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Abstract. In Berkes’ striking paper of the early 1990s, he presented

another limit theorem different from the central limit theorem for a lacunary
trigonometric series not satisfying Erdős’ lacunary condition. In this paper,
we upgrade his result to the limit theorem having high versatility, which we
would call Berkes’ limit theorem. By this limit theorem, it is explained in

a unified way that Fukuyama–Takahashi’s counterexample and Takahashi’s
counterexample are all convergent to limiting distributions of the same type
as Berkes.

Introduction.

When {ni}∞i=1 is a strictly increasing sequence of natural numbers, a se-

quence {
√
2 cos 2πnit}∞i=1 of random variables on the Lebesgue probability space

([0, 1),B([0, 1)),P) forms an orthonormal system of L2
(
[0, 1),B([0, 1)),P

)
, where

B([0, 1)) is the Borel σ-algebra over [0, 1), and P is the Lebesgue measure restricted

to [0, 1). So, for a real sequence {ai}∞i=1 with
∑∞

i=1 a
2
i = ∞, a sequence{

P

(
t ∈ [0, 1);

1

AN

N∑
i=1

ai cos 2πnit ∈ ·
)}

N

of distributions on R is tight, where AN :=
√
(1/2)

∑N
i=1 a

2
i . Thus, as N → ∞, some

sort of limit theorems are expected for (1/AN )
∑N

i=1 ai cos 2πnit. Among them, when

{ni} and {ai} satisfy Erdős’ lacunary condition (LC in this section only) or Takahashi’s

LC or Fukuyama–Takahashi’s LC which is a generalization of the preceding two LCs, the

central limit theorem (CLT)

P

(
t ∈ [0, 1);

1

AN

N∑
i=1

ai cos 2πnit ∈ ·
)

→ the standard normal distribution as N → ∞

holds ([2], [5], [6], [3]). Moreover, for this CLT, these LCs are best possible as well as

sufficient in the sense that Erdős [2], Takahashi [7], Fukuyama–Takahashi [3] constructed

a counterexample (CE in this section only) of {ni} and {ai} which does not satisfy their

LC and for which CLT fails, respectively.

However, they only asserted that their CE is not convergent to the standard normal

distribution, and mentioned nothing as to whether their CE is convergent or not. In
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addition, in the convergent case, they did not give any comment on another limit theorem.

Some eight years ago from [3], Berkes tried to correct this defect. In [1], he constructed

a CE which does not satisfy Erdős’ LC and for which the limiting distribution is not the

standard normal distribution, but another infinitely divisible distribution. Matsushita

[4], imitating a manner of [1], found that Fukuyama–Takahashi’s CE is convergent to a

limiting distribution of the same type as Berkes. He also remarked that for Takahashi’s

CE, similar limit theorem to the above holds.

From these circumstantial evidences, we were convinced that there must be a general

theory explaining three CEs above (i.e., Berkes’, Fukuyama–Takahashi’s and Takahashi’s

CE), and under this conviction, we investigated the argument and calculation of Berkes

[1] and Matsushita [4], extracted common things from these, and arrived at some condi-

tions for {ni} and {ai} having high versatility. In this paper, we show that Berkes type

of limit theorem holds for a good many {ni} and {ai} satisfying these conditions. Since

this limit theorem stems from pioneering paper [1] of Berkes, paying honor to him, let

us call this Berkes’ limit theorem.

In Section 1, Theorem and its corollary are presented. In Section 2, their proofs are

given. In Section 3, it is verified that our results are applicable to Berkes’, Fukuyama–

Takahashi’s and Takahashi’s CE.

Remark 1. Erdős’ CE is quite different from three other CEs. Unfortunately, this

CE is not within the scope of our results. For the present, we know nothing about the

limit theorem this CE satisfies.

The author would like to thank the referee for good advice which enabled him to

make proofs clear and considerably short.

1. Presentation of theorem.

Let j0 ∈ N, {l(j)}∞j=j0
a sequence of natural numbers and {cj}∞j=j0

a positive se-

quence such that

l(j) → ∞ as j → ∞, (1)

Bm ↗ ∞ as m → ∞, (2)

Bm ∼ Bm+1 as m → ∞, (3)

B2
m

c2m
→ a

4
∈ (0,∞) as m → ∞. (4)

Here

Bm :=

√√√√1

2

m∑
j=j0

c2j
l(j)

(m ≥ j0). (5)

In the following, we fix these {l(j)}∞j=j0
and {cj}∞j=j0

.

To state our theorem, we define the following:
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Definition 1 (cf. Berkes [1]). (i) We denote by λ the Lebesgue measure on R.
Let λA be the restriction of λ to a Lebesgue measurable set A ⊂ R. Note that P = λ[0,1).

(ii) We define F+, F− : (0,∞) → [0,∞) by

F+(t) := λ(0,∞)

(
x;

sinx

x
≥ t
)
, F−(t) := λ(0,∞)

(
x;

sinx

x
≤ −t

)
.

F± is continuous and non-increasing, F±(t) ≤ 1/t (∀t > 0), F± = 0 on [1,∞), and

F±(0+) = ∞.

Definition 2. (i) By a Lévy measure, we mean a measure ν on R\{0} satisfying∫
R\{0}(x

2 ∧ 1)ν(dx) < ∞. We denote by µm,v,ν the infinitely divisible distribution on R
determined by triplet (m, v, ν) ∈ R×[0,∞)×{Lévy measure}. That is, µm,v,ν is the prob-

ability distribution on R whose characteristic function ˆµm,v,ν(ξ) =
∫
R e

√
−1ξtµm,v,ν(dt) is

given as

exp

{
√
−1mξ − v

2
ξ2 +

∫
R\{0}

(
e
√
−1ξt − 1−

√
−1ξt

1 + t2

)
ν(dt)

}
.

(ii) For A > 0, we define νA ∈ {Lévy measure} and mA ∈ R by

νA(dt) :=
1

Aπ

(
1(0,∞)(t)

F+(t/2
√
A)

t
+ 1(−∞,0)(t)

F−(|t|/2
√
A)

|t|

)
dt, t ∈ R \ {0},

mA := −
∫
R\{0}

t3

1 + t2
νA(dt).

Theorem. Let b ≥ 2 be an integer and {q(j)}∞j=j0
a sequence of natural numbers

such that

bq(j+1)−q(j) > l(j) (∀j ≥ j0), (6)

lim
m→∞

1

Bm

m∑
j=j0

cj
l(j)

bq(j+1)−q(j)
= 0. (7)

We define Nj ∈ 2N (j ≥ j0) by

Nj :=

{
bq(j) if b ∈ 2N,
2bq(j) if b ∈ 2N− 1.

(8)

Then, for ∀S ∈ B([0, 1)) with P(S) > 0,

P

(
1

Bm

m∑
j=j0

cj
l(j)

l(j)∑
l=1

cos 2πNj lt ∈ ·
∣∣∣ S)→ µm1/a,0,ν1/a

as m → ∞.

In other words,
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lim
m→∞

E
[
e
√
−1ξ(1/Bm)

∑m
j=j0

(cj/l(j))
∑l(j)

l=1 cos 2πNj lt
∣∣ S]

= exp

{∫
R\{0}

(
e
√
−1ξt − 1−

√
−1ξt

)
ν1/a(dt)

}
, ∀ξ ∈ R.

Here P
(
· | S

)
and E

[
· | S

]
denote a conditional probability given S and a conditional

expectation given S, respectively. That is,

P
(
· | S

)
=

P( · ∩ S)

P(S)
, E

[
· | S

]
=

E[ ·1S ]

P(S)
.

In this paper, E stands for the expectation with respect to P.

As mentioned in Introduction, we restate Theorem in terms of {ni} and {ai}:

Corollary 1. By a partition of N as

N =
[
1, l(j0)

]
+

∞∑
j=j0

(
l(j0) + · · ·+ l(j), l(j0) + · · ·+ l(j) + l(j + 1)

]
,

we define a strictly increasing sequence {ni}∞i=1 of natural numbers and a positive se-

quence {ai}∞i=1 by

ni :=


Nj0i if 1 ≤ i ≤ l(j0),

Nj+1

(
i−
(
l(j0) + · · ·+ l(j)

))
if l(j0) + · · ·+ l(j) < i ≤ l(j0) + · · ·

· · ·+ l(j) + l(j + 1) (j ≥ j0),

ai :=


cj0
l(j0)

if 1 ≤ i ≤ l(j0),

cj+1

l(j + 1)
if l(j0) + · · ·+ l(j) < i ≤ l(j0) + · · ·+ l(j) + l(j + 1) (j ≥ j0).

