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Abstract. The purpose of this paper is to present a variational formula
of Schläfli type for the volume of a spherically faced simplex in the Euclidean
space. It is described in terms of Cayley–Menger determinants and their dif-
ferentials involved with hypersphere arrangements. We derive it as a limit

of fundamental identities for hypergeometric integrals associated with hyper-
sphere arrangements obtained by the authors in the preceding article.

1. Introduction.

In Milnor’s expository article in [16], the following formula is stated:

For a geodesic polyhedron Pn in the n-dimensional, spherical, Euclidean or

Lobachevsky space of constant curvature K, the differential of the volume Vn(P
n) of

Pn is expressed as

KdVn(P
n) =

1

n− 1

∑
F

Vn−2(F ) dθF ,

where the right hand side is to be summed over all (n − 2)-dimensional faces, θF is the

dihedral angle between the (n− 1)-dimensional faces which meet at F , and Vk(·) stands
for k-dimensional volume.

This classical formula originates in Schläfli’s work since the mid-19th century (see

[23], [24]). It is an interesting problem to extend its differential equality to more general

(not necessarily geodesic) figures in the space of constant curvature. Hypergeometric inte-

grals are intimately related to this problem. The first author has shown (see [3]) that the

volume formula for a pseudo-simplex with spherical faces in the (n+1)-dimensional fun-

damental unit hypersphere can be deduced by limit procedure from a differential equality

satisfied by hypergeometric integrals associated with the corresponding arrangement of

n-dimensional hyperspheres. The classical Schläfli formula is its special case.

In this article, we give a new variational formula for the volume of a pseudo-simplex

with spherical faces in the Euclidean space. See Theorems 1 and 2. To derive it, we apply

the variational formula obtained in [7] which is involved in hypergeometric integrals asso-

ciated with hypersphere arrangements. This procedure can be done by regularization of
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integrals (the method of generalized functions), i.e., by taking the zero limit of exponents

for hypergeometric integrals (see [10]). A hypersphere arrangement in the n-dimensional

Euclidean space can be realized by the stereographic projection as the restriction to the

fundamental unit hypersphere of a hyperplane arrangement in the (n + 1)-dimensional

Euclidean space. The theory of hypergeometric integrals associated with hypersphere ar-

rangements has been developed in this framework in terms of twisted rational de Rham

cohomology (see [5], [7]). It is described in terms of Cayley–Menger determinants.

In Theorem 20, we make a correction to some errors in the variation volume formula

in [3] which is an extension of the Schläfli formula (see (52) in this article) of a geodesic

simplex in the unit hypersphere (refer to [2], [3], [12], [13], [14], [21], [23], [24], [27];

also refer to [9], [21], [22] related to the Bellows conjecture).

Acknowledgements. The authors would like to appreciate a careful reading and

several valuable suggestions by the referee. According to these suggestions, Theorems 1

and 2 have been made more precise and clearer.

They also would like to appreciate a useful suggestion due to Masahiko Ito for

drawing the figures.

2. Main theorems.

Let A = {S1, . . . , Sn+1} be an arrangement of (n − 1)-dimensional hyperspheres in

Rn, where Sj has center Oj and radius rj . Let N be the set of all non-empty subsets of

N := {1, . . . , n + 1}. Each ordered sequence J = {j1, . . . , jp} with jν ∈ N (1 ≤ ν ≤ p)

defines a subset of N . By abuse of terminology, we may also say J belongs to N and

write J ∈ N without any confusion. For each J = {j1, . . . , jp} ∈ N , we define the

Cayley–Menger determinants by

B(0 J) =

∣∣∣∣∣∣∣∣∣
0 1 · · · 1

1 ρ2j1j1 · · · ρ2j1jp
...

...
. . .

...

1 ρ2jpj1 · · · ρ2jpjp

∣∣∣∣∣∣∣∣∣ , B(0 ⋆ J) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1

1 0 r2j1 · · · r2jp
1 rj21 ρ2j1j1 · · · ρ2j1jp
...

...
...

. . .
...

1 r2jp ρ2jpj1 · · · ρ2jpjp

∣∣∣∣∣∣∣∣∣∣∣∣
,

where ρjk is the distance between Oj and Ok. Their values are independent of the

ordering of j1, . . . , jp, and hence depend only on the unordered set J .

Suppose A satisfies the condition

(H1) (−1)|J|B(0J) > 0, (−1)|J|+1B(0 ⋆ J) > 0 (J ∈ N ),

where |J | is the cardinality of J . Refer to Section 5, Examples, Figure 1. Under (H1),

the following facts are known.

1. The complement to the hypersphere arrangement A,

X := Rn

\ ∪
j∈N

Sj
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has 2n+1 − 1 bounded components and a unique unbounded one. (This property is

a consequence from the following fact : A is the image of the standard stereographic

projection from the intersection of a central (n+1)-dimensional hyperplane arrangement

Â =
∪
j∈N Ĥj with the fundamental unit hypersphere Ŝ0 in Rn+1 such that the center

of Â, i.e., the common point
∩
j∈N Ĥj lies in the inside of Ŝ0. See the Introduction in

[7] for more details.)

2. Let N0 be the set of all non-empty proper subsets of N . For each J ∈ N0, the

intersection

SJ :=
∩
j∈J

Sj

is an (n − |J |)-dimensional sphere, where a 0-dimensional sphere is a set of two points.

SN denotes the empty set by convention.

3. For each J ∈ N , denote byD−
J andD+

J the intersections
∩
j∈J D

−
j and

∩
j∈J D

+
j ,

where D−
j denotes the closure {fj ≤ 0} of the inside of Sj which is a closed ball in Rn

and D+
j the closure {fj ≥ 0} of the exterior part of Sj respectively.

Let D be the closure of a bounded component of X. Then there exists a J ∈ N
such that D can be represented as

D = D−
J ∩D+

Jc ,

where Jc denotes the complement of J in N . Remark that in the case J = N , D = D−
N

because of Jc = ∅.
For each K ∈ N0, the intersection

DSK := SK ∩D

is a non-empty connected subset of the boundary ∂D, called an (n − |K|)-dimensional

face of D which is homeomorphic to an (n−|K|)-dimensional cell. If |K| = n, then DSK
consists of a single point, called a vertex of D.

4. Up to isometry, we can take a Euclidean coordinate system (x1, . . . , xn) on Rn

such that

(a) On+1 is at the origin (x1, . . . , xn) = (0, . . . , 0),

(b) the xn−j+1-coordinate of Oj is negative for every j = 1, . . . , n,

(c) there exist constants c1, . . . , cj−1 such that Sn−j+2,...,n+1 is the intersection of

Sn+1 with (n− j + 1)-dimensional plane x1 = c1, . . . , xj−1 = cj−1 for every j = 2, . . . , n

(see Section 2 for more details).

We consider an infinitesimal deformation of the arrangement A. To describe them,

we put

θj = −1

2
d log r2j , J = {j}; θjk =

1

2
d log ρ2jk, J = {j, k}.
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To define θJ for |J | ≥ 3, we introduce yet another Cayley–Menger determinant: for

an ordered subset (j1, . . . , jp) ⊂ N ,

B

(
0 ⋆ j2 . . . jp
0 j1 j2 . . . jp

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1

1 r2j1 r2j2 · · · r2jp
1 ρ2j2j1 ρ2j2j2 · · · ρ2j2jp
...

...
...

. . .
...

1 ρ2jpj1 ρ2jpj2 · · · ρ2jpjp

∣∣∣∣∣∣∣∣∣∣∣∣
.

It does not depend on the ordering of j2, . . . , jp.

For each J = {j1, . . . , jp} ∈ N with p ≥ 3, let

θJ =
(−1)p

2

∑
(k1,...,kp)

p∏
q=3

B

(
0 ⋆ kq−1 . . . k1
0 kq kq−1 . . . k1

)
B(0 kq . . . k1)

· d log ρ2k1k2 ,

where the ordered p-tuple (k1, . . . , kp) runs over all permutations of j1, . . . , jp such that

k1 < k2.

We denote by vJ the (n − |J |)-dimensional spherical volume of the face DSJ . The

volume of a vertex is 1 by convention.

An exterior differential dA denotes the total differential corresponding to the infini-

tesimal deformation of the arrangement A.

Then we have the following.

Theorem 1. Under (H1), the n-dimensional Euclidean volume v(D) for D =

D−
J ∩D+

Jc is given by

(i) n! v(D) = −
∑
K∈N0

(n− |K|)!(−1)|K∩J|

√
(−1)|K|+1B(0 ⋆ K)

2|K| vK

− (−1)|J|
√

(−1)n+1B(0N)

2n
, (1)

while its variational version is given by

(ii) (n− 1)! dAv(D) = −
∑
K∈N0

(n− |K|)! (−1)|K∩Jc|

√
(−1)|K|+1B(0 ⋆ K)

2|K| vK θK

− (−1)|J
c|

√
(−1)n+1B(0N)

2n
θN . (2)

In particular, in the case where J = N , i.e., D = D−
N , the above formulae (i) and

(ii) reduce to the following:

(i) n! v(D) = −
∑
K∈N0

(n− |K|)!(−1)|K|

√
(−1)|K|+1B(0 ⋆ K)

2|K| vK
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+ (−1)n
√

(−1)n+1B(0N)

2n
, (3)

(ii) (n− 1)! dAv(D) = −
∑
K∈N0

(n− |K|)!
√

(−1)|K|+1B(0 ⋆ K)

2|K| vK θK

−
√

(−1)n+1B(0N)

2n
θN . (4)

In place of (H1), we can also consider the following condition

(H2) (i) (−1)|J|B(0J) > 0, (−1)|J|+1B(0 ⋆ J) > 0 (J ∈ N0),

(ii) (−1)n+1B(0N) > 0, (−1)n+2B(0 ⋆ N) < 0 (J = N),

(iii) fj is positive on
∩
k∈∂jNSk (j ∈ N ).

Here ∂jN denotes the deletion of the element j from N .

In this case, D−
N is empty. On the other hand, D+

N has two connected components

D′+
N and D′′+

N , D′+
N is bounded, while D′′+

N is unbounded. The closure of every other

connected component of Rn −
∪
j∈N Sj can be expressed as D = D−

J ∩D+
Jc (J ∈ N0) as

above. Refer to Section 5, Examples, Figure 2.

