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Positive factorizations of symmetric mapping classes
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Abstract. We study a question of Etnyre and Van Horn-Morris whether

a symmetric mapping class admitting a positive factorization is a lift of a
quasipositive braid. We answer the question affirmatively for mapping classes
satisfying certain cyclic conditions.

1. Introduction.

In [10, Question 7.9] Etnyre and Van Horn-Morris ask the following question:

Question 1.1. If a symmetric mapping class ϕ ∈ Mod(S) admits a positive fac-

torization, then is ϕ a lift of a quasipositive braid?

This is a profound question connecting three important objects in topology: (1)

symmetric mapping classes, (2) positive factorizations, and (3) quasipositive braids. We

describe each here.

Let S be a compact, oriented surface with non-empty boundary, which is a special

(see Section 2) cyclic branched covering of a disk D branched at n-points. A mapping

class ϕ ∈ Mod(S) is called symmetric (fiber-preserving) [4, p.65] if ϕ is a lift of an element

of the braid group Bn = Mod(D2 \ {n points}). Symmetric mapping class groups were

introduced and studied by Birman and Hilden in a series of papers culminating in [3].

As Margalit and Winarski say in [26], the Birman–Hilden theory has had influence on

many areas of mathematics, from low-dimensional topology, to geometric group theory,

to representation theory, to algebraic geometry and more.

A positive factorization of a mapping class ϕ ∈ Mod(S) is a factorization of ϕ

into positive (right-handed) Dehn twists about simple closed curves. In contact and

symplectic geometry, positive factorizations of mapping classes play an important role

due to the following fact: A contact 3-manifold is Stein fillable if and only if it is supported

by an open book whose monodromy admits a positive factorization [2], [14], [25].

A quasipositive braid in Bn is a braid which factorizes into positive half twists about

proper simple arcs in the n-punctured disk. Quasipositive knots and links are introduced

and studied by Rudolph in a series of papers. Rudolph showed [28] that a quasipositive

knot can be realized as an intersection (transverse C-link) of the unit sphere in C2 with
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an algebraic complex curve in C2. Boileau and Orevkov [6] proved the converse that any

knot arising as such an intersection must be quasipositive.

In this paper, we give partial answers to the question of Etnyre and Van Horn-Morris.

Let S be a compact, oriented surface with non-empty boundary. Let D be a disk.

Suppose π : S → D is a special k-fold cyclic branched covering of the disk D branched

at n points. The meaning of “special” will be made clear in Section 2. In [3] Birman

and Hilden show that there is a well-defined injective homomorphism Ψ : Bn → Mod(S)

whose image is the symmetric mapping class group SMod(S) which is defined in Section 2.

Using the homomorphism Ψ : Bn → SMod(S), Etnyre and Van Horn-Morris in [10]

consider various submonoids in Bn.

P (n) := {b ∈ Bn | b is a positive braid}
QP (n) := {b ∈ Bn | b is a quasipositive braid}

Dehn+(n, k) := Ψ−1(Dehn+(S))

Tight(n, k) := Ψ−1(Tight(S))

RV (n) := {b ∈ Bn | b is a right-veering braid}
Veer+(n, k) := Ψ−1(Veer+(S))

Here, a braid b ∈ Bn is positive if it is a product of standard generators σ1, . . . , σn−1,

and is quasipositive if it is a product of conjugates of σ1. We have P (2) = QP (2)

and P (n) ⊊ QP (n) for n > 2. The set Dehn+(S) ⊂ Mod(S) is a monoid generated

by positive Dehn twists, Tight(S) ⊂ Mod(S) is a monoid consisting of monodromies

supporting tight contact structures, and Veer+(S) ⊂ Mod(S) is a monoid consisting of

right-veering mapping classes. One can see that Ψ(b) is right-veering if and only if b is

right-veering (see [20, Section 3] for the definition(s) of right-veering braids).

Proposition 1.2 ([21, Corollary 4.4]). We have Veer+(n, k) = RV (n) for all n

and k.

Etnyre and Van Horn-Morris observe that [18, Lemma 3.1] implies the following:

Proposition 1.3 ([10, p.355]). For all n ≥ 2 and k ≥ 2 we have QP (n) ⊂
Dehn+(n, k).

In summary, we have;

P (n) ⊂ QP (n) ⊂ Dehn+(n, k) ⊂ Tight(n, k) ⊂ Veer+(n, k) = RV (n) ⊊ Bn.

In [19, Example 2.9], the strictness of the inclusion QP (3) ⊂ Veer+(3, 2) is shown.

Moreover, we have:

Proposition 3.3. For general n and k, both the inclusions Dehn+(n, k) ⊂
Tight(n, k) ⊂ Veer+(n, k) are strict.

Thus, the unique inclusion whose strictness is unknown is QP (n) ⊂ Dehn+(n, k),

and with these terminologies, Question 1.1 of Etnyre and Van Horn-Morris is equivalent



311

Positive factorizations of symmetric mapping classes 311

to the following:

Question 1.4. Do we have QP (n) = Dehn+(n, k)?

In [10] they say “the answer is almost certainly no”. Thus our goal can be set to

find sufficient conditions for QP (n) ⊃ Dehn+(n, k).

1.1. Motivation.

Our particular branched covering π : S → D is closely related to the cyclic branched

covering of the standard contact 3-sphere (S3, ξstd = kerαstd). Let K = b̂ be a transverse

knot in (S3, ξstd) represented by the closure b̂ of an n-braid b ∈ Bn with respect to the

open book (D2, id). Let p :MK,k → S3 be the k-fold cyclic branched covering, branched

along K. Then MK,k is equipped with a contact structure ξK,k that is a perturbation of

the kernel of the pull-back p∗(αstd). Such a contact structure is supported by the open

book (S,Ψ(b)). Thus, (MK,k, ξK,k) ≃ (M(S,Ψ(b)), ξ(S,Ψ(b))).

Let B4(⊂ C2) be the unit complex ball giving a Stein filling of (S3, ξstd). If the

braid b ∈ Bn is quasipositive, a factorization of b as a product of positive half twists

gives rise to an immersed Seifert surface of K = b̂ with ribbon intersections as shown in

[10, Figure 9]. Pushing this surface into the interior of B4 we have a properly embedded

symplectic surface Σ in B4 such that Σ ∩ ∂B4 = ∂Σ = K. Let W be the k-fold cyclic

branched cover of B4 branched along Σ. Then W gives a Stein filling of (MK,k, ξK,k).

