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Abstract. Let L; and Lo be nonnegative self-adjoint operators acting
on L2(X1) and L?(X3), respectively, where X7 and X2 are spaces of homoge-
neous type. Assume that L1 and Lo have Gaussian heat kernel bounds. This
paper aims to study some equivalent characterizations of the weighted product
Hardy spaces Hﬁ;,Ll,LQ (X1 x X2) associated to L1 and La, for p € (0,00) and
the weight w belongs to the product Muckenhoupt class Aoo (X1 X X2). Our

main result is that the spaces HZ,LLLQ (X1 x X2) introduced via area func-

tions can be equivalently characterized by the Littlewood—Paley g-functions
and g’)"\ly )\z—functions, as well as the Peetre type maximal functions, without
any further assumption beyond the Gaussian upper bounds on the heat kernels
of L1 and Lg. Our results are new even in the unweighted product setting.

1. Introduction.

The theory of Hardy spaces has been a successful story in modern harmonic analysis
in the last fifty years. In the classical case of the Euclidean space R", it is well known
that among other equivalent characterizations the Hardy spaces H?(R™) can be charac-
terized by area functions, by Littlewood—Paley g-functions and by atomic decomposition
[12], [21]. Concerning Hardy spaces HP(X) on a space of homogeneous type X, a new
approach to show the equivalence between characterizations of HP(X) by area functions
and g-functions is to use the Plancherel-Polya type inequality, which requires the Holder
continuity and cancellation conditions [6]. About the more recent Hardy spaces HF (X)
associated to an operator L on a space of homogeneous type X, one used to need extra
assumptions to show that the characterizations by area functions and by Littlewood—
Paley g-functions are equivalent, for example, Holder continuity was assumed in [8] and
Moser type estimate in [10]. Only recently, the equivalence of the characterizations of
H? (X) by area functions and by Littlewood—Paley g-functions was obtained in [16] un-
der no further assumption beyond the Gaussian heat kernel bounds. Actually, the work
in [16] was done in the weighted setting.

The aim of the current paper is to prove the equivalence between the characteri-
zations of the weighted product Hardy spaces Hp’LhLz (X1 x X5) in terms of the area

w
functions and Littlewood—Paley square functions, see Theorems 1.4 and 1.5, where we
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assume only that the operators L, and Lo are nonnegative self-adjoint and have Gaussian
upper bounds on their heat kernels. This extends the main result in [16] to the product
setting. The strength of our results is that not only they are new for the setting of
product spaces and cover larger classes of operators Ly and Ly but also recover a number
of known results whose proofs rely on extra regularity of the semigroups. In particular,
our Theorems 1.4 and 1.5

(i) give a direct proof for the equivalent characterizations via Littlewood—Paley
square functions of the classical product Hardy space by Chang—Fefferman in [5],

(ii) provide a new proof of equivalent characterizations via Littlewood—Paley square
functions of the product Hardy spaces on spaces of homogeneous type in [15] whose
proofs require the Holder continuity and cancellation conditions,

(iii) provide the missing characterizations of product Hardy spaces via Littlewood—
Paley square functions in the setting developed in 7] and [10], and

(iv) recover the recent related known results in the setting of Bessel operators in [9]
whose proofs relied on the Holder regularity, and results for Bessel Schrodinger operators
in [1] whose proofs used the Moser type inequality.

For more details and explanations of (iii) and (iv), we refer to Section 4.

We now recall some basic facts concerning spaces of homogeneous type. Let (X, p)
be a metric space, and p be a positive Radon measure on X. Write V(x,r) := u(B(z, 1)),
where B(xz,r) denotes the open ball centered at  with radius r. We say that (X, p, i)
is a space of homogeneous type if it satisfies the volume doubling property:

Vix,2r) < V(x,r) (1.1)

for all z € X and r > 0. An immediate consequence of (1.1) is that there exist constants
C and n such that

V(z,Ar) < CA"V (z,1) (1.2)

forall z € X, r > 0 and A > 1. The constant n plays the role of an upper bound of
the dimension, though it need not even be an integer, and we want to take n as small as
possible. There also exist constants C' and D, 0 < D < n, so that

D
Viy,r)<C (1 + p(l;,y)) Vix,r) (1.3)
uniformly for all z,y € X and r > 0. Indeed, property (1.3) with D = n is a direct
consequence of (1.2). In the case where X is the Euclidean space R™ or a Lie group of
polynomial growth, D can be chosen to be 0.

Throughout this paper, we assume that, for i = 1,2, (X, p;, i;) is a space of homoge-
nous type with pu(X;) = oo. The constant n (resp. D) in (1.2) (resp. (1.3)) for (X5, ps, ;)
is denoted by n; (resp. D;). Let L;, i = 1,2, be a linear operator on L?(X;, du;) satisfying
the following properties:

(H1) Each L; is a nonnegative self-adjoint operator on L?(X;, du;);

(H2) The kernel of the semigroup e, denoted by pgi)(xi,yi), is a measurable
function on X; x X; and obeys a Gaussian upper bound, that is,
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for all ¢ > 0 and a.e. (z;,y;) € X; x X;, where C; and ¢; are positive constants, for
1=1,2.

(i, y0)| <

DEFINITION 1.1. Let &1, ®5 € S(R).
a) Given a function f € L?(X; x X5), we define the product type Littlewood-Paley
g-function ge, @,.1,,1,(f) associated to Ly and Lo by

2 dty dts\ /2
9%, ,05,L,,L, (f)(T1, 22) (/ / VL1) ® ®y(ta\/La) f(x1, x2) ‘ =t 2) .

t1 1o

b) The product type area function S, ,,1,,1,(f) associated to Ly and Ly is de-
fined by

S‘I>1,<I>27L17L2 (f)(xlv IQ)

1/2
2d dty d dt
o it i i)
I1(z1)xT2(z2)

V(Jil, tl)tl V(xg, t2)t2

where T';(z;) = {(yi, ;) € Xi x (0,00) : pi(24,9:) < t;} for i =1,2.
c) For A1, Ao, t1,t2 > 0, the product Peetre type maximal function associated to L
and Lo is defined by

[®1(t1v/L1) ® ‘1)2(152\/1372)};,/\2f T1,T2)
_ sup @1 (t17/L1) @ Pa(t2v/ L) f(y1,42)|

(m)eXix Xy (1+1t] Pl(ﬂﬁhyl))Al(lthz Pz(mz,yz))

for (z1,xz2) € X1 X Xo.
d) For A1, A2 > 0, the product type Littlewood—Paley 93, .x,-function associated to
L, and Lo is defined by

9%, 05,11, Lo 2o () (@1, 72)

( / / / / 21(0/E0) & 2altaV s V) dp(y)de duz(yz)dtz>1/2
X1 X2

1+ tl ,01 $1,y1))”1)‘1(1 + t2 p2($2’y2))”2)\2 V($17t1)t1 V(l‘g,tg)tQ

for (z1,22) € X1 X Xos.

