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Abstract. We show vanishing theorems of L2-cohomology groups of
Kodaira—Nakano type on complete Hessian manifolds by introducing a new
operator 9%.. We obtain further vanishing theorems of L?-cohomology groups
L2Hg’q(ﬂ) on a regular convex cone ) with the Cheng—Yau metric for p > q.

Introduction.

A flat manifold (M, D) is a manifold M with a flat affine connection D, where an
affine connection is said to be flat if the torsion and the curvature vanish identically. A
flat affine connection D gives an affine local coordinate system {x%,..., x"} satisfying

0
Da/azi @ = 0

A Riemannian metric g on a flat manifold (M, D) is said to be a Hessian metric if g
can be locally expressed in the Hessian form with respect to an affine coordinate system

{z',..., 2"} and a potential function p, that is,
o Oy
95 = Hrioai
The triplet (M, D, g) is called a Hessian manifold. The Hessian structure (D, g) induces
a holomorphic coordinate system {z!,...,2"} and a Kéhler metric g7 on TM such that
J =2t 4 /Ty,
9:5(2) = gij (),
where {z!,... 2" y',...,y"} is a local coordinate system on T'M induced by the affine
coordinate system {x!,..., 2"} and fiber coordinates {y',...,4"}. In this sense, Hessian

geometry is a real analogue of Kéhler geometry.

A (p,q)-form on a flat manifold (M, D) is a smooth section of AP := APT*M ®
AIT*M. On the space of (p,q)-forms, a flat connection D induces the Dolbeault-like
operator 9 = Y, e(dz?)Dp ., where dz' = 1 ® dz’ and e(dz?) = daiA. For a flat
line bundle (F, D¥') over M, the operator 0 can be extended on the space of F-valued
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(p, q)-forms and satisfies 9> = 0. Then the cohomology group Hé—”q(M7 F) is defined with
respect to 0. On compact Hessian manifolds, Shima proved an analogue of the Kodaira—
Nakano vanishing theorem for Hg’q(M ,F) by using the theory of harmonic integrals
when there exist a fiber metric h on F' and a Riemannian metric g on M such that the
second Koszul forms B = —Ddlog h(s, s) and 8 = (1/2)Ddlog det[g;;] satisty B+ 3 > 0,
where s is a local frame field on F such that D¥'s = 0.

THEOREM 2.2.7 ([2]). Let (M, D) be an oriented n-dimensional compact flat man-
ifold and (F, DY) be a flat line bundle over M. Assume there exist a fiber metric h on
F and a Riemannian metric g on M such that B + 3 is positive definite, where B and
are the second Koszul forms with respect to h and g, respectively. Then we have

HEY(M,F)=0, forp+q>n.

However, many important examples of Hessian manifolds such as regular convex
domains (cf. [3, Theorem 1.2.4]) are noncompact. In Section 3.2, we prove the following
theorem which corresponds to Theorem 2.2.7 in the case of complete Hessian manifolds.

MAIN THEOREM 2. Let (M, D, g) be an oriented n-dimensional complete Hessian
manifold and (F, D) a flat line bundle over M. We denote by h a fiber metric on F.
Assume that there exists € > 0 such that B+ = eg where B and 8 are the second Koszul
forms with respect to fiber metric h and Hessian metric g respectively. Then for p+q > n
and all v € L*(M,F @ AP) such that Ov = 0, there exists u € L>(M, F ® AP4~1) such
that

du=wv, |lul <{elp+q-n)} 2ol
In particular, we have
L*HEY(M,F) =0, forp+q>n.

The L2-cohomology group LZHg’q(M, F) is often also written as Hg;l(M, F).

Note that we cannot use the harmonic theory for the proof and we need the method
of functional analysis as in the case of complete Kéhler manifolds. To prove Main The-
orem 2, we introduce a operator 9% (cf. Definition 2.3.1) which is not defined in [2] and
we obtain the following as an analogue of Kodaira—Nakano identity.

THEOREM 2.3.8. Let (D, g) be a Hessian structure. Then we have
Op = 0%+ [e(8+ B), Al

where Op and O% are the Laplacians with respect to 0 and O, respectively, and A is the
adjoint operator with respect to e(g).

An open convex cone 2 in R” is said to be regular if 2 contains no complete straight
lines. We can apply Main Theorem 2 to regular convex cones with the Cheng—Yau metric
(cf. [3, Theorem 1.2.4]). Further, we have stronger vanishing theorems as follows in
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Section 3.3.

MaIN THEOREM 3. Let (Q, D, g = Ddp) be a regular convex cone in R™ with the
Cheng-Yau metric. Then for p > q > 1 and all v € L*(Q, AP?) such that Ov = 0, there
exists u € L?(Q, AP971) such that

du=uv, |lu]<®-q .

In the case of p > q = 0, if v € L?(Q, AP?) satisfies Ov = 0, then v = 0. In particular,
we have

LQHg’q(Q) =0, forp>gq.

In the case of a regular convex cone (R™, D, g = —Ddlog(z!...2™)), we have sharp
vanishing theorem in Section 3.4.

MAIN THEOREM 4. Forp>1,q>1andv € LQ(R’L AP?) such that Ov =0, there
exists u € L*(R, AP 771 such that

—1/2

du=uv, |ul <p= 2|l

In the case of p>q =20, ifv € L2(R1, AP0 satisfies Ov = 0, then v = 0. In particular,
we have

L2HF(RY) =0, forp>1andg>0.

