ra, (11)*) + v3(ra, (y2)°)
= 2y2 +v1(y) +vs(y1)-
Applying rya,, we have by = 2y3 + v1y3 where we used P?(y;) = ys. O
From Lemma 3.1, we see that
bs = 2y(1,2) = 2(y1y2 + Ayit')

where X € Z/2, b, b’ € S(t). However, stronger results are known by Nakagawa [Na] and
Totaro [Tol].
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LEMMA 11.6 ([Na], [Tol]). In H*(G/T)/4, we see 2y1y2 € S(t). Indeed, in the
notation in [Tol] dg = 1/9d3 — 2/3g3gs where g3 = y1, g5 = y2 and d; € S(t).

LEMMA 11.7. In BP*(G/T)/(I%), we have, for some b',b" € S(t)

bs = 2y1y2 + v1(y3) + va(y2b' + y3b") + v3(ya).

PROOF. From the preceding lemma, we can write in BP*(G/T)/(vs, I>

%)
bs = 2y1y2 + vi(a1) + va(az) + vs(as).

We may assume that a; does not contain y; by using the relation b; = viy; +---. Note
that in k(i)*(G/T)/I%, each v;a; is primitive. Since ys is not in Q-image in H*(G;Z/2),
we see Yy is vi-torsion free in k(1)*(G). So if a; contains yo, then via; is not primitive
in k(1)*(@G), which is a contradiction. (E.g., if a; = yay, then p*(via1) = viya @y +---.)
So a1 contains only y3, indeed Qx5 = y3 implies a1 = ys3.

For as, we know that y1,y3 are not ve-torsion. Therefore as only contains ys, that
is,

as = yob' + 930" mod (y3) for b,b" € S(t).

By the primitivity in k(3)*(G/T), the element ag only contains ys, ys. We know Qs(x5) =
ya. If az = vy (ya + y3b”), then let new y4 be the element y4 + y3b”. Thus we have the
result. O

LEMMA 11.8.  In BP*(G/T)/(I2,,vz2,v3), we have
be = 2(v1ys +yi +y20")  for V' € S(t).

Proor. We apply r4a, on bs. By Cartan formula, we see

ran, (W1y2) = > rin, (Y1) a—ia, (12)-

K2

Here r3a, = x(P3) = P2P! mod (2). Hence we have with mod (2)

r3a, (Y1)ra, (y2) = PP P (y1) P (y2) = byi,
ron, (Y1)raa, (y2) = y2b”, and 2yb" € S(t),
ra, (y1)rsa(yz) = 0" € S(t), and yiraa, (y2) = y1ys.

Hence r4a, (y192) = 1193 + by} mod (BP* @ S(t)).
Next consider

Tan, (V1y3) = 2r3a(y3) + v1(ran, (y3))-

Here with mod (2) we see

rsalys) = P2P'(ys) = P*(y3) = 1.
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We also see ryn, (y3) = Ptys € S(t) from the primitivity in H*(G/T;Z/2).
At last we can see

ran, V2 (D'ys +0"y3) = viran, (Wys +b"y3) =0 mod (vy).

Because if it contains viys or v1y3, then it is not primitive in k(1)*(G/T), and this is a
contradiction. If it contains vyy;, then it is in Ideal(vy) by the relation by. Thus we have
the result (with mod (vg,v3)) of this lemma. O

Similarly considering roa(bg) and Qx7 = ya4, we have
LEMMA 11.9. In BP*(G/T)/(I2,,va,v3), we have by = 2(yays +by? +b'y3) +v1ya.

REMARK. For the preceding two lemmas, Totaro gets stronger and explicit results
with mod (v1,vs,...). Totaro (Lemma 4.4 in [Tol]) shows in H*(G/T) )

d2 —25/81d3 + 2(15g9gs + 1/3g3 — 5/3gsd7 — 125/9gs593d4) + 22(—23/3g2dg) = 0

where g3 = y1, 95 = Y2, 9o = y3 and d; € S(t). This implies 2(y1y3+y;) € S(t). Therefore
we can take b/ = 0 in Lemma 11.8. Totaro also gives explicit formula dr, dg in H*(G/T).
In particular, in Lemma 4.4 in [Tol], he shows b =0’ = 0 in the above lemma.

At last, from B(xg) = y4, we note

LEMMA 11.10. In H*(G/T)/4, we see 2ys = bg.
Now we study the torsion index. Recall
2mi—1

Yiop = i1y~ = ylyysys € P(y)

and ty,, are top degree elements in P(y) and S(¢)/(b) so that f = yioptiep for the
fundamental class f of H*(G/T)(g).

LEMMA 11.11 (Totaro [Tol]). We have t(Es)(2) = 2°.
PrOOF. We consider the element
b = b3bebabs = 2°(y192)° (Yays + yi + yib") (ys) (va)-
Here using y3 =&’ € S(t) mod (2), we have
(yrys + yi +yib")ys = yiys + (b + yib")ys.
Hence we can write

b=2° (yt(,p + Zyt) for |t| > 0.

From Lemma 5.5, we see t(Eg)(2) < 2°.
Suppose t(Eg)(2) < 25, that is, 25f = 25ysoptiop € S(t). Then 25 f must be in the
ideal I = (by,...,bg), and we can write for b; = 2y;) (note y;) = 0, and y(;) is not a
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monomial, in general)

() 2°F = bit(i) =2 yut(i) for t(i) € S(t).

Since H*(G/T) has no torsion, we have 2% f = 3" y;t(i).