Following [13], [14], we introduce product Muckenhoupt weights on spaces of ho-
mogeneous type.

DEFINITION 1.2. A nonnegative locally integrable function w on X; x Xs is said
to belong to the product Muckenhoupt class A, (X1 x X») for a given p € (1, 00), if there
is a constant C' such that for all balls By C X; and By C Xo,
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(G [, oo b0t

The class A; (X1 x X52) is defined to be the collection of all nonnegative locally integrable
functions w on X7 x X5 such that

1
_ w(xy, x2)duq (z1)dus (x w | oo <cC
(ul(B1)u2(Bz) //leBZ (1, z2)dp (21)dpa( 2)) lw™ Lo (B xBy) <

for all balls B; € X; and By C X5.

We let Ao (X1 X X2) = U1<p<oo Ap(X7 x X3) and, for any w € A (X1 x Xa),
define -

Qu ‘= 1nf{q e [I,OO) Tw e Aq(Xl X X2)}7

the critical index for w (see, for instance, [14]). For 1 < p < oo, the weighted Lebesgue
space LP (X1 x X3) is defined to be the collection of all measurable functions f on X3 x Xo
for which

1/p
£l e, (x1x x2) = (//X N |f(3?17$2)pw(afhxz)dm(ﬂﬂl)duz(xz)) < 0.
1X X2

We next introduce a class of functions on R which will play a significant role in our
formulation.

DEFINITION 1.3. A function ® € S(R) is said to belong to the class A(R) if it
satisfies the Tauberian condition, namely,

[®(A)] >0 on {e/2 < |\ < 2¢} (1.4)
for some € > 0.
Now we are ready to state our main results.
THEOREM 1.4. Let &1, &y, &1, Dy € A(R) be even functions satisfying
©1(0) = 2(0) = 1 (0) = D2(0) = 0.

Let p € (0,00) and w € A(Xy; x X3). Then there exists a constant C =
C(p,w, Py, Pa, 1, P) such that for all f € L*(X; x X»),

071 ||g<f>1’<f>27L17L2 (f)|

L (X xXa) < N901,02,00,0: ()| 22, (x, x x2)
< Cl|g&)17$27L17L2 (f)l

THEOREM 1.5. Let &1,P5 € A(R) be even functions. Let p € (0,00), A; >
2q, /min{p,2} and N, > (n; + D;)qw/min{p,2}, i = 1,2. Then for f € L*(X; x X3)

LT, (X1 xX2)"
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we have the following quasi-norm equivalence:

150, 00,20, L. ()l 28 (X1 xx0) ~ N901,@0,00,2, (F)II 2 (X1 5 X2)

~ ||9§>1,<1>2,L1 Lo, Al,,\g(f)|

(/ / )®¢x@¢XXf‘ﬁum)

t1

Lﬁ,(Xl ><X2)

(1.5)

LE (X1 x X>)

Having these results, one can introduce weighted product Hardy spaces associated
to L1 and Lo as follows:

DEFINITION 1.6. Let p € (0,00), w € Ax (X1 X X3), and &1, P4 € A(R) be even
functions satisfying

®1(0) = $5(0) = 0.

The weighted product Hardy space Hf; Ly Lo (X7 x X3) associated to L; and Lo is defined
to be the completion of the set

{f € Lz(Xl X XQ) : S<1>1,<1>2,L17L2(f) € L;Z;(Xl X XQ)}

with respect to the (quasi-)norm

||f||H,fIYL11L2(X1><X2) = HS¢)17¢)27L17L2(f)”Lﬁ,(XlXXQ)'

REMARK 1.7. Combining Theorems 1.4 and 1.5 we see that the definition of
HZ)LI’LQ (X1 x X5) is independent of the choice of the even functions @y, Ps, as long
as ®1,P; € A(R) and satisfy ®;(0) = ®3(0) = 0. In particular, if one chooses
®1(N\) = Py(N) = A2e=>", then the (quasi-)norm of HY ;o 1,(X1 x Xa) can be writ-
ten as

1l xaxny = H(/
wi L L( o 2 Fl :El XFQ(IQ)

A (m)dty duz(ya)dt2)1/2
V(Il, tl)tl V(:ZJQ, tg)tg

2 2 2
(tiLie”"F) @ (t3Lae” 252) f(y1, y2)’

Lg,(Xl ><X2)

Furthermore, from Theorem 1.5 we see that each quantity in (1.5) can be used as an
equivalent (quasi-)norm of the space H? L1 .Lo (X1 x Xo).

As mentioned above, we make no further assumption on the heat kernel of Ly or Lo
beyond the Gaussian upper bounds. Thus, the approach in [8] which uses a Plancherel—
Polya type inequality and the approach in [10] which uses a discrete characterization can
not be applied directly to our setting. To achieve our goal, we will follow the approach in
[2], [3], [18], whose key ingredient is a sub-mean value property; see Lemma 3.4 below.
This approach has recently been used in [16] to derive the equivalence of Littlewood—
Paley g-function and area function characterizations of one-parameter Hardy spaces as-
sociated to operators. However, the Littlewood—Paley g-function and area function in
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[16] are only defined via the heat semigroup, which are less general than those defined
in the current paper.

We close this introduction by making some conventions. Throughout this paper, we
denote by C and ¢ (possibly with subscripts) constants that may vary from place to place
and may depend on any factor quantified (implicitly or explicitly) before its occurrence,
but not on factors quantified afterwards. In some cases “sup” will mean “esssup”, which
will be clear from the context.

2. Preliminaries.

In this section we collect some facts and technical results which will be needed in
the subsequent section. We start by noting that, if (X, p, 1) is a space of homogeneous
type, then for any N > n, there exists a constant C' = C'(N) such that

/X (1 + p(xty)) - du(y) < CV(z,t) (2.1)

for all x € X and t > 0.
The following lemma is essentially [4, Lemma 2.3]. See also [20, Lemma 2.1].