1. Hessian manifolds.
In this chapter we give a brief review of Hessian manifolds.

1.1. Hessian manifolds.

An affine connection D on a manifold M is said to be flat if the torsion tensor
TP and the curvature tensor R” vanish identically. A manifold M endowed with a flat
connection D is called a flat manifold, which is denoted by (M, D). On a flat manifold
(M, D), there exists a local coordinate system {z, ..., 2"} such that Dy 9,:(0/0z7) = 0,
which is called an affine coordinate system with respect to D. The changes between such
a local coordinate system are affine transformations.

In this paper, every local coordinate system on flat manifolds is given as an affine
coordinate system.

DEFINITION 1.1.1. A Riemannian metric g on a flat manifold (M, D) is said to be
a Hessian metric if g is locally expressed by

g = Ddop,
that is,

0%
9ii = Hrigei
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Then the pair (D, g) is called a Hessian structure on M, and ¢ is said to be a potential
of (D,g). A manifold M with a Hessian structure (D, g) is called a Hessian manifold,
which is denoted by (M, D, g).

Let (M, D) be a flat manifold and TM the tangent bundle over M. We denote by

{zt,...,2™ y',...,y"} a local coordinate system on T'M induced by an affine coordi-
nate system {z!,... 2"} on M and fiber coordinates {y',...,y™}. Then a holomorphic
coordinate system{z',..., 2"} on TM is given by

2t =gt /1yt
For a Riemannian metric g on M we define a Hermitian metric g7 on TM by

gT = ngdzl ® dij.
0,J
It should be remarked that g7 is a Kahler metric if and only if ¢ is a Hessian metric.

EXAMPLE 1.1.2. (1) Let (D, g) be the pair consisting of the standard affine con-
nection D and the Euclidean metric on R™. Then (D, g) is a Hessian structure. Indeed,
if we set p(z) = (1/2) Zj(a:j)Q, we have

0%y
- s = 61“ = Gij»
oxt0xI J J

where d;; is the Kronecker delta, that is,

s _[1a=d)
iy — . .
0 (i#7).
Moreover, the Kahler metric g7 on TR™ ~ C" is also the Euclidean metric.

(2) We set Ry = (0,00). Let D be the standard affine connection, that is, the restriction
of the standard affine connection on R" to R’f. We define a Riemannian metric g on
R” by

Jr

5ij
gij(z) = (27)2
Then (D, g) is a Hessian structure. Indeed, if we set ¢(z) = —log(z!...2"), we have
D%
0z 0z’

When n = 1, the Kéhler metric g7 on TRy ~ R, & y/—1R is the Poincaré metric.

DEFINITION 1.1.3. Let M be a manifold and D a torsion-free affine connection on
M. We denote by g a Riemannian metric on M, and by V the Levi-Civita connection
of g. We define the difference tensor v of V and D by
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vy=V —-D.

We denote by 2" (M) the space of vector fields on M. Since V and D are torsion-free,
it follows that for X,Y € 2" (M)

xY =wX.

It should be remarked that the components vijk of v with respect to affine coordinate
systems coincide with the Christoffel symbols of V.

DEFINITION 1.1.4. Let M be a manifold and D a torsion-free affine connection on
M. We denote by g a Riemannian metric on M. We define another affine connection D*
on M as follows:

Xg(Y,Z) = g(DxY,Z) +9g(Y.Dx Z), X,Y,Z € Z(M).
We call D* the dual connection of D with respect to g.

PROPOSITION 1.1.5 ([1]).  Let (M, D) be a flat manifold and g a Riemannian man-
ifold on M. Then the following conditions are equivalent.

(1) (D,g) is a Hessian structure.

(2) (Dxg)(Y,Z2) = (Dyg)(X,Z), X.Y,Z€ X (M) (& 9gjx/0x" = dgir/0x7).
3) 9(wxY,Z)=9g(Y,vxZ), X, Y,Ze€ X (M) (& vijk=Vjik)-

(4) (Dx9)(Y,Z) =29(vxY,2), X,Y,Z € X (M) (& 0gij/0z* = 2vjx).

(5) D+ D*=2V.

1.2. Koszul forms on flat manifolds.
We introduce Koszul forms which play important roles in Hessian geometry.

DEFINITION 1.2.1.  Let (M, D) be a flat manifold and ¢g a Riemannian metric on
M. We define a d-closed 1-form « and a symmetric bilinear form 5 by

1
o= §dlogdet[gij], B = Da.

Remark that since the changes between affine coordinate systems are affine transforma-
tions, o and B are globally well-defined. We call o and 8 the first Koszul form and the
second Koszul form for (D, g), respectively.

ProposITION 1.2.2 ([1]). Let (M, D,g) be a Hessian manifold. Then we have the
following equations.

VAR VR < U SR SR < o
ai.a(axi>;’>’m‘7 51]~B<5xi’axj> - Oxd

DEFINITION 1.2.3.  Let (M, D, g) be a Hessian manifold. If there exists A € R such
that g = A\g, we call g a Hesse—Einstein metric.
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It should be remarked that a Hessian metric g on M is a Hesse—Einstein metric if
and only if the Kihler metric g7 on TM is a Kihler-Einstein metric ([1]).

A convex domain in R™ which contains no full straight lines is called a regular convex
domain. By the following theorem, on a regular convex domain there exists a complete
Hesse—Einstein metric g which satisfies g = 8. It is called the Cheng—Yau metric.

THEOREM 1.2.4 ([3]). On a regular convex domain Q@ C R™, there exists a unique
convex function ¢ such that

82()0 2¢
det [axiaxj] —c

p(x) = 00 (x — 0Q).

In addition, the Hessian metric g = Ddy is complete, where D 1is the standard affine
connection on 2.