Under this circumstance, the following is valid.

Theorem 2. Under (H2), the volume v(D) for D = D′+
N is given by

(i) n! v(D) = −
∑
K∈N0

(n− |K|)!
√

(−1)|K|+1B(0 ⋆ K)

2|K| vK +

√
(−1)n+1B(0N)

2n
, (5)

while its variational version is given by

(ii) (n− 1)! dAv(D) = −
∑
K∈N0

(n− |K|)! (−1)|K|

√
(−1)|K|+1B(0 ⋆ K)

2|K| vK θK

+ (−1)n+1

√
(−1)n+1B(0N)

2n
θN . (6)

3. Preliminaries.

1. Let n+ 1 real quadratic polynomials fj of n variables x = (x1, . . . , xn) in Rn :

fj(x) = Q(x) +
n∑
ν=1

2αjνxν + αj0 (1 ≤ j ≤ n+ 1)

be given, where Q(x) denotes the quadratic form

Q(x) =

n∑
ν=1

x2ν ,

and αjν ∈ R, αj0 ∈ R.
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Let Sj be the (n− 1)-dimensional hypersphere defined by fj(x) = 0. Denote by Oj
the center of Sj , by rj the radius of Sj and by ρjk the distance of Oj and Ok.

Then

r2j = −αj0 +
n∑
ν=1

α2
jν ,

ρ2jk =
n∑
ν=1

(αjν − αkν)
2.

2. Let A =
∪n+1
j=1 Sj be the arrangement of hyperspheres consisting of n+1 hyper-

spheres Sj .

We define Cayley–Menger determinants associated with A.

Definition 3. Denote by J and K the two ordered sequences of p indices J =

{j1, . . . , jp}, K = {k1, . . . , kp} ∈ N . Cayley–Menger determinants associated with A are

given by the following system of determinants (see [8], [11], [15], [25]):

B

(
0 j1 . . . jp
0 k1 . . . kp

)
:=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1

1 ρ2j1k1 ρ2j1k2 . . . ρ2j1kp
1 ρ2j2k1 ρ2j2k2 . . . ρ2j2kp
...

...
...

. . .
...

1 ρ2jpk1 ρ2jpk2 . . . ρ2jpkp

∣∣∣∣∣∣∣∣∣∣∣∣
,

B

(
⋆ j1 . . . jp
0 k1 . . . kp

)
:=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 r2k1 r2k2 . . . r2kp
1 ρ2j1k1 ρ2j1k2 . . . ρ2j1kp
1 ρ2j2k1 ρ2j2k2 . . . ρ2j2kp
...

...
...

. . .
...

1 ρ2jpk1 ρ2jpk2 . . . ρ2jpkp

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

B

(
⋆ j1 . . . jp
⋆ k1 . . . kp

)
:=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 r2k1 r2k2 . . . r2kp
r2j1 ρ2j1k1 ρ2j1k2 . . . ρ2j1kp
r2j2 ρ2j2k1 ρ2j2k2 . . . ρ2j2kp
...

...
...

. . .
...

r2jp ρ2jpk1 ρ2jpk2 . . . ρ2jpkp

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

B

(
0 ⋆ j2 . . . jp
0 k1 k2 . . . kp

)
:=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1

1 r2k1 r2k2 . . . r2kp
1 ρ2j2k1 ρ2j2k2 . . . ρ2j2kp
...

...
...

. . .
...

1 ρ2jpk1 ρ2jpk2 . . . ρ2jpkp

∣∣∣∣∣∣∣∣∣∣∣∣
,
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B

(
0 ⋆ j1 . . . jp
0 ⋆ k1 . . . kp

)
:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1

1 0 r2k1 r2k2 . . . r2kp
1 r2j1 ρ2j1k1 ρ2j1k2 . . . ρ2j1kp
1 r2j2 ρ2j2k1 ρ2j2k2 . . . ρ2j2kp
...

...
...

...
. . .

...

1 r2jp ρ2jpk1 ρ2jpk2 . . . ρ2jpkp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

These determinants will be abbreviated to B
(0 J
0 K

)
, B

(⋆ J
0 K

)
, B

(⋆ J
⋆ K

)
,

B
(0 ⋆ ∂j1J
0 k1 ∂k1

K

)
, B
(0 ⋆ J
0 ⋆ K

)
respectively. Here ∂j1J denotes the deletion of the element j1

from the sequence J = {j1, . . . , jp}. When J = K, then B
(0 J
0 J

)
, B
(⋆ J
⋆ J

)
, B
(0 ⋆ J
0 ⋆ J

)
are

simply written by B(0 J), B(⋆ J), B(0 ⋆ J) respectively.

For example, B(0 j) = −1, B(0 j k) = 2ρ2jk, B(0 ⋆ j) = 2r2j and

B(0 ⋆ j k) = r4j + r4k + ρ4jk − 2r2j r
2
k − 2r2j ρ

2
jk − 2r2k ρ

2
jk,

B(0 j k l) = ρ4jk + ρ4jl + ρ4kl − 2ρ2jk ρ
2
jl − 2ρ2jkρ

2
kl − 2ρ2jl ρ

2
kl.

3. Assume the condition (H1). Put D := D−
J ∩D+

Jc for J ∈ N :

D : fj ≤ 0 (j ∈ J), fj ≥ 0 (j ∈ Jc).

It is a non-empty spherically faced n-simplex, which will be called a pseudo n-simplex

in the sequel. The boundary ofD consists of the (n−p)-dimensional facesDSK = D∩SK ,

1 ≤ p ≤ n, where, for any K ∈ N such that |K| = p, the intersection SK =
∩
j∈K Sj

defines an (n− p)-dimensional sphere.

D is a conformal image by the stereographic projection of a spherical n-cell in Ŝ0

surrounded by n+1 pieces of intersections with the real hyperplanes Ĥj (j ∈ N) (see [4]

Section 4 and the Introduction in [7] for details).

The orientation of Rn and D is determined such that the standard n-form ϖ is

positive:

ϖ = dx1 ∧ · · · ∧ dxn > 0.

In particular, for j ∈ N ,
∩
k∈∂jN Sk consists of two points denoted by {Pj , P ′

j}:

fk = 0 (k ∈ ∂jN) at Pj and P
′
j .

In the special case J = N so that D = D−
N , there exists the unique point Pj in ∂D

−
N

such that

{Pj} =
∩

k∈∂jN

Sk ∩ ∂D−
N (∂D−

N denotes the boundary ofD−
N ).

The other point P ′
j is outside D

−
N . It holds that
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fj
]
Pj
< 0,

[
fj
]
P ′

j

> 0.

4. By a change of coordinates via parallel displacement, we can take Euclidean

coordinates (x1, . . . , xn) such that On+1 coincides with the origin, i.e., αn+1,ν = 0 (1 ≤
ν ≤ n). Then

det2
(
(αjν)1≤j,ν≤n

)
= (−1)n+1B(0N)

2n
> 0,

the matrix (αjν)1≤j,ν≤n ∈ GL(n,R). Due to the Iwasawa decomposition for GL(n,R),

by orthogonal transformation we can find new Euclidean coordinates (x1, . . . , xn) such

that the polynomials fj have the following expressions:

fj(x) = Q(x) +

n+1−j∑
ν=1

2αjνxν + αj0 (1 ≤ j ≤ n), (7)

fn+1(x) = Q(x) + αn+1 0, (8)

here αj n+1−j > 0 (1 ≤ j ≤ n) and that Oj satisfies the condition:

xn+1−j-coordinate of Oj is negative for every j (1 ≤ j ≤ n).

We have the equalities

n∏
j=p

αj n+1−j =

√
(−1)n−pB(0 p . . . n n+ 1)

2n−p+1
(1 ≤ p ≤ n). (9)

Lemma 4. For J ∈ N0 (|J | ≤ n − 1), SJ is a sphere of dimension n − |J |. Its

radius rJ equals

rJ =

√
−1

2

B(0 ⋆ J)

B(0 J)
.

By the use of coordinates xj , Sn−|J|+2 ... n+1 represent the spheres of dimension

n− |J | satisfying the following equalities:

• Sn+1 : Q(x) = r2n+1,

• Sn−|J|+2 ... n+1 : x1 = c1, . . . , x|J|−1 = c|J|−1,
n∑

j=|J|

x2j = r2n−|J|+2 ... n+1,

with c1, . . . , c|J|−1 being constants,

• S2 ... n+1 : two points P1, P
′
1 such that P1 ∈ D−

1 , P
′
1 ∈ D+

1 .

In the same way, for any j ∈ N , S∂jN consists of two points Pj , P
′
j such that

Pj ∈ D−
j , P

′
j ∈ D+

j .

5. Let ∆[O1, . . . , On+1] denote the n-dimensional linear simplex with the vertices

O1, . . . , On+1. Then the following holds true.
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Lemma 5. Every Pj (1 ≤ j ≤ n + 1) lies in the same side of the sim-

plex ∆[O1, . . . , On+1] relative to the hyperplane including the (n − 1)-dimensional face

∆[O1, . . . , Oj−1, Oj+1, . . . , On+1].

Proof. Since the statement is invariant under isometry, we have only to prove

that the xn-coordinate of P1 is negative: xn(P1) < 0 with respect to the above coordi-

nates. Note that P1, P
′
1 is symmetric with respect to the reflection xn → −xn. Since

that xn(O1) < 0, f1(P1) < 0, f1(P
′
1) > 0, we have the inequality between the distance:

dis(P1, O1) < dis(P ′
1, O1). This means P1 lies in the lower side of the hyperplane xn = 0

including the face ∆[O2, . . . , On+1]. □

Denote by ∆[P1, P2, . . . , Pn+1] and ∆̃[P1, P2, . . . , Pn+1] be the linear n-simplex with

faces supported by linear subspaces and the pseudo n-simplex with spherical faces both

with vertices Pj respectively. The latter coincides with D−
N as a set. This pseudo n-

simplex denoted by ∆̃[P1, . . . , Pn+1] is uniquely determined by the sequence P1, . . . , Pn+1.

Indeed, ∆̃[P1, . . . , Pn+1] is the image by the stereographic projection of a spherical

n-simplex ∆̂ in the fundamental unit hypersphere Ŝ0 ⊂ Rn+1. ∆̂ is defined as follows.