On the other hand, a factorization of b ∈ Bn into positive half twists induces a

factorization of Ψ(b) ∈ Mod(S) into positive Dehn twists [18, Lemma 3.1], to which

one can associate a Legendrian surgery diagram (cf. [18, Figure 12]). Let X be the

4-dimensional handlebody obtained by attaching 2-handles to B4 according to the Leg-

endrian surgery diagram. By [8], [15, Proposition 2.3] the manifold X is a Stein filling

of (M(S,Ψ(b)), ξ(S,Ψ(b))).

In fact, these two constructions of Stein fillings give the same manifold. Namely,

the two 4-manifolds X and W are diffeomorphic, which follows from the proof of [22,

Claim 2.1]. Thus, the branched covering construction behaves nicely not only for contact

structures but also for Stein fillings.

With the above discussion in mind, we may extend Question 1.1 to the following

question about Stein filling and Z/kZ-action:
Assume that b ∈ Dehn+(n, k). Then (MK,k, ξK,k) ≃ (M(S,Ψ(b)), ξ(S,Ψ(b))) is Stein

fillable because Ψ(b) ∈ Dehn+(S) and Dehn+(S) is contained in the monoid Stein(S)

of Stein fillable open books [8], [14]. The contact manifold (MK,k, ξK,k) also admits a

Z/kZ-action as a contactomorphism with the quotient space (S3, ξstd). Our question

is: Can we find a Stein filling X coming from the above construction; namely, can the

Z/kZ-action on (MK,k, ξK,k) extend to a holomorphic Z/kZ-action on some X with the

quotient space B4?

This new question suggests that, even if Question 1.1 may have negative answer in

general as Etnyre and Van Horn-Morris expect in [10], it is worth trying to find sufficient

conditions for QP (n) ⊃ Dehn+(n, k) to hold.
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1.2. Main results.

The following are our main results that give sufficient conditions for QP (n) ⊃
Dehn+(n, k).

Theorem 3.2. For n ≤ 4, QP (n) = Dehn+(n, 2).

Theorem 5.1. Let ι : S → S be a deck transformation. Let C be a simple closed

geodesic curve in S such that C, ι(C), . . . , ιe−1(C) are pairwise disjoint and ιe(C) = C

for some e ∈ {1, . . . , k} that divides k. Let d, j ∈ N. For an n-braid b ∈ Bn, suppose that

bd ∈ Dehn+(n, k) with

Ψ(bd) =
(
TCTι(C)Tι2(C) . . . Tιe−1(C)

)j
.

Then b ∈ QP (n) (and so bd ∈ QP (n)).

This theorem states that Question 1.1 has an affirmative answer for a symmetric

mapping class which is a root of symmetric product of positive Dehn twists (see also

Corollary 5.2).

Let us choose a hyperbolic metric on S so that the deck translation ι : S → S is an

isometry. Let S′ ⊊ S be a subsurface of S which is either (a) an annular neighborhood of

a geodesic simple closed curve or (b) a hyperbolic surface with geodesic boundary such

that the inclusion map is an isometry. For i = 1, . . . , k define S′
i := ιi−1(S′) ⊂ S. For a

homeomorphism f : S′ → S′ fixing ∂S′ pointwise, we put fi := ιi−1◦f ◦ι−(i−1) : S′
i → S′

i.

We may view fi as a homeomorphism fi : S → S by extending it as identity on S \ S′
i.

Theorem 5.4. Suppose that the subsurfaces S′
1, . . . , S

′
k ⊂ S are pairwise non-

isotopic. Assume that [f ] ∈ Dehn+(S′) is either

• a non-negative power of a single Dehn twist (when S′ is an annulus which is a

neighborhood of a simple closed geodesic curve), or

• a pseudo-Anosov map (when S′ is a hyperbolic surface).

Suppose that b ∈ Dehn+(n, k) satisfies

Ψ(b) = [f1 ◦ f2 ◦ · · · ◦ fk]

then b ∈ QP (n).

We say that a simple closed curve C is symmetric if it is invariant under some deck

translation. Question 1.1 can be understood as a question of the existence of factoriza-

tions of elements of Dehn+(S) ∩ SMod(S) into positive Dehn twists about symmetric

simple closed curves.

A well-known example where a positive factorization coincides with a product of

Dehn twists about symmetric simple closed curves may be the daisy relation [9]. In

Example 5.7 we see that the technical looking assumptions in Theorem 5.4 can be un-

derstood as a generalization of the setting of the daisy relation, and view Theorem 5.4

as a generalization of the daisy relation.
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1.3. Organization of the paper.

In Section 2, we review results of Birman and Hilden that we need in this paper.

In Section 3, we show that the answer to the question is affirmative when the number

of branch points n is two (Theorem 3.1) or the degree of the branched covering is two

with n ≤ 4 branch points (Theorem 3.2).

In Section 4, we discuss roots of quasipositive braids and find conditions that a root

of a quasipositive braid is also quasipositive. We obtain results that are used in Section 5.

In Section 5, we prove our main results (Theorems 5.1 and 5.4).

2. Birman–Hilden theory.

Throughout the paper, unless otherwise stated, we always assume that the boundary

of a surface is non-empty, any homeomorphism of a surface with marked points (punc-

tures) fixes the boundary pointwise and permutes the marked points, and any isotopy of

homeomorphisms {ft} pointwise fixes the boundary and the marked points. We denote

by [f ] ∈ Mod(S) the isotopy class of a homeomorphism f ∈ Homeo+(S). For a simple

closed curve C in a surface S, we denote by tC ∈ Homeo+(S) a right-handed Dehn twist

homeomorphism about C which is supported in a neighborhood of C, and denote its

isotopy class by TC ∈ Mod(S). A simple closed curve in a surface is called essential if it

is not homotopic to a point, a puncture, or a boundary component of the surface.