PRrROPOSITION 1.2.5.  The Cheng—Yau metric g defined by Theorem 1.2.4 is invari-
ant under affine automorphisms of 2, where an affine automorphism of € is restriction
of an affine transformation A : R™ — R™ to Q which satisfies AQ = Q.

PROOF. An affine transformation A is denoted by

Az = ((Az)', ..., (Az)™) Z atazd 4 bl

We define a function ¢ on 2 by
() = p(Az) + log| det[af]].
Then we have
p(x) > 00 (x — 00).

Moreover we obtain

¢ ko1
axlaxﬂ Za’ JE)xkaxl (Az).

Hence ¢ is a convex function. Furthermore, it follows that

2 ~

9*¢ _ i1)2
det [axiaxj (x)] = | det[a}]|” det [

2

Oxtoxd

( Am)] _ (A0 Hog | detlal]l) _ (26(0),

Therefore ¢ is also a convex function which satisfies the condition of Theorem 1.2.4.
From the uniqueness of the solution we have ¢ = ¢, that is,

p(x) = p(Ax) + log | det[al]].

Hence we have
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gzg Z a; gkl A.’L‘

This implies that ¢ is invariant under affine automorphisms. O

EXAMPLE 1.2.6. Let (R}, D, g = Ddyp) be the same as in Example 1.1.2 (2). Then
o(z) = —log(x!...2") satisfies the condition of Theorem 1.2.4.

2. (p,q)-forms on flat manifolds.

Hereafter, we assume that (M, D) is an oriented flat manifold and g is a Riemannian
metric on M. In addition, let F' be a real line bundle over M endowed with a flat
connection Df' and a fiber metric h. Moreover, we denote by s a local frame field on F
such that DF's = 0.

2.1. (p,q)-forms and fundamental operators.

We denote by AP>4(M) the space of smooth sections of AP := APT*MQAIT*M. An
element in AP9(M) is called a (p, g)-form. For a p-form w and a g-form 7, w@n € AP2(M)
is denoted by w ® 7.

Using an affine coordinate system, a (p, ¢)-form w is expressed by

w = E w[qudxlp ® dx’a,
IIHJ(I

where

Ip=(i1,...,ip), 1<i1<---<ip<n, Jg=1,--,Jq)y 1Zj1<---<jg<m,
de’r = da™ Ao ANdatr,  date = dadt A A dade.

EXAMPLE 2.1.1. A Riemannian metric g and the second Koszul form S (Defini-
tion 1.2.1) are regarded as (1, 1)-forms;

gzzgijdlﬂi@w, ﬂzZﬂidei(@@.
i,

2%

DEFINITION 2.1.2.  We define the exterior product of w € AP9(M) and n €
A"*(M) by

wAn= g wIpqu]KTLsdxlp A dz¥r @ dada A dals,
I,,Jq, Kr,Ls

where w = ZI,J,JQ wIpJquIP ® dx’s and n = ZKT,LS nr, p.drr @ dals.

DEFINITION 2.1.3.  For w € A™%(M) we define an exterior product operator e(w) :
AP9(M) — APT™IFS (M) by

e(w)n =wAn.
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DEFINITION 2.1.4.  'We denote by 2" (M) the set of smooth vector fields on M. For
X € Z (M) we define interior product operators by

i(X) s APYM) — AP~H(M), i(X)w=w(X,...;...),

i(X): APY(M) — APTYM), (X w=w(...;X,...).

LEMMA 2.1.5 ([2]).  The following equations hold for w € AP4(M), n € AP~L49(M),
p € APY=L(M) and X € 2°(M).

(i(X)w,n) = (w, e(i(X)g)n),
(i(X)w, p) = (w, e(i(X)g)p),
where { , ) is a fiber metric on NPT*M @ NIT*M induced by g.

DEFINITION 2.1.6. Let {E4,...,E,} be an orthonormal frame field on TM and
{0, ...,0"} the dual frame field of {E1, ..., E,}. We define L : AP9(M) — APTLITL(D])
and A : AP9(M) — AP~La=1(M) by

Li=elg) = S e@)e(@), A= i(E)i(E)).
J J
We obtain the following from Lemma 2.1.5.
COROLLARY 2.1.7 ([2]). We have
(Aw,n) = (w,Ln), forw e APY(M) and n € AP~H17H(M).
We have the following by a direct calculation.
PROPOSITION 2.1.8 ([2]). We have
[L,Al=p+qg—n, on API(M).

2.2. Differential operators for (p, q)-forms.
We define two operators 9 and 0 by using the flat connection D.

DEFINITION 2.2.1.  We define 9 : AP¢(M) — APtL4(M) and 0 : AP9(M) —
AP-a+L(M) by

d= Ze(dxi)Da/azi, 5 = Ze(@)l)a/aw
i i
Since D is flat, we immediately obtain the following lemma.
LemMA 2.2.2.  We have
9?=0, 9°=0, 00=00.

We denote by AP2(M, F) the space of F-valued (p,q)-forms. Since the transition
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functions of {s} are constant, d and 9 are extended on AP*4(M, F) by

(s ®w) =8® dw,
(s Pw) =5® Jw.

DEFINITION 2.2.3.  We denote by AN'Y(M, F') the space of elements of AP*4(M, F')
with compact supports. We define the inner product (, ) on A9 (M, F) by

@) = [ o,

where vy = /det[g;;]dz' A--- Adz™, and (, ) is the metric on F @ APT*M @ N1T*M
induced by g and h. We set ||w| = /(w,w).

DEFINITION 2.2.4.  We define A € AY°(M) and B € AL (M) by
A= —0logh(s,s), B=0A.

We call A and B the first Koszul form and the second Koszul form with respect to the
fiber metric h, respectively.