Then, for ∀S ∈ B([0, 1)) with P(S) > 0,

P

(
1

AN

N∑
i=1

ai cos 2πnit ∈ ·
∣∣∣ S)→ µm1/a,0,ν1/a

as N → ∞,

where

AN =

√√√√1

2

N∑
i=1

a2i .

2. Proof of Theorem.

We begin with the following:
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Claim 1. (i) lim
m→∞

1

Bm
max

j0≤j≤m
cj =

2√
a
.

(ii) lim
m→∞

1

B4
m

m∑
j=j0

( c2j
l(j)

)2
= 0.

Proof. (i) For j0 ≤ m0 ≤ m,

1

Bm
max

j0≤j≤m
cj ≤

( 1

Bm
max

j0≤j≤m0

cj

)
∨
(

max
m0≤j≤m

cj
Bj

)
.

Letting m → ∞ yields by (2) that

lim sup
m→∞

1

Bm
max

j0≤j≤m
cj ≤ sup

j≥m0

cj
Bj

.

And, letting m0 → ∞ yields by (4) that

lim sup
m→∞

1

Bm
max

j0≤j≤m
cj ≤ lim

j→∞

cj
Bj

=
2√
a
.

On the other hand, since

1

Bm
max

j0≤j≤m
cj ≥

cm
Bm

,

letting m → ∞ yields that

lim inf
m→∞

1

Bm
max

j0≤j≤m
cj ≥ lim

m→∞

cm
Bm

=
2√
a
,

which, together with the preceding, implies the convergence of (i).

(ii) First, by (5),

1

B4
m

m∑
j=j0

( c2j
l(j)

)2
≤ 2

B2
m

max
j0≤j≤m

c2j
l(j)

≤
( 2

B2
m

max
j0≤j≤m0

c2j
l(j)

)
∨
(
2 max
m0≤j≤m

c2j
B2

j

1

l(j)

)
,

where j0 ≤ m0 ≤ m. Letting m → ∞ yields that

lim sup
m→∞

1

B4
m

m∑
j=j0

( c2j
l(j)

)2
≤ 2 sup

j≥m0

c2j
B2

j

1

l(j)
.

And, letting m0 → ∞ yields by (1) and (4) that

lim sup
m→∞

1

B4
m

m∑
j=j0

( c2j
l(j)

)2
≤ 2 lim

j→∞

c2j
B2

j

1

l(j)
= 0. □

To prove Theorem, we define the following:

Definition 3. Fix b ∈ Z≥2 and a sequence {q(j)}∞j=j0
of natural numbers satis-
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fying (6) and (7). We define sequences {Xj}∞j=j0
and {X̃j}∞j=j0

of random variables on

the Lebesgue probability space
(
[0, 1),B([0, 1)),P

)
by

Xj(t) :=

l(j)∑
l=1

cos 2πNj lt, (9)

X̃j(t) :=

l(j)∑
l=1

cos 2πNj l

( ∑
q(j)<k≤q(j+1)

d(k)(t)

bk

)
. (10)

Here

d(k)(t) := ⌊bkt⌋ − b⌊bk−1t⌋, k ∈ N. (11)

Note that |Xj(t)| ≤ l(j).

Since, by (6), {1} ∪
{√

2 cos 2πNj lt; 1 ≤ l ≤ l(j), j ≥ j0
}

form an orthonormal

system of L2
(
[0, 1),B([0, 1)),P

)
,

E
[
Xj

]
= 0, (12)

E
[
X2

j

]
=

l(j)

2
, (13)

E

[( m∑
j=j0

cj
l(j)

Xj

)2]
=

1

2

m∑
j=j0

c2j
l(j)

= B2
m. (14)

Also, by (10),

X̃j is σ
(
d(k); q(j) < k ≤ q(j + 1)

)
-measurable. (15)

And the following holds:

Lemma 1.
∣∣Xj(t)− X̃j(t)

∣∣ ≤ 4π
l(j)2

bq(j+1)−q(j)
.

Proof. First note that

t =
∞∑
k=1

d(k)(t)

bk
(
t ∈ [0, 1)

) (
cf. (11)

)
.

By substituting this into (9),

Xj(t) =

l(j)∑
l=1

cos 2πNj l

( ∑
1≤k≤q(j)

d(k)(t)

bk
+
∑

k>q(j)

d(k)(t)

bk

)

=

l(j)∑
l=1

cos 2πNj l
∑

k>q(j)

d(k)(t)

bk
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because Nj/b
k ∈ N (1 ≤ k ≤ q(j)) by (8). By the inequality | cosu − cos v| ≤ |u − v|

(u, v ∈ R),

∣∣Xj(t)− X̃j(t)
∣∣ ≤ l(j)∑

l=1

2πNj l
∑

k>q(j+1)

d(k)(t)

bk

≤ 2πl(j)2Nj
1

bq(j+1)
≤ 4π

l(j)2

bq(j+1)−q(j)
. □

Definition 4. We define a sequence {Bn}∞n=1 of sub σ-algebras of B([0, 1)) by

Bn := σ
(
d(k); 1 ≤ k ≤ n

)
. (16)

Note that Bn ↗ (i.e., Bn ⊂ Bn+1),

Bn = the σ-algebra generated by
[k − 1

bn
,
k

bn

)
, k = 1, . . . , bn, (17)

σ
( ∞∪
n=1

Bn

)
= B([0, 1)). (18)

Claim 2. For ∀S ∈
∪∞

n=1 Bn and ∀ξ ∈ R,

lim
m→∞

∣∣∣∣E[e√−1ξ(1/Bm)
∑m

j=j0
(cj/l(j))Xj ;S

]
−
( m∏
j=j0

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj

])
P(S)

∣∣∣∣ = 0.

Proof. Fix ∀ξ ∈ R. First note that

{d(k)}∞k=1 is, under P, a sequence of i.i.d. random variables. (19)

Let S ∈ Bn. Clearly q(j0 + n − 1) ≥ n by q(j + 1) − q(j) ≥ 1 and q(j0) ≥ 1. Since, by

this, (15) and (19), 1S , X̃j0+n−1, X̃j0+n, . . ., X̃m are independent, it follows that

E
[
e
√
−1ξ(1/Bm)

∑m
j=j0+n−1(cj/l(j))X̃j ;S

]
=
( m∏
j=j0+n−1

E
[
e
√
−1ξ(1/Bm)(cj/l(j))X̃j

])
P(S).

By virtue of this expression,∣∣∣∣E[e√−1ξ(1/Bm)
∑m

j=j0
(cj/l(j))Xj ;S

]
−
( m∏
j=j0

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj

])
P(S)

∣∣∣∣
≤ I1(m) + I2(m) + I3(m) + I4(m),

where

I1(m) = E
[∣∣e√−1ξ(1/Bm)

∑m
j=j0

(cj/l(j))Xj − e
√
−1ξ(1/Bm)

∑m
j=j0+n−1(cj/l(j))Xj

∣∣],
I2(m) = E

[∣∣e√−1ξ(1/Bm)
∑m

j=j0+n−1(cj/l(j))Xj − e
√
−1ξ(1/Bm)

∑m
j=j0+n−1(cj/l(j))X̃j

∣∣],
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I3(m) =
∣∣∣ m∏
j=j0+n−1

E
[
e
√
−1ξ(1/Bm)(cj/l(j))X̃j

]
−

m∏
j=j0+n−1

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj

]∣∣∣,
I4(m) =

∣∣∣ m∏
j=j0+n−1

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj

]
−

m∏
j=j0

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj

]∣∣∣.
Since, by the inequalities |e

√
−1u−e

√
−1v| ≤ |u−v| (u, v ∈ R) and

∣∣∏k
i=1 zi−

∏k
i=1 wi

∣∣ ≤∑k
i=1 |zi − wi| (z1, . . . , zk, w1, . . . , wk ∈ C with |zi|, |wi| ≤ 1),

I1(m), I4(m) ≤
∑

j0≤j<j0+n−1

E
[
|ξ| 1

Bm

cj
l(j)

|Xj |
]
≤ |ξ| 1

Bm

∑
j0≤j<j0+n−1

cj ,

I2(m), I3(m) ≤
m∑

j=j0+n−1

|ξ| 1

Bm

cj
l(j)

E
[
|Xj − X̃j |

]
≤ 4π|ξ| 1

Bm

m∑
j=j0

cj
l(j)

bq(j+1)−q(j)
,

the assertion of the claim follows immediately from (2) and (7). □

Claim 3. For ∀ξ ∈ R,

lim
m→∞

m∏
j=j0

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj

]
= exp

{∫
R\{0}

(
e
√
−1ξt − 1−

√
−1ξt

)
ν1/a(dt)

}
.