LEMMA 2.1.  Assume that (X, p, ) is a space of homogeneous type and L is a non-
negative self-adjoint operator on L*(X,du) whose heat kernel obeys the Gaussian upper
bound. Let ® € S(R) be even functions. Then for every N > 0, there exists a constant
C = C(®,N) such that the kernel Ky, /7 (x,y) of the operator ®(tV'L) satisfies

C plz,y)\
’K¢'(t\/f)(x’y)‘ < V(z,t) <1+ t)

LEMMA 2.2.  Assume that (X, p, ) is a space of homogeneous type and L is a
nonnegative self-adjoint operator on L?*(X,du) whose heat kernel obeys the Gaussian
upper bound. Let &,V € S(R) be even functions and let U satisfy

v0)=0, v=0,1,...,m (2.2)

for some positive odd integer m. Then for every N > 0, there exists a constant C' =
C(®,¥,N,m) such that for all s >t >0,

K@(S\/Z)qu(t\/z)(fc,y)’ <C (z>m+1 V(i’s) (1 + p(xs’ y>>_N. (2.3)

ProOOF. First note that the property (2.2) implies that the function A +—
A=+ ()) is an even function, smooth at 0, and belongs to S(R). We set ®,,,()\) :=
AHLB(N) and T, (A) := A~?HDW(N) for A € R. Then both ®,, and ¥,, are even
functions and belong to S(R). Since

d(sVL)U (VL) = (i) " [(sVL)" @ (svVL)] [(tVL) =" w(tvV/L)]
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_ <t>m+1 Oy, (sVL) U (tVL),

S

it follows from Lemma 2.1 that
‘K‘I’(S\/E)\I/(t\/z) (x,y)‘

t m+1
- <5> ‘K‘bwsﬁ)\vm(tﬁ) (z, y)‘

t m—+1
(s) /X ’qu(s\/z) (JU,Z)K\I,m(tﬁ)(Z,y)‘ du(z)

IN

. <Z)m+l/xv(;s) <1+p(fiaz)>—1v

—(N+n+1)
X ! ) (1 + p(z,y)) du(z).

V(y, t

For s >t > 0, we have

(1+ (Z Z)>_N (1+ P(Zt’?/)>_N < <1+ p(ﬂ;y))‘N'

This along with (2.1) yields

NG

) (1 . p<z,y>>‘““"+” du(z)

(1 N p(z,y)>(”“) ()

(rote)

Combining (2.4) and (2.5) we obtain (2.3).

(1+*

IN

97

(2.5)

O

LEMMA 2.3.  Suppose ® € A(R) is an even function. Then there exist even func-

tions ¥, Y, 0 € S(R) such that

supp Y C {|}\| < 2¢},
supp O C {e/2 < |A| < 2¢}

and
N+ Y @27\ N =1 forall A€ R,

where € is a constant from (1.4).

PROOF. Define ¥(\) := e, X € R. Obviously, ¥ € S(R) and ¥ is even. Choose
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nonnegative even functions Q,T' € S(R) such that

QN) £ 0 <= |A| < 2¢,
A #0<=¢/2 < |\| < 2e.

Then we set

2(\) == TN + i d27FANNER27FN), NeR.
k=1

From the properties of ®, ¥, Q) and I it follows that = is strictly positive on R. In addition,
from the properties of Q and T" we see that for any fixed Ay € R\{0}, the number of those
k’s for which ®(27*A\)I'(27%)) do not vanish identically in (4)\g/5, 6A\o/5) is no more than
4, which implies that = is smooth in (4X¢/5,6X0/5) and hence = € C*°(R\{0}). It is
obvious that = is also smooth at the origin 0. Therefore = € C*°(R). Now define the
functions T and © respectively by

Then it is straightforward to verify that ¥, T and © satisfy the desired properties. [

The following lemma is a homogeneous analogy of Lemma 2.3. It can be obtained
by slightly modifying the argument of Lemma 2.3.

LEMMA 2.4. Suppose ® € A(R) is an even function. Then there exists an even
function © € S(R) such that

supp© C {e/2 < || < 2¢}

and

i B(27"N0(27FN) =1 for all X € R\{0},

k=—oc0
where € is a constant from (1.4).

LEMMA 2.5.  Assume that (X, p, ) is a space of homogeneous type with u(X) = oo
and L is a nonnegative self-adjoint operator on L*(X,du) whose heat kernel obeys the
Gaussian upper bound. Let {E(X) : A > 0} be spectral resolution of L. Then the spectral
measure of the set {0} is zero, i.e., the point A = 0 may be neglected in the spectral
resolution.

PROOF. Assume by contradiction that E({0}) # 0, then there exists g € L?(X)
such that f := E({0})g is not the zero element in L?*(X,du). Since E({0}) is a an
orthogonal projection,

E({0})f = E{OHE({0})g = E({0})g = f.
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It follows that for all ¢ > 0,

etk e B\ e "B\ 0 e TMENf = EH0V f =
f/ f/ VE({0}) /{0} N = E({0)f

Hence, for a.e. x € X and all ¢ > 0, we have

F(@)] = e f(z) / o2 )1 () )

1/2
< 1l ( /X |pt<:c,y>|2du<y>>

. —(n+1) 1/2
<l ( [ o (1222 du(y)>

< CHf”L?(X,du)V(xa \/g)_l/2'

Since p(X) = oo, letting t — oo in the above inequalities yields that f(xz) = 0. Hence
f=0in L?(X,du), which leads to a contradiction. Therefore we must have E({0}) = 0.
O

The following two lemmas are two-parameter counterparts of Lemma 2 and Lemma 3
n [18], respectively. These can be proved by slightly modifying the proofs of the corre-
sponding one-parameter results. We omit the details here.

LEMMA 2.6 ([18, Lemma 2]). Let 0 < p,q < o0 and 01,09 > 0. Let w be
an arbitrary weight (i.e., nonnegative locally integrable function) on Xy x Xo. Let
{951,523 3% jom—oo be a sequence of nonmnegative measurable functions on X1 x Xo and
put

k k
hj, g, (x1, 22) E E g~ Ikimilong=lka=izlozg, () 2y)
k:lffookgffoo

for (z1,22) € X1 x X9 and j1,j2 € Z. Then, there exists a constant C = C(q,01,02)
such that

[FCT S

S C H{gJIJQ j1 ]2__00‘

L7, (09) AN
where
0 %)
TP S (NS [IFPPR S|
J1,J2 L%, (e9) J1,J2 ‘, L2 (X1 % X5)
1/q
(o] o0
_ o q
- Z 2 : |gJ17]2(x17x2)| . (26)
J1=—00 ja=—00
L2 (X1 xX5)
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LEMMA 2.7 ([18, Lemma 3]). Let 0 < r < and let {bj, j,}30 j,——oo and

1,
{djy 52} jy= 0o e two sequences taking values in (0, oo] and (0,00) respectively. As-
sume that there exists Ng > 0 such that

djl:jZ = O(2j1N02j2N0)7 J1, Ja — 00,

and that for every N > 0 there exists a finite constant C' = Cn such that

oo oo
Jl’h - CN Z Z 2(j1_kl)N2(j2_k2)ka1,kzdllc;227 j17j2 € 7.
ki1=j1 k2=j2
Then for every N > 0,
o0 oo
dj, g, <O D D 20 RINrUemklNry o n e € 2,
k1=j1 k2=j2

with the same constants C) .

For a locally integrable function f on X; X X5, the strong maximal function is
defined by

M T1,T9) = sup 7// ,y2)|d d
(f)(x1,22) a0 I Ba(B) s, | f(y1, y2)|dp (y1)dpa(y2),

where B; runs over all balls in X;, i = 1,2. Using (1.3) and the volume doubling property,
one can easily show that if N; > n; + D; for ¢ = 1,2, then

|f(y1,’yz)|
//Xx T, Vi )L+t gy dialin) < CML() ). (2)

We will also need the following weighted vector-valued inequality for strong maximal
functions on spaces of homogeneous type. See, for instance, [14] and [19].