Let
∪
j∈N Ĥj be a real central arrangement of hyperplanes in Rn+1 whose center is the

intersection
∩
j∈N Ĥj , Ĥj being defined by a linear function on Rn+1 :

Ĥj : f̂j(ξ) = 0 (ξ ∈ Rn+1).

The assumption (H1) means that the center is in the inside of Ŝ0 (see [4] Lemma 3.1

and [7] Lemma 3). Denote by Ĥ±
j the closed half space in Rn+1 divided by Ĥj such

that the function f̂j is non-negative or non-positive on Ĥ±
j . Then ∆̂ is the intersection

of Ŝ0 with the cone
∩
j∈N Ĥ

−
j whose summit

∩
j∈N Ĥj lies in the inside of Ŝ0 (refer

to the Introduction in [7]). ∆̂ is non-empty. Hence ∆̃[P1, . . . , Pn+1] is non-empty. Its

orientation depends on the ordering of P1, . . . , Pn+1.

By definition, the following properties are valid.

Lemma 6. (i)

(−1)n(n+1)/2+ν−1 df1 ∧ · · · d̂fν · · · ∧ dfn+1 (1 ≤ ν ≤ n+ 1)

is positive or negative at Pν or P ′
ν .

(ii) The pseudo n-simplex ∆̃[P1, P2, . . . , Pn+1] has the sign of orientation

(−1)n(n−1)/2 such that

∆̃[P1, P2, . . . , Pn+1] = (−1)n(n−1)/2D−
N .

Proof. Indeed, we can show that

df2 ∧ · · · ∧ dfn+1 = 2n(−1)(n−1)(n−2)/2
n∏
j=2

αj n+1−j xnϖ. (10)
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Seeing that xn < 0 at P1 and that xn > 0 at P ′
1, (i) holds true for ν = 1. The same holds

true for every ν by symmetry relative to isometry. Thus (i) is proved. The property (ii)

follows from the following fact. The orientation of ∆̃[P1, . . . , Pn+1] can then be identified

with the orientation of ∆̂ which is opposite in sign to the ordered arrangement of signed

halfspaces ⟨Ĥ−
n+1, . . . , Ĥ

−
1 ⟩ in Rn+1. □

6. Denote by fJ the product
∏
j∈J fj . The residues of the forms ϖ/fJ along SJ

can be computed explicitly as follows.

Proposition 7. For J = {j1, . . . , jp} ∈ N0, we have

ResSJ

[
ϖ

fJ

]
=

[
ϖ

dfj1 ∧ · · · ∧ dfjp

]
SJ

=
(−1)(p−1)(p−2)/2√
(−1)p−12pB(0 ⋆ J)

ϖJ , (1 ≤ p ≤ n) (11)

where ϖJ denote the standard spherical volume elements on SJ respectively such that

• ϖn+1 =

∑n
ν=1 (−1)ν−1xνdx1 ∧ · · · d̂xν · · · ∧ dxn

rn+1
, (12)

• ϖn−p+2 ... n+1 =

∑n−p+1
ν=1 (−1)ν−1 xp+ν−1dxp ∧ · · · ̂dxp+ν−1 · · · ∧ dxn

rn−p+2 ... n+1
(1 ≤ p ≤ n− 1),

(13)

• ϖ2 ... n+1 = ∓1 at P1 or P ′
1, (14)

and that

rn−p+2 ... n+1 =

√
−1

2

B(0 ⋆ n− p+ 2 . . . n+ 1)

B(0n− p+ 2 . . . n+ 1)
, (15)

ϖJ are obtained respectively from ϖn−p+2 ... n+1 by permutations of elements in the set

of indices N .

Proof. Because of symmetry, it is sufficient to prove (11) in the case where

J = {n− p+ 2, . . . , n+ 1}.
First prove (11) in the case of (12) and (13). Since

dfn−p+2 ∧ · · · ∧ dfn+1

= 2p(−1)(p−1)(p−2)/2
n∏

j=n−p+2

αj n−j+1

n∑
j=p

xjdx1 ∧ · · · ∧ dxp−1 ∧ dxj , (16)

(9) (13) and (15) imply

dfn−p+2 ∧ · · · ∧ dfn+1 ∧ϖn−p+2 ... n+1
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= 2p(−1)(p−1)(p−2)/2
n∏

j=n−p+2

αj n−j+1

(∑n
j=p x

2
j

)
rn−p+2 ... n+1

ϖ

= 2p(−1)(p−1)(p−2)/2

√
(−1)p−1B(0 ⋆ n− p+ 2 . . . n+ 1)

2p
ϖ (1 ≤ p ≤ n− 1). (17)

Hence, along SJ it follows that[
ϖ

dfn−p+2 ∧ · · · ∧ dfn+1

]
SJ

=
(−1)(p−1)(p−2)/2√

(−1)p+1 2pB(0 ⋆ n− p+ 2 . . . n+ 1)
ϖn−p+2 ... n+1.

On the other hand, when p = n, in view of (9), (10) and xn < 0 at P1 and xn > 0

at P ′
1 respectively, we have the identity

xn =

{
−r2 ... n+1 < 0 at P1,

r2 ... n+1 > 0 at P ′
1.

Hence, at P1 and P ′
1,[

ϖ

df2 ∧ · · · ∧ dfn+1

]
= ∓ (−1)(n−1)(n−2)/2√

(−1)n+1 2nB(0 ⋆ 2 . . . n+ 1)
(18)

respectively. □

Notation 1. For J ∈ N , denote by FJ the rational n-form and by W0(J)ϖ a

linear combination of FK (K ⊂ J) as follows:

FJ =
ϖ

fJ
,

W0(J)ϖ = −
∑
ν∈J

B

(
0 ⋆ ∂νJ

0 ν ∂νJ

)
F∂νJ +B(0 ⋆ J)FJ .

Remark that FJ is also a linear combination of W0(K)ϖ (K ⊂ J, |K| ≥ 1).

The following Lemma can be proved by a direct calculation (see [7] Lemma 12).

Lemma 8.

n+1∑
ν=1

(−1)ν−1 df1
f1

∧ · · · d̂fν
fν

· · · ∧ dfn+1

fn+1
=

2n (−1)n(n−1)/2+1√
(−1)n+1 2nB(0N)

W0(N)ϖ. (19)

The following proposition gives the values of fj at the points Pj and P
′
j .

Proposition 9. The values of 1/fj at Pj and P
′
j are negative and positive respec-

tively. They are evaluated as

[
1

fj

]
Pj

=

(−1)n+1
√
B(0 ⋆ ∂jN)B(0N) +B

(
0 ⋆ ∂jN

0 j ∂jN

)
B(0 ⋆ N)

< 0, (20)
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[
1

fj

]
P ′

j

=

(−1)n
√
B(0 ⋆ ∂jN)B(0N) +B

(
0 ⋆ ∂jN

0 j ∂jN

)
B(0 ⋆ N)

> 0. (21)

Due to the product formula for resultant,[
1

fj

]
Pj

[
1

fj

]
P ′

j

= −B(0 ∂jN)

B(0 ⋆ N)
< 0.

Proof. For simplicity, we may assume that j = 1. First notice that f1 ̸= 0 at P1.

By taking the residues of both sides of (19) at P1 (see [26]), we have from (18)

1 = ResP1

df2
f2

∧ · · · ∧ dfn+1

fn+1

=
2n(−1)n(n−1)/2+1√
(−1)n+1 2nB(0N)

{
−B

(
0 ⋆ ∂1N

0 1 ∂1N

)
+B(0 ⋆ N)

[
1

f1

]
P1

}
ResP1

[
ϖ

f2 . . . fn+1

]

=
(−1)n+1√

B(0 ⋆ ∂1N) B(0N)

{
−B

(
0 ⋆ ∂1N

0 1 ∂1N

)
+B(0 ⋆ N)

[
1

f1

]
P1

}
. (22)

We can solve the equation (22) with respect to [1/f1]P1 and gets the formula (20). (21)

can be deduced in a similar way. □

4. Proof of main theorems.

Main theorems are a consequence from some identities proved in [7] concerning

hypergeometric integrals defined on the n-dimensional complex affine space Cn. The

proofs are given by “regularization procedure of integrals using generalized functions”

(refer to [10]).

Fix J = {j1, . . . , jp} ∈ N such that |J | = p ≥ 1. Denote Jc = N\J =

{jp+1, . . . , jn+1}. The bounded domain D = D−
J ∩D+

Jc contains the vertices Pj1 , . . . , Pjp
and P ′

jp+1
, . . . , P ′

jn+1
so that D supports the pseudo n-simplex ∆̃[Pj1 , . . . , Pjp , P

′
jp+1

, . . . ,

P ′
jn+1

] with the vertices Pj1 , . . . , Pjp , P
′
jp+1

, . . . , P ′
jn+1

. Its orientation is determined as

follows.

∆̃[Pj1 , . . . , Pjp , P
′
jp+1

, . . . , P ′
jn+1

] = −(−1)n(n+1)/2+|J| sgn(J Jc)D−
J ∩D+

Jc ,

where sgn(J Jc) denotes the sign of the permutation {J Jc} = {j1, . . . , jn+1} of the

sequence N = {1, 2, . . . , n+ 1}.
For example, in the case n = 2 (see Section 5, Example, Figure 1),

∆̃[P1, P
′
2, P

′
3] = −D−

1 ∩D+
23, ∆̃[P1, P2, P

′
3] = D−

12 ∩D
+
3 ,

∆̃[P2, P
′
1, P

′
3] = D−

2 ∩D+
13, ∆̃[P1, P3, P

′
2] = −D−

13 ∩D
+
2 ,

∆̃[P3, P
′
1, P

′
2] = −D−

3 ∩D+
12, ∆̃[P2, P3, P

′
1] = D−

23 ∩D
+
1 .

In D, in the neighborhood of DSK , it follows that fk ≤ 0 for k ∈ K ∩ J and fk ≥ 0
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for k ∈ K ∩ Jc from the definition.

Suppose that the system of exponents λ = (λ1, . . . , λn+1) are given such that all

λj > 0.

Let Φ(x) be the multiplicative meromorphic function

Φ(x) =
∏
j∈N

f
λj

j .