REMARK 2.2.5. Since the transition functions of {s} are constant, A and B are
globally well-defined.

EXAMPLE 2.2.6. Let a and 8 be the first Koszul form and the second Koszul form
with respect to the Riemannian metric g, respectively. Then the the first Koszul form
Ak and the second Koszul form By with respect to the fiber metric g on the canonical
bundle K = A"T*M are given by

AK = 2&, BK = 26
The following theorem is an analogue of the Kodaira—Nakano vanishing theorem.

THEOREM 2.2.7 ([2]). Let (M, D) be an oriented n-dimensional compact flat man-
ifold and (F, D) be a flat line bundle over M. We set

Ker[d : AP4(M, F) — AP9HL(M, F))
1m0 : APa-1(M, F) — Ara(M, F)] -

HY(M,F) =

Assume there exist a fiber metric h on F' and a Riemannian metric g on M such that
B + [ is positive definite, where B and B are the second Koszul forms with respect to h
and g, respectively. Then we have

HEY(M,F)=0, forp+q>n.
DEFINITION 2.2.8.  We define the star operator % : AP9(M) — A"~P"~9(M) by

w Ak = (w,n)vg ® Vg, w,n € API(M),
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where (, ) is a fiber metric on APT*M ® AYT*M induced by g. The star operator % is
extended on AP9(M, F') by

*(sQ@W) =5® kw.

DEFINITION 2.2.9. We define 6 : AP9(M,F) — AP~L9(M,F) and dp
APA(M, F) — AP9=1(M, F) by

op = (=1)"%k 'k +i(Xata), O =(=1)"%k "%k +i(Xata),

where 7(X410)g = A+ a. The operators will be denoted by & and § if (F, D¥ h) is
trivial.

PROPOSITION 2.2.10 ([2]).  The operators 6r and 6 are the adjoint operators of
0 and O with respect to the inner product ( , ) respectively, that is, for w € AP1(M, F),
ne AP"YYM,F) and p € AN (M, F) we have
(Orw,n) = (w,n),  (OFw,p) = (w,dp).

DEFINITION 2.2.11.  We define the connection 2 and 2 on APT*M @ NIT*M as
follows: For w € AP(M) and n € AY(M), X € Z (M)

Dx(w@N) =27xw @17+ Dx(w®7),

Ix(w®n) =2w®7xn+ Dx(w®10),
where v =V — D and V is the Levi-Civita connection of g (cf. Definition 1.1.3).
The following lemma follows from Proposition 1.1.5.

LEMMA 2.2.12 ([2]). The following conditions are equivalent.
(1) (D,g) is a Hessian structure.
(2) dg=0 (& 9dg=0).
(3) 29=0 (& 29=0).

Let D* be the dual connection of D with respect to g (cf. Definition 1.1.4). We
obtain the following from Proposition 1.1.5.

LEMMA 2.2.13.  Let (D, g) be a Hessian structure. Then we have

Ix(w®7) = Dyxw ® 7 +w® Dx1,

Ix(w®n) =Dxw®n+w® Din,
forwe AP(M) andn € AI(M),X € Z'(M).

When (D, g) is a Hessian structure, the operators 0, 0, 0r and 0r are expressed
with 2 and 2.
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PROPOSITION 2.2.14 ([2]

). Let (D,g) be a Hessian structure. Then we have
Jd= Ze(gj).@Ej, 8: Ze(éj)gEj,
J J
oF

> i(Ej)) D5, +i(Xata), Op=—Y i(E;)Zn, +i(Xata),
J J
where i(Xat1a)g = A+ a.
2.3. The new differential operator 9%.
We introduce the operator 9% which is not defined in [2]

DEFINITION 2.3.1. We define the differential operator 87 : APY(M,F) —
APTLI(MF) by

e =0—e(A+a).

The operator will be denoted by &’ if (F, D¥, h) is trivial.

THEOREM 2.3.2. We have

(OF)?

We obtain

0, 00— 56% =e(B+p).
PROOF.

(0F)* = (0 — e(A+a))(0 — e(A+a))

=0*—e(0(A+a))+e(A+a)d —e(A+a)d+el(A+a)e(A+a)
=0,

and

00 = (0 — e(A+ a))d = 00 — e(A + a)d,
00 = 9(0 — e(A+a)) =00 — e(B+ B) —e(A+a)d

Hence

0r0 — 00% = e(B + ).
DEFINITION 2.3.3.  We define 6% : AP4(M, F) — AP~19(M, F) by
0p = 0r —i(Xata),
where i(X)g = A + a. The operator will be denoted by &' if (F, DY h) is trivial.
We obtain the following Corollaries from Lemma 2.1.5, Propositions 2.2.10
and 2.2.14.

COROLLARY 2.3.4.

The operator 8% is the adjoint operator of O with respect to
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the inner product (, ), that is, for w € AP4(M,F), n € AL""Y(M, F) we have

(0w, n) = (w, Opn).

COROLLARY 2.3.5. Let (D,g) be a Hessian structure. Then we have

The following theorem is an analogue of the Kéahler identities.
THEOREM 2.3.6. Let (D, g) be a Hessian structure. Then we have

A + O = —0p, AD+O0A= -5,
Loy + 6L = -0, Lép +0pL = —0.

