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Abstract. The Q-polynomial is an invariant of the isotopy type of an

unoriented link defined by Brandt, Lickorish, Millett, and Ho around 1985. It
is shown that there exist infinitely many prime knots and links with trivial
Q-polynomial, and so the Q-polynomial does not detect trivial links.

1. Introduction.

“Does there exist a non-trivial knot indistinguishable from the trivial knot by the

Q-polynomial?” It has been an open problem for 30 years since Brandt, Lickorish, Millett

[2] and Ho [6] introduced the Q-polynomial as an isotopy invariant for unoriented knots

and links. In this paper, we give an affirmative answer. Furthermore, we reveal there

exist infinitely many prime knots and links with trivial Q-polynomial; in this paper a

polynomial invariant for a µ-component link is trivial if the polynomial is identical with

that of the trivial µ-component link.

For a classical knot or link, there are several well-known polynomial invariants; the

Alexander polynomial [1] is the most classical one whose geometric background is the

infinite cyclic covering of a knot complement, and can be generalized to a µ-variable

Alexander polynomial for a µ-component link. The Conway polynomial [3] is a version

of the Alexander polynomial defined by the skein relation. The Jones polynomial [7] was

discovered by Jones in 1984 using the braid theory, and soon after it was generalized

to the HOMFLY polynomial [5], [19], [23], which is also specialized to the Alexander

polynomial. On the other hand, considering an unoriented skein relation, around 1985

the Q-polynomial for unoriented knots and links was discovered by Brandt, Lickorish

and Millett, which was independently found out by Ho around the same time. Then

Kauffman generalized this to the Kauffman polynomial [12], which is also specialized to

the Jones polynomial. See Figure 1, where an arrow indicates that one invariant produces

another by means of a substitution of variables (cf. Figure 4 in [17]). In general, the

Alexander, Jones and Q-polynomials have different topological features from one another.

Two knots sharing one of three polynomials can be usually distinguished by the others

unless they have a specific relation like mutants.

The existence of nontrivial knots or links with trivial Alexander polynomials, and

the existence of nontrivial links (not a knot) with trivial Jones polynomials are known.

The Alexander polynomial was defined in 1928. It is rather easy to construct an example

of a nontrivial knot with trivial polynomial, e.g., the untwisted Whitehead double. In

2010 Mathematics Subject Classification. Primary 57M25; Secondary 57M27.
Key Words and Phrases. Q-polynomial, trivial polynomial.

https://doi.org/10.2969/jmsj/77167716


20

20 Y. Miyazawa

Figure 1. Relationships between five polynomials.

particular, the Kinoshita–Terasaka knot [14] and the Conway knot [3] are such examples

with minimal crossing number. The Jones polynomial was discovered in 1985, and in 2001

Thistlethwaite [26] announced the existence of 2- and 3-component nontrivial links with

trivial Jones polynomial by computer enumeration of links. Then, Eliahou, Kauffman

and Thistlethwaite [4] constructed infinite families of links with trivial polynomials by

a discovery of a pair of local moves which preserve the Jones polynomial. However, the

problem of existence of a nontrivial knot with trivial Jones polynomial is still open. If

the volume conjecture is true, then it turns out that any non-trivial knot has non-trivial

Jones polynomial. Also, for the HOMFLY and Kauffman polynomials there are no known

examples of links with trivial polynomials. However, Kanenobu [8] constructed infinitely

many knots with the same Jones and HOMFLY polynomials.

The Q-polynomial Q(L;x) ∈ Z[x±1] for an unoriented link L is an invariant of

isotopy type of L, which is defined by the following recursive formulas:

(Q1) For the trivial knot U1, Q(U1;x) = 1,

(Q2) For a skein quadruple (L+, L−, L0, L∞) which denotes four links that are identical

except near one point where they are as in Figure 2,

Q(L+;x) +Q(L−;x) = x(Q(L0;x) +Q(L∞;x)).

Figure 2. A skein quadruple.

Then, by simple calculation, we see that the Q-polynomial Q(Uµ;x) for the trivial

µ-component link Uµ is (2x−1 − 1)µ−1.

The following is a conclusion on the problem mentioned at the beginning of the

paper.

Theorem 1.1. There exist non-trivial knots with trivial Q-polynomial.

Proof. We give explicit examples. The knots 16n389841 and 16n491778 illustrated

in Figure 3 have trivial Q-polynomial. □
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Figure 3. Knots with trivial Q-polynomial.

Here the notation for the two knots above follows the Hoste-Thistlethwaite table of

prime knots with up to 16 crossings.

The fact on the Q-polynomial in the proof of Theorem 1.1 is ensured by computa-

tions using two distinct tools, which are the program written by Morrison [21] in the

Mathematica package “KnotTheory” and the software “KNOT” by Kodama [15], and

hand calculation.

Remark 1.2. Only the two knots above have trivial Q-polynomial among prime

knots with up to 16 crossings. It is verified by examining non-alternating prime knots

with up to 16 crossings using the Mathematica package “KnotTheory”, because it is

shown by Kidwell [13] and Miyauchi [20] that the degree of the Q-polynomial of an

alternating knot is determined by its minimum crossing number.

Computing other classical polynomial invariants of the two knots above, we obtain

a notable table.

Table 1. Triviality of polynomials.

Knot 16n389841 16n491778

Q trivial trivial

Conway non-trivial trivial

Jones non-trivial non-trivial

Table 1 tells that the knot 16n491778 has trivial Conway polynomial. Since the

Jones polynomial of each knot is non-trivial, its HOMFLY and Kauffman polynomials

are non-trivial.

Since, for any connected sum L1♯L2 of links L1 and L2, the Q-polynomial (resp. the

Conway polynomial) of L1♯L2 is equal to the product of Q-polynomials (resp. Conway

polynomials) of L1 and L2 [1], [2], by the unique factorization theorem [25], a composite

link obtained from a given link and any number of copies of the knot 16n491778 brings

the following.
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Corollary 1.3. For any link L, there exist infinitely many mutually distinct links

with the same Conway and the same Q-polynomial as L.

Corollary 1.3 implies that the Q-polynomial dose not detect trivial links.

The purpose of this paper is to prove the following theorem.

Theorem 1.4. For each positive integer µ, there exist infinitely many mutually

distinct prime µ-component links with trivial Conway and Q-polynomials.