For each J ∈ N (1 ≤ |J |), consider the integral of the absolute value |Φ(x)| over the
domain D = D−

J ∩D+
Jc :

Jλ(φ) =
∫
D

|Φ(x)|φϖ,

where we take the branch of Φ(x) such that Φ(x) > 0 for x ∈ D. There exists a twisted

n-cycle z such that

Jλ(φ) =
∫
z

Φ(x)φϖ.

Then the following proposition holds true (refer to [7]).

Proposition 10. For each D = D−
J ∩D+

Jc , the following identity holds true :

(2λ∞ + n)Jλ(1) =
∑

K∈N ,K ̸=∅

(−1)|K|
∏
j∈K λj∏|K|−1

ν=1 (λ∞ + n− ν)

∫
D

|Φ(x)|W0(K)ϖ,

where the sum ranges over the family of all unordered non-empty sets K ∈ N and λ∞ =∑n+1
j=1 λj.

On the other hand, the variation of Jλ(1) is defined by

dAJλ(1) =
n+1∑
j=1

n∑
ν=0

dαjν
∂

∂αjν

Jλ(1).

We want to give an explicit variation formula for Jλ(1) with respect to the param-

eters r2j , ρ
2
kl. To do that, it is necessary to introduce the system of special one forms θJ

appearing in Section 2. We reproduce them here.

Definition 11. We define the following:

θj = −1

2
d log r2j ,

θjk =
1

2
d log ρ2jk,

θJ = (−1)p
∑

j,k∈J,j<k

1

2
d logB(0 j k)·
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∑
µ1,...,µp−2

p−2∏
ν=1

B

(
0 ⋆ µν−1 . . . µ1 j k

0 µν µν−1 . . . µ1 j k

)
B(0µν µν−1 . . . µ1 j k)

, (2 ≤ p ≤ n+ 1, |J | = p)

where µ1, . . . , µp−2 ranges over the family of all ordered sequences consisting of p − 2

different elements of ∂j∂kJ .

Then we have the following (refer to [7]).

Proposition 12. For each D = D−
J ∩D+

Jc , we have

dAJλ(1) =
∑

K∈N ,K ̸=∅

∏
j∈K λj∏|K|−1

ν=1 (λ∞ + n− ν)
θK

∫
D

|Φ(x)|W0(K)ϖ.

Remark. Let εj (j ∈ N ) be the standard basis of the lattice Zn+1 in Cn+1, the

λ-space. For each J ∈ N , the integral

Jλ

(
1∏

j∈J fj

)
= Jλ−∑

j∈J εj
(1)

analytically depends on the parameters r2j , ρ
2
jk and λ. Differential or difference linear

relations among Jλ+η(1) (λ ∈ Cn+1, η ∈ Zn+1) are called generally “contiguity relation”

among hypergeometric functions (see [5], [7]). The identities stated in Propositions 10

and 12 are particular cases of them.

Let v(D) be the volume of the domain D = D−
J ∩D+

Jc :

v(D) =

∫
D

ϖ.

Further, let vK = vK(D) (K ∈ N0) be the volume of the (n− |K|)-dimensional face

DSK of D:

vK =

∫
DSK

|ϖK |.

Theorem 1 is an immediate consequence of Propositions 10 and 12 tending λj → 0

for all positive λj .

Proof of Theorem 1. Since both identities (1) and (2) in Theorem 1 can be

proved in the same way, we only give a proof for the latter identity (2).

Proposition 12 shows

dAJλ(1) =
∑
K∈N0

∏
j∈K λj∏|K|−1

ν=1 (λ∞ + n− ν)

∫
D

|Φ(x)|W0(K)ϖθK

+

∏
j∈N λj∏n

ν=1(λ∞ + n− ν)

∫
D

|Φ(x)|W0(N)ϖθN . (23)
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Let us take the limit for λj = τ, τ → 0 (1 ≤ j ≤ n+ 1) on both sides of (23).

In the left hand side of (23), we have

lim
τ→0

dAJλ(1) = dAv(D).

In the right hand side of (23), remark that

lim
τ↓0

∏
k∈K

λk

∫
D

|Φ(x)|φ(x)FL = 0,

provided L ⫋ K.

In the sum in the right hand side, first, fix j ∈ J and take K = {j}. Seeing

that fj ≤ 0 in D, due to Proposition 7, the following equalities hold by the method of

generalized functions (see [10] Chapter III, 2):

lim
τ→0

λj

∫
D

|Φ(x)|φ(x)W0(j)ϖ = lim
τ→0

λj

∫
D

|Φ(x)|φ(x)B(0 ⋆ j)
ϖ

fj

= −B(0 ⋆ j) lim
τ→0

λj

∫
D

|Φ(x)|φ(x) ϖ
|fj |

= −
√
B(0 ⋆ j)

2

∫
Sj∩∂D

[φ]Sj |ϖj |. (24)

Next, fix j ∈ Jc and take K = {j}. Seeing that fj ≥ 0 in D, we have similarly

lim
τ→0

λj

∫
D

|Φ(x)|φ(x)W0(j)ϖ =

√
B(0 ⋆ j)

2

∫
Sj∩∂D

[φ]Sj |ϖj |. (25)

In the case where K = {j, k} ∈ J or K = {j, k} ∈ Jc, fj ≤ 0, fk ≤ 0 or fj ≥ 0,

fk ≥ 0 in D. Hence,

lim
τ→0

λjλk

∫
D

|Φ(x)|φ(x)W0(j k)ϖ = B(0 ⋆ j k) lim
τ→0

λjλk

∫
D

|Φ(x)|φ(x) ϖ

fjfk

= B(0 ⋆ j k) lim
τ→0

λjλk

∫
D

|Φ(x)|φ(x) ϖ

|fjfk|

= B(0 ⋆ j k)

∫
D

|Φ(x)|φ(x)
∣∣∣∣ ϖ

dfj ∧ dfk

∣∣∣∣
= −

√
−B(0 ⋆ j k)

4

∫
Sj∩Sk∩∂D

[φ]Sjk
|ϖjk|. (26)

On the contrary, in the case where j ∈ J, k ∈ Jc or j ∈ Jc, k ∈ J , we have

lim
τ→0

λjλk

∫
D

|Φ(x)|φ(x)W0(j k)ϖ =

√
−B(0 ⋆ j k)

4

∫
Sj∩Sk∩∂D

[φ]Sjk
|ϖjk|. (27)

In general, we have for K = {k1, . . . , kp} ∈ N0, p ≥ 3,
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lim
τ→0

∏
j∈K

λj

∫
D

|Φ(x)|φ(x)W0(K)ϖ = B(0 ⋆ K) lim
τ→0

∏
j∈K

λj

∫
D

|Φ(x)|φ(x)FK

= (−1)|K∩J|B(0 ⋆ K) lim
τ→0

∏
j∈K

λj

∫
D

|Φ(x)|φ(x) |FK |

= (−1)|K∩J|B(0 ⋆ K)

∫
SK∩∂D

[φ]SK

∣∣∣∣ ϖ

dfk1 ∧ · · · ∧ dfkp

∣∣∣∣
SK

= −(−1)|K∩Jc|

√
(−1)|K|+1B(0 ⋆ K)

2|K|

∫
SK∩∂D

[φ]SK |ϖK |. (28)

As for the last term of the rigt hand side of (23), when τ → 0, the limit value is

divided into the ones at Pj (j ∈ J) or P ′
j (j ∈ Jc).

We may assume that D is divided into (n + 1) domains D∗
j (j ∈ N) such that D∗

j

include some neighborhoods of Pj (j ∈ J) and P ′
j (j ∈ Jc) in D respectively:

D =
∪
j∈N

D∗
j .

Then it follows that ∫
D

|Φ(x)|ϖ =
∑
j∈N

∫
D∗

j

|Φ(x)|ϖ.

First take and fix j ∈ J . Consider the integral over D∗
j . Since fk < 0 (k ∈ J) and

fk > 0 (k ∈ Jc) in the inside of D∗
j , and [fk]Pj = 0 (k ∈ N, k ̸= j) and [fj ]Pj < 0,

lim
τ→0

∏
k∈N λk∏n−1

ν=0(λ∞ + ν)

∫
D∗

j

|Φ(x)| W0(N) |ϖ|

= lim
τ↓0

(−1)n

(n+ 1)
∏n−1
ν=1((n+ 1)ε+ ν)

×

(
−B

(
0 ⋆ ∂jN

0 j ∂jN

)
+B(0 ⋆ N)

[
1

fj

]
Pj

)∣∣∣∣∣
[

ϖ

df1 ∧ · · · ∧ dfj−1 ∧ dfj+1 ∧ · · · ∧ dfn+1

]
Pj

∣∣∣∣∣
= − 1

(n+ 1) (n− 1)!

√
(−1)n+1B(0N)

2n
,

in view of (20) and Proposition 7.

Next take and fix j ∈ Jc. The limit of the integral over each D∗
j still has the same

value:

lim
τ→0

∏
k∈N λk∏n−1

ν=0(λ∞ + ν)

∫
D∗

j

|Φ(x)| W0(N) |ϖ|

= lim
τ↓0

(−1)n−1

(n− 1)
∏n−1
ν=1((n+ 1)ε+ ν)
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×

(
−B

(
0 ⋆ ∂jN

0 j ∂jN

)
+B(0 ⋆ N)

[
1

fj

]
P ′

j

)∣∣∣∣∣
[

ϖ

df1 ∧ · · · ∧ dfj−1 ∧ dfj+1 ∧ · · · ∧ dfn+1

]
P ′

j

∣∣∣∣∣
= − 1

(n+ 1) (n− 1)!

√
(−1)n+1B(0N)

2n
,

in view of (21) and Proposition 7. Namely, for all j ∈ N ,

lim
τ↓0

∏n+1
k=1 λk∏n−1

ν=0(λ∞ + ν)

∫
D∗

j

|Φ(x)| W0(N)ϖ

= − 1

(n+ 1) (n− 1)!

√
(−1)n+1B(0N)

2n
. (29)

(24) to (29) imply (2).

(1) can be proved in the same way from Proposition 10. In this way, Theorem 1 has

been completely proved. □

We now assume the condition (H2) and go to the proof of Theorem 2.

Sketch of Proof of Theorem 2. There are 2n+1 − 1 non-empty bounded

chambers as in the case of Theorem 1. Moreover D−
N is empty and both Pj and P ′

j

are in the outside of Sj (j ∈ N). This property follows from the following fact: The cone∩
j∈N Ĥ

−
j together with its summit

∩
j∈N Ĥj (j ∈ N) in Rn+1 is in the outside of Ŝ0.