Let P = {p1, . . . , pn} ⊂ Int(D) be n points in the interior of a 2-disk D. We may

identify the braid group Bn with the mapping class group Mod(D\P ) of the n-punctured
disk D\P . The fundamental group π1(D\P ) is the free group of rank n and generated by

{x1, . . . , xn}, where xi is a loop winding once around pi counter-clockwise. For k ∈ N let

ek : π1(D \ P ) → Z/kZ be the homomorphism defined by ek(xi) = 1 for all i = 1, . . . , n.

For n ≥ 2 and k ≥ 2, let

π : S ≈ Sn,k → D

be the k-fold cyclic branched covering branched at P such that the associated regular

covering S \ π−1(P ) → D \ P is the k-fold cyclic cover corresponding to the subgroup

ker(ek) of π1(D \ P ). We denote by P̃ = {p̃1, . . . , p̃n} = π−1(P ) ⊂ S the set of branch

points in S. Let ι = ιk : S → S be a generator of the deck transformation group

Aut(S, π) ≃ Z/kZ.
We visualize S and ι as follows. The covering S can be viewed as the canonical Seifert

surface of the (n, k)-torus link represented as the closure of the n-braid (σ1 · · ·σn−1)
k

(see Figure 1). The deck transformation ιk is the 2π/k rotation of the surface S about

the braid axis through the branch points P̃ , and ∂S is not pointwise fixed by ιk.

Let β ∈ Bn ≈ Mod(D \ P ) and fβ : (D,P ) → (D,P ) be a homeomorphism repre-

senting the braid β. Since β(ker(ek)) = ker(ek) via the action of Bn on π1(D \P ), there
is a lift f̃β : S → S of fβ (see [3, Lemma 5.1] and [13, Theorem 1.1]). Among the k

possible lifts which are related to each other by deck transformations, f̃β is the unique

lift that fixes ∂S pointwise.

When two homeomorphisms fβ and f ′β ∈ Homeo+(D,P ) represent the same braid

β ∈ Bn we note that an isotopy between fβ and f ′β lifts to an isotopy between their lifts
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Figure 1. The Seifert surface S of an (n, k) torus link, where n = 5 and

k = 4. Hollowed circles are the lifted branch points P̃ . Cutting S along the

dashed arcs gives k sheets of disks. The deck transformation ιk takes ith disk

to (i+ 1)st disk.

f̃β and f̃ ′β . Thus, we have a well-defined homomorphism

Ψ : Bn → Mod(S)

defined by Ψ(β) = [f̃β ]. Let

Θ = Θk : Mod(S) → Mod(S)

be an automorphism defined by Θ([f ]) = [ιk ◦ f ◦ ι−1
k ].

Definition 2.1. Define

SMod(S) :=
{
[f ] ∈ Mod(S)

∣∣ f ∈ Homeo+(S) and Θ([f ]) = [f ]
}

and call it the symmetric mapping class group. An element of SMod(S) is called sym-

metric mapping class.

The following fact is attributed to Birman and Hilden.

Proposition 2.2. The homomorphism Ψ is injective and onto SMod(S).

For the sake of completeness, we include a proof of Proposition 2.2.

Proof of Proposition 2.2. The injectivity of Ψ follows from [3]. A homeo-

morphism f : S → S is called fiber-preserving if π ◦f(p) = π ◦f(p′) for any p, p′ ∈ S with

π(p) = π(p′). Suppose that f0, f1 ∈ Homeo+(D,P ) satisfy Ψ([f0]) = Ψ([f1]). Accord-

ing to [3, Theorem 1], since the lifts f̃0, f̃1 ∈ Homeo+(S) represent the same element of

SMod(S) and are fiber-preserving, there exists a fiber-preserving isotopy gt ∈ Homeo+(S)
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between f̃0 and f̃1. Since gt is fiber-preserving the composition π ◦ gt ◦ π−1 is a well-

defined homeomorphism of (D,P ) and it gives an isotopy between f0 and f1; hence,

[f0] = [f1] ∈ Bn.

To see Im(Ψ) ⊃ SMod(S), assume that f ∈ Homeo+(S) satisfies [f ] = [ι ◦ f ◦ ι−1].

The same argument as in the proof of [3, Theorem 3] with Teichmüller’s theorem for

bordered surfaces [1, p.59] shows that [f ] can be represented by a homeomorphism f ′ ∈
Homeo+(S) such that f ′ = ι ◦ f ′ ◦ ι−1.

For x ∈ D let x̃ ∈ π−1(x) ⊂ S be a pre-image of x under the branched covering map

π : S → D. Define a homeomorphism b ∈ Homeo+(D) by

b(x) = π(f ′(x̃)).

Since π ◦ f ′ ◦ ι(x̃) = π ◦ ι ◦ f ′(x̃) = π ◦ f ′(x̃), the image b(x) is independent of the choice

of the pre-image x̃.

We observe that b acts on the branch set P as a permutation. Suppose that p ∈
P and p̃ ∈ P̃ satisfy π(p̃) = p. Since ι fixes the branch set P̃ point-wise we have

ι(f ′(p̃)) = f ′(ι(p̃)) = f ′(p̃). That is, f ′(p̃) is a fixed point of ι and f ′(p̃) ∈ P̃ . We get

b(p) = π(f ′(p̃)) ∈ π(P̃ ) = P which shows b(P ) = P .

Since π◦f ′ = b◦π the map f ′ ∈ Homeo+(S) is the unique lift of b ∈ Homeo+(D,P ).

We obtain [f ] = [f ′] = Ψ([b]) ∈ Im(Ψ).

To see Im(Ψ) ⊂ SMod(S), let αil be a simple closed curve that goes through ith

and (i + 1)st sheets and lth and (l + 1)st twisted bands as depicted in Figure 1. Let

ti,l := tαi
l
∈ Homeo+(S) be a positive Dehn twist about αil . It is shown in [18, Lemma 3.1]

that for the standard braid generators σ1, . . . , σn−1 of the Artin braid group Bn we have

Ψ(σi) = [ti,1 ◦ ti,2 ◦ · · · ◦ ti,k−1] ∈ Mod(S).

For j = 1, . . . , n − 1 and l = 1, . . . , k let λjl (thin dashed line in Figure 1) be properly

embedded arcs on the lth band between jth and (j + 1)st sheets such that ι(λjl ) = λjl+1.