We simplify this claim:

Lemma 2. For ∀ξ ∈ R, lim
m→∞

m∑
j=j0

∣∣∣∣E[e√−1ξ(1/Bm)(cj/l(j))Xj − 1
]∣∣∣∣2 = 0.

Proof. Fix ξ ∈ R. By (12), (13) and the inequality
∣∣e√−1u − 1−

√
−1u

∣∣ ≤ u2/2

(u ∈ R),∣∣∣∣E[e√−1ξ(1/Bm)(cj/l(j))Xj − 1
]∣∣∣∣ = ∣∣∣∣E[e√−1ξ(1/Bm)(cj/l(j))Xj − 1−

√
−1ξ

1

Bm

cj
l(j)

Xj

]∣∣∣∣
≤ E

[1
2
ξ2

1

B2
m

( cj
l(j)

)2
X2

j

]
=

ξ2

4

1

B2
m

c2j
l(j)

.

Squaring this, and then summing over j0 ≤ j ≤ m, we have

m∑
j=j0

∣∣∣∣E[e√−1ξ(1/Bm)(cj/l(j))Xj − 1
]∣∣∣∣2 ≤

(ξ2
4

)2 1

B4
m

m∑
j=j0

( c2j
l(j)

)2
,

which tends to 0 as m → ∞ from Claim 1(ii). □

Since, by this lemma,

max
j0≤j≤m

∣∣∣∣E[e√−1ξ(1/Bm)(cj/l(j))Xj − 1
]∣∣∣∣
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≤

(
m∑

j=j0

∣∣∣∣E[e√−1ξ(1/Bm)(cj/l(j))Xj − 1
]∣∣∣∣2
)1/2

→ 0 as m → ∞,

we can take m(ξ) ≥ j0 such that∣∣∣∣E[e√−1ξ(1/Bm)(cj/l(j))Xj − 1
]∣∣∣∣ ≤ 1

2
, j0 ≤ ∀j ≤ m, ∀m ≥ m(ξ).

Note that for z ∈ C \ (−∞,−1],

1 + z = ezeR(z), (20)

|R(z)| ≤ |z|2
(
|z| ≤ 1

2

)
, (21)

where R(z) = −z2
∫ 1

0
s/(1 + zs)ds. Then, for each m ≥ m(ξ),

m∏
j=j0

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj

]
= exp

{ m∑
j=j0

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj − 1

]}
exp

{ m∑
j=j0

R
(
E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj − 1

])}
.

Since, by Lemma 2 and (21),

m∑
j=j0

R
(
E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj − 1

])
→ 0 as m → ∞,

Claim 3 reduces to the following claim:

Claim 4. lim
m→∞

m∑
j=j0

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj − 1

]
=

∫
R\{0}

(
e
√
−1ξt − 1−

√
−1ξt

)
ν1/a(dt), ξ ∈ R.

In what follows, we show this claim.

Fix ξ ∈ R. First note that

e
√
−1ξη − 1 =

√
−1ξ

∫ ∞

0

(
e
√
−1ξc − 1−

√
−1ξc

)
1η≥cdc

−
√
−1ξ

∫ ∞

0

(
e−

√
−1ξc − 1− (−

√
−1ξc)

)
1η≤−cdc

+
√
−1ξη − ξ2

2
η2, η ∈ R.

By letting η = (1/Bm)(cj/l(j))Xj ,
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e
√
−1ξ(1/Bm)(cj/l(j))Xj − 1 =

√
−1ξ

∫ ∞

0

(
e
√
−1ξc − 1−

√
−1ξc

)
1(1/Bm)(cj/l(j))Xj≥cdc

−
√
−1ξ

∫ ∞

0

(
e−

√
−1ξc − 1− (−

√
−1ξc)

)
1(1/Bm)(cj/l(j))Xj≤−cdc

+
√
−1ξ

1

Bm

cj
l(j)

Xj −
ξ2

2

1

B2
m

( cj
l(j)

)2
X2

j .

Here, by noting that∣∣∣ 1

Bm

cj
l(j)

Xj

∣∣∣ = 1

Bm

cj
l(j)

∣∣Xj

∣∣ ≤ cj
Bm

≤ 1

Bm
max

j0≤j≤m
cj ,

the expression above is turned into

e
√
−1ξ(1/Bm)(cj/l(j))Xj − 1

=
√
−1ξ

∫ (1/Bm)maxj0≤j≤m cj

0

(
e
√
−1ξc − 1−

√
−1ξc

)
1(1/Bm)(cj/l(j))Xj≥cdc

−
√
−1ξ

∫ (1/Bm)maxj0≤j≤m cj

0

(
e−

√
−1ξc − 1− (−

√
−1ξc)

)
1(1/Bm)(cj/l(j))Xj≤−cdc

+
√
−1ξ

1

Bm

cj
l(j)

Xj −
ξ2

2

1

B2
m

( cj
l(j)

)2
X2

j .

Taking expectation, and then summing over j0 ≤ j ≤ m yield by (12) and (13) that

m∑
j=j0

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj − 1

]
= I+5 (m) + I−5 (m) + I+6 (m) + I−6 (m)− ξ2

2
, (22)

where

I±5 (m)

= ±
√
−1ξ

∫ (1/Bm)maxj0≤j≤m cj

2/
√
a

(
e±

√
−1ξc − 1− (±

√
−1ξc)

) m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)
dc,

I±6 (m)

= ±
√
−1ξ

∫ 2/
√
a

0

(
e±

√
−1ξc − 1− (±

√
−1ξc)

) m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)
dc.

Lemma 3.

∣∣∣∣(e±√
−1ξc−1− (±

√
−1ξc)

) m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)∣∣∣∣ ≤ ξ2

2
, ∀c > 0.

Proof. By Chebyshev’s inequality,

the left-hand side ≤ 1

2
ξ2c2

m∑
j=j0

P
(∣∣Xj

∣∣ ≥ cBm
l(j)

cj

)
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≤ 1

2
ξ2c2

m∑
j=j0

E

[( |Xj |
cBml(j)/cj

)2]
=

ξ2

2
. □

Claim 5. For 0 < ∀c < 2/
√
a,

lim
m→∞

m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)
=

a

π

∫ 1

c
√
a/2

F±(s)

s
ds.

Recognizing this claim as correct, we here give the proof of Claim 4:

Proof of Claim 4. First we check the convergence of each term of the right-

hand side of (22).

Since, by Claim 1(i) and Lemma 3,∣∣∣∣∫ (1/Bm)maxj0≤j≤m cj

2/
√
a

(
e±

√
−1ξc − 1− (±

√
−1ξc)

) m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)
dc

∣∣∣∣
≤
∫ (2/

√
a)∨((1/Bm)maxj0≤j≤m cj)

(2/
√
a)∧((1/Bm)maxj0≤j≤m cj)

∣∣∣∣(e±√
−1ξc − 1− (±

√
−1ξc)

) m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)∣∣∣∣dc
≤
∣∣∣ 1

Bm
max

j0≤j≤m
cj −

2√
a

∣∣∣ ξ2
2

→ 0 as m → ∞,

it follows that I±5 (m) → 0. Since, by Claim 5, Lemma 3 and the Lebesgue convergence

theorem,∫ 2/
√
a

0

(
e±

√
−1ξc − 1− (±

√
−1ξc)

) m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)
dc

→
∫ 2/

√
a

0

(
e±

√
−1ξc − 1− (±

√
−1ξc)

)
dc

a

π

∫ 1

c
√
a/2

F±(s)

s
ds as m → ∞,

it follows that

I±6 (m) → ±
√
−1ξ

∫ 2/
√
a

0

(
e±

√
−1ξc − 1− (±

√
−1ξc)

)
dc

a

π

∫ 1

c
√
a/2

F±(s)

s
ds.