D−
N is the image by the stereographic projection of the set which is by definition the in-

tersection of Ŝ0 with the cone
∩
j∈N Ĥ

−
j . However this set is empty from the assumption

(H2).

When J ∈ N0,

D−
J ∩D+

Jc : fj ≤ 0 (j ∈ J), fj ≥ 0 (j ∈ Jc)

are non-empty connected domains.

When J is empty, D−
J ∩D+

Jc = D+
N consists of two connected components D′+

N and

D′′+
N . D′+

N is bounded and D′′+
N is unbounded, and D′+

N ∩D′′+
N = ∅. D′+

N is the support

of the pseudo n-simplex ∆̃[P1, . . . , Pn+1] such that Pj ∈ S∂jN . The pseudo n-simplex

∆̃[P1, . . . , Pn+1] is the image by the stereographic projection of the spherical simplex ∆̂

in Ŝ0, which is determined as follows. The intersection of Ŝ0 with the cone
∩
j∈N Ĥ

+
j

in Rn+1 has two connected components in Ŝ0. We take as ∆̂ the connected component

disjoint with the source point of the stereographic projection (0, . . . , 0,−1) in Ŝ0.

The orientation of ∆̃[P1, . . . , Pn+1] is the same as D′+
N :

D+
N = D′+

N ∪D′′+
N : fj ≥ 0 (1 ≤ j ≤ n+ 1),

∆̃[P1, . . . , Pn+1] = D′+
N .

S∂jN consists of two points {Pj , P ′
j} (see Section 5, Example, Figure 2 for 2-

dimensional case). Then
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1

fj

]
Pj

> 0,

[
1

fj

]
P ′

j

> 0

and [
1

fj

]
Pj

[
1

fj

]
P ′

j

= −B(0 ∂jN)

B(0 ⋆ N)
> 0,

because (−1)n+1B(0 ⋆N) < 0. Under this circumstance, the proof of Theorem 2 can be

done almost in the same way as Theorem 1. We omit and leave a reader to prove it. □

Theorem 2 also follows from the identities in Theorem 1 by an analytic continuation

(i.e., by a Picard–Lefschetz transformation of twisted cycles around the locus: B(0⋆J) =

0) of v(D−
N ) moving the parameters r2j , ρ

2
jk such that

B(0 ⋆ N) −→ −B(0 ⋆ N),

v(D−
N ) −→ (−1)n v(D′+

N ),

v(D−
J ) −→ (−1)|J|−1 v(D−

J ).

Remark. An elementary proof of Theorem 2 (i) (and therefore of Theorem 1 (i))

will be given in the Appendix.

5. Examples.

In the following, we give two simple examples of main theorems.

Example 1. In the n-dimensional Euclidean space, consider two hyperspheres

S1, S2 with the centers O1, O2 and with radii r1, r2 such that the distance between O1

and O2 is equal to ρ12.

Assume S1 ∩ S2 is a non-empty (n− 2)-dimensional sphere. S1 ∩ S2 is contained in

the hyperplane L which intersects the segment O1O2 at a point M .

The radius h of S1 ∩ S2, the distance O1M and O2M are expressed as

h =

√
−B(0 ⋆ 1 2)

2ρ12
= r1 sin

1

2
ψ12 = r2 sin

1

2
ψ21,

O1M = r1 cos
1

2
ψ12 =

B

(
0 2 1

0 ⋆ 1

)
2ρ12

,

O2M = r2 cos
1

2
ψ21 =

B

(
0 1 2

0 ⋆ 2

)
2ρ12

such that

ρ12 = r1 cos
1

2
ψ12 + r2 cos

1

2
ψ21,
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where ψ12, ψ21 satisfy 0 < ψ12 < π, 0 < ψ21 < π.

Denote by D−
12 the common domain (lens domain) surrounded by S1, S2. S1 ∩S2 is

an (n− 2)-dimensional sphere.

The volume v(D−
12) of D

−
12 can be evaluated by an elementary calculus as follows:

v(D−
12) = v1 + v2, (30)

where

v1 =
1

n− 1
Cn−2r

n
1

∫ 1

cos(ψ12/2)

(1− τ2)(n−1)/2 dτ,

v2 =
1

n− 1
Cn−2r

n
2

∫ 1

cos(ψ21/2)

(1− τ2)(n−1)/2 dτ,

v1, v2 denote the volumes of the domains surrounded by S1, L and S2, L respectively, and

Cn−2 denotes the volume of the (n− 2)-dimensional unit hypersphere:

Cn−2 =
2π(n−1)/2

Γ((n− 1)/2)
.

The lower dimensional volumes of S1 ∩ S2, S1 ∩ ∂D−
12, S2 ∩ ∂D−

12 equal respectively

v(S1 ∩ S2) = Cn−2 h
n−2,

v(S1 ∩ ∂D−
12) =

∂v

∂r1
= Cn−2 r

n−1
1

∫ ψ12/2

0

sinn−2 t dt, (31)

v(S2 ∩ ∂D−
12) =

∂v

∂r2
= Cn−2 r

n−1
2

∫ ψ21/2

0

sinn−2 t dt. (32)

The integral in the right hand side can be expressed in the following expansion:∫ ψjk/2

0

sinn−2 t dt = −
∑

0≤2ν≤n−3

cos
ψjk
2

(n− 3) · · · (n− 2ν + 1)

(n− 2) · · · (n− 2ν)

(
sin

ψjk
2

)n−3−2ν

+


C ′
n−2

(
1− cos

ψjk
2

)
C ′
n−2

ψjk
2

({j, k} = {1, 2}), (33)

where 2C ′
n−2 or 2π C ′

n−2 equals
√
π Γ((n− 1)/2)/Γ(n/2) according as n is odd or even.

Remark. In the case where n is odd, dimSj ∩ ∂D−
12 (j = 1, 2) is even, (31)–(33)

are related with the generalized Gauss–Bonnet formula. Indeed, the second formula due

to Allendoerfer–Weil (see [1]) can be applied to v(S1∩∂D−
12) or v(S2∩∂D−

12). The above

formulae coincide with it.

The derivation of v(D−
12) with respect to r1, r2, ρ12 in (30) leads to the following

formula
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dv(D−
12) = v(S1 ∩ ∂D−

12) dr1 + v(S2 ∩ ∂D−
12) dr2

− 1

n− 1
v(S1 ∩ S2)

√
−B(0 ⋆ 1 2)

4
θ12 (34)

with θ12 = (1/2) log ρ212.

(34) is nothing else than a special case in the n dimensional space derived from (4)

for τ → 0, after putting to be λ1 = λ2 = τ and λj = 0 (3 ≤ j ≤ n+ 1).

In particular, in the case where n = 2, 3, the volumes v(D−
12) are simply written as

• v(D−
12) =

1

2
r21 (ψ12 − sinψ12) +

1

2
r22 (ψ21 − sinψ21) (n = 2), (35)

• v(D−
12) = πr31

(
2

3
− cos

1

2
ψ12 +

1

3
cos3

1

2
ψ12

)
+ πr32

(
2

3
− cos

1

2
ψ21 +

1

3
cos3

1

2
ψ21

)
(n = 3), (36)

where ψ12, ψ21 denote the angles at O1, O2 respectively subtended by the diameter of

S1 ∩ S2. Remark that

eiψ12/2 =

B

(
0 ⋆ 1

0 2 1

)
+ i
√

−B(0 ⋆ 1 2)

2ρ12 r1
,

eiψ21/2 =

B

(
0 ⋆ 2

0 1 2

)
+ i
√

−B(0 ⋆ 1 2)

2ρ12 r2
.

In the case where n = 2, 3, the formula (34) becomes

• dv(D−
12) = r1ψ12 dr1 + r2ψ21 dr2 −

√
−B(0 ⋆ 1 2)

dρ12
ρ12

, (37)

• dv(D−
12) =

πr1
ρ12

{
r22 − (r1 − ρ12)

2
}
dr1 +

πr2
ρ12

{
r21 − (r2 − ρ12)

2
}
dr2

− π

4ρ212
B(0 ⋆ 1 2) dρ12, (38)

in view of the identity

1

2
dψjk =

1√
−B(0 ⋆ j k)

{
−B

(
0 ⋆ j

0 ⋆ k

)
drj
rj

+ 2rk drk −B

(
0 j k

0 ⋆ k

)
dρjk
ρjk

}
(39)

for j, k = 1, 2 or 2, 1 respectively.

Example 2. Assume that n = 2.

Then D−
123 is the pseudo-triangle ∆̃[P1P2P3] with vertices P1 = (ξ1, ξ2), P2(η1, η2),

P3(ζ1, ζ2) (see Figure 1), where



233

Variation formula for the volume of a spherically faced simplex 233

ξ1 = −
B

(
0 2 3

0 ⋆ 3

)
√
2B(0 2 3)

, ξ2 = −

√
−B(0 ⋆ 2 3)

2B(0 2 3)
,

η1 =
1

B(0 1 3)
√
2B(0 2 3)

{
−B

(
0 1 3

0 ⋆ 3

)
B

(
0 1 3

0 2 3

)
−
√
B(0 ⋆ 1 3)B(0 1 2 3)

}
,

η2 =
1

B(0 1 3)
√
2B(0 2 3)

{
−B

(
0 1 3

0 ⋆ 3

)√
−B(0 1 2 3)−B

(
0 1 3

0 2 3

)√
−B(0 ⋆ 1 3)

}
,

ζ1 =
1

B(0 1 2)
√
2B(0 2 3)

{
B

(
0 1 2

0 ⋆ 2

)
B

(
0 1 2

0 3 2

)
−B(0 1 2)B(0 2 3)

+
√
B(0 1 2 3)B(0 ⋆ 1 2)

}
,

ζ2 =
1

B(0 1 2)
√
2B(0 2 3)

{
−B

(
0 1 2

0 ⋆ 2

)√
−B(0 1 2 3) +B

(
0 1 2

0 3 2

)√
−B(0 ⋆ 1 2)

}
.

Note that ξ2 < 0, η1 < 0.