Let [λjl ] denote the isotopy class of λjl relative to ∂S. We get[
ι−1 ◦ (ti,1 ◦ ti,2 ◦ · · · ◦ ti,k−1) ◦ ι

] [
λjl

]
= [ti,1 ◦ ti,2 ◦ · · · ◦ ti,k−1]

[
λjl

]
for all j = 1, . . . , n − 1 and l = 1, . . . , k. Knowing that the surface S cut along the

union of arcs
∪
j,l λ

j
l yields n disjoint disks, the Alexander trick [11, Proposition 2.8]

implies that
[
ι−1 ◦ (ti,1 ◦ ti,2 ◦ · · · ◦ ti,k−1) ◦ ι

]
= [ti,1 ◦ ti,2 ◦ · · · ◦ ti,k−1]. This shows that

Ψ(σi) ∈ SMod(S). □

3. Positive answers for simple cases.

Theorem 3.1. We have P (2) = QP (2) = Dehn+(2, k) = Tight(2, k) = RV (2) for

all k ≥ 2.

Proof. By the definition of right-veering, σm1 ∈ RV (2) if and only if m ≥ 0. This

shows that P (2) = RV (2). The remaining equalities follow from Proposition 1.3. □
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Theorem 3.2. For n ≤ 4, QP (n) = Dehn+(n, 2).

The equality QP (3) = Dehn+(3, 2) has been known and used in the literature.

However for the sake of completeness, we give a proof of this case along with the case of

n = 4.

Proof. Since the n = 2 case is shown in Theorem 3.1 we may assume n = 3 or 4.

Let a1, a2, δ (for the n = 3 case) and a1, a2, a3, δ1, δ2 (for the n = 4 case) be simple

closed curves on S as depicted in Figure 2. The Dehn twists about these curves generate

Mod(S), and Ψ(σi) = Tai holds.

Figure 2.

If b ∈ Dehn+(n, 2) then there exist non-boundary parallel simple closed curves

Γ1, . . . ,Γm ⊂ S (possibly Γi = Γj for i ̸= j) and x, y ≥ 0 such that

Ψ(b) =

{
TΓ1 · · ·TΓmT

x
δ (n = 3)

TΓ1 · · ·TΓmT
x
δ1
T yδ2 (n = 4).

We may assume that all of the curves Γi are non-separating since the positive Dehn twist

about a separating curve can be written as a product of the positive Dehn twists about

non-separating curves. Since a1 is non-separating Γi = fi(a1) for some [fi] ∈ Mod(S).

We can write [fi] as

[fi] = T εlajl
· · ·T ε1aj1

for some jp ∈ {1, . . . , n − 1} and εp ∈ {±1}. Since the Dehn twist along the boundary

does not affect simple closed curves in S, the words Tδ, Tδ1 and Tδ2 are not needed in

the expression. Note that [fi] = Ψ(bi) for bi = σεljl · · ·σ
ε1
j1

∈ Bn. Therefore, we have

TΓi = Tf(a1) = [fi ◦ ta1 ◦ f−1
i ] = Ψ(bi)Ψ(σ1)Ψ(b−1

i ) = Ψ(biσ1b
−1
i )

and TΓi ∈ Ψ(QP (n)) for all i. In particular, Θ(TΓ1 · · ·TΓm) = TΓ1 · · ·TΓm by Proposi-

tion 2.2.

For the case n = 4, since ι(δ1) = δ2 we get Θ(Tδ1) = Tδ2 and Θ(Tδ2) = Tδ1 which

give

TΓ1 · · ·TΓmT
x
δ1T

y
δ2

= Θ(TΓ1 · · ·TΓmT
x
δ1T

y
δ2
)
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= Θ(TΓ1 · · ·TΓm)Θ(T xδ1)Θ(T yδ2)

= TΓ1 · · ·TΓmT
x
δ2T

y
δ1
.

Therefore, x = y.

With the chain relations [11, Proposition 4.12] Tδ = Ψ((σ1σ2)
6) and T xδ1T

x
δ2

=

Ψ((σ1σ2σ3)
4x), we can conclude b ∈ QP (n). □

Finally, we observe that the following inclusions are strict.

Proposition 3.3. For general n and k, both the inclusions Dehn+(n, k) ⊂
Tight(n, k) ⊂ Veer+(n, k) are strict.

Proof. Let β = (σ1σ2)
6σ−13

1 ∈ B3. By [19, Theorem 1.2] the braid β is in

Tight(3, 2) since the fractional Dehn twist coefficient of Ψ(β) ∈ Mod(S) is one. However,

β is not in Dehn+(3, 2) since its exponent sum is negative which means b ̸∈ QP (3) =

Dehn+(3, 2). (See [19, Corollary 3.6] for a better criterion for b ̸∈ QP (n) than a naive

exponent sum argument.)

To see Tight(n, k) ⊊ Veer+(n, k), recall [27, Proposition 3.1] (for the open book

(D2, id)) and [20, Proposition 3.22] (for general open books) that every braid with respect

to an open book is transversely isotopic to a right-veering braid after suitable positive

stabilizations. Let β ∈ Bn be a right-veering braid that is a stabilization of σ−1
1 ∈ B2.

Then for each k ≥ 2, β is in Veer+(n, k) but not in Tight(n, k). □

4. Roots in quasipositive braids.

In this section we address the following question. Among the results, Corollary 4.7

plays an important role to prove our main theorems in Section 5.

Question 4.1. Are QP (n) and Dehn+(n, k) closed under taking roots? That is,

(1) Does b = xd ∈ QP (n) for an integer d ≥ 2 imply x ∈ QP (n)?

(2) Does xd ∈ Dehn+(n, k) for an integer d ≥ 2 imply x ∈ Dehn+(n, k)?

Definition 4.2 (Property (QP-root)). We say that a quasipositive braid b ∈
QP (n) has the property (QP-root) if the following condition is satisfied.

If b = xd for x ∈ Bn and d ≥ 2 then x ∈ QP (n).

It is shown in [16, Theorem 1.1] that the d-th root of a braid (if it exists) is unique

up to conjugacy; namely, xd = yd ∈ Bn implies that x and y are conjugate to each other.