LEMMA 2.8. Suppose 1 <p <00, 1< q<o0 andw € A,(X1 x Xo). Then there
ezists a constant C' such that

M)} e ]

L%, (£9) gC’H{fh’]z Ji J2——DO‘

w

L%, (e9)

o0

Jor all sequences { f}, j, }jhh:im on X1 x Xo, where the space LP (£7) is defined by (2.6).

3. Proofs of Theorems 1.4 and 1.5.

We divide the proofs of Theorems 1.4 and 1.5 into a sequence of lemmas.
The following lemma is standard; see, for instance, [22, Theorem 4 in Chapter 4].

LEMMA 3.1.  Let ®1,P5 € S(R) be even functions. Let p € (0,00), w € Aso(X1 X
Xo), and A1, A2 > 2q,,/min{p,2}. Then there exists a constant C such that for all
f € LQ(Xl X XQ),
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ngklhﬁbz,lzhl/z’)\l,)\z(f)HL{Q,(X1><X2) < CHS‘I’I’@%LLLQ(f>HLﬁ,(X1><X2)'

LEMMA 3.2. Let @1, P, € S(R) be even functions. Let p € (0,00), A1, Ay > 0, and
w be an arbitrary weight (i.e., nonnegative locally integrable function) on X1 x Xo. Then
there exists a constant C' such that for all f € L*(X; x X3),

||S<I>1,’1>2 Ly, Lz )HL” (X1xX2)

1/2
dtldtg
(// VI @ Baltev L], . f t t2>

PRrROOF. Observe that for all A1, Ao, t1,t2 > 0 and all (z1,22) € X7 X X,

1
// ‘él(tlf ® Do tz\/> flyi, y2 ‘ dp (y1)dpz(yz2)
B(z1,t1)XB(x2,t2)

V(Il,tl)V(l’Q,tg)

<C

L»;,_)U(XIXXQ)

< sup Q1 (t1v/L1) @ ®a(ta/La) f(y1, y2 )
(y1,y2) €B(w1,t1) X B(z2,t2)
. 2
< 92A192X2 [CI)l (tl Vi L1) ® @Q(tgx/ Lg)] )\17>\2f($1, 1‘2)‘
Taking the norm [;~ [° | - [(dt1/t1)(dt2/t2) on both sides gives the pointwise estimate
[S<P1 <1>27L17L2 x17x2
2.dty dt
22)\122)\2/ / ®(b2 t2 /L :I)\ A f$17x2) 7172,
t1 1o
which readily yields the desired estimate. O

LEMMA 3.3.  Suppose ®1, o, &1, Dy € A(R) are even functions satisfying
®1(0) = B2(0) = B1(0) = P(0) = 0.

Let p € (0,00), A\i,Aa > 0, and w be an arbitrary weight (i.e., nonnegative locally
integrable function) on X1 x Xy. Then there exists a constant C such that for all f €
L2(X1 X Xz),

H / / <I>1 (VL) @ Ba(taV/Io)]},
LP (X1 xX3)

A 2 dty dty\ /2
(/ / CI)1 tl )@ P2ty }’\1’”\2 7511 t22>

Proor. For i = 1,2, since &; € A(R) and ®; is even, by Lemma 2.4 there exists
an even function ©; € S(R) such that supp ©; C {¢;/2 < |\| < 2¢;} and

2 dty dty
t1 1o

LE,(Xl XXz)

i ®;(27"0)0;(27FN) =1 for A € R\{0},

k=—oc0
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where ¢; is the constant in the Tauberian condition (1.4) corresponding to ®;. Hence
it follows from Lemma 2.5 and the spectral theorem that for all f € L?(X; x X3) and
t1,tg € [1, 2],

i i (@127 11/ L1)O1 (277 11/ L1)) @ (@ (27*2t5 /L) 02 (27 *2 0/ L2) ) f

k1=—OO k2=—0<>

with convergence in the sense of L?(X; x X3) norm. Consequently, for all ji, jo € Z, all
t1,ts € [1,2] and a.e. (y1,y2) c Xy x Xg,

By (277 t1v/L1) © Bo(27 25/ La) f (11, y2)
S Y Y B I 2 Ies 2 /)

klzfoo kz—*OO

® (Pa(2777t21/La) P2(27 9/ L2)02(2 "2/ La)) £ (41, y2)
Z Z // <1>1(2—.71t1m)@1(2—k1t1m)(yh21)
k1=—00 ka=—00 X1 X X2
x K<I>2(2 I2t54/L2)O2(2~ kztzf)(/yz,zz)
% (@127t /L1) © Bo(2 2ty / L)) f (21, 22)dpin (21)dpaa(z2). (3.1)

Since ®; is even on R, we have ®/(0) = 0, for i = 1,2. Thus ®;(0) = ®/(0) = 0 for
i = 1,2. On the other hand, since ©; vanishes near the origin, we have G)(V)( 0)=0
for every non-negative integer v. Hence it follows from Lemma 2.2 that for any positive
integer m and any N > 0,

K, -setsvmmona-rstam 00 %)
< C(‘f)m@i,N)Q—Q\j'i—’f”V(yi,2_’”151')_1(1 + 287 oy (yi, 20)) 7V, Ji = ki,
C((’i;h@iaNa m)2—m|J1—k7‘V(y“2—]7 ) (1+2]7 pz(ywzz)) N? ji < kl

(3.2)
Choose N > max{\; +n1 + 1, A2 + ny + 1}, then from (3.1), (3.2) and the inequality

‘(@1(2_’“%1\/? ® Bo(27"2t5\/La)) f( 21722‘

< [ M0V L) @ 227/ Lo)] | fl@r,22)
x (142847 pr (w1, 20)) (14 29t5  po (w2, 22))™2,

we infer that

[51(2ij1t1 \ Ll) & 62(27j2t2 vV Lg)] :1,)\2f(x1’ SCQ)
< Z Z 7j17k1,j2,kz[¢1(2_k1t1\/ )@ Da(2 ’”tz\/»],\ ,\fxlﬂfz)

k‘1=—00 k2=—OO
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(1+ 2kt pi (g, 20)) N

X sup // 1 ; 1
(wrw)eXaxXa ) Sxixxa Tlimy (14 20t pi(a, ya) )M (14 29kt py (s, 2)) Mot

dpy (z1)dpz(22)
Vg, 2-G AR )V (o, 2- G2k 1)

where j; A k; := min{j;, k;} and

22—kl =2l2=kal if ) >k and jo > ko,
22l =klg=mlia=kzl if 5 > k) and jo < ko,
2-mlii—kilg=2li2=k2| if ), < ky and jp > ko,
2—mlii—kilg—mliz=ka|  if 5, > ky and jy > ko.