Thus, combining them, we obtain that

lim
m→∞

m∑
j=j0

E
[
e
√
−1ξ(1/Bm)(cj/l(j))Xj − 1

]
= −ξ2

2
+

∑
h∈{+,−}

h
√
−1ξ

∫ 2/
√
a

0

(
eh

√
−1ξc − 1− h

√
−1ξc

)
dc

a

π

∫ 1

c
√
a/2

Fh(s)

s
ds. (23)

Next, we compute the right-hand side above. To this end, note that



128

128 S. Takanobu∫ 1

0

tdt

∫ 1

t

F±(s)

s
ds ≤

∫ 1

0

tdt

∫ 1

t

1

s2
ds =

1

2
< ∞,

∫ 1

0

(
sF+(s) + sF−(s)

)
ds =

∫ 1

0

sds
(∫ ∞

0

1(sin x)/x≥sdx+

∫ ∞

0

1−(sinx)/x≥sdx
)

=

∫ 1

0

sds

∫ ∞

0

1|(sinx)/x|≥sdx

=

∫ ∞

0

dx

∫ 1∧|(sin x)/x|

0

sds =
1

2

∫ ∞

0

( sinx
x

)2
dx =

π

4
.

Then, by the change of variables t = (
√
a/2)c,

the right-hand side of (23)

= −ξ2

2
+

∑
h∈{+,−}

a

π

∫ 1

0

h
√
−1ζ

(
eh

√
−1ζt − 1− h

√
−1ζt

)
dt

∫ 1

t

Fh(s)

s
ds,

where ξ2/
√
a =: ζ for simplicity. And, by Fubini’s theorem,

the last expression

= −ξ2

2
+

∑
h∈{+,−}

a

π

∫ 1

0

Fh(s)

s

(
eh

√
−1ζs − 1− h

√
−1ζs+

ζ2

2
s2
)
ds

= −ξ2

2
+

ζ2

2

a

π

∫ 1

0

(
sF+(s) + sF−(s)

)
ds

+
∑

h∈{+,−}

a

π

∫ 1

0

(
eh

√
−1ζs − 1− h

√
−1ζs

)Fh(s)

s
ds

=

∫
R\{0}

(
e
√
−1ξ(2/

√
a)s − 1−

√
−1ξ

2√
a
s
) a
π

(
1(0,1)(s)

F+(s)

s
+ 1(−1,0)(s)

F−(|s|)
|s|

)
ds

because ζ = ξ2/
√
a. Finally, by the change of variables (2/

√
a)s = t,

the last expression =

∫
R\{0}

(
e
√
−1ξt − 1−

√
−1ξt

)
ν1/a(dt),

which shows the assertion of Claim 4. □

Proof of Claim 5. It is divided into 3 steps.

1◦ Fix 0 < f < 1. Set jm(f) := min
{
j ∈ {j0, . . . ,m};Bm/Bj ≤ 1/f

}
. For m ≫ 1,

jm(f) > j0, Bm/Bjm(f) ≤ 1/f < Bm/Bjm(f)−1, and thus jm(f) → ∞ as m → ∞. Since

Bm/Bj > 1/f (j0 ≤ j < jm(f)), so P
(
±Xj ≥ Bm/Bj l(j)f

)
= P(∅) = 0, it is seen that

m∑
j=j0

P
(
±Xj ≥

Bm

Bj
l(j)f

)
=

∑
jm(f)≤j≤m

P
(
±Xj ≥

Bm

Bj
l(j)f

)
. (24)

Set
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tm,j,± := 2
Bm

Bj
l(j)f ± 1 (j0 ≤ j ≤ m). (25)

Note that tm,j,± > 1 (jm(f) ≤ j ≤ m) for m ≫ 1 because tm,j,± ≥ 2l(j)f ± 1 → ∞ as

j → ∞. Since, by (9), Xj(t) =
∑l(j)

l=1 cos 2πlNjt = gj(Njt), where gj(·) is periodic with

period 1, and since, by (8), Nj/2 ∈ N and the transformation [0, 1) ∋ t 7→ {nt} ∈ [0, 1)

is measure preserving for each n ∈ N,

P
(
±Xj ≥

Bm

Bj
l(j)f

)
= P

(
±gj(Njt) ≥

Bm

Bj
l(j)f

)
= P

(
±gj(2y) ≥

Bm

Bj
l(j)f

)
=

1

2π
λ(0,2π)

(
±gj

(x
π

)
≥ Bm

Bj
l(j)f

)
=

1

2π
λ(0,2π)

(
±
( sin(2l(j) + 1)x

2 sinx
− 1

2

)
≥ Bm

Bj
l(j)f

)
=

1

2π
λ(0,2π)

(
± sin(2l(j) + 1)x

sinx
≥ tm,j,±

)
.

By Lemma 1 in Berkes [1], there exists Θm,j,± ∈ [0, 1] such that

the last expression =
2

π

1

2l(j) + 1
F±

(
tm,j,±

2l(j) + 1

(
1− Θm,j,±

t2m,j,±

))
,

so that ∑
jm(f)≤j≤m

P
(
±Xj ≥

Bm

Bj
l(j)f

)

=
2

π

m∑
j=jm(f)

1

2l(j) + 1
F±

(
tm,j,±

2l(j) + 1

(
1− Θm,j,±

t2m,j,±

))
. (26)

Here noting that for jm(f) ≤ j ≤ m,

f ≤ Bm

Bj
f ≤ 1,

∣∣∣Bm

Bj
f − tm,j,±

2l(j) + 1

∣∣∣ = 1

2l(j) + 1

∣∣∣Bm

Bj
f ∓ 1

∣∣∣ ≤ 2

2l(j) + 1
,∣∣∣∣Bm

Bj
f − tm,j,±

2l(j) + 1

(
1− Θm,j,±

t2m,j,±

)∣∣∣∣ ≤ ∣∣∣∣Bm

Bj
f − tm,j,±

2l(j) + 1

∣∣∣∣+ 1

2l(j) + 1
≤ 3

2l(j) + 1
,

we obtain that for m ≫ 1,∣∣∣∣ m∑
j=jm(f)

1

2l(j) + 1
F±

(
tm,j,±

2l(j) + 1

(
1− Θm,j,±

t2m,j,±

))
−

m∑
j=jm(f)

1

2l(j) + 1
F±

(Bm

Bj
f
)∣∣∣∣
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≤
m∑

j=jm(f)

1

2l(j) + 1

∣∣∣∣F±

(
tm,j,±

2l(j) + 1

(
1− Θm,j,±

t2m,j,±

))
− F±

(Bm

Bj
f
)∣∣∣∣

≤
( m∑

j=jm(f)

1

2l(j) + 1

)
sup

∣∣F±(u)− F±(v)
∣∣; f ≤ v ≤ 1,

|u− v| ≤ sup
j≥jm(f)

3/(2l(j) + 1)

 .

(27)

Letting m → ∞ yields by the continuity of F± and (1) that

lim
m→∞

sup

∣∣F±(u)− F±(v)
∣∣; f ≤ v ≤ 1,

|u− v| ≤ sup
j≥jm(f)

3/(2l(j) + 1)

 = 0. (28)

Also

lim sup
m→∞

m∑
j=jm(f)

1

2l(j) + 1
< ∞. (29)

For, if, for simplicity, we set

x
(m)
j :=

B2
m

B2
j

(j0 ≤ j ≤ m), (30)

then

1 = x(m)
m < x

(m)
m−1 < · · · < x

(m)
jm(f) ≤

1

f2
< x

(m)
jm(f)−1,

x
(m)
j−1 − x

(m)
j ≥

x
(m)
j−1 − x

(m)
j

x
(m)
j−1

=
c2j
B2

j

1

2l(j)
>

c2j
B2

j

1

2l(j) + 1
(j0 < j ≤ m),

so that

m∑
j=jm(f)

1

2l(j) + 1
<

m∑
j=jm(f)

B2
j

c2j

(
x
(m)
j−1 − x

(m)
j

)
≤
(
sup
j≥j0

B2
j

c2j

)(
x
(m)
jm(f)−1 − x(m)

m

)
≤
(
sup
j≥j0

B2
j

c2j

)(
x
(m)
jm(f)−1 − x

(m)
jm(f) +

1

f2
− 1
)
.

Since, by (3),

max
jm(f)≤j≤m

(
x
(m)
j−1 − x

(m)
j

)
= max

jm(f)≤j≤m

( B2
j

B2
j−1

− 1
)
x
(m)
j

≤ 1

f2
sup

j≥jm(f)

( B2
j

B2
j−1

− 1
)
→ 0 as m → ∞, (31)
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it follows that

lim sup
m→∞

m∑
j=jm(f)

1

2l(j) + 1
≤
(
sup
j≥j0

B2
j

c2j

)( 1

f2
− 1
)
< ∞.