Proor. It follows from Corollary 2.3.5, Proposition 2.2.12 and 2.2.14 that

SpL ==Y i(E))Pg L=~ i(E;)LPg,

_ z];z'(Ej)e(e’“)e(ék)@;j

_ j_g’k;ewk)(a; — e(6M)i(E) T,

_ jz e(0)) T, + Y e(0")e(6") Y i(E) Tk,
_ o, k j

Similarly, we have

Moreover,

Hence it follows from Proposition 2.2.14 that

opL = (— > i(E;) s, +E(XA+Q))L

J
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= (0 e+ )~ L = SUE) T, +T(Xasn))
J
— 0 — Ly
We have the other equalities by taking the adjoint operators. O

DEFINITION 2.3.7.  We define the Laplacians (0% and O with respect to 9% and
0 by

}:8}75;+6}78§m, inggFJFSFé-
The Laplacians will be denoted by [0’ and [J if (F, D¥' | h) is trivial.
The following theorem is an analogue of the Kodaira—Nakano identity.
THEOREM 2.3.8. Let (D, g) be a Hessian structure. Then we have
Or = Op + [e(8+ B), Al
Proor. It follows from Theorems 2.3.2 and 2.3.6 that
Op = 00r + 070 = —0(AOf + OpA) — (MO + ORA)0

= (AD + 0%)0r — 00N — NORO + 9% (OA + 0%)

= 0305 + 0pdl + (050 — 00%)A — A(9}0 — 09})

=0% + [e(B + B), Al O
3. Vanishing theorems of L2-cohomology groups.

We introduce L?-cohomology groups on flat manifolds and some vanishing theorems.

3.1. L2-cohomology groups on flat manifolds.

We denote by L?(M,F ® AP?) the completion of AL?(M, F) with respect to the
L2-inner product (, ) induced by g and h. The space L?(M, F ® AP+9) is identified with
the space of square-integrable sections of F' ® AP-4.

DEFINITION 3.1.1.  For w € L*(M,F ® AP?) we define dw and §pw as follows:
(50‘)»77) = (w, an)v for n € Ag’qul(Ma F),
(6pw, p) = (w,dp), for p€ AP (M, F).

In general, we cannot say Ow € L2(M,F ® /\p»q-H) and ng c LQ(M7F ® /\,,7(1_1). We
set
W (M, F @ AP9)
= {w e L*(M,F @ A"") | dw € L*(M, F @ AP, 6pw € L*(M, F @ AP7 1)},
D(M,F @ AP9) = {w € L}*(M,F @ AP | w € L*(M, F @ AP+
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In addition, we define the norm || ||y on W (M, F @ A7) by
[wllw = [|w| + |0w]| + |6pw], w € W(M,F ® AP9).
The space W (M, F ® AP»?) is complete with respect to || ||w .

PROPOSITION 3.1.2 ([4]). If g is complete, the space AB?(M,F) is dense in
W (M, F @ AP9) with respect to the L?-norm || ||w .

DEFINITION 3.1.3.  We define the L?-cohomology group of (p,q)-type by

B Ker[0: D(M,F @ AP?) — D(M, F @ AP9+1)]
Im[0 : D(M,F ® A\P4—1) — D(M, F ® A\P:4)] ’

L*HEY(M, F)

where Im[0 : D(M, F @ AP3~1) — D(M, F ® AP4)] is the closure of Im[0 : D(M,F ®
AP4=1) — D(M, F ® AP9)] with respect to the L?-norm || ||.

3.2. Vanishing theorems of Kodaira—Nakano type.
In this section we show vanishing theorems of Kodaira—Nakano type.

LEMMA 3.2.1.  Assume g is a Hessian metric and B + 3 is positive definite. For
the eigenvalues A1 < --- < A, of the matriz [, ¢"*(B + B)k;], we set by = Z?:l Aj.
Then we have

18w + [[5rw ] = by *w]?,  for w € AG*(M,F).
Proor. By Theorem 2.3.8 we obtain

10wl + 8pw]?* = (Opw,w)

= (DIFW’UJ) + ([e(B + B)’A]w’w)
> ([e(B+8), Aw,w)
~(

e(B+ 8)Aw,w).
Hence it is sufficient to show (e(B + 8)Aw,w) > ||b;/2w||2.
We take the orthonormal frame field {E,...,E,} on TM, where the matrix

(B + B)(E;, E;)] is diagonal. We set p; = (B + 5)(E;, E;). Using the dual frame
field {0',...,0"} of {E1,...,E,}, w € AJY(M, F) is denoted by

w=Y wy, @07, w;, €ApM,F).
Jq

Then
(B4 B)Aw = uye(0)e(0)) Y i(Ei(ER) Y ws, @ 0"
j k Jq

= wjws, @ e(07)i(E;)0"
i
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=D Hyws, ®0%

Jq JEJq

Therefore

(e(B+ B)Aw,w) = /M Z Z pi(ws,,ws,)vg

Jq JE€EJq

> [ Y bulos oy = 1032 0
Jq

MAIN THEOREM 1. Let (M, D, g) be an oriented n-dimensional complete Hessian
manifold and (F, DY) a flat line bundle over M. We denote by h a fiber metric on F.
Assume B + [ is positive definite, where B and (3 are the second Koszul forms with
respect to fiber metric h and Hessian metric g respectively. For q > 1 let b, be the
same as in Lemma 3.2.1. Then for all v € L*(M,F ® A"™%) such that Ov = 0 and
by /%0 € LA(M,F @ A™9), there exists u € L*(M, F @ A™71) such that

du=v, ull < o],
In particular, if there exists € > 0 such that B + B — eg is positive semi-definite, we have
L*HJY(M,F) =0, forq>1.

PrROOF. The theorem can be shown by applying the method as in complex analysis
in several variables (cf. [5, Lemma 4.1.1]) to the case of Hessian manifolds.