Vi1, k1,d2,k2 T

Using (2.1) and the fundamental inequality
(1+ 288 pi(, 22))™
< (L4270t py (s, ya) )N (14 258 iy, 20)) ™, Ji = ki,
T 2N (L 295 g (i) (L4 270 i (s )N, i < K

it follows that

(@, (277141 L1) © 52(2%2752\/?2)];17&]”(@,:1:2)

o0

< DD Ve 2127V @ @227 10/ Lo)] o (@1, 22), (3.3)

k1=—OO k2=—00

where
221 —k1lg=2lj2—k2| if 51 > k1 and jo > ko,
/ - . 2—2\j1—k1|2—(m—)\2)|j2—k2| if jl >k and j2 < k2,
7]1,1@1,]27162 T 27(m7/\1)\j17k1|272|j27k2| if jl < k'l and j2 > kg,

9—(m=A))j1—ki|g—(m—A2)lja—k2| if g1 > k1 and jo > ko.

Now let us choose m > max{A1, A2} and set o := min{m — A;,m — Ag,2}. Then (3.3)
implies that

[?{;1(2ij1t1\/171) ® (52(27j2t2\/L;2)] :1,)\2f(x1’x2)

o0

< DY 2 lkleatlTkele (g (7R /L)) @ @272/ Lo)] | f(@1, 22).

k1=—OC k2=—00

Taking on both sides the norm fl fl 12(dty /t1)(dta/t2))"/? and using Minkowski’s
inequality, we get

1/2
(/ / [(2” J1t1\/fl)®52(2—j2t2m)]zl,/\Qf(xth)}Qdtldt2>

t1 1o
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<C i i 2—\jl—k1|02—|j2—k2\0

k?1:—()0 k)2:—00
2 " . . 2 dty dty\ "
([ [{meraviene eV, o) PE)
1)1 '
Finally, applying Lemma 2.6 in LP(£?) yields
2 dty dt
([ B vm o 55)
b L2, (X1 x X2)
2 dty dty\ /?
(/ / CI)1 t1 1) ® ®o(tay/L ]/\1 A tl t2> . (34)
1 2 Lﬁ(XlxXz)

By symmetry, the converse inequality of (3.4) also holds. The proof of the lemma is
complete. 0

LEMMA 3.4. Let 1,95 € A(R) be even functions. Then for any r > 0, o > 0,
A1 > D1/2 and Ay > Dy /2, there exists a constant C such that for all f € L*(X; x X3),
all (1171,{132) € X1 X X2 and all tl,tQ € [1,2],

{[‘1’1(27j1t1\/fl)®@2(27j2t2@)];I,Azf(xlvxz)}T
<C i i 9U1—k1)og(ja—k2)o //

k1=j1 k2=j2 XixXs

|(I)1(27k1t1\/L ®(I>2 k2t2\/ 21,2’2)|rdu1(21)du2(2’2)
V(21,27 F1t1) (1 + 2kt ] p(xl,zl))/\”V(zQ, 2= k2to) (1 + 2k2t5 L py (g, 20)) 2T
(3.5)

PrROOF. By Lemma 2.3, for ¢ = 1,2 there exist even functions ¥;, T;,0,; € S(R)
such that supp Y; C {|A| < 2¢;}, supp©; C {&;/2 < |A| < 2¢;}, and

AN+ Y227 N027FN) =1 forall \ER, (3.6)

where ¢; is the constant in the Tauberian condition (1.4) corresponding to ®;. Replacing
A with 277i¢; X in (3.6), we see that for all j; € Z and t; € [1, 2],

W (2794 M) Y5 (27740 + Z B, (27 Retadg )@, (27 Rt \) = 1.
ki=1

It then follows from the spectral theorem that for all f € L?(X; x X5), all j1, jo € Z and
all t1,t5 € [1,2],

f= (U@ VLN 0V L)) @ (W2(2772t0y/La) Yo (27722\/La)) f
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+ Z ((1)1(2—(1%-"-]'1)&1 /Ll)gl(z—(k1+j1)t1 /Ll))
ki=1
® (Ua(2772ty\/ L) Yo (27 2t2\/Lo)) f

+ Z (‘111(27j1t1\/L71)T1(27j1t1\/L71))
® ((1)2(2—(k2+j2)t2\/L>2)62(2—(7€2+j2)t2m))f
FIS (@2 E Ien (2 V)

k1=1ko=1

® ((1)2 —(ka+j2) tQ\/i @2 k2+]2)t2\/7 )
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with convergence in the sense of L?(X; x X3) norm. Hence, for all ji,j2 € Z and a.e.

(y1,y2) € X1 x X5, we have

&1 (277111 /L1) © B2t/ La) f (y1, 2)

= (D127t /L) W1 (2771t /L) Y1 (270 1/ 1))
® (P2(2772t2\/La) U (27722\/Lo) Y2 (272 t2y/L2)) f (y1, y2)
+ Z 2 Jltl\/f)q)l —(k1+J1) tl\/i 2 (k1+31)t1m))

ki1=1

(@2 2 Jztg\/ \112 27 Jztg\/ TQ 27 ]th\/ ) yl,yg
+ Z 1277 /Ly ) U1 (277 4/ L1) Y1 (277 114/ L1))

ko=1

® (@2(2_j2t2 /L2)¢2(2_(k2+j2)t2m)92(2_(k2+j2)t21 /Lg))f
+ 30> (212 L)y (27 F I /L )ey (27 R VL)

k1=1kso=1

® (P2(2772ta/ Lo) @y (27 k2 t32) 1y \ /[ L5) @y (27 k2t L)) f(y1,y2)

= // K\I/1(2*51t1\/L71)T1(2*J'1t1\/L71) (1, 21)
X1 XXQ

X K\p2(27j2t2\/5)“r2(27j2t2\/5)(y27 22)
x (@1(27 O \/L1) @ @ (27O t9\/L1)) f (21, 22)dpua (21)dpia(22)

+ Z // K‘I’1(2*j1tlm)@1(2*(kl+j1>t1m)(y1721)
X1xX X2

x KW2(2_12t2m)T2(2_j2t2m)(y27 22)
X (q’ (27(k1+j1)t1 \ Ll) X @2(27(0+j2)t2 \V Ll))f(zl, Zg)dul(zl)dﬂg(ZQ)

* Z //x Ky, (2=t VI 11 (2~ 00 vE7) (Y1, 21)

ko=1 1 X X2
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x K®2(2_-72tQ\/E)GQ(Q—(’“2+J2)t2\/E)(y27 22)
X (@ (27(0+j1)t1 \/ Ll) X (I)Q k2+g2 t2 \/ ) 21,22 dul(zl)d,ug(zQ)