The proof is given by Theorems 2.5 and 2.6 which indicate that the specific knots

and links introduced in the next section have the four features which are triviality of

the two polynomials, mutually distinction between the links and primeness of the links.

The theorems are completed by arguments and results on these features described in

Section 3 and the following.

Remark 1.5. As for prime links with the same Q-polynomial, Kanenobu [9] con-

structed arbitrarily many prime knots with the same Q-polynomial. Furthermore, he

[10] constructed arbitrarily many 2-bridge knots and links with the same HOFMLY and

Kauffman polynomials.

There is an interesting and important problem originating in Theorem 1.1.

Problem 1.6. Find a reason why the knots 16n389841 and 16n491778 have trivial

Q-polynomial.

The author has no result on Problem 1.6 at this writing.

The rest of the paper subsequent to this section is devoted to the precise proof of

Theorem 1.4 and organized as follows. In Section 2, a family of links is created for the

proof of Theorem 1.4. Sections 3 and 4 explain that such links have trivial Q-polynomial

and Conway polynomials, respectively. In Sections 5 and 6, it is shown that the links are

mutually distinct and prime, respectively.

2. Knots and links for Theorem 1.4.

In this section, we introduce the links with µ, µ ≥ 1, components which are obtained

from two specific tangles by a tangle sum and make two assertions on such links for

proving Theorem 1.4.

A tangle T is a pair (B, t) of a 3-ball B and a (possibly disconnected) proper 1-

submanifold t with ∂t ̸= ∅. T is said to be a 2-string tangle if T (t, to be precise) consists

of two arcs and some circle components. Each of ∂t is called an endpoint of T . The

numerator (resp. denominator) of a 2-string tangle T denoted by N(T ) (resp. D(T )) is

a link obtained from T by connecting the four endpoints of T by two arcs outside T as

in the left (resp. right) figure of Figure 4.

We denote tangles as in Figure 5 by En, n ∈ Z, E∞, and E1/m,m ∈ Z − {0},
respectively. The tangle En is a 2-string tangle with |n| half-twists as drawn in Figure 5,

right-handed for positive n and left-handed for negative n; Figure 5 shows the right-

handed twist. In particular, E0 means horizontal parallel strings without crossings. We
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Figure 4. The numerator and the denominator.

denote by E1/m the tangle obtained from Em by switching all crossings after rotating

Em through angle π/2 in the clockwise direction around an axis perpendicular to the

projection plane. So, E1/m has the twists depicted in Figure 5 if m is positive, otherwise

it has opposite twists.

Figure 5. Trivial tangles.

Let T and S be 2-string tangles. We define addition of tangles T and S by connecting

endpoints of T and S as in Figure 6 and denote it by T + S. We also define vertical

addition of tangles T and S by connecting endpoints of T and S as in Figure 7 and

denote it by T ∗ S.

Figure 6. Addition of tangles. Figure 7. Vertical addition of tangles.

For positive integers m and n, let H(m,n) be the tangle E1/−m+E1/n as in Figure 8.

We denote by R(m) the tangle H(m,m+1) ∗H(m+1,m) which is the vertical addition

of tangles H(m,m+ 1) and H(m+ 1,m). It is easy to see that there exists a mutation

ρ with respect to R(m) such that ρ(R(m)) = R(m).

Let W be the tangle as in Figure 9. Then, we have the following remark which is a

key factor to obtain knots and links with trivial Q-polynomial.
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Figure 8. The tangle H(m,n).

Remark 2.1. The numerator and denominator of W , N(W ) and D(W ), are the

trivial 2-component link and the knot 16n491778, respectively.

Figure 9. The tangle W .

For a positive integer m, we denote the knot N(R(m) +W ) by Km.

Example 2.2. Figure 10 displays a diagram of the knot K2 = N(R(2) +W ).

Figure 10. K2 = N(R(2) +W ).

For an integer µ ≥ 2, we denote by S(µ;m) the tangle H(2m, 2m) ∗ (∗µ−2H(2, 2)),

which is the vertical addition of H(2m, 2m) and (µ−2) copies of H(2, 2). We also define
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the link N(S(µ;m) +W ) by L(µ;m).

Example 2.3. Figure 11 demonstrates a diagram of the link L(3;2) = N(S(3; 2) +

W ).

Figure 11. L(3;2) = N(S(3; 2) +W ).

Next, we orient the knot Km and the link L(µ;m).

An oriented 2-string tangle T is called properly oriented if each arc of T is oriented

as in Figure 12. If T is properly oriented, then we suppose that the links N(T ) and D(T )

have the orientations induced from T .

Figure 12. A properly oriented 2-string tangle.

Remark 2.4. If two tangles T and S are properly oriented, then each of tangles

T + S and T ∗ S is also properly oriented.

The tangle R(m) is a 2-string tangle without circle components, and one of the

strings of R(m) connects the two endpoints on the left side of the tangle and the other

connects the two endpoints on the right side. Thus, we can orient R(m) such that it

becomes properly oriented. We can also orient the tangle W as it is properly oriented.

From the two properly oriented tangles R(m) and W , we can obtain the oriented knot

Km = N(R(m) +W ).

The tangle H(m,n) = E1/−m + E1/n,m, n ∈ N, can be oriented as follows:

(1) H(m,n) is properly oriented,

(2) Each of E1/−m and E1/n is oriented so that two strings of the tangle have parallel

orientations.
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Then, the tangle S(µ;m),m ∈ N, becomes a property oriented one. From the two

properly oriented tangles S(µ;m) and W , we can obtain the oriented link L(µ;m) =

N(S(µ;m) +W ).

So, if necessary, we suppose that Km and L(µ;m) are oriented as mentioned above.

Theorem 2.5. The knots Km,m ∈ N, satisfy the following :

(1) Q(Km;x) = Q(U1;x) = 1,

(2) ∇(Km; z) = ∇(U1; z) = 1,

(3) Km is prime,

(4) Km and Kn are distinct if m ̸= n,

where ∇(L; z) denotes the Conway polynomial of a link L mentioned in Section 1 and

defined precisely in Section 4.