Therefore, by combining (28), (29) and (27),

lim
m→∞

∣∣∣∣ m∑
j=jm(f)

1

2l(j) + 1
F±

(
tm,j,±

2l(j) + 1

(
1− Θm,j,±

t2m,j,±

))

−
m∑

j=jm(f)

1

2l(j) + 1
F±

(Bm

Bj
f
)∣∣∣∣ = 0,

which, together with (26), implies that

lim
m→∞

∣∣∣∣ m∑
j=jm(f)

P
(
±Xj ≥

Bm

Bj
l(j)f

)
− 2

π

m∑
j=jm(f)

1

2l(j) + 1
F±

(Bm

Bj
f
)∣∣∣∣ = 0.

2◦ For simplicity, set φ±(x) := F±
(√

xf
)

(x > 0). φ± : (0,∞) → [0,∞) is continuous.

First

m∑
j=jm(f)

1

2l(j) + 1
F±

(Bm

Bj
f
)

=

m∑
j=jm(f)

1

1 + (1/2l(j))

B2
j

c2j

B2
j−1

B2
j

φ±(x
(m)
j )

x
(m)
j

(
x
(m)
j−1 − x

(m)
j

)


≤
(

sup
j≥jm(f)

B2
j

c2j

) m∑
j=jm(f)

φ±(x
(m)
j )

x
(m)
j

(
x
(m)
j−1 − x

(m)
j

)
,

≥
(
1 +

1

2 inf
j≥jm(f)

l(j)

)−1(
inf

j≥jm(f)

B2
j

c2j

)(
inf

j≥jm(f)

(Bj−1

Bj

)2)

×
m∑

j=jm(f)

φ±(x
(m)
j )

x
(m)
j

(
x
(m)
j−1 − x

(m)
j

)
.

Next ∣∣∣∣ m∑
j=jm(f)

φ±(x
(m)
j )

x
(m)
j

(
x
(m)
j−1 − x

(m)
j

)
−
∫ 1/f2

1

φ±(x)

x
dx

∣∣∣∣
=

∣∣∣∣ m∑
j=jm(f)+1

∫ x
(m)
j−1

x
(m)
j

(φ±(x
(m)
j )

x
(m)
j

− φ±(x)

x

)
dx
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+

∫ 1/f2

x
(m)

jm(f)

(φ±(x
(m)
jm(f))

x
(m)
jm(f)

− φ±(x)

x

)
dx+

∫ x
(m)

jm(f)−1

1/f2

φ±(x
(m)
jm(f))

x
(m)
jm(f)

dx

∣∣∣∣
≤
( 1

f2
− 1
)
sup

{∣∣∣φ±(u)

u
− φ±(v)

v

∣∣∣; 1 ≤ u, v ≤ 1/f2,

|u− v| ≤ max
jm(f)≤j≤m

(
x
(m)
j−1 − x

(m)
j

)}

+
(
x
(m)
jm(f)−1 − x

(m)
jm(f)

)
sup

{
φ±(u)

u
; 1 ≤ u ≤ 1

f2

}
.

Letting m → ∞ yields by (31) and the continuity of φ±(·) that

lim
m→∞

m∑
j=jm(f)

φ±(x
(m)
j )

x
(m)
j

(
x
(m)
j−1 − x

(m)
j

)
=

∫ 1/f2

1

φ±(x)

x
dx.

This, together with (1), (3) and (4), implies that

lim
m→∞

m∑
j=jm(f)

1

2l(j) + 1
F±

(Bm

Bj
f
)
=

a

4

∫ 1/f2

1

φ±(x)

x
dx =

a

2

∫ 1

f

F±(s)

s
ds.

3◦ First, by 1◦ and 2◦,

lim
m→∞

m∑
j=j0

P
(
±Xj ≥

Bm

Bj
l(j)f

)
=

a

π

∫ 1

f

F±(s)

s
ds, 0 < f < 1. (32)

Fix 0 < ∀c < 2/
√
a. By (4), lim

j→∞
cBj/cj = c

√
a/2 ∈ (0, 1), so that for 0 < ∀ε <(

c
√
a/2
)−1 − 1,

∃j1 = j1(c, ε) ≥ j0 s.t.
1

1 + ε
c

√
a

2
< c

Bj

cj
< (1 + ε)c

√
a

2
(∀j ≥ j1).

Then it is easily seen that

cBm
l(j)

cj
=

Bm

Bj
l(j)c

Bj

cj


>

1

1 + ε
c

√
a

2

Bm

Bj
l(j),

< (1 + ε)c

√
a

2

Bm

Bj
l(j)

(∀j ≥ j1).

From this, it follows that

m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)
=

∑
j0≤j<j1

P
(
±Xj ≥ cBm

l(j)

cj

)
+

m∑
j=j1

P
(
±Xj ≥ cBm

l(j)

cj

)
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≤

∑
j0≤j<j1

P
(
±Xj ≥ cBm

l(j)

cj

)
+

m∑
j=j0

P
(
±Xj ≥

1

1 + ε
c

√
a

2

Bm

Bj
l(j)
)
,

≥ −
∑

j0≤j<j1

P
(
±Xj ≥ (1 + ε)c

√
a

2

Bm

Bj
l(j)
)
+

m∑
j=j0

P
(
±Xj ≥ (1 + ε)c

√
a

2

Bm

Bj
l(j)
)
.

Here, since Bm → ∞ as m → ∞,

lim
m→∞

∑
j0≤j<j1

P
(
±Xj ≥ cBm

l(j)

cj

)
= 0,

lim
m→∞

∑
j0≤j<j1

P
(
±Xj ≥ (1 + ε)c

√
a

2

Bm

Bj
l(j)
)
= 0,

which, together with (32), implies that

lim sup
m→∞

m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)
≤ a

π

∫ 1

(1/(1+ε))c
√
a/2

F±(s)

s
ds,

lim inf
m→∞

m∑
j=j0

P
(
±Xj ≥ cBm

l(j)

cj

)
≥ a

π

∫ 1

(1+ε)c
√
a/2

F±(s)

s
ds.

Finally, by letting ε ↘ 0, the assertion of Claim 5 follows. □

Proof of Theorem. For simplicity, set

φ(ξ) := exp

{∫
R\{0}

(
e
√
−1ξt − 1−

√
−1ξt

)
ν1/a(dt)

}
, ξ ∈ R.

It suffices to verify that

lim
m→∞

E
[
e
√
−1ξ(1/Bm)

∑m
j=j0

(cj/l(j))Xj ;S
]
= P(S)φ(ξ), ξ ∈ R, S ∈ B([0, 1)).

First, the collection M of all sets S in B([0, 1)) satisfying the above is a monotone

class over [0, 1). Next,
∪∞

n=1 Bn is an algebra on [0, 1) and generates B([0, 1)) (cf. (18)),
and is contained in M by Claims 2 and 3. Thus, by virtue of the monotone class theorem,

M = B([0, 1)), which is the desired result. □

Proof of Corollary 1. For simplicity, set L(k) := l(j0) + · · ·+ l(k) (k ≥ j0).

First note that for m ≥ j0,

l(j0)+···+l(m)∑
i=1

ai cos 2πnit =
m∑

j=j0

cj
l(j)

l(j)∑
l=1

cos 2πNj lt, A2
L(m) = B2

m.

For ∀N > l(j0),

∃1m = mN ≥ j0 s.t. L(m) < N ≤ L(m+ 1).
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Then, by the preceding remark,

E

[( 1

AN

N∑
i=1

ai cos 2πnit−
1

Bm

m∑
j=j0

cj
l(j)

l(j)∑
l=1

cos 2πNj lt
)2]

= 2
(
1− Bm

AN

)
.

Here

AL(m) < AN ≤ AL(m+1)

= =

Bm Bm+1

and thus 1 ≤ AN/BmN
≤ BmN+1/BmN

. Since lim
N→∞

mN = ∞, lim
N→∞

AN/BmN
= 1 by

(3). This implies that

lim
N→∞

E

[( 1

AN

N∑
i=1

ai cos 2πnit−
1

BmN

mN∑
j=j0

cj
l(j)

l(j)∑
l=1

cos 2πNj lt
)2]

= 0.

Now let S ∈ B([0, 1)) with P(S) > 0. From the convergence above, it follows that

1

AN

N∑
i=1

ai cos 2πnit−
1

BmN

mN∑
j=j0

cj
l(j)

l(j)∑
l=1

cos 2πNj lt → 0 in P
(
· | S

)
as N → ∞.