The area of ∆(O1O3O2) is expressed by

|∆(O1O3O2)| =
1

2
|δ|, (40)

where δ denotes

δ =

∣∣∣∣∣∣
1 ξ1 ξ2
1 η1 η2
1 ζ1 ζ2

∣∣∣∣∣∣ = −1

2

√
−B(0 1 2 3) < 0.

Denote by φj the angle of the triangle ∆(O1O3O2) at the vertex Oj . Then

eiφj =

B

(
0 k j

0 l j

)
+ i
√
−B(0 1 2 3)

2ρjkρjl
(j, k, l different indices). (41)

Denote by P ′
1, P

′
2, P

′
3 the intersection points of S2 ∩ S3, S3 ∩ S1, S1 ∩ S2 which are

different from P1, P2, P3 respectively. Also denote by ψjk the angle at Oj subtended by

the arc P̂kP ′
k ∩ Sj .

Then Theorem 1 (i) shows

Lemma 13.

v(D) = ∆̃(P1P3P2)

= |∆(O1O3O2)| −
3∑
j=1

|∆(O1O3O2) ∩Dj |+
∑

1≤j<k≤3

|∆(O1O3O2) ∩D−
j ∩D−

k |,

(42)

where owing to (30)
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|∆(O1O3O2) ∩D−
j | =

1

2
r2jφj ,

|∆(O1O3O2) ∩D−
j ∩D−

k | =
1

2
|D−

j ∩D−
k |

=
1

4
r2j (ψjk − sinψjk) +

1

4
r2k (ψkj − sinψkj).

Denote by ψ1, ψ2, ψ3 the angles at Oj subtended by the sides P̂2P3, P̂3P1, P̂1P2 of

the pseudo triangle ∆̃(P1, P3, P2) respectively such that the arc length sj of P̂kPl is equal

to

sj = rj ψj .

ψj are also related with ψjk, φj as follows:

ψj =
1

2
ψjk +

1

2
ψjl − φj .

On the other hand, since φ1 + φ2 + φ3 = 2π,

ψ1 + ψ2 + ψ3 =
1

2

∑
j ̸=k

ψjk

= 2π − ∠P1P3P2 − ∠P2P1P3 − ∠P3P2P1.

This identity is a special case of the second Allendoerfer–Weil formula in the Euclidean

plane (see [1] Theorem II). Furthermore, from (42),

2v(D) = r1 v1 + r2 v2 + r3 v3 −
1

2

∑
1≤j<k≤3

√
−B(0 ⋆ j k) vjk +

1

2

√
−B(0 1 2 3),

with vj = rjψj . This identity coincides with (3) in the two dimensional case.

Taking into consideration the identities (30), (31), (33) and the following equalities

(j, k, l are different indices of 1, 2, 3)

dB(0 1 2 3) = −2
∑
j<k

dρ2jk B

(
0 j l

0 k l

)
,

dφj =
1√

−B(0 1 2 3)

{
−B

(
0 j k

0 l k

)
dρjk
ρjk

−B

(
0 j l

0 k l

)
dρjl
ρjl

+ 2ρkldρkl

}
,

we get the formula

dv(D) =
3∑
j=1

rj ψj drj −
1

2

∑
j<k

√
−B(0 ⋆ j k)

dρjk
ρjk

− 1

2
√
−B(0 1 2 3)

{
3∑
j<k

B

(
0 ⋆ j k

0 l j k

)
dρjk
ρjk

}
,
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Figure 1. B(0 ⋆ 1 2 3) > 0.

Figure 2. B(0 ⋆ 1 2 3) < 0.
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which is nothing else than (4) for n = 2 in view of the identity

θ123 = − 1

B(0 1 2 3)

{
B

(
0 ⋆ 1 2

0 3 1 2

)
dρ12
ρ12

+B

(
0 ⋆ 1 3

0 2 1 3

)
dρ13
ρ13

+B

(
0 ⋆ 2 3

0 1 2 3

)
dρ23
ρ23

}
.

6. Restriction to the unit hypersphere.

We assume further

fn+1(x) = Q(x)− 1,

i.e., Sn+1 is the unit hypersphere with center On+1 at the origin.

We may assume the linear functions

f ′j(x) := fj(x)−Q(x) + 1 =
n∑
ν=1

ujνxν + uj0 (1 ≤ j ≤ n)

are normalized such that the configuration matrix A′ = (a′jk) (0 ≤ j, k ≤ n) of order n+1

consisting of

a′j0 = a′0j = uj0,

a′jk =
n∑
ν=1

ujνukν − uj0uk0,

satisfies a′00 = −1, a′jj = 1 (1 ≤ j ≤ n). We put further

f ′n+1 = 1−Q(x).

For the set of indices J = {j1, . . . , jp}, K = {k1, . . . , kp} ⊂ {0, 1, . . . , n, n + 1},
we denote by A′( J

K

)
the subdeterminant with the j1, . . . , jpth rows and the k1, . . . , kpth

columns. In particular, we abbreviate A′(J
J

)
by A′(J).

The family of the hyperplanes Hj : f
′
j(x) = 0 define the arrangement of hyperplanes

A′ =
∪n
j=1Hj which correspond to A =

∪n
j=1 Sj , Sj : fj(x) = 0, one-to-one.

The components of the matrix A′ are described by the Cayley–Menger determinants

as follows:

a′j0 =

B

(
0 j n+ 1

0 ⋆ n+ 1

)
√
−B(0 ⋆ j n+ 1)

, (43)

a′jk =

−B
(
0 ⋆ j n+ 1

0 ⋆ k n+ 1

)
√
B(0 ⋆ j n+ 1)B(0 ⋆ k n+ 1)

. (44)
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Hj has the same intersection with Sn+1 as the intersection Sj ∩ Sn+1.

From now on, we shall assume the condition (H1).

(H1) can be rephrased in terms of the minors of A′ as follows:

(H1) A′(0 J) < 0 (J ⊂ ∂n+1N), A′(J) > 0 (1 ≤ |J |, J ⊂ ∂n+1N).

Remark that it always holds: −A′(0 J) > A′(J) > 0.

Since Sn+1 is the unit hypersphere, we have the identity

B(0 ⋆ n+ 1) = 2, B(0 ⋆ j n+ 1) = −1,

so that

a′jk = −B(0 ⋆ j k n+ 1) = − cos⟨j, k⟩,

where ⟨j, k⟩ denotes the angle subtended by Sj , Sk in Sn+1.

Let D = D−
12 ... n+1 be the (non-empty) real n-dimensional domain defined by

D−
12 ... n+1 =

n+1∩
j=1

D−
j , D−

j : f ′j ≤ 0 (⊂ Rn) (1 ≤ j ≤ n+ 1).

Then, for any J ⊂ ∂n+1N such that |J | = p, 1 ≤ p ≤ n − 1, the intersection

SJ n+1 = Sn+1 ∩
∩
j∈J Sj defines an (n − p − 1)-dimensional sphere. In particular,∩

k∈∂j∂n+1N
Sk consists of two points.

The orientation of Rn and D is determined such that the standard n-form ϖ is

positive:

ϖ = dx1 ∧ · · · ∧ dxn > 0.

We can define the standard volume form on Sn+1 as

ϖn+1 :=
n∑
ν=1

(−1)ν xνdx1 ∧ · · · d̂xν · · · ∧ dxn = 2

[
ϖ

df ′n+1

]
Sn+1

.

Let Φ′(x) be the multiplicative function

Φ′(x) =
∏

j∈∂n+1N

f ′j(x)
λj (λj ∈ R≥0).

We take the value of the many valued function Φ′(x) such that Φ′(x) > 0 at the infinity

in Rn.

Denote the twisted rational de Rham (n− 1)-cohomology by Hn−1
∇ (X,Ω·(∗S)) and

its dual by Hn−1(X,L∗), where L∗ denotes the dual local system on the complexification

X of the space Sn+1 −
∪
j∈A Sj associated with Φ′. The covariant differentiation ∇ is

given by

∇ψ = dψ + d log Φ′ ∧ ψ.
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The corresponding integral can be expressed as the pairing

Hn−1
∇ (X,Ω·(∗S))×Hn−1(X,L∗) ∋ (φ, z) −→ J ′

λ(φ) =

∫
z

Φ′(x)φ(x)ϖn+1

for φϖ ∈ Ωn−1(∗S) and a twisted (n− 1)-cycle z.

The following has been proved in [3].

Proposition 14. Hn−1
∇ (X,Ω·(∗S)) is of dimension 2n and has a basis

F ′
J =

ϖn+1

f ′J
,

where f ′J means the product
∏
j∈J f

′
j and J ranges over the family of all unordered subsets

of indices such that J ⊂ ∂n+1N including the empty set ∅.

From now on, we choose a twisted cycle (n− 1)-cycle z such that∫
z

Φ′(x)φϖn+1 =

∫
D−

12 ... n+1

|Φ′(x)|φϖn+1 (φϖn+1 ∈ Ωn−1(∗S)).

F ′
∅ means ϖn+1, and we define

J ′
λ(φ) =

∫
z

Φ′(x)φϖn+1.

The derivation of the integral J ′
λ(φ) with respect to the parameters a′jk, a

′
j0 can be

expressed as

dA′J ′
λ(φ) =

n∑
j=1

da′j0
∂

∂a′j0
J ′
λ(φ) +

∑
1≤j,k≤n

da′jk
∂

∂a′jk
J ′
λ(φ)

=

∫
z

Φ′(x)∇A′(φϖn+1), (45)

where

∇A′(φϖn+1) = dA′(φϖn+1) + dA′ log Φ′(x) ∧ φϖn+1.

In addition to the above basis, it is convenient to introduce the following basis which

we call “of second kind”:

Definition 15. We define the following:

F ′
∗,J := F ′

J +
∑
ν∈J

A′
(
0 ∂νJ

ν ∂νJ

)
A′(J)

F ′
∂νJ .

In particular, F ′
∗,∅ = F ′

∅ = ϖn+1.



239

Variation formula for the volume of a spherically faced simplex 239

The differential one-forms defined below will play an essential role in the sequel.

Definition 16. We define the following:

θ′j := da′j0,

θ′jk := da′jk −
A′
(
0 k

j k

)
A′(0 k)

da′k0 −
A′
(
0 j

k j

)
A′(0 j)

da′j0.

General θ′J for |J | ≥ 3 are defined by induction:

θ′J := −
∑
ν∈J

A′
(
0 ∂νJ

ν ∂νJ

)
A′(0 ∂νJ)

θ′∂νJ (3 ≤ |J | ≤ n).