Proof. The proof is accomplished by Corollaries 3.8, 4.2, 5.16 and 6.8. □

Theorem 2.6. The links L(µ;m), µ ≥ 2,m ≥ 1, satisfy the following :

(1) Q(L(µ;m);x) = Q(Uµ;x) = (2x−1 − 1)µ−1,

(2) ∇(L(µ;m); z) = ∇(Uµ; z) = 0,

(3) L(µ;m) is prime,

(4) L(µ;m) and L(µ;n) are distinct if m ̸= n.

Proof. The proof is completed by Corollaries 3.9, 4.2, 5.19, 5.20 and 6.8. □

It is easy to see that Theorems 2.5 and 2.6 imply Theorem 1.4. The corollaries which

yields Theorems 2.5 and 2.6 are given in the following sections.

3. Trivial Q-polynomial.

In this section, we show thatKm and L(µ;m) defined in the previous section have triv-

ial Q-polynomial. First, we examine the Q-polynomial of a link obtained from two tangles

by a tangle sum. Next, we apply a result to creation of links with trivial Q-polynomial.

For the sake of argument, we prepare Proposition 3.2 which reveals characteristics of the

Q-polynomial.

Let 31 be the trefoil knot in the table of Rolfsen [24]. We define a polynomial

rµ(x) ∈ Z[x±1] for µ ∈ N as follows:

(1) r1(x) = Q(31;x)−Q(U1;x) = 2(x+ 2)(x− 1),

(2) rµ(x) = x1−µr1(x) if µ ≥ 2.

Lemma 3.1. For an integer µ with µ > 1,

2Q(Uµ;x)− 2xQ(Uµ−1;x) + rµ(x)(2− x)µ−2 = 0.



27

Links with trivial Q-polynomial 27

Proof. Since Q(Uµ;x) = Q(U2;x)
µ−1 and r1(x) = 2(x2 + x− 2), we obtain

2Q(Uµ;x)− 2xQ(Uµ−1;x) = 2(Q(U2;x)
µ−1 − xQ(U2;x)

µ−2)

= 2(Q(U2;x)− x)Q(U2;x)
µ−2

= 2(2x−1 − 1− x)Q(U2;x)
µ−2

= −x−1r1(x){x−1(2− x)}µ−2

= −rµ(x)(2− x)µ−2.

This completes the proof. □

For a link L, we denote the number of components of L by µ(L).

Proposition 3.2. Let L be a link. Then,

Q(L;x) ≡ Q(Uµ(L);x) (mod rµ(L)(x)).

Furthermore, Q̂(L;x) ∈ Z[x], where

Q̂(L;x) =
Q(L;x)−Q(Uµ(L);x)

rµ(L)(x)
.

Proof. The proof is by induction on (c(L), ch(L)), where c(L) is the number of

the crossings of a diagram of L and ch(L) is the number of crossing changes needed to

obtain the trivial link with the same component as L. The pairs (c(L), ch(L)) are ordered

lexicographically. If (c(L), ch(L)) = (m, 0),m ≥ 0, then the claim is true. Suppose that

(c(L), ch(L)) = (m,n), 1 ≤ n ≤ m. Then, there exists an n-tuple (c1, c2, . . . , cn) of

crossings c1, c2, . . . , cn of L such that Uµ(L) is obtained from L by changing all crossings

of the n-tuple. We choose any crossing from the n-tuple and denote it by c. We denote

by ScL the link obtained from L by switching c and also denote by ZcL (resp. IcL) the

link obtained from L by applying 0-splice (resp. ∞-splice) at c, where 0-splice (resp.

∞-splice) means an operation obtaining L0 (resp. L∞) from L+ as in Figure 2. Then,

we have

Q(L;x) +Q(ScL;x) = x(Q(ZcL;x) +Q(IcL;x)).

Since a skein quadruple (L+, L−, L0, L∞) can be regarded as a skein quadruple

(L−, L+, L∞, L0), we may assume that µ(L) ̸= µ(ZcL). Hence, we have two cases ac-

cording to the numbers µ(L) and µ(ZcL).

First, we consider the case µ(L) < µ(ZcL). Then, µ(L) = µ(ScL) = µ(IcL) =

µ(ZcL) − 1. Since the three pairs (c(ScL), ch(ScL)), (c(ZcL), ch(ZcL)) and (c(IcL),

ch(IcL)) are less than the pair (c(L), ch(L)), by inductive hypothesis, we have

Q(ScL;x) = Q(Uµ;x) + rµ(x)Q̂(ScL;x),

Q(IcL;x) = Q(Uµ;x) + rµ(x)Q̂(IcL;x),
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and

Q(ZcL;x) = Q(Uµ+1;x) + rµ+1(x)Q̂(ZcL;x),

where µ = µ(L) and Q̂(ScL;x), Q̂(IcL;x), Q̂(ZcL;x) ∈ Z[x]. Hence,

Q(L;x) = −Q(ScL;x) + x(Q(ZcL;x) +Q(IcL;x))

= −Q(Uµ;x)− rµ(x)Q̂(ScL;x)

+ x
(
Q(Uµ+1;x) + rµ+1(x)Q̂(ZcL;x) +Q(Uµ;x) + rµ(x)Q̂(IcL;x)

)
= {−Q(Uµ;x) + x(Q(Uµ+1;x) +Q(Uµ;x))}

− rµ(x)Q̂(ScL;x) + xrµ+1(x)Q̂(ZcL;x) + xrµ(x)Q̂(IcL;x)

= Q(Uµ;x) + rµ(x)(−Q̂(ScL;x) + Q̂(ZcL;x) + xQ̂(IcL;x)).

Since −Q̂(ScL;x) + Q̂(ZcL;x) + xQ̂(IcL;x) ∈ Z[x], the claim is true.

Next, we consider the case µ(L) > µ(ZcL). Note that µ(L) > 1. It is clear that

µ(L) = µ(ScL) = µ(ZcL) + 1 = µ(IcL) + 1. Since inductive hypothesis gives

Q(ScL;x) = Q(Uµ;x) + rµ(x)Q̂(ScL;x),

Q(ZcL;x) = Q(Uµ−1;x) + rµ−1(x)Q̂(ZcL;x),

and

Q(IcL;x) = Q(Uµ−1;x) + rµ−1(x)Q̂(IcL;x),

where µ = µ(L) and Q̂(ScL;x), Q̂(IcL;x), Q̂(ZcL;x) ∈ Z[x], we obtain

Q(L;x) = −Q(ScL;x) + x(Q(ZcL;x) +Q(IcL;x))

= −Q(Uµ;x)− rµ(x)Q̂(ScL;x)

+ x
(
2Q(Uµ−1;x) + rµ−1(x)Q̂(ZcL;x) + rµ−1(x)Q̂(IcL;x)

)
= {−Q(Uµ;x) + 2xQ(Uµ−1;x)}

+ rµ(x){−Q̂(ScL;x) + x2(Q̂(ZcL;x) + Q̂(IcL;x))}.