This leads to the following observation.

Proposition 4.3. For x, x′ ∈ Bn assume that xd = x′d. Then x ∈ QP (n) if and

only if x′ ∈ QP (n).

Let b ∈ Bn be a non-periodic reducible braid. According to [17, Definition 5.1], up

to conjugacy, b is in the following regular form.

Let C be an essential multi-curve in the n-punctured disk Dn such that
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• b(C) is isotopic to C, and

• any simple closed curve which has non-zero geometric intersection with C must not

be preserved by any power of b.

Such a multi-curve C is called a canonical reduction system for b [5] and it is unique up

to conjugacy. It always exists for a non-periodic reducible braid [23].

Let A′ be the set of outermost curves of C. Define a set of curves A to be the union

of A′ and one circle around each such puncture of Dn that is not enclosed by any circles

of A′. We may enumerate the elements of A as

A = {a1,1, . . . , a1,r1 , a2,1, . . . , a2,r2 , . . . , ac,1, . . . , ac,rc}

so that b(ai,j) = ai,j+1 (j = 1, . . . , ri − 1) and b(ai,ri) = ai,1. This action of b on A gives

m = r1 + r2 + · · · + rc disjoint braided tubes (see Figure 3 (i)). Identifying each tube

with a string, we get an m-braid b̂ ∈ Bm which we call the tubular braid associated to

A. By nature of canonical reduction systems, this braid b̂ is unique up to conjugacy.

Figure 3. (i) Non-periodic and reducible braid in regular form. (ii) Taking

a conjugate the condition (4.1) is satisfied.

The braid closure of b̂ gives a c-component link. The braid closure of the original

braid b can be viewed as a satellite of the c-component link. Let bi,j denote the braiding

inside the tube which starts at ai,j and ends at ai,j+1 (where the indices j are considered

up to modulo ri), which we call the interior braids.

We say that b is in regular form if

the only non-trivial interior braids are b1,r1 , . . . , bc,rc . (4.1)

We denote these non-trivial interior braids by b[1], . . . , b[c]. The condition (4.1) can be

realized by shifting non-trivial interior braid bi,j (j ̸= ri) along the closure of the tubular



319

Positive factorizations of symmetric mapping classes 319

braid b̂, which is equivalent to taking a conjugate (see Figure 3 (ii)). In this process, the

tubular braid b̂ remains the same and

b[i] = bi,1bi,2 · · · bi,ri (up to conjugacy). (4.2)

Remark 4.4. In [17] a regular form requires one more property that if b[i] and b[j]
are conjugate then b[i] = b[j]. But we do not use this property in this paper.

Here is a simple observation.

Lemma 4.5. If a braid b is in regular form with quasipositive tubular braid and

interior braids then b is also quasipositive.

The converse of Lemma 4.5 is not true. The reducible 4-braid (σ2σ3σ
−1
2 )(σ1σ2σ

−1
1 ) =

(σ2σ1σ3σ2)σ
−2
1 is quasipositive and in regular form with the tubular braid σ1 ∈ B2 and

the interior braid σ−2
1 ∈ B2.

The next proposition gives a criterion of the property (QP-root).

Proposition 4.6. Let b be a non-periodic reducible, quasipositive braid. If b has a

regular form such that all of its tubular and interior braids are quasipositive and having

the property (QP-root), then b also has the property (QP-root).

Proof. Let b be a non-periodic reducible, quasipositive braid. Assume that b = xd

for some x ∈ Bn and d ≥ 1. We will show that x is quasipositive. Suppose that b is in

regular form with quasipositive tubular braid b̂ ∈ Bm and quasipositive interior braids

b[1], . . . , b[c] all of which have the property (QP-root).

Since b is non-periodic and reducible, the root x is also non-periodic and reducible.

We may assume that x is in regular form with tubular braid x̂ ∈ Bm and interior braids

x[1], . . . , x[c′]. Since b = xd we see that c′ ≤ c and b̂ is conjugate to (x̂)d. That is, there

exists y ∈ Bm such that b̂ = y(x̂)dy−1 = (yx̂y−1)d. By the property (QP-root) of b̂, the

tubular braid yx̂y−1 (hence, x̂) is quasipositive.

As for the interior braids, each b[i] is conjugate to a power of some single interior

braid x[i′]. Moreover, for each i′ ∈ {1, . . . , c′} there exists i ∈ {1, . . . , c} such that b[i] is

conjugate to a power of x[i′]. Therefore, by the property (QP-root) of b[1], . . . , b[c], all

the interior braids x[1], . . . , x[c′] are quasipositive.

By Lemma 4.5 we conclude that x is quasipositive. □

A classical theorem of Kerékjártó and Eilenberg [24], [7] states that any root of a

periodic n-braid is conjugate to either (σ1σ2σ3 · · ·σn−1)
i or (σ2

1σ2σ3 · · ·σn−1)
i for some

i. Thus, every periodic braid has the property (QP-root). This fact and Proposition 4.6

imply the following corollary.

Corollary 4.7. Let b ∈ QP (n) admitting a factorization b = TN1
a1 · · ·TNp

ap ∈
Mod(Dn) = Bn where a1, . . . , ap are pairwise disjoint simple closed curves in Dn and

N1, . . . , Np > 0. If b = xd for some d ≥ 2 then x ∈ QP (n).
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The above results show that Question 4.1, whether a quasipositive braid has the

property (QP-root), is reduced to pseudo-Anosov braids.

The next proposition gives a potential negative answer to Question 4.1.

Proposition 4.8. Let b ∈ QP (n) be a pseudo-Anosov quasipositive braid. Let

Ab : Bn → Z denote the abelianization (exponent sum) map. If b = xd for some d > 1

and x ∈ Bn with Ab(x) = 1 then b does not have the property (QP-root).

Proof. Since Ab(x) = 1, if x is quasipositive then x must be the positive half

twist about a simple arc connecting two distinct punctures of Dn. Such a mapping class

x is reducible. Hence, xd is reducible and b = xd cannot be pseudo-Anosov. □

At this time of writing, we do not know whether a pseudo-Anosov quasipositive

braid that satisfies the assumption of Proposition 4.8 exists or not.