On the other hand, Theorem tells us that

P

(
1

BmN

mN∑
j=j0

cj
l(j)

l(j)∑
l=1

cos 2πNj lt ∈ ·
∣∣∣ S)→ µm1/a,0,ν1/a

as N → ∞.

Therefore (1/AN )
∑N

i=1 ai cos 2πnit is convergent in law to the same limit. □

3. Application examples of Theorem.

3.1. Berkes’ counterexample.

Fix A > 0. Let j0 := ⌈1/A⌉ ∈ N, and for j ≥ j0 set l(j) := ⌊Aj⌋ ∈ N, q(j) :=

aj2 + 1 ∈ N. Here a ∈ N is taken so as to satisfy

4πl(j)2

2q(j+1)−q(j)
≤ 1

2j
(j ≥ j0). (33)

And a strictly increasing sequence {ni}∞i=1 of natural numbers is defined in such a way

that

∞∪
j=j0

{
lNj ; 1 ≤ l ≤ l(j)

}
=
{
ni; i = 1, 2, . . .

}
.

Then
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Theorem 1 (cf. Berkes [1]). (i) lim inf
i→∞

√
i
(ni+1

ni
− 1
)
=

1√
2A

.

(ii) For ∀S ∈ B([0, 1)) with P(S) > 0,

P

(√
2

N

N∑
i=1

cos 2πnit ∈ ·
∣∣∣ S)→ µmA,0,νA as N → ∞.

Proof. We verify (ii) only. Since l(j) ∼ Aj as j → ∞, (1) is fine. Let cj = l(j).

Then

2B2
m =

m∑
j=j0

l(j) =
m∑

j=j0

(
Aj +O(1)

)
=

A

2

(
m(m+ 1)− j0(j0 − 1)

)
+O(m)

∼ A

2
m2 as m → ∞,

so (2) and (3) are fine. Since

B2
m

c2m
=

B2
m

l(m)2
∼ (A/4)m2

(Am)2
=

1

4A
as m → ∞,

(4) holds with a = 1/A.

Since, by (33),

2q(j+1)−q(j) ≥ 4πl(j)22j = 4π · 2j · l(j) · l(j) > l(j),

1

Bm

m∑
j=j0

cj
l(j)

2q(j+1)−q(j)
=

1

Bm

m∑
j=j0

l(j)2

2q(j+1)−q(j)
≤ 1

Bm

m∑
j=j0

1

4π

1

2j

≤ 1

4π

1

Bm
→ 0 as m → ∞,

(6) and (7) are fine. Thus, the assertion of (ii) follows from Corollary 1. □

3.2. Fukuyama–Takahashi’s counterexample.

Let {λ(i)}∞i=1 be a positive sequence satisfying

lim
i→∞

λ(i) = ∞, (34)

lim
i→∞

(
λ(i+ 1)− λ(i)

)
= 0, (35)

∞∑
i=1

1

λ(i)2
= ∞. (36)

Note that by (36),

∞∑
i=1

1

λ(i)
= ∞. (37)
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For k ∈ N, we define p(k) := max
{
j ∈ N;

∑j
i=1 1/λ(i) ≤ k

}
, where max ∅ := 0. By (37),

p(k) < ∞. When
{
j ∈ N;

∑j
i=1 1/λ(i) ≤ k

}
= ∅, i.e., 1/λ(1) > k, p(k) = 0, and thus

k ≥ 1/λ(1) ⇔
iff

p(k) ≥ 1. For convenience, p(0) := 0. By definition, p(k) ≤ p(k + 1)

(k ≥ 0) and

p(k)∑
i=1

1

λ(i)
≤ k <

p(k)+1∑
i=1

1

λ(i)
, (38)

from which, it follows that lim
k→∞

p(k) = ∞.

For k ∈ Z≥0, we define l(k) := p(k+1)−p(k). Since, by (34), lim
k→∞

λ
(
p(k)+1

)
= ∞,

∃j0 ∈ N s.t.


j0 ≥ 1

λ(1)
,

λ
(
p(k) + 1

)
≥ 1 (∀k ≥ j0).

Then, for k ≥ j0,

p(k)+1∑
i=1

1

λ(i)
=

p(k)∑
i=1

1

λ(i)
+

1

λ(p(k) + 1)
≤ k + 1

by (38). By the definition of p(·), p(k) < p(k)+1 ≤ p(k+1), and hence l(k) ≥ 1 (k ≥ j0).

Moreover, it is known by Fukuyama–Takahashi [3] that

l(k) → ∞ as k → ∞, (39)
∞∑

k=j0

1

l(k)
= ∞. (40)

Definition 5. We define a positive sequence {ai}∞i=1 by

ai :=


1 if 1 ≤ i ≤ p(j0),

1

l(j)

√√√√p(j0)

2

j−1∏
k=j0

(
1 +

1

2l(k)

)
if p(j) < i ≤ p(j + 1) (j ≥ j0),

where
∏j0−1

k=j0

(
1 + 1/2l(k)

)
:= 1 and {AN}∞N=1 by

AN =

√√√√1

2

N∑
i=1

a2i .

Remark 2. {A2
p(j)}

∞
j=j0

satisfies that A2
p(j0)

= p(j0)/2, A2
p(j+1) = A2

p(j)

(
1 +

1/2l(j)
)

(j ≥ j0).
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Proof. Since, by definition, A2
p(j0)

= p(j0)/2, ai = 1/l(j0)
√

p(j0)/2 (p(j0) < i ≤
p(j0 + 1)),

A2
p(j0+1) =

1

2

p(j0)∑
i=1

a2i +
1

2

∑
p(j0)<i≤p(j0+1)

a2i

= A2
p(j0)

+
1

2l(j0)
A2

p(j0)
= A2

p(j0)

(
1 +

1

2l(j0)

)
.

Next suppose that the recursion formula

A2
p(j+1) = A2

p(j)

(
1 +

1

2l(j)

)
(41)

holds for j0 ≤ j ≤ k. Then

A2
p(k+2) =

1

2

p(k+1)∑
i=1

a2i +
1

2

∑
p(k+1)<i≤p(k+2)

a2i

= A2
p(k+1) +

1

2l(k + 1)
A2

p(k+1) = A2
p(k+1)

(
1 +

1

2l(k + 1)

)
.

Thus, for j = k + 1, (41) holds. Therefore, {A2
p(j)} satisfies the recursion formula (41)

for ∀j ≥ j0. □

Definition 6. After taking a strictly increasing sequence {q(j)}∞j=j0
of natural

numbers so as to satisfy{
q(j0) = p(j0) + 1,

2q(j+1)−q(j) ≥ 2l(j) ∨
(
πAp(j)l(j)

2j2
)

(∀j ≥ j0),

we define a strictly increasing sequence {ni}∞i=1 of natural numbers by

ni :=

{
2i if 1 ≤ i ≤ p(j0),

2q(j)
(
i− p(j)

)
if p(j) < i ≤ p(j + 1) (j ≥ j0).

Theorem 2 (cf. Fukuyama–Takahashi [3], Matsushita [4]). (i) lim
N→∞

AN = ∞,

lim sup
i→∞

λ(i)
ai
Ai

= 1.

(ii) lim inf
i→∞

λ(i)
(ni+1

ni
− 1
)
= 1.

(iii) For ∀S ∈ B([0, 1)) with P(S) > 0,

P

(
1

AN

N∑
i=1

ai cos 2πnit ∈ ·
∣∣∣ S)→ µm1/4,0,ν1/4

as N → ∞.

Proof. We show (iii) only.
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First, by (39), (1) is fine. Let cj = Ap(j) (j ≥ j0). Then, by (41),

Bm =

√√√√ m∑
j=j0

A2
p(j)

2l(j)
=

√√√√ m∑
j=j0

(
A2

p(j+1) −A2
p(j)

)
=
√
A2

p(m+1) −A2
p(j0)

,

A2
p(m+1) =

p(j0)

2

m∏
j=j0

A2
p(j+1)

A2
p(j)

=
p(j0)

2

m∏
j=j0

(
1 +

1

2l(j)

)
≥ p(j0)

2

m∑
j=j0

1

2l(j)
,

A2
p(m+1)

A2
p(m)

= 1 +
1

2l(m)
.

By (40) and (39), it follows that Bm → ∞,

Bm+1

Bm
=

√√√√ (A2
p(m+2)/A

2
p(m+1))− (A2

p(j0)
/A2

p(m+1))

1− (A2
p(j0)

/A2
p(m+1))

→ 1,
B2

m

c2m
=

A2
p(m+1)

A2
p(m)

−
A2

p(j0)

A2
p(m)

→ 1.