Since −Q(Uµ;x) + 2xQ(Uµ−1;x) = Q(Uµ;x) + rµ(x)(2 − x)µ−2 by Lemma 3.1, the last

expression is equal to

Q(Uµ;x) + rµ(x){−Q̂(ScL;x) + x2(Q̂(ZcL;x) + Q̂(IcL;x)) + (2− x)µ−2}.

Since −Q̂(ScL;x) + x2(Q̂(ZcL;x) + Q̂(IcL;x)) + (2− x)µ−2 ∈ Z[x] for µ > 1, the proof

is complete. □

We call the polynomial Q̂(L;x) the core Q-polynomial of L. Since the Q-polynomial

is an invariant for a link, the core Q-polynomial Q̂(L;x) is also an invariant for a link. If
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L has trivial Q-polynomial, then the core Q-polynomial of L vanishes by the definition.

A close look at the proof of Proposition 3.2 makes the following clear.

Corollary 3.3. The core Q-polynomial Q̂(L;x) for an unoriented link L is given

by the following recursive formulas:

(Q̂1) For the trivial knot U1, Q̂(U1;x) = 0,

(Q̂2) For a skein quadruple (L+, L−, L0, L∞) with µ(L+) ̸= µ(L0),

Q̂(L+;x) + Q̂(L−;x)

=

{
Q̂(L0;x) + xQ̂(L∞;x) if µ(L+) < µ(L0),

x2(Q̂(L0;x) + Q̂(L∞;x)) + (2− x)µ(L+)−2 if µ(L+) > µ(L0).

From the proof of Proposition 3.2, we find that two formulas (Q̂1) and (Q̂2) hold.

To prove the corollary, it is enough to show that the core Q-polynomial can be com-

puted by the two formulas only. It can be easily accomplished by induction on the pair

(c(L), ch(L)). We omit the details here.

Let L(T ), L(E0), L(E∞) and L(E−1) be four links identical outside a ball and inside

are 2-string tangles T , E0, E∞ and E−1, respectively. Then, linear skein theory (cf. [18])

gives a unique triple (e0(T ;x), e∞(T ;x), e−1(T ;x)) of Laurent polynomials in x for the

tangle T so that

Q(L(T );x) = e0(T ;x)Q(L(E0);x)

+ e∞(T ;x)Q(L(E∞);x) + e−1(T ;x)Q(L(E−1);x). (3.1)

The polynomials e0(T ;x), e∞(T ;x) and e−1(T ;x) are essentially determined by the tangle

T only. We call the triple (e0(T ;x), e∞(T ;x), e−1(T ;x)) the coordinates of T on the Q-

polynomial with respect to basic tangles E0, E∞ and E−1.

Let M1 and M2 be 3× 3 matrices whose entries are in Z[x±1] defined by2x−1 − 1 1 1

1 2x−1 − 1 1

1 1 2x−1 − 1

 and

−2x x2 x2

x2 −2x x2

x2 x2 −2x

 , respectively.

Lemma 3.4. Let T be a 2-string tangle and a triple (e0(T ;x), e∞(T ;x), e−1(T ;x))

of polynomials the coordinates of T on the Q-polynomial with respect to basic tangles

E0, E∞ and E−1. Then, e0(T ;x)

e∞(T ;x)

e−1(T ;x)

 =
1

r1(x)
M2

 Q(N(T );x)

Q(D(T );x)

Q(N(T + E1);x)

 .

Proof. Considering N(T ), D(T ) and N(T +E−1) as L(T ) in Equation (3.1), we

have
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Q(D(T );x)

Q(N(T + E1);x)

 =

Q(U2;x)Q(U1;x)Q(U1;x)

Q(U1;x)Q(U2;x)Q(U1;x)

Q(U1;x)Q(U1;x)Q(U2;x)

 e0(T ;x)

e∞(T ;x)

e−1(T ;x)


= M1

 e0(T ;x)

e∞(T ;x)

e−1(T ;x)

 .

Since M2M1 = r1(x)I3, where In, n ∈ N, denotes the identity matrix of size n, we

have

r1(x)

 e0(T ;x)

e∞(T ;x)

e−1(T ;x)

 = M2

 Q(N(T );x)

Q(D(T );x)

Q(N(T + E1);x)

 ,

completing the proof. □

For a matrix X, we denote its transpose by tX.

Proposition 3.5. Let S and T be 2-string tangles. Suppose that T has no circle

components. Then,

Q(N(S + T );x) =

t Q(N(S);x)

Q(D(S);x)

Q(N(S + E−1);x)


A

 Q̂(N(T );x)

Q̂(D(T );x)

Q̂(N(T + E1);x)

+B

 ,

where the pair (A,B) of matrices is as follows:

(1) If µ(N(T )) = 2, then (A,B) =

−2 x2 x2

x −2x x2

x x2 −2x

 ,

1

0

0

,

(2) If µ(D(T )) = 2, then (A,B) =

−2x x x2

x2 −2 x2

x2 x −2x

 ,

0

1

0

,

(3) If µ(N(T + E1)) = 2, then (A,B) =

−2x x2 x

x2 −2x x

x2 x2 −2

 ,

0

0

1

.

Proof. We prove the first case only because the others can be proved similarly.

Put C(T ) =
t(
e0(T ;x) e∞(T ;x) e−1(T ;x)

)
. Considering decomposition of T by Equa-

tion (3.1), we have

Q(N(S + T );x) = e0(T ;x)Q(N(S + E0);x) + e∞(T ;x)Q(N(S + E∞);x)

+ e−1(T ;x)Q(N(S + E−1);x)

= e0(T ;x)Q(N(S);x) + e∞(T ;x)Q(D(S);x)

+ e−1(T ;x)Q(N(S + E−1);x)
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=
(
Q(N(S);x)Q(D(S);x)Q(N(S + E−1);x)

)
C(T ).

Thus, we only have to calculate C(T ) by using Lemma 3.4.