5. Sufficient conditions for quasipositivity.

In this section, we study quasipositive braids admitting certain symmetric condi-

tions. Throughout this section, we fix a hyperbolic structure on S so that the deck

transformation ι = ιk : S → S is an isometry (see [12, Theorem 11.6]). Let S′ ⊊ S be a

connected subsurface of S that satisfies one of the following conditions.

• S′ is an annular neighborhood of a geodesic simple closed curve in S.

• S′ is a hyperbolic surface with geodesic boundary and the inclusion S′ ↪→ S is an

isometry.

Note that the surface S′
i := ιi−1(S′) ⊂ S also satisfies the same property. For f ∈

Homeo+(S′) let f̂ ∈ Homeo+(S) be a homeomorphism extending f such that f̂(x) = x

for x ∈ S \ S′. For i = 1, . . . , k let

fi := ιi−1 ◦ f̂ ◦ ι−i+1 ∈ Homeo+(S).

Our goal is to study elements Ψ(b) = [ϕ] ∈ SMod(S) ∩Dehn+(S) of the form

ϕ = f1 ◦ f2 ◦ · · · ◦ fk ∈ Homeo+(S)

and find sufficient conditions that guarantees b ∈ QP (n).

We first study the following special case.

Theorem 5.1. Let C be a simple closed geodesic curve in S such that

C, ι(C), . . . , ιe−1(C) are pairwise disjoint with ιe(C) = C for some e ∈ {1, . . . , k} that

divides k. Let d, j ∈ N. For an n-braid b ∈ Bn, suppose that bd ∈ Dehn+(n, k) with

Ψ(bd) =
(
TCTι(C)Tι2(C) . . . Tιe−1(C)

)j
.

Then b ∈ QP (n) (and so bd ∈ QP (n)).

When e = 1 we get the following.
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Corollary 5.2. Let j, d ∈ N. If bd ∈ Dehn+(n, k) with Ψ(bd) = T jC then b ∈
QP (n).

By Proposition 2.2 it is easy to see that Ψ(bd) = T jC implies ι(C) = C.

Proof of Theorem 5.1. Since C is simple and π−1(π(C)) = C ⊔ ι(C) ⊔ · · · ⊔
ιe−1(C), the projection π(C) is also simple.

First, we treat an exceptional case where the projection π(C) is a simple proper arc

in the n-punctured disk Dn := D \ P connecting two distinct punctures. This can be

realized only if k = 2, e = 1 and C is a non-separating simple closed curve in S. Let

h ∈ QP (n) be the braid represented by a positive half twist about the arc π(C). We

have Ψ(h) = TC . Thus, Ψ(bd) = T jC = Ψ(hj). Since Ψ is injective (Proposition 2.2)

bd = hj ∈ QP (n). Let Ab : Bn → Z be the abelianization map defined by Ab(σ±1
i ) = ±1.

Since Ab(h) = 1 we get Ab(b) · d = j and Ψ(bd) = Ψ(hj) = Ψ((hAb(b))d). Proposition 4.3

implies that b ∈ QP (n).

Next, suppose that the projection π(C) is a simple closed curve in the punctured

disk Dn. Let k′ = k/e. Since the map π restricted to each connected component of

π−1(π(C)) is a k′ : 1 cover we have

Ψ((Tπ(C))
k′) = TCTι(C)Tι2(C) · · ·Tιe−1(C). (5.1)

Hence,

Ψ(bd) = (TCTι(C)Tι2(C) · · ·Tιe−1(C))
j = Ψ((Tπ(C))

k′j).

Proposition 2.2 gives bd = (Tπ(C))
k′j . By Corollary 4.7, b ∈ QP (n). □

Next, we study a more general case. Recall that f ∈ Homeo+(S′), S′
i := ιi−1(S′) ⊂

S, and fi := ιi−1 ◦ f̂ ◦ ι−i+1 ∈ Homeo+(S) for i = 1, . . . , k.

Lemma 5.3. Suppose that [f ] ∈ Mod(S′) is pseudo-Anosov. Any centralizer [g] ∈
Z([f ]) ⊂ Mod(S′) of [f ] is either pseudo-Anosov or periodic.

Proof. Suppose that [f ] ∈ Mod(S′) is pseudo-Anosov and [g] ∈ Z([f ]). Let F be

the stable foliation of [f ]. Since F is preserved under [f ] we have [f ][g](F) = [g][f ](F) =

[g](F), which means that the foliation [g](F) is either F itself or the unstable foliation

of [f ]. In either way, the homeomorphism g ∈ Homeo+(S′) is freely isotopic to a pseudo-

Anosov map or a periodic map. □

Here is our main result. Later in Example 5.7 we see that it generalizes the so called

daisy relation [9] in mapping class group theory.

Theorem 5.4. Suppose that the surfaces S′
1, . . . , S

′
k are pairwise non-isotopic. As-

sume that [f ] ∈ Dehn+(S′) is either

• a non-negative power of a single Dehn twist (when S′ is an annular neighborhood

of a simple closed geodesic curve), or
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• a pseudo-Anosov map (when S′ is a hyperbolic surface).

Suppose that b ∈ Dehn+(n, k) satisfies

Ψ(b) = [f1 ◦ f2 ◦ · · · ◦ fk]

then b ∈ QP (n).

Proof. There are two cases to consider.

Case 1: S′
1, S

′
2, . . . , S

′
k are pairwise disjoint.

Since [f ] ∈ Dehn+(S′) we may write [f1] = TC1 · · ·TCl
for some simple closed curves

C1, . . . , Cl ⊂ S′. We get [fj ] = [ιj−1f̂ ι−j+1] = Tιj−1(C1) · · ·Tιj−1(Cl). Since S
′
1, S

′
2, . . . , S

′
k

are pairwise disjoint, if j ̸= j′ then Tιj(Ci) and Tιj′ (Ci′ )
commute for every i, i′ and we

have

Ψ(b) = [f1 ◦ · · · ◦ fk]
= (TC1

· · ·TCl
)(Tι(C1) · · ·Tι(Cl)) · · · (Tιk−1(C1) · · ·Tιk−1(Cl))

= (TC1Tι(C1) · · ·Tιk−1(C1)) · · · (TCl
Tι(Cl) · · ·Tιk−1(Cl)).