Denote λ′∞ =
∑n
j=1 λj and J = {j1, . . . , jp}, |J | = p.

The following fact has been proved in [3].

Proposition 17. The following variation formula holds :

∇A′(F ′
∅) ∼

n∑
p=1

∑
1≤j1<···<jp≤n

λj1 · · ·λjp∏p−1
q=1(−λ∞ − n+ q + 1)

(−1)p θ′J
A′(J)

A′(0J)
F ′
∗,J . (46)

(The formula (4.12) in [3] has an error. In the right hand side, the sign (−1)p should

be added as above to the original formula.)

For example,

• ∇A′(F ′
∅) ∼− λ1

1

A′(0 1)
θ′1 (F

′
1 + a′10 F

′
∅)− λ2

1

A′(0 2)
θ′2 (F

′
2 + a′20 F

′
∅)

− λ1λ2
λ∞

A′(1 2)

A′(0 1 2)
θ′123 F

′
∗,12 (n = 2),

• ∇A′(F ′
∅) ∼−

3∑
j=1

λjda
′
j0F

′
∗,j −

∑
1≤j<k≤3

λj λk
λ∞ + 1

A′(j k)

A′(0 j k)
θ′jk F

′
∗,jk

− λ1λ2λ3
λ∞(λ∞ + 1)

θ′123
A′(1 2 3)

A′(0 1 2 3)
F ′
∗,123 (n = 3).

7. Analogue of Schläfli formula.

The variational formula for the volume of a spherically faced simplex in the unit

hypersphere was presented in [3]. In addition to the formulae stated in Theorems 1 and

2, Theorem 20 in this section makes a completely integrable system.

However, some formulae stated there have a few errors. In this section, we present

a correct version as in Theorem 20.

Let Pj (1 ≤ j ≤ n) be the points in Rn such that
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{Pj} =
∩

k∈∂jN

Hk ∩ Sn+1.

We can take the Euclidean coordinates x1, . . . , xn such that the polynomials fj have

the following expressions:

f ′j(x) =

n+1−j∑
ν=1

uj νxν + uj 0 (1 ≤ j ≤ n). (47)

We assume for simplicity that uj n+1−j = 2αj n+1−j > 0 (1 ≤ j ≤ n) and that Pj
satisfies Lemma 5.

We have the equalities

n∏
j=p+1

uj n−j+1 =
√

−A′(0 p+ 1 . . . n) (1 ≤ p ≤ n). (48)

The affine subspace
∩n
j=n−p+1 Hj contains the (n − p − 1)-dimensional sphere

Sn−p+1 ... n n+1 =
∩n
j=n−p+1 Sj ∩ Sn+1 with radius

rn−p+1 ... n n+1 =

√
− A′(n− p+ 1 . . . n)

A′(0n− p+ 1 . . . n)
.

Denote by ∆̃[P1, P2, . . . , Pn] be the pseudo (n− 1)-simplex in Sn+1 with spherical faces

with vertices Pj such that their sign of orientation is (−1)n(n−1)/2. The support of

∆̃[P1, P2, . . . , Pn] coincides with D = D−
12 ... n+1.

By definition, the following properties are valid.

Lemma 18. (i)

df ′n ∧ · · · ∧ df ′1 > 0

on D.

(ii) The pseudo (n− 1)-simplex ∆̃[P1, P2, . . . , Pn] has the sign (−1)n(n−1)/2 of ori-

entation such that

∆̃[P1, P2, . . . , Pn] = (−1)n(n−1)/2 Sn+1 ∩D.

Proof. Indeed, we can show that

df ′n ∧ · · · ∧ df ′1 =
n∏
j=1

uj n−j+1ϖ > 0. (49)

(ii) follows from Lemma 5. □

Let v∅ be the volume of the pseudo (n− 1)-simplex ∆̃[P1, P2, . . . , Pn] defined by
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v∅ =

∫
∆̃[P1,P2,...,Pn]

ϖn+1 > 0,

where the orientation of ∆̃[P1, P2, . . . , Pn] is chosen such that ϖn+1 should be positive

on it.

We are interested in the variation formula for v∅, which can be expressed in terms

of the lower dimensional volumes of the faces of ∆̃[P1, P2, . . . , Pn].

Every face of the pseudo simplex is included in some SJ n+1. SJ n+1 is defined as an

(n− p− 1)-dimensional sphere with radius

rJ n+1 =

√
− A′(J)

A′(0 J)
.

We can consider the (n − p − 1)-dimensional volume vJ (|J | = p) relative to the

corresponding standard volume form ϖ′
J n+1 on the (n− p− 1)-dimensional sphere:

vJ =

∫
∆̃[P1,P2,...,Pn]∩SJ

|ϖ′
J n+1|,

where

|ϖ′
J n+1| = rn−p−1

J n+1 |ϖJ n+1| > 0.

The orientation of ∆̃[P1, P2, . . . , Pn] ∩ SJ is chosen such that ϖ′
J n+1 should be positive:

ϖ′
J n+1 = |ϖ′

J n+1|, |ϖ′
J n+1| being the absolute value of ϖ′

J n+1.

When J = {n− p+ 1 . . . n}, we can give an explicit expression for ϖ′
n−p+1 ... n+1 as

follows:

f ′j(x) = 0 (n− p+ 1 ≤ j ≤ n+ 1),
n∑

j=p+1

x2j = r2n−p+1 ... n+1,

where

rn−p+1 ... n+1 =

√
− A′(n− p+ 1 . . . n)

A′(0n− p+ 1 . . . n)
.

The standard volume form on Sn−p+1 ... n+1 is given by

ϖ′
n−p+1 ... n+1 =

n∑
ν=p+1

(−1)ν
xν dxp+1 ∧ · · · d̂xν · · · ∧ dxn

rn−p+1 ... n+1

= rn−p−1
n−p+1 ... n+1ϖn−p+1 ... n+1, (50)

where
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ϖn−p+1 ... n+1 =
n∑

ν=p+1

(−1)ν ξν dξp+1 ∧ · · · d̂ξν · · · ∧ dξn,

through the transformation

xν = rn−p+1 ... n+1 ξν (p+ 1 ≤ ν ≤ n),

such that
∑n
ν=p+1 ξ

2
ν = 1.

The following Lemma follows by definition of the residue formula.

Lemma 19. For J = {j1, . . . , jp} (1 ≤ j1 < · · · < jp ≤ n),[
ϖn+1

df ′jp ∧ · · · ∧ df ′j1

]
Sj1 ... jp

=
1√
A′(J)

ϖ′
J n+1.

In particular, [
ϖn+1

df ′n ∧ · · · d̂f ′j · · · ∧ df ′1

]
Pj

=
(−1)n−j√
A′(∂j∂n+1N)

(1 ≤ j ≤ n),

since [f ′j ]Pj at the point Pj of S∂j ∂n+1N ∩D is negative.

Proof. To prove Lemma 19, we may assume that j1 = n− p+ 1, . . . , jp = n and

f ′j are represented by the reduced form (47). A direct calculation and (48) show the

following identity

d(1−Q(x)) ∧ df ′n ∧ · · · ∧ df ′n−p+1 ∧
n∑

ν=p+1

(−1)νxνdxp+1 ∧ · · · d̂xν · · · ∧ dxn

= 2

p∏
q=1

un−q+1 q

(
n∑

ν=p+1

x2ν

)
ϖ

= 2
√
−A′(0 n− p+ 1 . . . n) r2n−p+1 ... n+1 ϖ.

Hence, [
df ′n ∧ · · · ∧ df ′n−p+1 ∧

n∑
ν=p+1

(−1)νxνdxp+1 ∧ · · · d̂xν · · · ∧ dxn

]
Sn+1

=
√
−A′(0 n− p+ 1 . . . n) r2n−p+1 ... n+1ϖn+1.

Namely,

ϖ′
n−p+1 ... n+1 =

∑n
ν=p+1(−1)νxνdxp+1 ∧ · · · d̂xν · · · ∧ dxn

rn−p+1 ... n+1
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=
√
A′(n− p+ 1 . . . n)

[
ϖn+1

df ′n ∧ · · · ∧ df ′n−p+1

]
Sn−p+1 ... n+1

.

General volume forms ϖ′
J n+1 can be explicitly written by the use of suitable coor-

dinates transformed by isometry. □

The next theorem has been essentially stated in [3, Theorem 8], but has some

errors in the formulae (5.6) therein. Here we state a correct version, which follows from

Proposition 17.

Theorem 20. For v∅ = v(D−
12 ... n), we have

dA′v∅ = −
n−1∑
p=1

∑
|J|=p

(−1)p
(n− p− 1)!

(n− 2)!
θ′J

√
A′(J)

A′(0 J)
vJ

+ (−1)n
1

(n− 2)!

1√
−A′(0 1 . . . n)

θ′12 ... n, (51)

where J ranges over the collection of unordered subsets of {1, 2, . . . , n} and |J | = p.

In particular, if all a′j0 = 0, then

θ′j = 0, θ′jk = da′jk,

θ′J = 0 for |J | ≥ 3.

Therefore, in the case of n ≥ 2, (51) reduces to the well-known identity due to

Schläfli:

dA′ v∅ = −
∑
j<k

1

n− 2

1√
A′(j k)

vjk da
′
jk. (52)

For elementary proofs, refer to [13] and [16].

To prove this theorem, we need the following lemma equivalent to Proposition 9.

Lemma 21. We have the identity[
1

f ′j

]
Pj

=

[
1

fj

]
Pj

=

√
−A′(∂j∂n+1N)A′(0 ∂n+1N) +A′

(
0 ∂j∂n+1N

j ∂j∂n+1N

)
−A′(∂n+1N)

< 0,

so that

[
1

f ′j

]
Pj

+

A′
(
0 ∂j∂n+1N

j ∂j∂n+1N

)
A′(∂n+1N)

= −
√
−A′(∂j∂n+1N)A′(0 ∂n+1N)

A′(∂n+1N)
.
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Proof of Theorem 20. Take λj such that all λj = τ > 0 in the formula (46).