Thus, (2), (3) and (4) with a = 4 hold.

From the choice of {q(j)}∞j=j0
(cf. Definition 6), (6) is clear. As for (7), since

1

Bm

m∑
j=j0

cj
l(j)

2q(j+1)−q(j)
≤ 1

Bm

m∑
j=j0

Ap(j)l(j)

πAp(j)l(j)2j2

≤
( 1
π

∞∑
j=1

1

j2

) 1

Bm
→ 0 as m → ∞,

(7) is fine.

Therefore, by Corollary 1, it holds that for ∀S ∈ B([0, 1)) with P(S) > 0,

P

(
1

ÃN

N∑
i=1

ãi cos 2πñit ∈ ·
∣∣∣ S)→ µm1/4,0,ν1/4

as N → ∞, (42)

where

ñi :=


2q(j0)i if 1 ≤ i ≤ l(j0),

2q(j+1)
(
i−
(
l(j0) + · · ·+ l(j)

))
if l(j0) + · · ·+ l(j) < i ≤ l(j0) + · · ·

· · ·+ l(j) + l(j + 1) (j ≥ j0),

ãi :=


Ap(j0)

l(j0)
if 1 ≤ i ≤ l(j0),

Ap(j+1)

l(j + 1)
if l(j0) + · · ·+ l(j) < i ≤ l(j0) + · · ·+ l(j) + l(j + 1) (j ≥ j0),

ÃN :=

√√√√1

2

N∑
i=1

ã2i .
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Here note that l(j0) + · · · + l(j) = p(j + 1) − p(j0) (j ≥ j0) and that by the definition

of {ai}∞i=1 (cf. Definition 5), ai = Ap(j)/l(j) (p(j) < i ≤ p(j + 1), j ≥ j0). Then

ñi =

{
2q(j0)

(
i+ p(j0)− p(j0)

)
if p(j0) < i+ p(j0) ≤ p(j0 + 1),

2q(j+1)
(
i+ p(j0)− p(j + 1)

)
if p(j + 1) < i+ p(j0) ≤ p(j + 2) (j ≥ j0)

= ni+p(j0),

ãi =


Ap(j0)

l(j0)
if p(j0) < i+ p(j0) ≤ p(j0 + 1),

Ap(j+1)

l(j + 1)
if p(j + 1) < i+ p(j0) ≤ p(j + 2) (j ≥ j0)

= ai+p(j0),

so that

ÃN =

√√√√√1

2

N+p(j0)∑
i=p(j0)+1

a2i =
√
A2

N+p(j0)
−A2

p(j0)
,

N∑
i=1

ãi cos 2πñit =

N+p(j0)∑
i=p(j0)+1

ai cos 2πnit =

N+p(j0)∑
i=1

ai cos 2πnit−
p(j0)∑
i=1

ai cos 2πnit.

Substituting these into (42) yields that

P

(
1√

A2
N −A2

p(j0)

( N∑
i=1

ai cos 2πnit−
p(j0)∑
i=1

ai cos 2πnit

)
∈ ·
∣∣∣∣ S
)

→ µm1/4,0,ν1/4
as N → ∞.

Finally, by noting that as N → ∞,

1√
A2

N −A2
p(j0)

p(j0)∑
i=1

ai cos 2πnit → 0,
√

A2
N −A2

p(j0)
∼ AN ,

the preceding convergence becomes the convergence required of (iii). □

3.3. Takahashi’s counterexample.

Fix c > 0, 0 < α ≤ 1/2. For j ∈ N, let p(j) := ⌊j1/α⌋ ∈ N. Since

(j + 1)1/α − j1/α =
1

α
(j + θ)(1/α)−1 for some θ ∈ (0, 1)

≥ 2(j + θ) ≥ 2j,

it is observed that
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p(j + 1)− p(j) =
⌊
(j + 1)1/α − j1/α + j1/α

⌋
− p(j) ≥

⌊
2j + j1/α⌋ − ⌊j1/α⌋ = 2j,

so that p(j + 1)− p(j)− 1 > 0. Let

l(j) :=
⌊pα(j)

c

⌋
∧
(
p(j + 1)− p(j)− 1

)
∈ Z≥0, j ∈ N.

By the definition of p(·), it is seen that

pα(j)

j
=
(
1− {j1/α}

j1/α

)α
→ 1 as j → ∞, (43)

p(j + 1)− p(j)

=
1

α
j(1/α)−1

((
1 +

θj
j

)(1/α)−1

− α{(j + 1)1/α}
j(1/α)−1

+
α{j1/α}
j(1/α)−1

)
for some θj ∈ (0, 1)

∼ 1

α
j(1/α)−1 as j → ∞. (44)

From these, it follows that

lim
j→∞

l(j)

j
= β(α) :=


1

c
if 0 < α <

1

2
,

2 ∧
(1
c

)
if α =

1

2
.

(45)

Set k0 := min
{
j; l(j) ≥ 1

}
∈ N. Since p(j + 1)− p(j)− 1 ≥ 1 and⌊pα(j)

c

⌋
≥ 1 ⇔ pα(j)

c
≥ 1 ⇔ p(j) ≥ c1/α ⇔ ⌊j1/α⌋ ≥ c1/α

⇔ ⌊j1/α⌋ ≥ ⌈c1/α⌉ ⇔ j1/α ≥ ⌈c1/α⌉ ⇔ j ≥ ⌈c1/α⌉α ⇔ j ≥
⌈
⌈c1/α⌉α

⌉
,

it is observed that

l(j) ≥ 1 ⇔
⌊pα(j)

c

⌋
≥ 1 ⇔ j ≥

⌈
⌈c1/α⌉α

⌉
,

so that k0 =
⌈
⌈c1/α⌉α

⌉
. Note that when 0 < c ≤ 1,

0 < c1/α ≤ 1 ⇒ ⌈c1/α⌉ = 1 ⇒ k0 =
⌈
⌈c1/α⌉α

⌉
= 1;

when c > 1,

c1/α > 1 ⇒ ⌈c1/α⌉ ≥ 2 ⇒ k0 =
⌈
⌈c1/α⌉α

⌉
≥ ⌈2α⌉ ≥ 2.

Definition 7. We inductively define a strictly increasing sequence {ni}∞i=1 of

natural numbers:

(i) In the case when c > 1.

Since k0 ≥ 2 by the preceding remark, p(k0) = ⌊k1/α0 ⌋ ≥ ⌊21/α⌋ ≥ ⌊22⌋ = 4. First

we define {ni}1≤i<p(k0) by the following recursion formula:
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ni+1 :=
⌊
ni

(
1 +

c

iα

)
+ 1
⌋

(1 ≤ i ≤ p(k0)− 2).

Next, when {ni}1≤i<p(j), where j ≥ k0, is defined in advance, we define {ni}p(j)≤i<p(j+1)

in the following way:

q(j) :=


min

{
m ∈ N; 2m > np(k0)−1

(
1 +

c

(p(k0)− 1)α

)}
if j = k0,

min

{
m ∈ N; 2m > np(j)−1

(
1 +

c

(p(j)− 1)α

)
∨
(
np(j−1)j

3
)}

if j > k0,

ni :=


2q(j)

(
i− p(j) + 1

)
if p(j) ≤ i ≤ p(j) + l(j),⌊

ni−1

(
1 +

c

p(j)α

)
+ 1
⌋

if l(j) < p(j + 1)− p(j)− 1 and

p(j) + l(j) < i ≤ p(j + 1)− 1.

(ii) In the case when 0 < c ≤ 1.

Since k0 = 1, l(j) ≥ 1 (∀j ≥ 1). Let n1 = np(1) := 1. When {ni}1≤i≤p(j),

where j ≥ 1, is defined in advance, we define {ni}p(j)<i≤p(j+1) by the following recursion

formula:

ni :=



np(j)

(
i− p(j) + 1

)
if p(j) < i ≤ p(j) + l(j),⌊

ni−1

(
1 +

c

p(j)α

)
+ 1
⌋

if l(j) < p(j + 1)− p(j)− 1 and

p(j) + l(j) + 1 ≤ i ≤ p(j + 1)− 1,

2q(j+1) if i = p(j + 1),

where

q(j + 1) := min

{
m ∈ N; 2m > np(j+1)−1

(
1 +

c

(p(j + 1)− 1)α

)
∨
(
np(j)(j + 1)3

)}
.