+ Z Z // K‘D1(2*J‘1t1\/H)@1(2*(k1+j1)tlm)(y17Zl)
Ei=1ko=1" 7/ X1xXX2
% K¢2(27j2t2\/E)@2(2*(’€2+J2)t2\/E)(yz, 29)
x (@1 (2~ FH0E \/T1) @ Bo(2-*2 92015\ /1)) f(21, 22)dpa (21)dpia(22). (3.7)

For i = 1,2, let N; > \; and m; be any integer such that m; — \; — n;/r > 0.
Since ©; vanishes near the origin, it follows from Lemma 2.2 that there exists a constant
C =C(9;,0;,m;, N;) such that for all j; € Z, all k; € {1,2,...}, and all ¢; € [1,2],

| K, (a3i ts /Ty (2~ Ceit36) 1, Ty (Wi 20) |
< O27 Ry (2, 279 T+ 2904 i (i, 1)) Ve (3.8)

Analogously, for ¢ = 1,2, we have

|K\I/i(Q_jiti\/fi)Ti(Q_jiti\/H)(yi7 Z7)| < CV(ZH 27jiti)71(1 + 2jiti_1pi(yia Zi))iNi' (39)

Putting (3.8) and (3.9) into (3.7), we obtain
"131(27j1f1\/L ) @ ®2(2772t2\/La) f(y1, Y2 ‘
< C Z Z 27k1m127k2m2

k1=0ko=0
|@1(27F1 4941\ /L1) @ B2~ *2492)15\/Ly) f (21, 20)|
X//xlm [, Vi(z 29t ) (L + 25, pa(ys, 20)) ™
_c i i 9 —k1)mi 92 —k2)ms
ki1=j1 ka=j2

] ey sty )
X1XXa i=1

V(z%72 Jit )(1+2jlt7 pZ(yuzl))N

dp1 (z1)dpa(22)

dul(zl)dug(zg). (310)

To prove the desired inequality, we first consider the case 0 < r < 1. Divid-
ing both sides of (3.10) by (1 4+ 271¢7 py (w1, y1))M (1 + 2725 po (2, y2))*2, taking the
supremum over (y1,y2) € X3 X Xo in the left-hand side, and using the inequalities
V(2,2791;) > V(z,27%) (Vhi > i) and (14 277 pi(aa, yi))(1 + 2747 piyi, 1)) >
(1 + 27t pi(ws, 2;)) (Wt € [1,2]) in the right-hand side, we get that, for all ¢; € [1,2]
and z; € X;,

[ @127 1/ L) @ ®a(272420/Lo)] |\ f(@1,w2)

k1=j1 k2=j2
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d,u1(z1)du2(22). (3.11)

y // |®1(27 %1811/ L1) ® ®2(27 %2851/ La) f (21, 22) |
X1 xXo Hz 1

_ V(Zi,2 klti)(l+237'ti_1pi($i,zi))/\’

To proceed further, we note that

|12V I1) ® @5(27 %121/ Lo) f (21, 22
< @127t/ L1) ® ®2(27%2 12/ La) f (21, 20)|”

X {[@1(2_k1t1\/7 ®‘P2 k2t2\/> :|>\1 Ao f 56'1,.’172)}

X (142847 oy (1, 20)) M T (1 + 28285 po (9, 29)) 2227, (3.12)

From (3.11), (3.12), and the inequality
(14 25t pia, 2i)) N < 230X (1 4 2957 pu (g 2 )N (Vha > G, Y € [1,2]),
it follows that
[@1(27 41/ T1) ® ©2(2772/ L)}, f(w1,22)

<C Z Z 9(1=k1)(m1—=X1)9(ja—kz2)(m2—Az)

k1=j1 k2=j2

y // ‘11)1(2_k1t1\/f)®(1)2 2~ kztg\/ 2’1722 ‘
X1><X2 i

TTi) Vi(zi, 27kt (1 + 2kit; pi(xiazi)))‘
X {[@1(2—k1t1ﬁ @ By (2 kzhfh " fl‘l,l‘g)} o (3.13)

We claim that for any f € L?(X; x Xa), \i > D;/2, x; € X;, t; € [1,2], and j; € 7Z,

dp1 (z1)dpz(22)

[@1(2_j1t1 iV Ll) ® @2(2_j2t2\/ Lg)] ;1,/\2]0(361’ .’1?2) < 00, (314)
and there exists Ny > 0 such that
[@1(27j1t1 VvV Ll) X @2(27j2t2\/ LQ)] ;1 )\zf(l'l,xg) = O(2j1N02j2N0) (315)

as ji,j2 — +oo. Indeed, for i = 1,2, by Lemma 2.1 we have

< OV (yi, 2774) (1 + 294 plya, 25)) ~ (D2,

‘an(z—mim) (Y3, 2i)
Hence, by the Cauchy—Schwartz inequality and (2.1), we have
‘@1(2_j1t1vL ® P2(2772ta/La) f(y1, y2) ‘

SC//X . |Kq>1(2—j1t1\/f1)(y17Z1)||Kq>2(2—jzt2\/f2)(y2722)||f(21722)|dM1(21)dH2(22)
1X X2

< O fllp2(xsxx2)V (Y1, 2770 40) T2V (2, 279241) 72
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This along with (1.3) yields that for \; > D;/2,

(@127 t1V/L1) © 22(2772t2y/Lo)] ;1,,\2f(x17 )
< (C sup ||f||L2(X1><X2)
T wimeXaxxs [Imy Vi 2770) T V2 (14 2068 i, o))
SOl flle2xy xx) V(21,27 I )YV (1, 277245) 72,

Hence (3.14) is true. Moreover, if jq,j2 > 1, by (1.2) we have

[@1(2771t1y/L1) @ ®2(27 7251/ Ls)] :1’A2f(371a T2)
< O fllp2(xsx x2)V (21,2791 81) T2V (29, 277285) /2
< €L | e V (o0, 1) Y ()2,
which verifies (3.15) with Ny = max{n;/2,n2/2}.

Since mq,mg in (3.13) can be chosen to be arbitrarily large, it follows from (3.13),
(3.14), (3.15) and Lemma 2.7 that for any o > 0,

([t VL) 0 0220V}, flan,es)}
<C i i 9(1—k1)og(ja—ka)o //

k1=71 k2=j2 X1xXp

|(I>1(2_k1t1 VL) @ ®o(27 %219/ Ly zl,zg)rd,ul(zl)duz(zz)
V(Zl7 Q_kltl)(l + 2k1 iy p1 (.131, Zl))AlTV(ZQ, 2= lefg)(l + 2k2t2_1p2($2, 2’2)))‘27”-

This proves (3.5) for 0 < r < 1.