Since µ(N(T )) = 2, we find that µ(D(T )) = µ(N(T + E1)) = 1. Using Proposi-

tion 3.2, we obtain Q(N(T );x)

Q(D(T );x)

Q(N(T + E1);x)

 =

x−1Q̂(N(T );x)r1(x) + (2x−1 − 1)

Q̂(D(T );x)r1(x) + 1

Q̂(N(T + E1);x)r1(x) + 1


= r1(x)

x−1 0 0

0 1 0

0 0 1


 Q̂(N(T );x)

Q̂(D(T );x)

Q̂(N(T + E1);x)

+

2x−1 − 1

1

1

 .

Since

M2

x−1 0 0

0 1 0

0 0 1

 =

−2 x2 x2

x −2x x2

x x2 −2x

 and M2

2x−1 − 1

1

1

 = r1(x)

1

0

0

 ,

Lemma 3.4 gives the claim. □

For a tangle T , we denote by T the mirror image of T with respect to projection

plane, that is the tangle obtained from T by switching all crossings in T .

A mutation ρ with respect to a tangle T is one of the rotations of π/180◦ about

one of its three principal axes and we denote by ρ(T ) the tangle obtained from T by a

mutation ρ with respect to T .

For a link L, L! denotes the mirror image of L in a usual sense.

Theorem 3.6. Let R and T be 2-string tangles. Suppose that R and T satisfy the

following :

(1) There exists a mutation ρ with respect to R such that ρ(R) = R,

(2) N(T ) is a 2-component link with trivial Q-polynomial,

(3) D(T ) is a knot with trivial Q-polynomial.

Then,

Q(N(R+ T );x) = Q(N(R);x).

Proof. Since D(T ) is a knot, T has no circle components. Since N(T ) has two

components, Proposition 3.5 gives

Q(N(R+ T );x) =

t Q(N(R);x)

Q(D(R);x)

Q(N(R+ E−1);x)


M

 Q̂(N(T );x)

Q̂(D(T );x)

Q̂(N(T + E1);x)

+

1

0

0


 ,

where
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M =

−2 x2 x2

x −2x x2

x x2 −2x

 .

Since Q(N(T );x) = Q(U2;x) and Q(D(T );x) = Q(U1;x) by the assumption, we

have Q̂(N(T );x) = Q̂(D(T );x) = 0 and thus,

Q(N(R+ T );x) = Q(N(R);x) + xQ̂(N(T + E1);x)

× {x(Q(N(R);x) +Q(D(R);x))− 2Q(N(R+ E−1);x)}.

We show that x(Q(N(R);x) + Q(D(R);x)) − 2Q(N(R + E−1);x) = 0. Since the

tangle ρ(R+ E1) is either the tangle E1 +R or the tangle R+ E1, and N(E1 +R) and

N(R+E1) are ambient isotopic, three links N(ρ(R+E1)), N(R+E1) and N(R+E−1)!

are ambient isotopic and

Q(N(R+ E1);x) = Q(N(ρ(R+ E1));x) = Q(N(R+ E−1)!;x)

= Q(N(R+ E−1);x),

because the Q-polynomial dose not distinguish a link from its mirror image. Hence, by

the skein relation (Q2),

2Q(N(R+ E−1);x)− x(Q(N(R);x) +Q(D(R);x))

= Q(N(R+ E1);x) +Q(N(R+ E−1);x)

− x(Q(N(R+ E0);x) +Q(N(R+ E∞);x))

= 0.

This completes the proof. □

Remark 3.7. From an observation on the proof of Theorem 3.6, we may replace

the condition (1) on the tangle R with the conditionQ(N(R+E1);x) = Q(N(R+E−1);x)

on the Q-polynomial.

Now we create links with trivial Q-polynomial. We consider the tangles

R(m), S(µ,m) and W defined in Section 2. We already mentioned that there exists

a mutation ρ with respect to R(m) such that ρ(R(m)) = R(m). Remark 2.1 gives

Q(N(W );x) = Q(U2;x) and Q(D(W );x) = Q(U1;x). Since N(R(m)) is the trivial knot,

we have Q(N(R(m));x) = 1. Then, applying Theorem 3.6, we obtain the following.

Corollary 3.8. Q(Km;x) = 1.

It is obvious that there exists a mutation ρ with respect to S(µ;m) such that

ρ(S(µ;m)) = S(µ;m). Since N(S(µ;m)) is the trivial µ-component link, we obtain

Q(S(µ;m);x) = Q(Uµ;x) and the following.

Corollary 3.9. Q(L(µ;m);x) = Q(Uµ;x).
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4. Trivial Conway polynomial.

In this section, we show that Km and L(µ;m) have trivial Conway polynomial.

The Conway polynomial ∇(L; z) ∈ Z[z] of an oriented link L is an invariant of the

isotopy type of L, which is defined by the following formulas:

(C1) ∇(U1; z) = 1,

(C2) ∇(L+; z)−∇(L−; z) = z∇(L0; z),

where L+, L− and L0 are three links that are identical except near one point where they

are as in Figure 13. We call (L+, L−, L0) a skein triple.

Figure 13. A skein triple.

There is a well known formula on the Conway polynomial.

Proposition 4.1 ([3], [11]). Let T and S be properly oriented 2-string tangles.

Then,

∇(N(T + S); z) = ∇(N(T ); z)∇(D(S); z) +∇(D(T ); z)∇(N(S); z).

Using Proposition 4.1, we have the following.

Corollary 4.2. Let m and µ be integers with m ≥ 1 and µ ≥ 2.

(1) ∇(Km; z) = 1,

(2) ∇(L(µ;m); z) = 0.

Proof. First, we prove that ∇(Km; z) = 1. Since Km is defined by N(R(m)+W )

and N(R(m)) is trivial, Proposition 4.1 gives

∇(Km; z) = ∇(D(W ); z) +∇(D(R(m)); z)∇(N(W ); z).

The claim is verified by the facts ∇(D(W ); z) = 1 and ∇(N(W ); z) = 0 derived from

Remark 2.1.

Next, we show that ∇(L(µ;m); z) = 0. Since L(µ;m) is defined by N(S(µ;m) + W )

and N(S(µ;m)) is the trivial µ-component link, Proposition 4.1 gives

∇(L(µ;m); z) = ∇(D(S(µ;m)); z)∇(N(W ); z).