Definition 8. We define a positive sequence {ai}∞i=1 by

ai :=


1 if i ∈

∞∑
j=k0

[
p(j), p(j) + l(j)

]
∩ N,

1

i2
otherwise

and {AN}∞N=1 by

AN =

√√√√1

2

N∑
i=1

a2i .

Theorem 3 (cf. Takahashi [7], Matsushita [4]). (i)
ni+1

ni
≥ 1 +

c

iα
(∀i ≥ 1).
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(ii) #
{
i; ai = 1

}
= ∞, AN ∼

√
β(α)

4
Nα as N → ∞.

(iii) For ∀S ∈ B([0, 1)) with P(S) > 0,

P

(
1

AN

N∑
i=1

ai cos 2πnit ∈ ·
∣∣∣ S)→ µmβ(α),0,νβ(α)

as N → ∞.

Proof. We show (ii) and (iii).

The first part of (ii) is clear from the definition of {ai}. As for the second part of

(ii), first, set

j0 := k0 ∨ 2 =

{
2 if 0 < c ≤ 1,

k0 if c > 1.

For m ≥ j0,

A2
p(m+1)−1 −A2

p(m) =
1

2
l(m) +

1

2

∑
p(m)+l(m)<i<p(m+1)

1

i4
,

A2
p(m+1)−1 =

1

2

∑
1≤i<p(j0)

a2i +
1

2

m∑
j=j0

(
l(j) + 1

)
+

1

2

m∑
j=j0

∑
p(j)+l(j)<i<p(j+1)

1

i4
,

from which, it follows that

max
p(m)≤N<p(m+1)

∣∣A2
p(m+1)−1 −A2

N

∣∣ = A2
p(m+1)−1 −A2

p(m)

=
1

2
l(m) +

1

2

∑
p(m)+l(m)<i<p(m+1)

1

i4
, (46)

∣∣∣A2
p(m+1)−1 −

1

2

m∑
j=j0

(
l(j) + 1

)∣∣∣ ≤ 1

2

∑
1≤i<p(j0)

a2i

+
1

2

∞∑
j=j0

∑
p(j)+l(j)<i<p(j+1)

1

i4
. (47)

Next it is verified that

1

2

m∑
j=j0

(
l(j) + 1

)
∼ β(α)

4
m2 as m → ∞. (48)

Indeed, since ε(j) = (l(j) + 1)/j − β(α) → 0 as j → ∞ by (45),∣∣∣∣ 1

2m2

m∑
j=j0

(
l(j) + 1

)
− β(α)

4

∣∣∣∣
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=

∣∣∣∣β(α)2m2

m∑
j=j0

j − β(α)

4
+

1

2m2

m∑
j=j0

ε(j)j

∣∣∣∣
≤ β(α)

4

( 1

m
+

j0(j0 − 1)

m2

)
+

1

2m2

∣∣∣∣ ∑
j0≤j<m0

ε(j)j

∣∣∣∣+ ( max
m0≤j≤m

|ε(j)|
)1
4

(
1 +

1

m

)
→ 0 as m → ∞ first and m0 → ∞ second.

Using (48) in (47) yields that A2
p(m+1)−1 ∼ (β(α)/4)m2 as m → ∞. By combining this

with (46), it is observed that

max
p(m)≤N<p(m+1)

∣∣∣β(α)
4

− A2
N

m2

∣∣∣
≤
∣∣∣β(α)

4
−

A2
p(m+1)−1

m2

∣∣∣+ 1

m2
max

p(m)≤N<p(m+1)

∣∣A2
p(m+1)−1 −A2

N

∣∣→ 0 as m → ∞.

Now, for N ≥ p(j0),

∃1m = mN ≥ j0 s.t. p(m) ≤ N < p(m+ 1).

Since lim
N→∞

mN = ∞, (43) implies that

p(mN ) ∼ m
1/α
N , p

(
mN + 1

)
∼
(
mN + 1

)1/α ∼ m
1/α
N as N → ∞,

and thus N ∼ m
1/α
N as N → ∞. On the other hand, since, by the preceding convergence,

AN

mN
→
√

β(α)

4
as N → ∞, (49)

combining them, we have

AN ∼
√

β(α)

4
Nα as N → ∞.

(iii) Take {l(j)+1}∞j=j0
as a sequence of natural numbers and {l(j)+1}∞j=j0

as a positive

sequence. By (45), (1) is all right. Since, by (48),

Bm =

√√√√1

2

m∑
j=j0

(
l(j) + 1

)
∼
√

β(α)

4
m as m → ∞, (50)

(2) and (3) are fine. As for (4), since

B2
m

(l(m) + 1)2
∼ (β(α)/4)m2

(β(α)m)2
=

1

4β(α)
,

(4) is all right with a = 1/β(α).

By the definition of {q(j)}∞j=j0
(cf. Definition 7),
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2q(j) = np(j) < np(j)+1

=

2q(j) · 2

< np(j)+2

=

2q(j) · 3

< · · · < np(j)+l(j)

=

2q(j)
(
l(j) + 1

)
≤ np(j+1)−1 < 2q(j+1),

2q(j+1) > 2q(j)(j + 1)3.

From these, it follows that 2q(j+1)−q(j) > l(j) + 1 and that

m∑
j=j0

(
l(j) + 1

) l(j) + 1

2q(j+1)−q(j)
≤

m∑
j=j0

(l(j) + 1)2

(j + 1)3
≤
(
sup
j≥j0

l(j) + 1

j + 1

)2 m∑
j=j0

1

j + 1

≤
(
sup
j≥j0

l(j) + 1

j + 1

)2
log(m+ 1),

so that

1

Bm

m∑
j=j0

(
l(j) + 1

) l(j) + 1

2q(j+1)−q(j)
→ 0 as m → ∞.

Thus, (6) and (7) are all right.

Therefore, by Theorem, it holds that for ∀S ∈ B([0, 1)) with P(S) > 0,

P

(
1

Bm

m∑
j=j0

l(j)+1∑
l=1

cos 2πNj lt ∈ ·
∣∣∣ S)→ µmβ(α),0,νβ(α)

as m → ∞.

Here, since, by the definition of {ni}∞i=1 and {ai}∞i=1 (cf. Definitions 7 and 8),

m∑
j=j0

∑
p(j)≤i≤p(j)+l(j)

ai cos 2πnit =
m∑

j=j0

l(j)+1∑
l=1

cos 2πNj lt,

the convergence above is rewritten as

P

(
1

Bm

m∑
j=j0

∑
p(j)≤i≤p(j)+l(j)

ai cos 2πnit ∈ ·
∣∣∣ S)→ µmβ(α),0,νβ(α)

as m → ∞. (51)

For N ≥ p(j0), take m = mN ≥ j0 such that p(m) ≤ N < p(m+ 1). Then

E

[( 1

AN

N∑
i=1

ai cos 2πnit−
1

Bm

m∑
j=j0

∑
p(j)≤i≤p(j)+l(j)

ai cos 2πnit
)2]

≤ 2E

[(
− 1

AN

∑
N<i<p(m+1)

ai cos 2πnit
)2]

+ 2E

[( 1

AN

∑
1≤i<p(j0)

ai cos 2πnit
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+
( 1

AN
− 1

Bm

) m∑
j=j0

∑
p(j)≤i≤p(j)+l(j)

ai cos 2πnit

+
1

AN

m∑
j=j0

∑
p(j)+l(j)<i<p(j+1)

ai cos 2πnit
)2]

=
2

A2
N

(
A2

p(m+1)−1 −A2
N

)
+ 2

(
A2

p(j0)−1

A2
N

+
( 1

AN
− 1

Bm

)2 1
2

m∑
j=j0

(
l(j) + 1

)
+

1

A2
N

· 1
2

m∑
j=j0

∑
p(j)+l(j)<i<p(j+1)

1

i4

)

≤
( m

AN

)2( 1

m

l(m)

m
+

1

m2

∑
p(m)+l(m)<i<p(m+1)

1

i4

)

+
1

A2
N

(
2A2

p(j0)−1 +

∞∑
j=j0

∑
p(j)+l(j)<i<p(j+1)

1

i4

)

+ 2
( m

AN
− m

Bm

)2 1

m2

1

2

m∑
j=j0

(
l(j) + 1

) (
cf. (46)

)
→ 0 as N → ∞

(
by (45), (48), (49) and (50)

)
.

By the same reasoning as in the proof of Corollary 1, it follows that

P

(
1

AN

N∑
i=1

ai cos 2πnit ∈ ·
∣∣∣ S)→ µmβ(α),0,νβ(α)

as N → ∞. □
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