Since S′
1, S

′
2, . . . , S

′
k are pairwise disjoint, the projection π(Ci) is a simple closed curve

in Dn, and we can use the second-half argument in the proof of Theorem 5.1. By

the formula (5.1) we get Ψ(Tπ(Ci)) = TCiTι(Ci) · · ·Tιk−1(Ci). Proposition 2.2 gives b =

Tπ(C1) · · ·Tπ(Cl) ∈ QP (n).

Case 2: S′
1 ∩ S′

p ̸= ∅ for some p ∈ {2, . . . , k}.
First we note that [f1 ◦ f2 ◦ · · · ◦ fk] = Ψ(b) ∈ SMod(S) implies that

[f1◦f2◦· · ·◦fk] = [ι◦(f1◦f2◦· · ·◦fk)◦ι−1] = [f2◦f3◦· · ·◦fk◦f1] = · · · = [fk◦f1◦· · ·◦fk−1].

In particular, we have

Ψ(b)[fi] = [fi]Ψ(b) for every i ∈ {1, . . . , k}. (5.2)

Let ν be the minimal subsurface of S with respect to inclusions such that

• ν contains S′
1 ∪ S′

2 ∪ · · · ∪ S′
k and

• ∂ν is geodesic.

Since ι(S′
1 ∪ S′

2 ∪ · · · ∪ S′
k) = S′

1 ∪ S′
2 ∪ · · · ∪ S′

k we have ι(ν) = ν. In particular, the

boundary ∂ν is a multi-curve invariant under ι.

For simplicity, we put ψ := f1 ◦ f2 ◦ · · · ◦ fk ∈ Homeo+(S).

Claim 5.5. ψ(S′
i) is isotopic to S′

i.

We will prove Claim 5.5 after the completion of the proof of Theorem 5.4.

By Claim 5.5 there is a homeomorphism ϕ ∈ Homeo+(S) which is isotopic to ψ and

preserves S′
i setwise. Although ϕ may permute components of ∂S′

i, we may assume that

there exists d0 > 0 such that ϕd0 = id on ∂S′
1 ∪ ∂S′

2 ∪ · · · ∪ ∂S′
k. Let
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ϕi := ϕd0 |S′
i
∈ Homeo+(S′

i). (5.3)

Claim 5.6. For each i = 1, . . . , k there is di > 0 such that ϕdii is isotopic to a

product of Dehn twists about the boundary components of S′
i. Namely,

[ϕdii ] =
∏

C⊂∂S′
i

T
N(C)
C ∈ Mod(S′

i) for some N(C) ∈ Z. (5.4)

Moreover, the exponent N(C) = 0 if C is essential in the minimal subsurface ν. There-

fore, if S′ is an annulus then [ϕdii ] = id.

We will prove the claim after the completion of the proof of Theorem 5.4.

Let d′ be the least common multiple of d1, . . . , dk found in Claim 5.6. Put d = d0d
′.

As a consequence of Claim 5.6 the map ϕd|Si′ = ϕd
′

i ∈ Homeo+(S′
i) is isotopic to a

product of Dehn twists along common components of ∂S′
i and ∂ν. Let C1, . . . , Cm denote

the boundary components of ν. We obtain

[ϕd] = T
N(1)
C1

T
N(2)
C2

· · ·TN(m)
Cm

. (5.5)

Since [f ] ∈ Dehn+(S′) we see that [ϕ] = [f1 ◦ · · · ◦ fk] is right-veering and N(i) ≥ 0 for

all i = 1, . . . ,m.

We define an equivalence relation Ci ∼ Ci′ if π(Ci) = π(Ci′) ⊂ Dn and let C =

{C1, . . . , Cm}/ ∼. For C ∈ {C1, C2, . . . , Cm} let [C] ∈ C be its equivalence class and

e(C) ∈ N the smallest positive integer such that ιe(C)(C) = C. Since ι(∂ν) = ∂ν we note

that C, ι(C), . . . , ιe(C)−1(C) ⊂ ∂ν = C1 ⊔ C2 ⊔ · · · ⊔ Cm. Put

T[C] := TCTι(C) · · ·Tιe(C)−1(C).

The fact [ϕ] ∈ SMod(S) implies that N(i) = N(j) if Ci ∼ Cj . We may define non-

negative integers N([Ci]) := N(i). The description (5.5) can be restated as

[ϕd] =
∏

[C]∈C

T
N([C])
[C] ∈ Mod(S).

Recall that the projection π(C) is a simple closed curve or a simple proper arc

in Dn joining distinct punctures. This is because π−1(π(C)) ⊂ ∂ν is a simple closed

multi-curve.

If π(C) is a simple closed curve, put bC := (Tπ(C))
k/e(C) ∈ QP (n). Then by (5.1)

we have Ψ(bC) = Ψ((Tπ(C))
k/e(C)) = T[C].

If π(C) is a simple arc, i.e., k = 2 and e(C) = 1, put bC := hπ(C) ∈ QP (n) the

positive half twist about π(C). Then we have Ψ(bC) = Ψ(hπ(C)) = TC = T[C].

For either case, we have

Ψ(bd) = [ϕd] = Ψ

 ∏
[C]∈C

(bC)
N([C])

 .
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For distinct [C] and [C ′] the projections π(C) and π(C ′) are disjoint because C1, . . . , Cm
are pairwise disjoint. Hence, by Proposition 2.2 the braid b2d is a product of positive

Dehn twists about pairwise disjoint simple closed curves. (We consider b2d rather than

bd so that if π(C) is an arc the half twist about π(C) becomes a Dehn twist about a

closed curve enclosing π(C).) Corollary 4.7 shows that b ∈ QP (n). □

Proof of Claim 5.5. Suppose that S′ is an annulus which is a neighborhood

of a simple closed geodesic curve C and [f ] = (TC)
m. By (5.2) we have (Tψ(C))

m =

([ψ]TC [ψ
−1])m = [ψ](TC)

m[ψ]−1 = (TC)
m, and ψ(C) is isotopic to C. Hence, ψ(S′

i) is

isotopic to S′
i.