Since ∇(N(W ); z) = 0, we have the claim. □
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Here, we mention a fact on the Jones polynomial of the link L(µ;m).

Remark 4.3. The Jones polynomial of the link L(µ;m) does not depend on the

orientations of components of the link because the linking number of any 2-component

sublink of the link is zero.

5. Classification of links.

In this section, we classify the knots Km,m ≥ 1, and the links L(µ;m), µ ≥ 2,m ≥ 1,

by using the HOMFLY polynomial.

The HOMFLY polynomial P (L; v, z) ∈ Z[v±1, z±1] of an oriented link L is an in-

variant of the isotopy type of L, which is defined by the following formulas:

(P1) P (U1; v, z) = 1,

(P2) For a skein triple (L+, L−, L0),

v−1P (L+; v, z)− vP (L−; v, z) = zP (L0; v, z).

Example 5.1. The HOMFLY polynomial of the knot K2 introduced in Exam-

ple 2.2 is given below.

P (K2; v, z)

= (−2v4 + 7v2 − 2− 12v−2 + 12v−4 + 3v−6 − 7v−8 + 2v−10)

+ z2(−5v4 + 18v2 − 9− 32v−2 + 32v−4 + 9v−6 − 18v−8 + 5v−10)

+ z4(−4v4 + 17v2 − 10− 31v−2 + 31v−4 + 10v−6 − 17v−8 + 4v−10)

+ z6(−v4 + 7v2 − 5− 13v−2 + 13v−4 + 5v−6 − 7v−8 + v−10)

+ z8(v2 − 1− 2v−2 + 2v−4 + v−6 − v−8).

Let G be a 2× 2 matrix whose entries are in Z[v±1, z±1] defined by(
−P (U2; v, z) 1

1 −P (U2; v, z)

)
.

Lickorish and Millett show the following formula on the HOMFLY polynomial for

the numerator of addition of two tangles.

Proposition 5.2 ([19]). Let T and S be properly oriented 2-string tangles. Then,

(1− P (U2; v, z)
2)P (N(T + S); v, z)

=
(
P (N(S); v, z) P (D(S); v, z)

)
G

(
P (N(T ); v, z)

P (D(T ); v, z)

)
.

We have the following on the HOMFLY polynomial for the denominator of vertical

addition of two tangles.
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Proposition 5.3. Let T and S be properly oriented 2-string tangles. Then, the

links D(T ∗ S) and N(T + S) are mutant each other, which, in particular, implies

P (D(T ∗ S); v, z) = P (N(T + S); v, z).

Proof. Let ρ(S) be the tangle obtained from S by the mutation which rotates S

through angle π/180◦ around an axis perpendicular to the projection plane. Then, the

links D(T ∗ S) and D(T ∗ ρ(S)) are mutant each other. Since the link D(T ∗ ρ(S)) is

equivalent to the link N(T + S), we have the result. □

Remark 5.4. Since the link N(T ∗ S) is a connected sum N(T )♯N(S) of links

N(T ) and N(S), it is clear that P (N(T ∗ S); v, z) = P (N(T ); v, z)P (N(S); v, z).

We denote by T (2, n) the torus link of type (2, n) whose diagram is represented by

D(E1/−n). Suppose that T (2, n) is oriented such that two strings of the tangle E1/−n

have parallel orientations. Then, T (2, n) has |n| positive (resp. negative) crossings if

n > 0 (resp. n < 0). We also suppose that the tangle H(m,n),m, n ∈ N, is oriented as

introduced in Section 2.

Lemma 5.5. For positive integers m and n,

(1) P (N(H(m,n)); v, z) = P (T (2,m− n); v, z),

(2) P (D(H(m,n)); v, z) = P (T (2,m); v, z)P (T (2,−n); v, z).

Proof. By the definition of H(m,n), we have N(H(m,n)) = N(E1/−m +E1/n).

The link N(E1/−m + E1/n) is equivalent to D(E1/(m−n)) which denotes T (2,m − n).

Hence, we obtain the first equality. It is easy to see that D(H(m,n)) is equivalent to

D(E1/−m)♯D(E1/n) which denotes T (2,m)♯T (2,−n). Thus, we have the second equality.

□

The HOMFLY polynomial for D(R(m)) can be represented as follows.

Lemma 5.6. For a positive integer m,

(1− P (U2; v,z)
2)P (D(R(m)); v, z)

= P (T (2,m); v, z)P (T (2,−(m+ 1)); v, z)

+ P (T (2,−m); v, z)P (T (2,m+ 1); v, z)

− P (U2; v, z)

(
1 +

m+1∏
k=m

P (T (2, k); v, z)P (T (2,−k); v, z)

)
.

Proof. Recall that R(m) = H(m,m + 1) ∗ H(m + 1,m). Since it is shown by

Lemma 5.5 that P (N(H(m,m+1)); v, z) = P (N(H(m+1,m)); v, z) = 1, Propositions 5.2

and 5.3 give

(1− P (U2; v,z)
2)P (D(R(m)); v, z)
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=

t(
P (N(H(m+ 1,m)); v, z)

P (D(H(m+ 1,m)); v, z)

)
G

(
P (N(H(m,m+ 1)); v, z)

P (D(H(m,m+ 1)); v, z)

)
=

t(
1

P (D(H(m+ 1,m)); v, z)

)
G

(
1

P (D(H(m,m+ 1)); v, z)

)
.

Applying Lemma 5.5 to the last expression of the equality above, we have the lemma. □

Remark 5.7. Since N(R(m)) is trivial, it is clear that P (N(R(m)); v, z) = 1.

Here, we introduce a terminology for a Laurent polynomial in two variables v and

z. A two variable polynomial g(v, z) ∈ Z[v±1, z±1] can be written as

g(v, z) =
∑
j∈Z

gj(v)z
j ,

where gj(v) ∈ Z[v±1] and gj(v) = 0 except a finite number of j. The maximal degree of

g(v, z) in z denoted by maxdegz g(v, z) is defined by

maxdegz g(v, z) =

{
0 if g(v, z) = 0,

max{j; gj(v) ̸= 0} otherwise.

Example 5.8. The HOMFLY polynomial for the knot K2 is given in Example 5.1.

The polynomials Pj(K2; v) vanish except j = 0, 2, 4, 6, 8, and so maxdegz P (K2; v, z) = 8.