We set Kerd = {w € L?(M,F ® A™9) | 0w = 0}. Since Ker 0 is a closed subspace
in L?(M,F @ A™7), we have

L*(M,F ® A™) = Ker 0 @ (Ker 9)™,

where (Ker )~ is the orthogonal complement of Ker 9. A (n, q)-form w € L?(M, F@AP-?)
is expressed by

w=w +wy, w €Kerd, wye (Kerd)t.
For n € A9~ (M, F), we have
(6w, n) = (w,01) =0,
and so
dpwy = 0.
Since v € Ker d by assumption, we obtain
(v, )| = [(v,w1) P = [(b 20,0 2wn) [P < [[bg 20l [lbgen .

Assume w € W(M, F ® A™?). Then



80 S. AKAGAWA
5w1 = 0, ngl == 5FUJ S LQ(M7F & /\n,q—l),

and so w; € W (M, F ® A™9). Hence by Proposition 3.1.2, w satisfies the inequality in
Lemma 3.2.1:

b/ %w1 1> < [|0wr]|? + [|8pwrl|? = 16pwi | = |6rw]* < cc.
Therefore for w € W(M, F @ A™7) we have
(v, w)* < llbg 20|18 pw]* < oo,

By this inequality a linear functional A : §pW (M, F ® A™%) 3 fpw + (v,w) € R is
well-defined and the operator norm C' is

C< ||bq_1/2v|| < 0.

We set Ker6p = {w € L2(M, F ® A™9) | 6pw = 0}. Ker 0 is also a closed subspace
in L2(M, F ® A™9) and

L*(M,F & A\™) = Ker6p @ (Kerdp)?t,

where (Kerdp)t is the orthogonal complement of Kerép. In the same way we have
(Ker67)* C Kerd and for @ € (Kerdp)t NW (M, F @ A™),

by ?011* < 0@ + [[5ral® = lI5ra]*.
Let {nx} C 6pW (M, F ® A™7) be a Cauchy sequence with respect to the norm || || on
L?(M,F ® A™71). Each n; is denoted by
N = SpQg, @ € (KerSF)J‘ NW(M,F® A1),

and by the said inequality {&x} is also a Cauchy sequence with respect to the norm || ||
on L*(M,F ® A™%). This implies {&y} is a Cauchy sequence with respect to the norm
| lw on W(M,F ® A™%). Hence by completeness of W (M, F ® A™?) with respect to
| [lw, we have

W —m>weWM,FeA™) (k— c0),
and
e — 0p@w (kK — 00).

Therefore, §pW (M, F ® A™9) is a closed space of L?(M, F ® AP2~1) with respect to the
norm || ||

From the above, by applying Riesz representation theorem to the linear functional
A 6pW (M, F @ A™9) — R, there exists u € 6pW (M, F ® A™7) such that
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{A(n) = (u,n), 1EJW(M,F @A)
—1/2
lull = C < [|og ).

By the first equation, for all w € Aj?(M, F') we have
(v,w) = Mépw) = (u, pw),
and so
Ou = .

This implies the first assertion.
Suppose there exists € > 0 such that B + § — £g is positive semi-definite. Then by
the definition of by, b, > eg. Hence for all v € L*(M, F @ A™?) we obtain

/ <bq_1/2v>bq—l/2v>vg < (Eq)_l/ (v,v)vy < 00,
M M

that is,
b, %0 € L*(M,F @ A™7).
This implies the second assertion. O

The following theorem corresponds to Theorem 2.2.7 in the case of complete Hessian
manifolds.

MAIN THEOREM 2. Let (M, D, g) be an oriented n-dimensional complete Hessian
manifold and (F, DY) a flat line bundle over M. We denote by h a fiber metric on F.
Assume that there exists € > 0 such that B+ = eg where B and 8 are the second Koszul
forms with respect to fiber metric h and Hessian metric g respectively. Then for p+q > n
and all v € L>(M, F ® AP9) such that Qv = 0, there exists u € L?>(M, F @ AP9~1) such
that

du=v, |ull <{e(p+q—n)} ]
In particular, we have
L*HE(M,F) =0, forp+q>n.
PrOOF. By Proposition 2.1.8, on A”9(M, F') we have
[e(B+ B),Al =¢[L,A] =e(p+q—n).
Hence by Theorem 2.3.8, for all w € Af?(M, F') we obtain
10w + [lopw]|* > (p + q — n)lw]]*.

Then the assertions are proved similarly to Main Theorem 1. O
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COROLLARY 3.2.2. Let (R, g) be the Euclidean space, D be the canonical affine
connection on R™, and (F = R™ x R, DF) be the trivial flat line bundle on R™. In
addition, we define a fiber metric h on F' by

h(s,s) =e™%,

where p(z) = (1/2)>°,(z")? and s : R" > z ~ (z,1) € F. Then for ¢ > 1 and
v € L2(R™, F ® AP9) such that Ov = 0, there exists u € L2(R™, F @ AP4~1) such that

du=wv, |lul <q ol
In particular, we have
LQHg’q(R”,F) =0, forp>0andq>1.

PrOOF. The Hessian metric ¢ = Ddy is complete and the second Koszul forms
with respect to h and g are

B = —-00logh(s,s) =00p =g, B= %nget[&j] =0.

Hence by Main Theorem 2, for p = n we obtain the assertion.
Next, we consider the case of p = 0. For v € L(R", F @ A%9) we set

b=dz' A--- Adz" @ .

Then we have o € L2(R", F ® A™%) and [|9| = ||v||. Since dv = 0 and 99 = 0 are
equivalent, by Main Theorem 2 there exists 4 € L*(R", F ® A™4~1) such that da = ©
and ||@| < ¢~ /?|9||. Here 4 can be expressed as

G=dz' A ANde" ®u, ue LY R g, F,h),
and so
de* A ANdz" @0u =00 =0 =dz* A--- ANdz" @ v.
Therefore, we have u = v. Moreover, we obtain
lull = [l < ¢ *2||6] = g~/ |lv]].