Next we show (3.5) for r > 1. Indeed, from (3.10) with m; > o + \;r + ¢ and
N; > \i+ (D; +n;+1)/r', where ¢ is any fixed positive number and 7/ is a number such
that 1/r + 1/r" =1, it follows that

“I’1(2_jlt1\/L ® Po(2 729/ L y1>y2‘

<C Y ) aUmkile it ikt rte)
k1=j1 k2=j2
// (2107 00y L) © 222t/ L) (21, 22)]|
xixxs [

dp (z1)dpe(z
iz V(#2770 )(1+2Jltz‘_1pi(yi;Zi))A’+(D1+"z+1)/T/ Ha (1) dpiz (z2)

<(C Z Z 2(]1 k1)(0+>\1T+€)2(j2—k2)(0+)\2r+5)
k1=j1 k2=j2

®1(27F141y/L1) @ P27 %2t/ Lo) f (21, T
" (// |®1( 1 ® Dy 2 f(z1, 29 | du1(21)du2(2’2)>
X1><X2

[T, V2, 2790t (1 + 29t lpz(yl,zz))“

S C Z Z 2(j17k1)(01+)‘17’)2(]‘2*]92)(0'24»)\27‘)
k1=j1 k2=j2
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’@1 _kltl\/L )®®2 2 kztgx/ 21,2’2 ’ 1/r
X // d 1(21)d/$2(2’2) 5
X1><X2 H

i V(2 270 (1 + 2t m(yz,zz))“

where we applied Holder’s inequality for the integrals and the sums, and used
(1.3) and (2.1). Raising both sides to the power r, dividing both sides by (1 +
20147 py (w1, 41)) M7 (1 + 27285 L pa (29, 42)) 2", in the left-hand side taking the supremum
over (y1,y2) € X1 X Xo, and in the right-hand side using the inequalities
(L 2707 i, ya)) N7 (1 4+ 2747 iy, )
> (14277 py (i, i)
> QU kN (1 4 94y (ay, 2N (Vs > i)

and V(z;,277it;) > V(z;,27%t;) (Vk; > j;), we obtain (3.5) for » > 1. O

LEMMA 3.5. Let 1,5 € A(R) be even functions. Let p € (0,00) and A\; >
(n; + D;)qw/min{p, 2}, i = 1,2. Then there ezists a constant C such that for all f €
LQ(Xl X XQ),

2 dty dt 1/2
(Lt
1 2 Lﬁ,(X1><X2)
2 dt, dty\ /2
(/ / ’(I)ltl 1) ® By (t2\/Lo 11 t;)

PROOF. Since \; > (n; + D;)qy/min{p, 2}, there exists a number r such that
0 < r < min{p,2}/q, and A\;r > n; + D;. From Lemma 3.4 we see that for any o > 0
there exists a constant C' such that for all f € L?(X; x X3), j; € Z, x; € X; and t; € [1,2],

{[#@t0VE) © 22 VD) flanw)}
<C i i 9(1—k1)og(ja—k2)o

k1=j1 k2=j2

" // |@1(27F1t1V/T1) @ o2 2ty\/La) f (21, 22) | dpa (21)dpua(22)
Xixx2 V(

21, 2_k1t1)<1 =+ 2k1t;1p1 (.’1?1, Zl)))‘lT'V(ZQ, 2_k2t2>(1 + 2k2t;1p2($2, ZQ))/\zT '

L (X1xX2)

Taking the norm (f12 ff | - |2/ (dt1/t1)(dt2/t2))"? on both sides, applying Minkowski’s
inequality, and then using (2.7), we get

2 4ty dts\"”
([ ot e i 22
<C Z Z Ji—k1)og(ja—ks2)o

k1=j1 k2=j2
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r/2
// fl S @127t/ L) @ @227 20/ L) (21, 20)| %%) dpir (21)dpa(22)
X1><X2

Zl, Q_kltl)(l + letl_ P1 (.Tl, Z]_)))\ITV(ZQ, 2_k2t2)(1 + 2k2t2_1p2<.’172, 22)))\27"

<C Z Z o1 —k1)o9(ja—k2)o

k1=j1 k2=j2

dty dt;\""?
X Mg [(/ / ‘61)1 kltl ®<I>2 k2t2~/ f’ t11t22> ]($1a$2)

<C Z Z 2—‘k1—j1|02—|k2—j2‘0

k‘1=—00k2=—00
dty dty\"?
| ([ [ memavm osetyml $42) ] e
1 2

It then follows from Lemma 2.6 and Lemma 2.8 that

2dty dt
[ e, 22"

t1 1o

LY (X1xX2)
1/r

dt1 dtg
t1 12 o
J102€Z || /7 g2/

{ </12 /12 ’ [ @127 01V L) @ ®o(27 220/ Lo)] | f

1/r
r/2
dty dt
<ol {s | ([ [ meravmenemi )]
b J1,02€Z || /7 g2/
dty dts\" v
Ay
Lo J1,J2€L|| p/7

W (e2/m)

i
Lﬁ,(Xl ><.X2)

1 t2

where we used the fact that p/r > g, (which implies w € A,/ (X1 xX2)) and 2/r > 1. O

LEMMA 3.6. Let ®1,P5 € A(R) be even functions. Let p € (0,00) and \; > 0,
i =1,2. Let w be an arbitrary weight (i.e., nonnegative locally integrable function) on
X1 x Xo. Then there exists a constant C such that for all f € L?(X; x X»),

1% dty dts
H / / VL) @ Balty L2)]/\1+D1/2’>\2+D2/2f‘ ty tz)

<C H93131,<1>2,L1,LQ,(Q/nl)Al,(Q/nQ)AQ(f)'

Lﬁ,(Xl XXQ)

LP(X1xX3)

Proor. Let o > 0. By Lemma 3.4 with » = 2, we see that there exists a constant
C such that for all f € L?(X; x X3), ji € Z and t; € [1,2],
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. ) % 2
{[‘1)1(2_]1“ VL) ® 8227212V La)] )\ b, ja sy e f (@1 xQ)}
o0 oo
<C Z Z 91—k1)o9(ja—k2)o

k1=j1 k2a=j2
// |@1(27F141\/L1) @ ®2(27%2t2/Lo) f (21, 22 ‘
X

1 HZ L V(20 27Rity) (14 2Rt i, 2) )22+ D

<C Z Z 9—lki—jilog—|ka—j2|o

klffoo szfoo

// ‘(I)l 2 kltl\/ ®(I)2 2 kztg\/ 2:1,22 ‘
X1 %X ]_[Z L1 2kig ! (xiazi))2>\7'

dpa(21)dpz(22)
V(’I’l, 27161151)‘/(332, 27k2t2) ’

dp1 (z1)dpa(22)

(3.16)

where for the last line we used (1.3). Taking the norm fl fl |(dty/t1)(dt2/t2) on both
sides of (3.16) gives

2 2 o iy . 2 dty dt,
/1 /1 {[@1(2 i1/ L1) ® @a(27tay LQ)],\1+D1/2,A2+D2/2f(z1’m)} oty
<C Z Z 9—lk1—jilog—|k2—j2|o

k1= —o00 ko= —oo0
X/2/2/ / 212781 V/Lh) © @22 "2t5/La) f (21, 20)|°
Xy, (L4298 ply, 20)) 22 (1 4 20285 po (9, 22)) 222
dpg (z1)dt1dpg(29)dts
V($1,2_k1t1)t1V($2,2_k2t2)t2.