Let us rewrite s = > y(;t(i) = >, y't(I) for a monomial y' = yit - ylt € P(y) for
I=(i1,...,14), and t(I) € S(t). Then s € Ideal(2) implies each ¢(I) € Ideal(by,...,bs) C
S(t), since H*(G/T)/2 = P(y) ® S(t)/(b). Continue this argument, and then we have,
in H*(G/T),

(k%) f = y't(D).

Consider this equation in H*(G/T)/2, and we see f = > y't(I), that is y' = y;0, and
t(I) = tiop.

To get (x*) from (x), we change b; to 2y(;) at most five times.

Let us write by f,(s) the number of y;’s in s, namely, the largest number of (i1 +
-++ 4 14) for monomials y; in s = > yrt(I). For example,

fy (Ytop) = tiy(yzygygyz;) =74+3+1+1=12.

On the other hand, we note that #,(y;)) is 1 or 2 except for

by (o)) = By ((y1ys + i +yib)) = 4.

We easily see that y) appears as y(;) just one time in the process (*) to (x*). We also
see that y(;) = y(s) just one time for the existence of y4. Hence

By Wiy Yias)) 2% 3+4+1 =1L
This is a contradiction. Thus ¢(Eg)s > 926, O

LEMMA 11.12.  Let (i1,...,ix) C (4,5,5,5,6,8). Then b = b; ---b;, # 0 in
CH*(X)/2 since b3bsbgbg # 0.

Let K be an extension of k£ such that X does not split over K but splits over an
extension over K of degree 2a, (2,a) = 1. Suppose that

(*) ¥y1,92,y3 € Resg, but y4 & Resk

where Resg = Im(res : CH*(X|g)/2 — CH(X)/2). (Compare the above condition (%)
with the condition (%) in Section 7.) That is, J(Gx) = (0,0,0,1) and such K exists (see
[Pe-Se-Za], [Se]). Then we have the following theorem by arguments similar to those to
get Theorem 7.12. (The motive R(Gy)|x in the theorem is an example of motives given
in Lemma 8.4 in [Se].)

THEOREM 11.13.  There is an isomorphism

CH*(R(Gy)|k)/2 2 Z/2[y1,y2, y3]/ (45, v3,y3) ® CH*(Ry) /2,
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where CH*(Ry)/2 = 7/2{1, 2y4, V1Y4, V2ys, V3Yys }. We have
Resi (CH*(R(Gy))/2) = CH*(R4)/2 € CH*(R(Gy)|k)/2.
The restriction map is given as by — vs_jys if 5 < j <8, and b; — 0 if 1 < j < 4.
12. The exceptional group E7 and p = 2.
The mod (2) cohomology of F7 is given
H*(E7;7)2) = H*(Eg; 7,/2)/ (23, 25, 255, %29).
We use the notations in the preceding sections.
THEOREM 12.1.  We have an isomorphism
grH*(Er;2/2) = Z/2[y1, 92, 93]/ (47, v3, ¥3) © Az, ... 27),

where *(y;) = y; for 1 < j <3 and i*(z;) = x; for 1 <i <7 and i*(ys) = i*(z5) =0
for the natural embedding i : E7 C Eg.

COROLLARY 12.2. In BP*(X)/I2,, we can take y; such that for roa,(y1) = yo
and ran, (y2) = ys, it holds viy1 + vays + vsys = by for by € BP*(BT).

From Lemma 3.1 and the Sq! action in Lemma 11.2, it is immediate.

LEMMA 12.3.  Let (G,p) = (E7,2). In H*(G/T)/(4), for all monomials u €
P(y)/2, except for yiop = y1y2Yys3, the elements 2u are written as elements in H*(BT).
Namely, in H*(G/T)/(4), there are b; € S(t) such that

b — {2y1 (resp. 2ya, 2ys3) if k=2 (resp. k=3,4)
2y1y2 (resp. 2y1ys, 2y2ys) if k=5 (resp. k=6,7).
From Lemma 11.5, it is immediate.
LEMMA 12.4. In BP*(X)/I2,, we have 2y; = ba, 2ys = b3, 2y3 = by.
LEMMA 12.5.  We have t(E7)2) = 2%
PROOF. We get the result from boby = (2y1)(2y2y3) = 2%¥10p- O
COROLLARY 12.6.  There are surjective maps
Asq — CH*(R(G))/2 — Z/2{1,by, ..., bz, bibs, bibe, bibr, babr}.
PROOF. Note that |y1y2y3] = 34. In Q*(X), we see

b1bs = 2U3Ytop, bibs = 2V2Yiop, 107 = 2V1Ytop-
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These elements are 2*-module generators in Im(resi (Q*(X) — QX)) because
2y1y2ys & Im(resy) from the fact ¢(Gy) = 22. O

By the arguments similar to Corollary 10.7, we have

COROLLARY 12.7.  Let Tor C CH*(R(G)) be the module of torsion elements. Then
we have an isomorphism

CH"(R(Gy))/(2, Tor) = Z/2{1, b, ..., bz, bybr}.

Let us write G’ = Eg and G = G5 so that G ¢ G = E; C G'. Take fields
k C K C K’ such that

(#%) yi,93, 92 € Resk, u1,92, 43 & Resk,
(+%%) o7 y2,3,94 € Resxr, 41 & Resir.
Then the following proposition is almost immediate
PROPOSITION 12.8.  Suppose (xx) and (x * x). We have isomorphisms,
CH*(R(G})|K)/2 = Z/2[y3,y3, yal /(4% ya, y3) ® CH*(R(Gk))/2,
the restriction is given by b; — b; for 1 < i <7 and bg — 0, and
CH*(R(Gr)|k+)/2 = Z/2[ya, y3]/ (y3, 3) © CH*(R2) /2,
the restriction is given by b; — b; for i =1,2, and b; — 0 for 3 <i < 7.
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