Hence the assertion for p = 0 follows.
Finally, for p > 1, v € L2(R", F ® AP*?) can be expressed as

v:ZdII"Q@vIP, Iy = (i1, ., 0p), 1<ip<---<iy,<mn, UIPELQ(R",FQ@/\O’Q),
II’

and we have

loll* = llvr, 1%

Ip
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If Jv = 0, for all I, we obtain ‘%Ip = 0. Hence by the case of p = 0, there exists
{ur,} C L2(R", F ® A%971) such that dus, = vy, and |uy, || < g~ 2/2||vy,||. Here we set

u= E da' ® U,
IP

Then we have

Ou = delp ® éulp = delp ® vy, = v,
Ji

Ip P
[ul> = llur, 12 <> g Hlvn 1P = ¢~ ol
Ip I,

This completes the proof. O

COROLLARY 3.2.3. Let Q € R" be a regular convex domain, D be the canonical
affine connection on €2, g be the Cheng—Yau metric defined by Theorem 1.2.4. Then for
p+q>n andv € L?(Q, AP9) such that Ov = 0, there exists u € L?(Q, AP971) such that

u=v, |ul <@+q—n)""?|v|.
In particular, we have
L*HEY(Q) =0, forp+q>n.

PROOF.  Since g is complete and 8 = g, the assertion follows from Main Theorem 2.
O

Let 2 € R"~! be a regular convex domain and we set V = {(ty,t) e R" |y € Q,t >
0}. ~Let D be the canonical affine connection on V' and ¢ be the Cheng—Yau metric on
(V, D) defined by Theorem 1.2.4. In addition, we define an action p : Z — GL(V') by

p(k)r ="z, keZ, axzcV.

Then we have Z\V ~ Q x S*. Moreover, by Proposition 1.2.5 this action preserves (D, §)
and so a Hessian structure (D, g) on Q x S* is defined by projecting (D, §) on Q x S*.
The Hessian metric g is complete and the second Koszul form with respect to g is equal
to g. Hence the following corollary follows from Main Theorem 2.

COROLLARY 3.2.4. Let (Q x S*,D,g) be as above. Then for p+q > n and v €
L2(Q x SY, AP9) such that Ov = 0, there exists u € L*(Q x ST, AP4=1) such that

du=wv, |ull < (p+aq—n)""2|ol.
In particular, we have

LQHg’q(Q x SH =0, forp+q>n.
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3.3. L2-cohomology groups on regular convex cones.

A regular convex domain 2 in R"™ is said to be a regular convex cone if, for any
x in Q and any positive real number A\, Az belongs to €. In this section we show
vanishing theorems for regular convex cones with the Cheng—Yau metrics which differ
from Corollary 3.2.3.

PROPOSITION 3.3.1.  Let (2, D,g = Ddyp) be a regular convex cone in R™ with the
Cheng—Yau metric (Theorem 1.2.4). Then we have the following equations.

) 8@
iZr
(1) zj:x 5d =
(2) gradp = —Za:ji..
- oxJ
(3) > aFvijn = —gij.
k
ProoOF. By the proof of Proposition 1.2.5, for ¢ > 0 and = € Q2 we have
o(tz) = p(x) —nlogt.
Then we obtain

Oy d
== — p(tr) = —n.
Z Oz dt|,_,

J

Taking the derivative of both sides with respect to * we have

Since 0% /0z'0x? = g;; we obtain

— ] — J
gfad@@—z I owi 0t Z, Y oai
J

]

Equation (x) is equivalent to
d¢ Z k
mj + k T gjk = 0.

Taking the derivative of both sides with respect to #* and applying Proposition 1.1.5 we
have

9ij + 9ij + Z 22F ;56 = 0,
f

that is,
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Zxk%‘jk = —Yij- O
k

We set H = 3, 299/027 (= —gradp) and denote by Zy Lie differentiation with
respect to H.

PROPOSITION 3.3.2.  For o € AP(Q)) we have
Lo = Dgo + po.
Proor. For X € Z'(Q2) we obtain

DxH = X,

and so

[H,X] = DyX — DxH = DX — X.
Then for Xq,..., X, € 2 () we have

(Luo)(X1,..., Xp)
=Ho(X1,...,Xp) = Y _o(X1,...,[H Xi],..., X,)

=Ho(Xy,...,Xp) =Y o(X1,...,DuXi,.... X,) + po(X1,..., X,)

:(DHO')(Xl,...,Xp)+p0'(X1,...,Xp). [l
By Cartan’s formula we have the following.
COROLLARY 3.3.3.  For w € AP4(Q) we have

(0i(H) 4+ i(H)0)w = Dygw + pw,

(0i(H) +i(H)0)w = Dyw + qu.

MaAIN THEOREM 3. Let (Q,D,g = Ddp) be a regular convex cone in R™ with the
Cheng—Yau metric. Then for p > q > 1 and all v € L?(Q, AP?) such that Ov = 0, there

exists u € L?(Q, AP971) such that
du=v, |ul<®-a)0l.