X

Applying Lemma 2.6 in Lﬁ,/z 21 we obtain
y

o . 2 dty dty\"?
(/0 /0 ’[qn(mm)@qwzJE>}A1+D1/Q,A2+D2/2f\ )

t1 1o

Lﬁ,(Xl ><X2)

2 2
B H{/l /1 {[@1(2—11751\/]71) © ¢2(2_j2t2\/f2)]:1+D1/2,>\2+D2/2f(3317332)}2

dty dts } 1/2
>< —
t1 1o J1,J2€7Z

[ [ ] domse o
B 1 J1 JxJx

(L+ 28, "p(a, zo)%(l + 282ty o, 22)) P
1/2

LE/2(01)

d,u1 (Z1)dt1 dIJQ(ZQ)dtQ }
V(xq,27%1ty)ty V(zg, 27 F219)ts ki ko€Z

L2 ()

=C Hggl,<I>2,L1,Lz,(2/n1)/\1,(2/n2)/\2(f)’ L2 (X1 xXa)
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as desired. n
Having the above lemmas, we are ready to give the proofs of Theorems 1.4 and 1.5.

PROOF OF THEOREM 1.4. Let &, ®,, EIV>1, P, € A(R) be even functions satisfying
®1(0) = P2(0) = ®1(0) = P(0) = 0.

Let p € (0,00) and A; > (n; + D;)qw/min{p, 2}, i = 1,2. Note that for a.e. (x1,z2) €
X1 X XQ,

@1 (t1v/I1) @ Bo(ta/Lo) f (w1, 2) < [D1(t1V/L1) @ Do (t2/ Lo} fl@r,22). (3.17)

Using (3.17), Lemma 3.3 and Lemma 3.5, we infer

||g‘1>17‘1927L1,L2 ”L (X1xX2)

dty dt
(/ / ‘q)ltl ®‘1>2t2\/ f‘ — 2)
b L2 (X1 % X2)
1/2
2 dty dt
<// VI © Ea(taV/Ia)]}, o, f 11t22)
2dt dt
(// [a(0VE) @ BtV t11t22)

<o ([ [ v )

= COllg®,,@5,01,0. (F)ll 22, (x1 x X2)-

L (Xl ><X2)

<C

LY (X1xX5)

Lﬁ,(XIXXQ)

By symmetry, there also holds that

||g‘I’17‘I’27L17L2 (f)”Lﬁ,(Xl x X2) < C”g\I’h\IIZ’aLl;LQ (f) ||Lﬁ,(X1 xX5)*
Hence the assertion of Theorem 1.4 is true. O

PROOF OF THEOREM 1.5. Let &1, 5 € A(R) be even functions. Let p € (0, 00),
i > 2q,,/min{p,2} and X, > (n; + D;)q, /min{p,2}, i = 1,2. Then, for all f € L?(X; x
Xs), by (3.17), Lemma 3.6, Lemma 3.1, Lemma 3.2 and Lemma 3.5, we have

Hg‘blv(I)2;L17L2 HLP (X1xX2)

<| (0L

(1 ) ® Po(t2/L }(n1/2))\1+D1/2 (n2/2))\2+D2/2f‘

dty dis\ M?
X [
t 1y

L2 (X1 X X2)

3 ®2,L1,L2,A1,A2 (f>HL£’U(X1 x X2)
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< CHS<1>1,<1>2,L1,L2(f)HLP (X1xX32)

2 dty dts\?
(/ / ®‘I’2 (tav/ L /\, Xf‘ tllt;)

< Cllgay, 05,01, (F)ll 22, (x1 % x5

<c‘

LY, (X1xX2)

which yields (1.5). The proof of Theorem 1.5 is complete. O

4. Applications of Theorems 1.4 and 1.5.

1. In [7] and [11], the theory of product Hardy space Hj ; (R™ x R™) via the
Littlewood—Paley area functions was established, where L and Ly are two nonnegative
self-adjoint operators that satisfy only the Gaussian heat kernel bound. To be more
specific, Hp ;. (R™ x R™) is defined as the closure of

{f € L*R" x R™) : S, 1,(f) € L*(R™ x R™)}
under the norm ||f||H£l,L2(R”><R"") = ||SL1,L2(f)||H;LL2 (RnxRm), Where

SLl,L2 (f)(xla 1'2)

B </~/1—‘1(I1)XF2(12)

Then, by applying our main result Theorem 1.5 (also Remark 1.7), we obtain the char-
acterization of H} ; (R™ x R™) via the Littlewood-Paley square function as follows,
which is missing in [7] and [11], i.e., H} ;. (R™ x R™) is equivalent to the closure of

(BLie 80 @ (3 Loe™352) f (41, o)

1/2
2 dyl dtl dygdtg
tn+1 thrl
1 2

{f € P(®" xR™): g1, 1,(f) € L'(R" x R™)}

under the norm ||gz, 1., (f)”Hil,LZ(R"XRm)’ where

2 dty dty |/
9,2, (F) (@1, 22) (// tlee_tL1)®(tLge_tL2)f( 7;52)‘ 12)

ty to

2. In 1965, Muckenhoupt and Stein in [17] introduced a notion of conjugacy asso-
ciated with the Bessel operator Ay on Ry := (0,00) defined by

d? Ad
(@) i= = fl0) = 2 (@), w0,

T

and the Bessel Schrodinger operator Sy on R

d? AZ— )\

In [9], Duong et al. established the product Hardy space HX (Ry x Ry ) associated
with A, via the Littlewood—Paley area function and square functions. Note that the
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measure on R related to Ay is duy(z) = 2z dz. We point out that the kernel of
tQA,\e*ﬂA* satisfies the Gaussian upper bounds with respect to the measure duy, the
Holder regularity and the cancellation property. Hence, by using the approach in [15]
via the Plancherel-Polya type inequality, they obtained the equivalence of the character-
izations of HX (R4 x Ry) via Littlewood-Paley area function and square functions. By
applying our main result Theorem 1.5 (also Remark 1.7), we obtain a direct proof of the
equivalence without using the Holder regularity and the cancellation property.

In [1], Betancor et al. established the product Hardy space Hg, (R xR} associated
with Ay via the Littlewood—Paley area function and square functions. To prove the
equivalence, they need to use the Poisson semigroup {e_t‘/g}, the subordination formula
and the Moser type inequality as a bridge. By applying our main result Theorem 1.5
(also Remark 1.7), we obtain a direct proof of this equivalence without using the Moser
type inequality.
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