Lemma 5.9. For an integer n, maxdegz P (T (2, n); v, z) = |n| − 1.

Proof. Since P (T (2, 0); v, z) = (v−1−v)z−1, the claim is true for the case n = 0.

If n < 0, then we have P (T (2, n); v, z) = P (T (2, |n|);−v−1, z) because T (2, n) is the

mirror image of T (2, |n|). It follows that

max degz P (T (2, n); v, z) = maxdegz P (T (2, |n|);−v−1, z)

= maxdegz P (T (2, |n|); v, z).

Hence, it is sufficient to show the case where n is positive. We prove by induction on

the number n. If n ≤ 4, then the claim is verified by direct calculation. Suppose that

n > 4. Combining skein relations for three skein triples (T (2, n), T (2, n−2), T (2, n−1)),

(T (2, n− 1), T (2, n− 3), T (2, n− 2)) and (T (2, n− 2), T (2, n− 4), T (2, n− 3)), we have

P (T (2, n); v, z) = v2(z2 + 2)P (T (2, n− 2); v, z)− v4P (T (2, n− 4); v, z).

Since max degz P (T (2, n − 2); v, z) = n − 3 and maxdegz P (T (2, n − 4); v, z) = n − 5

by inductive hypothesis, it is easy to see that max degz P (T (2, n); v, z) = n − 1. This

completes the proof. □

Remark 5.10. P (T (2, n); v, z) does not vanish because P (L; v, v−1 − v) = 1 [19]

for a link L.

We easily obtain the following by Lemmas 5.5 and 5.9 and Remark 5.10.
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Lemma 5.11. For positive integers m and n, maxdegz P (D(H(m,n)); v, z) = m+

n− 2.

Lemma 5.12. Let m be an integer with m > 1. Then,

maxdegz P (D(R(m)); v, z) = 4m− 3.

Proof. By Lemma 5.9 and Remark 5.10, we have

max degz (P (T (2,m); v, z)P (T (2,−(m+ 1)); v, z))

= maxdegz P (T (2,m); v, z) + maxdegz P (T (2,−(m+ 1)); v, z)

= 2m− 1,

maxdegz (P (T (2,m+ 1); v, z)P (T (2,−m); v, z))

= maxdegz P (T (2,m+ 1); v, z) + maxdegz P (T (2,−m); v, z)

= 2m− 1,

and

maxdegz

(
m+1∏
k=m

P (T (2, k); v, z)P (T (2,−k); v, z)

)
= 4m− 2.

Since 4m− 3 > 2m− 1 for m > 1, by Lemma 5.6, we obtain

maxdegz P (D(R(m)); v, z) = maxdegz
(
(1− P (U2; v, z)

2)P (D(R(m)); v, z)
)

= 4m− 3,

completing the proof. □

Lemma 5.13. Let W be the tangle depicted in Figure 9. Then,

maxdegz P (D(W ); v, z) = 4.

Proof. By Remark 2.1, D(W ) is the knot 16n491778. Since

P (D(W ); v, z) = (v2 − 2v−2 + 2v−4 + v−6 − v−8)

+ z2(v2 − 2− 3v−2 + 3v−4 + 2−6 − v−8)

+ z4(−1− v−2 + v−4 + v−6),

the lemma is true. □

Now we are ready to classify the knots Km,m ≥ 1.

Proposition 5.14. For a positive integer m, maxdegz P (Km; v, z) = 4m.
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Proof. If m = 1, then we see that Km = N(R(m) +W ) is equivalent to D(W ).

The claim is verified by Lemma 5.13. Suppose that m > 1. By Proposition 5.2 and

Remarks 2.1 and 5.7, we have

(1− P (U2; v, z)
2)P (Km; v, z)

= P (D(W ); v, z) + P (D(R(m)); v, z)P (U2; v, z)

− P (U2; v, z) (P (U2; v, z) + P (D(R(m)); v, z)P (D(W ); v, z)) .

By Lemmas 5.12 and 5.13 and the equality max degz P (U2; v, z) = −1, we see that

max degzP (Km; v, z)

= maxdegz
(
(1− P (U2; v, z)

2)P (Km; v, z)
)

= maxdegz (P (U2; v, z)P (D(R(m)); v, z)P (D(W ); v, z))

= −1 + (4m− 3) + 4 = 4m. □

Example 5.15. Proposition 5.14 claims maxdegz P (K2; v, z) = 8. It is confirmed

by Example 5.8.

The following is an immediate consequence of Proposition 5.14.

Corollary 5.16. Let m and n be positive integers. If m ̸= n, then the knot Km

is distinct from the knot Kn.

Next, we classify the links L(µ;m), µ > 1,m ≥ 1. Since S(2;m) = H(2m, 2m), the

following is easily obtained from Lemma 5.11.

Lemma 5.17. For a positive integer m, maxdegz P (D(S(2;m)); v, z) = 4m− 2.

Proposition 5.18. For a positive integer m, maxdegz P (L(2;m); v, z) = 4m+ 1.

Proof. Lemma 5.5 implies P (N(S(2;m)); v, z) = P (U2; v, z). Since N(W ) is the

trivial 2-component link, we obtain P (N(W ); v, z) = P (U2; v, z). These equalities and

Proposition 5.2 provide

(1− P (U2; v, z)
2)P (L(2;m); v, z)

= P (U2; v, z) (P (D(W ); v, z) + P (D(S(2;m)); v, z))

− P (U2; v, z)
(
P (U2; v, z)

2 + P (D(S(2;m)); v, z)P (D(W ); v, z)
)
.

By Lemmas 5.13 and 5.17 and the equality max degz P (U2; v, z) = −1, we obtain

max degzP (L(2;m); v, z)

= maxdegz
(
(1− P (U2; v, z)

2)P (L(2;m); v, z)
)

= maxdegz (P (U2; v, z)P (D(S(2;m)); v, z)P (D(W ); v, z))

= −1 + (4m− 2) + 4 = 4m+ 1. □
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Corollary 5.19. Let m and n be positive integers. If m ̸= n, then the two links

L(2;m) and L(2;n) are distinct.

The link L(µ;m), µ ≥ 3, has three types of 2-component sublinks which are L(2;m),

L(2;1) and the trivial 2-component link. Since Proposition 5.18 shows that L(2;m) and

L(2;1) are distinct if m > 1, the following comes from Corollary 5.19.