In the case of p > q = 0, if v € L*(Q, AP) satisfies Ov = 0, then v = 0. In particular,

we have
LzHg’q(Q) =0, forp>gq.
PROOF. As a corollary of Theorem 2.3.6 we obtain

A+ 0N = -6 +i(Xs), AO+OA=—0+i(X,).
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Then we have

86 = 8(—Ad — OA +i(X.,))
= (AD+ 06— i(X,))0
=00 — i(Xa)d + 0i( X

30 = (—Ad — OA +i(Xa))
— —AJD+ O(OA + 6 —
= 96 — 9i(Xa) + 1(Xa)

— 00A + 0i(Xa)
)+ AJO — DOA,
)
i(Xa
-

and so

0 =0- (9i(Xa) +i(Xa)0) + (9i(Xa) +i(Xa)0),

where [0 = 96 + 00.
Since ¢ is the solution of the equation in Theorem 1.2.4,

X, =gradp = —H.
Hence by Corollary 3.3.3,
O=0+p—gq.
Therefore, for w € AL?(2) we obtain
10w][* + 16w]* > (p = a)[lw]|*.
Then the assertions are proved similarly to Main Theorem 1. g
We have the following from Main Theorem 3 and Corollary 3.2.3.

COROLLARY 3.34. Let (2,D,g = Ddy) be a regular convex cone in R™ with the
Cheng—Yau metric. Then we have

LzHg’q(Q) =0, forp+qg>norp>q.

3.4. L?-cohomology groups on R”

The Cheng-Yau metric on a regular convex cone R’} is g = —Ddlog(x!---a™) =
>, (dz?/2")?. We can apply Corollary 3.3.4 to (R}, D, g). However, we have a stronger
vanishing theorem.

MAIN THEOREM 4. Forp >1, ¢ > 1 and v € L*(R:, AP?) such that Ov =0, there
exists u € L?(R, \P771) such that

1/2

ou=v, |ul <p=|lvl|.

In the case of p>q =0, ifv € L2(R’}r7 AP0 satisfies Ov = 0, then v = 0. In particular,
we have
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L*HPY(RY) =0, forp>1andq>0.

In this section we show Main Theorem 4. For the canonical coordinate x =
(z',...,2") on R, we set t = (t!,...,t") = (logz',..., logz™).

LEMMA 3.4.1.  The following equations hold.

o 0
(1) 9<8ti,8tj> = 0ij.

0 0 0 0

(2) Dojou g7 = %iigss Dojor gz = = -
(3) Dojoudt! = —67dt?,  Djjppedt! =67 dt?.
4) a=-— Zj dt’,  where « is the first Koszul form for (D, g).

LEmMMA 3.4.2.  On (R}, D, g) we have
< (0
6 - — J ) -~ |-
Soni()
Proor. By Proposition 2.2.14, Lemmas 3.4.1 and 2.2.13 we obtain

(e i(£2)

j J

(0 - 0
== 3 {(a ) 7o+ (035}
- 0
——Z.@a/[«)tjl(atj>. D
J
PROPOSITION 3.4.3.  Letw =3, wr, g, dt'" @ dt’s € API(RT). Then we have

Dw=> " (A+p)wr,,dt" @ dt’,
Ip’Jq

where A = — Zj((?/@tj)2,

ProoOF. It is sufficient to show the equation when w = f dt'r ® dt’s. For a multi-

index Jy = (J1,---,Jq)s J1 < -+ < Jg, we define Jp—g = (g1, --+Jn), Jgt1 < -+ < Jn,
where (Jy, Jn—q) is a permutation of (1,...,n). By Lemmas 3.4.1 and 3.4.2 we obtain

) of 1 — —— AT
=Y %dtfp@;dtl/\dttf - Y fatr@adt ndts,

1€Jn—gq 1€lpNIn—q

— 0\ —
ow= — Z .@3/3“' (f dtlr ®Z<6t]) dt‘]q)

J€Jq
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— 87']0 I, 9 J I, 9 14dg
= Zatjdt ®z<8t>dt - Y fat @i 57 ) 7

JjeEI,NJy

o d
_ I, 7 ;
00w = g g 8t18tJ dt” ®@1 (8 ) (dti A dt’a)

i€Jn_q jEJLU{i}

f 1
> > 5 dt" ®z(at>(dt A dt7s)

i€ Tn—q JELN(J, U{i})

0
I, i I
+ E E 8tﬂdt ®z(a )(dt A dt’a)

1€lpNIn—q jEJLU{i}

+ 0y > fat ®z<£ ) (dt? A dt7a),

t€lpNJn—g jeI,N(JqU{i})

_ Ff ity o7 0\ =7
-y > Siop ®dtm(8t)dtq

JETq i€ T_qU{}

of .1, ; 9 T
+ > o ® dtt /\z(at>dt

je€Jgiel,N(Jn—qU{j})

Of v wap nil -2\ @
Do gadt ®dt/\z<at)dt

JelNJgi€dn_qU{j}

+ > > fdt' ®dt’Az<£>dth

JEIRNIq i€I,N(Jn—qU{s})

We denote by (60w)r and (9dw)s the k-th terms of 60w and ddw respectively, where
k=1,2,3,4. Then we have

n

2
(58 )1+ Z(aﬂ) fdtlp ®dti‘]<1,

(60w)2 + ( Z = dtfp ® dt’s,
el,

(00w)3 + (9dw 2—26 dt’ @ dt’s,

jel,
50w)4 + (0w)s = th @ dt?e = pf dt'r @ dt’s.
50 a0 fdt'» @ dt’ fdtl» @ dt’
J€l,
This completes the proof. O

COROLLARY 3.4.4.  Forw € Ay Y(R") we have

10w + [lw]* > pllw]*.
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PROOF. A (p,q)-form w € AFU(RY}) is expressed by w =7, wr, g, dt'r @ dt’a.
By Lemma 3.4.1 and Proposition 3.4.3 we obtain

10w + [|dwl|?

(Ow,w)

Z (Awy, g, w1, 7,) + pllw|?

IP"‘]Q

> pllw|?. -

Using the above, we have Main Theorem 4 similarly to Main Theorem 1.
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