Next, suppose that [f ] ∈ Mod(S′) is pseudo-Anosov. The property (5.2) implies

that fi ◦ ψ(S′
i) is isotopic to ψ ◦ fi(S′

i) = ψ(S′
i). Then either ψ(S′

i) is isotopic to S′
i, or

by isotopy one can make ψ(S′
i) and S

′
i disjoint. The latter possibility cannot be realized

by the following reason. Take an essential simple closed curve α ⊂ S′
i. If we can make

ψ(S′
i) disjoint from S′

i by isotopy, then ψ(α) can also be disjoint from S′
i. However by

(5.2),

α = fi ◦ f−1
i ◦ ψ−1 ◦ ψ(α) ∼ fi ◦ ψ−1 ◦ f−1

i (ψ(α)) = fi ◦ ψ−1(ψ(α)) = fi(α)

where “∼” means isotopic. This contradicts the assumption that [f ] is pseudo-Anosov.

□

Proof of Claim 5.6. In the case where S′ is an annulus, (5.4) is a direct con-

sequence of Claim 5.5.

Assume that [f ] ∈ Mod(S′) is pseudo-Anosov and S′ is not an annulus. By the

symmetry, it is enough to prove the statement (5.4) for the case i = 1. Recall that

S′
1 ̸= S′

p and S′
1 ∩ S′

p ̸= ∅. Let D be a connected component of S′
1 ∩ S′

p. Since ϕd0 = id

on ∂S′
1 ∪ ∂S′

2 ∪ · · · ∪ ∂S′
k and ∂D ⊂ (∂S′

1 ∪ ∂S′
2 ∪ · · · ∪ ∂S′

k) we have ϕd0(D) = D and

ϕd0 = id on ∂D.

Since ∂S′
1 is geodesic D cannot be a bigon or an annulus. Let Γ = ∂(S′

1 \D). Then

Γ is a simple closed multi-curve in S′
1. Since S′

1 is not an annulus Γ contains an arc γ

which is essential in S′
1. Since ϕ

d0 = id on ∂D the curve ϕ1(γ) = ϕd0(γ) is isotopic to γ;

hence, the mapping class [ϕ1] ∈ Mod(S′) cannot be pseudo-Anosov.

On the other hand, [f ] = [f1|S′
1
] ∈ Mod(S′) is pseudo-Anosov, and by (5.2) [ϕ1] ∈

Z([f ]) ⊂ Mod(S′). Since [ϕ1] is not pseudo-Anosov, Lemma 5.3 shows that [ϕ1] is

periodic. Namely, there is d1 > 0 such that [ϕd11 ] is a product of Dehn twists about the

boundary components of S′
1 and we obtain (5.4).

Next we show the second statement of the claim. The surface S′ is either annular

or hyperbolic. Suppose that a boundary component C of S′
1 is an essential curve in

the surface ν. Since C is not a boundary component of ν and ν is the minimal surface

containing S′
1 ∪ · · · ∪ S′

k with respect to inclusions, there must exist p ̸= 1 such that

C ∩ S′
p ̸= ∅.

Note that C cannot be a boundary component of S′
p (that is, one side of C is S′

1

and the other side of C is S′
p) because in such a case the quotient space S/ι cannot be a

topological disk.
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If C is not isotopic to a boundary component of S′
p then the descriptions of [ϕd11 ]

and [ϕ
dp
p ] in (5.4) and the definition of ϕi in (5.3) show that N(C) = 0.

If C transversely intersects a boundary component, say C ′, of S′
p, we also getN(C) =

0, because otherwise (5.3) and (5.4) show that ϕ(C ′) ̸⊂ S′
p which contradicts Claim 5.5.

□

We close the paper with an example which shows that Theorem 5.4 can be viewed

as a generalization of the daisy relation found in [9].

Example 5.7. Let F be a sphere with k + 1 holes (k ≥ 3) that is obtained as the

k-fold cyclic branched covering πF : F → A of an annulus A branched at one point. Let

a0, . . . , ak be the boundary components of F . Let ιF : F → F be a deck transformation

defined by a 2π/k rotation of F about the unique branch point such that ιF (a0) = a0
and ιF (ai) = ai+1 for i = 1, . . . , k − 1, and ιF (ak) = a1. See the left hand side picture

of Figure 4. Let xi (i = 1, . . . , k) be simple closed curves on F enclosing a0 and ai such

that ιF (xi) = xi+1. According to the daisy relation as stated in [9] we have

Tx1 · · ·Txk
= T k−2

a0 Ta1 · · ·Tak ∈ Mod(F ). (5.6)

(The case of k = 3 yields the famous lantern relation.)

Recall the k-fold cyclic branched covering π : S → D with n branch points and the

deck transformation ι : S → S. Take an embedding i : F ↪→ S such that i◦ιF (x) = ι◦i(x)
for all x ∈ F . Let C = i(x1), A0 = i(a0), and A = i(a1). See the right hand side picture

in Figure 4 for the simplest case (n, k) = (3, 3).

Figure 4. Left: The (k + 1) holed sphere F for k = 4. Right: The surface

S for (n, k) = (3, 3). The curves C,A,A0 satisfy the daisy (lantern) relation

TCTι(C)Tι2(C) = TA0TATι(A)Tι2(A). The surface S \ i(F ) is the Bennequin

surface of a (2, 3) torus knot, which is A0.

The daisy relation (5.6) gives

TCTι(C) · · ·Tιk−1(C) =
(
T k−2
A0

) (
TATι(A) · · ·Tιk−1(A)

)
∈ Mod(S). (5.7)
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The left hand side of (5.7) is of the form of [f1f2 · · · fk] which is studied in Theorem 5.4.

One can show, using [18, Lemma 3.1] and the chain relation [11, Proposition 4.12] in

mapping class group theory, the term T k−2
A0

in the right hand side of (5.7) is the image of

a quasipositive braid under the homomorphism Ψ : Bn → Mod(S). We can also see that

the link A∪ ι(A)∪ · · · ∪ ιk−1(A) is a (k, k) torus link and the term TATι(A) · · ·Tιk−1(A) is

the image under Ψ of a positive full twist of k-stranded trivial braid, which is clearly a

quasipositive element in Bn. In this sense, Theorem 5.4 can be seen as a generalization

of the daisy relation.
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