Corollary 5.20. Let m,n and µ be integers with m,n ≥ 1 and µ ≥ 3. If m ̸= n,

then the two links L(µ;m) and L(µ;n) are distinct.

6. Primeness.

In this section, we discuss the primeness of the knot Km and the link L(µ;m).

A tangle T = (B, t), which is not the trivial 1-string tangle, is prime if it has the

following properties:

(1) any 2-sphere in B which intersects t in two point transversely bounds a 3-ball in

B which intersects t in a trivial arc,

(2) any proper disk in B does not split t in B,

(3) any proper disk in B which intersects t transversely in a single point divides T into

two tangles, at least one of which is the trivial 1-string tangle.

These properties are called locally trivial, non-split and indivisible in numerical order.

Nakanishi [22] shows the following on the primeness of a 2-string tangle.

Proposition 6.1. Any locally trivial non-split tangle, the number of whose arcs

is at most two, is a prime tangle.

By Proposition 6.1, to prove that a 2-string tangle is prime, we only have to check

that the tangle has such two properties.

Lemma 6.2. For a positive integer m, the tangle H(2m, 2m) is prime.

Proof. The tangle H(2m, 2m) consists of two arcs and a circle component K

which is the trivial knot. Suppose that H(2m, 2m) is split. Then, there exists a properly

embedded disk in the tangle so that K and at least one of two arcs can be separated by

the disk. It follows that the linkD(H(2m, 2m)) should have a split sublink which includes

K. However, sublinks of D(H(2m, 2m)) including K are T (2, 2m) and T (2,−2m) only.

Each of them is non-split. This is a contradiction. Hence, H(2m, 2m) is non-split. Next,

we show that H(2m, 2m) is locally trivial. There exists no 2-sphere in the tangle which

bounds a 3-ball containing a knotted arc by the triviality of the arcs and K. If there is a

2-sphere in the tangle which bounds a 3-ball containing K, then we have an arc outside

the ball because the sphere intersects the tangle in two points. It follows that the link

D(H(2m, 2m)) should have a split sublink which includes K. It leads to a contradiction

as stated above. □
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Lemma 6.3. For an integer m with m > 1, the tangles H(m,m+1) and H(m+1,m)

are prime.

Proof. We only prove the primeness of the tangle H(m,m+1) for the case where

m is even because we can give the proofs for the remaining cases in a similar manner.

H(m,m+ 1) consists of two arcs. One is a trivial arc and the other is a knotted arc to

which the torus knot of type (2,−(m + 1)) is connected. Suppose that H(m,m + 1) is

split. Then, there exists a properly embedded disk in the tangle so that the trivial arc

and the knotted arc can be separated by the disk. Since the knotted arc is contained

in one of the two 3-balls obtained by dividing the tangle by the disk, it should persist

as a factor of any link created by gluing a tangle to H(m,m + 1). However, the link

N(H(m,m + 1)) is the trivial knot, which does not have a non-trivial torus knot as a

factor. This is a contradiction. Hence, H(m,m + 1) is non-split. Next, we show that

H(m,m + 1) is locally trivial. If there exists a 2-sphere in the tangle which bounds a

3-ball containing a knotted arc, then the knotted arc should be of the torus knot of type

(2,−(m+1)) and persist as a factor of any link created by gluing a tangle to H(m,m+1).

It leads to a contradiction as stated above. Hence, H(m,m+ 1) is locally trivial. □

Lemma 6.4. The tangle W presented in Figure 9 is prime.

Proof. The tangle W consists of two trivial arcs. It implies that there exists

no 2-sphere in the tangle which bounds a 3-ball containing a knotted arc. Hence, W is

locally trivial. Next, we show that W is non-split. If the arcs are split, then W should be

a trivial 2-string tangle. Since any sum of two trivial 2-string tangles is a 2-bridge knot

or link, D(W ) must be a 2-bridge knot, in particular, an alternating knot. But, D(W )

is the knot 16n491778, which is non-alternating. This is a contradiction. □

Theorem 6.5 ([16], [22]). Let (C, v) be a tangle and D be a disk properly embedded

in C such that D divides (C, v) into two tangles (A, s) and (B, t). We assume the

following.

(1) The numbers of points in (∂A − D) ∩ v, (∂B − D) ∩ v and D ∩ v are all greater

than or equal to 2,

(2) (A, s) is prime,

(3) (B, t) is prime.

Then, (C, v) is prime.

Theorem 6.5 implies that the vertical addition of two prime 2-string tangles is a

prime tangle.

Corollary 6.6. Let m and µ be integers with m ≥ 1 and µ ≥ 2.

(1) The tangle R(m) is prime if m > 1.

(2) The tangle S(µ;m) is prime.
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Proof. We begin with the proof of the case (1). Recall that R(m) is defined

by H(m,m + 1) ∗ H(m + 1,m). Since H(m,m + 1) and H(m + 1,m) are prime by

Lemma 6.3, Theorem 6.5 ensures the primeness of R(m). Next, we prove the case (2).

The proof is by induction on the number µ. Since S(2;m) is the tangle H(2m, 2m) by

the definition of S(µ;m), Lemma 6.2 shows that S(2;m) is prime. Suppose that µ > 2.

S(µ;m) can be regarded as S(µ − 1;m) ∗ H(2, 2). Since S(µ − 1;m) and H(2, 2) are

prime by inductive hypothesis and Lemma 6.2 respectively, it follows from Theorem 6.5

that S(µ;m) is prime. This completes the proof. □

A link L is locally trivial if any 2-sphere in S3 which intersects L transversally in

two points bounds a 3-ball intersecting L in a trivial arc. A link is prime if it is locally

trivial, non-split and non-trivial.

The following is an important result on the primeness of a link obtained by gluing

two tangles.

Theorem 6.7 ([16], [22]). A link obtained from two prime tangles by any tangle

sum is prime.

Since the tangle R(1) is a trivial 2-string tangle, K1 = N(R(1) +W ) represents the

knot D(W ) = 16n491778, which is prime. By Lemma 6.4, Corollary 6.6 and Theorem 6.7,

we easily obtain the following.

Corollary 6.8. Let m and µ be integers with m ≥ 1 and µ ≥ 2. Then, the links

Km and L(µ;m) are prime.
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