Then (45) shows that

dA′V∅ = lim
τ↓0

dA′

∫
∆̃[P1,...,Pn]

|Φ′(x)|ϖn+1

= lim
τ↓0

∫
z

Φ′(x)∇A′(ϖn+1)

= lim
τ↓0

∫
∆̃[P1,...,Pn]

|Φ′(x)|∇A′(ϖn+1).

In view of the formula (4.11) and the proof of Theorem 7 in [2], we have only to

check the following fact:

lim
τ↓0

∏n
j=1 λj∏n−1

q=1 (−λ∞ − n+ q + 1)

A′(∂n+1N)

A′(0 ∂n+1N)

{
Jλ
(

1

f∂n+1N

)

+
∑

j∈∂n+1N

A′
(
0 ∂j∂n+1N

j ∂j∂n+1N

)
A′(∂j∂n+1N)

Jλ
(

1

f∂j∂n+1N

)}
=

(−1)n

(n− 2)!
√
−A′(0 1 . . . n)

. (53)

By the residue theorem, the left hand side reduces to n pieces of point measures at

Pj and equals

lim
τ↓0

τn∏n−1
q=1 (−nτ − n+ q + 1)

J (F ′
∗,∂n+1N )

A′(∂n+1N)

A′(0 ∂n+1N)

= − lim
τ↓0

τn−1

n
∏n−2
q=1 (−nτ − n+ q + 1)

J (F ′
∗,∂n+1N )

A′(∂n+1N)

A′(0 ∂n+1N)

=
n∑
j=1

(−1)n−1

n(n− 2)!


[
1

f ′j

]
Pj

+

A′
(
0 ∂j∂n+1N

j ∂j∂n+1N

)
A′(∂n+1N)


A′(∂n+1N)

A′(0 ∂n+1N)

∣∣∣∣∣∣
[

ϖn+1

df ′n ∧ · · · d̂f ′j · · · ∧ df ′1

]
Pj

∣∣∣∣∣∣ .
On the other hand, we have[

ϖn+1

df ′n ∧ · · · d̂f ′j · · · ∧ df ′1

]
Pj

=
(−1)n+1−j√
A′(∂j∂n+1N)

.

Each term in the summand of the right hand side does not depend on j and is equal

to

(−1)n−1

n(n− 2)!

{√
−A′(∂j∂n+1N)A′(0 ∂n+1N)

A′(∂n+1N)

}
1√

A′(∂j∂n+1N)

=
(−1)n−1

n (n− 2)!

√
−A′(0 ∂n+1N)

A′(∂n+1N)
.
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Hence, the left hand side of (53) becomes

lim
τ↓0

τn∏n−1
q=1 (−nτ − n+ q + 1)

A′(∂n+1N)

A′(0 ∂n+1N)
J (F ′

∗,∂n+1N ) =
(−1)n

(n− 2)!

1√
−A′(0 ∂n+1N)

.

In this way, we have proved Theorem 20. □

Remark. In three dimensional case, i.e., for n = 3, D−
123 is a pseudo triangle

∆̃P1P2P3 with circular arc sides. Theorem 20 shows the identity

dA′v∅ =
3∑
j=1

θ′j
1

A′(0 j)
vj −

∑
j<k

θ′jk

√
A′(j k)

A′(0 j k)

− 1√
−A′(0 1 2 3)

θ′123. (54)

On the other hand, Gauss–Bonnet theorem shows the identity

v∅ = 2π −
3∑
j=1

a′j0 vj −
∑
j<k

(π − ⟨jk⟩), (55)

where ⟨jk⟩ denotes the angle of the triangle at Pl ({j, k, l} : a permutation of {1, 2, 3})
such that

a′jk = − cos⟨jk⟩,

and a′j0 is the geodesic curvature of the arc ∂D−
123 ∩ Sj .

We can see by a direct calculation that the differential of (55) coincides with (54).

Gauss–Bonnet theorem was extended into a higher dimensional polyhedral domain by

Allendoerfer–Weil (see the second formula in [1]). However, in the case of a spherically

faced simplex, the formula (51) does not seem to generally coincide with the differential

of the identity due to Allendoerfer–Weil.

Appendix. Elementary proof of Theorem 2 (i).

Denote by Pj (1 ≤ j ≤ n + 1) the vertex points of the n-simplex D′+
N such that

Pj ∈ ∂D+
N ∩

∩
k∈∂jN Sk. For the ordered set J = {j1, . . . , jp} ∈ N such that j1 > j2 >

· · · > jp (|J | = p) and Jc = {j∗1 > · · · > j∗n−p+1}, ∆̃[OJ , PJc ] means the n-cell

∆̃[OJ , PJc ] = ∆̃
[
Oj1 , . . . , Ojp , Pj∗1 , . . . , Pj∗n−p+1

]
with the vertices Oj1 , . . . , Ojp and Pj∗1 , . . . , Pj∗n−p+1

. Notice that ∆̃[Pj∗1 , . . . , Pj∗n−p+1
] =

SJ ∩ D+
N is a pseudo (p − 1)-simplex with the faces Sk ∩ SJ ∩ D+

N (k ∈ Jc) in the

(n − p)-dimensional sphere SJ =
∩
j∈J Sj . As a set this cell consists of all segments

joining any point of (p − 1)-simplex ∆[Oj1 , . . . , Ojp ] and the pseudo (n − p)-simplex

∆̃[Pj∗1 , . . . , Pj∗n−p+1
].

We have the cell decomposition of ∆[On+1, . . . , O2, O1]:
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∆[On+1, . . . , O2, O1] = −
n∑
p=0

∑
|J|=p

∆̃[OJ , PJc ] εJ ,

where εJ denotes (−1)
∑

j∈Jc j · (−1)(n−p)(n−p+1)/2.

For example, in the case n = 2 (see Figure 2), this partition is simply represented

as

∆[O3, O2, O1] = ∆̃[P3, P2, P1] + ∆̃[O1, P2, P3] + ∆̃[O2, P3, P1] + ∆̃[O3, P1, P2]

+ ∆̃[O3, O2, P1] + ∆̃[O2, O1, P3] + ∆̃[O1, O3, P2].

Hence we have the identity for their volumes

v(∆[On+1, . . . , O1]) =
∑

J∈N , |J|≤n

v(∆̃[OJ , PJc ]),

or equivalently,

v(∆̃[PN ]) = v(∆[On+1, . . . , O1])−
∑

J∈N , 1≤|J|≤n

v(∆̃[OJ , PJc ]).

The identity stated in Theorem 2 (i) is a direct consequence of the following Lemma.

Lemma 22.

v(∆̃[OJ , PJc ]) =
(n− p)!

n!

√
(−1)p+1B(0 ⋆ J)

2p
vJ .

Proof. Without losing generality, we may assume that fj have the reduced form

(7), (8) and J = {n+ 1, n, . . . , n− p+ 2}.
Oj (n− p+ 2 ≤ j ≤ n+ 1) can be expressed as

Oj = (−αj1, . . . , −αj n−j+1, 0, . . . , 0) (αj n−j+1 > 0).

The pseudo (n− p)-simplex ∆̃[Pn−p+1, . . . , P1] with support D+
N ∩ SJ is defined by

the equations for ξ = (ξ1, . . . , ξn) :

fj(ξ) = 0 (n− p+ 2 ≤ j ≤ n+ 1), fk(ξ) ≥ 0 (1 ≤ k ≤ n− p+ 1). (56)

The coordinates ξj (1 ≤ j ≤ p−1) are uniquely determined by (56) and denoted by γj .

ξ ranges over the (n− p)-dimensional sphere

ξ = (γ1, . . . , γp−1, ξp, . . . , ξn)

under the condition

fk(ξ) ≥ 0 (1 ≤ k ≤ n− p+ 1),
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n+1∑
j=p

ξ2j = r2n−p+2 ... n+1,

where rn+1 ... n−p+2 denotes the radius of the hypersphere SJ :

rn−p+2 ... n+1 =

√
(−1)pB(0n− p+ 2 . . . n+ 1)

2p−1
.

The n-pseudo simplex ∆̃[On+1, . . . , On−p+2, Pn−p+1, . . . , P1] consist of the union of

the p-simplex ∆[On+1, . . . , On−p+2, ξ] with ξ ∈ ∆̃[Pn−p+1, . . . , P1]:

∆̃[On+1, . . . , On−p+2, Pn−p+1, . . . , P1] =
∪

ξ∈∆̃[Pn−p+1,...,P1]

∆[On+1, . . . , On−p+2, ξ].

Namely, every point of ∆̃[On+1, . . . , On−p+2, Pn−p+1, . . . , P1] is parametrized by the

expression:

xj = −
j∑

k=1

yk αn−k+1,j + y0 γj (1 ≤ j ≤ p− 1),

xj = y0 ξj (p ≤ j ≤ n)

such that y = (y0, . . . , yp−1) ranges over the p-convex set

δp : yj ≥ 0 (0 ≤ j ≤ p− 1),

p−1∑
j=0

yj ≤ 1.

Hence, the volume of v(∆̃[On+1, . . . , On−p+2, Pn−p+1, . . . , P1]) is the mixed vol-

ume of the (p − 1)-simplex ∆[On+1, . . . , On−p+2] and the pseudo (n − p)-simplex

∆̃[Pn−p+1, . . . , P1]. In view of (9), (13) and (15),

v(∆̃[On+1, . . . , On−p+2, Pn−p+1, . . . , P1])

=

∫
∆̃[On+1,...,On−p+2,Pn−p+1,...,P1]

|dx1 ∧ · · · ∧ dxp−1 ∧ dxp ∧ · · · ∧ dxn|

=

p−1∏
j=1

αn−j+1,j

∫
δp

yn−p0 dy1 ∧ · · · ∧ dyp−1 ∧ dy0,

∫
∆̃[Pn−p+1,...,P1]

∣∣∣∣∣
n∑
ν=p

(−1)ν−p ξν dξp ∧ · · · < dξν > · · · ∧ dξn

∣∣∣∣∣
=

(n− p)!

n!

√
(−1)p+1B(0 ⋆ n− p+ 2 . . . n+ 1)

2p
vn−p+2 ... n+1,

since
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δp

yn−p0 dy1 ∧ · · · ∧ dyp−1 ∧ dy0 =
(n− p)!

n!
.

In this way, Lemma 22 has been proved in the case where J = {n+1, . . . , n−p+2}.
Therefore it also holds true for general J because of symmetry. □

Theorem 1 (i) can also be proved in a similar way.
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