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Abstract. We prove that the modified Korteweg—de Vries equation is
unconditionally well-posed in H*(T) for s > 1/3. For this we gather the
smoothing effect first discovered by Takaoka and Tsutsumi with an approach
developed by the authors that combines the energy method, with Bourgain’s
type estimates, improved Strichartz estimates and the construction of modified
energies.

1. Introduction.

We consider the initial value problem (IVP) associated to the modified Korteweg—
de Vries (mKdV) equation

Opu+ 02u F 9, (u®) = 0 (1.1)
u(-,0) = uo, (1.2)

where u = u(z,t) is a real valued function, x € T=R/Z and t € R.

In [1] Bourgain introduced the Fourier restriction norm method and proved that
(1.1) is locally well-posed in H*(T) for s > 1/2. Note that, by a change of variable,
Bourgain substituted the mKdV equation (1.1) by the renormalized mKdV equation

v+ 05v F 3(v® — Po(vg))ve = 0, (-, 0) = v,

where Pyw denotes the mean value of w. This result was then proved to be sharp if
one requires moreover the smoothness or the uniform continuity on bounded sets of
the solution-map associated with the renormalized equation (see [2], [11], [5]). This
obstruction is related to the resonant term -, _, [0(k)|?0(k)e™™ that appears in the
nonlinear part of this equation. However, in [20], Takaoka—Tsutsumi proved that (1.1) is
locally well posed in H*(T) for s > 3/8. For this, they first establish a smoothing effect
on the difference | F, (v(t))(k)|*> — |00 (k)|? and then work in a Bourgain’s space depending
on the initial data in order to treat the resonant term. This was improved in [19] where
the local well-posedness was pushed down to H*(T) with s > 1/3.
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The local well-posedness results proved in these papers mean the following: for any
initial data uwy € H®*(T) there exists a time T = T'(|Jug|/zs) > 0 only depending on
||uo|| = and a solution w that satisfies the equation at least in some weak sense and is
unique in some function space (called resolution space) X — C([0,T]; H*(T)) that can
depend on the initial data. Moreover, for any R > 0, the flow-map ug — u is continuous
from the ball centered at the origin with radius R of H*(T) into C([0,T'(R)]; H*(T)).

On the other hand, in [7], Kappeler and Topalov introduced the following notion
of solutions which a priori does not always corresponds to the solution in the sense of
distributions: A continuous curve v : (a,b) — HP(T) with 0 € (a,b) and v(0) = uq is
called a solution of the mKdV equation in HP(T) with initial data ug if and only if for
any C™-sequence of initial data {ug,} converging to ug in H?(T) and for any t €]a,b],
the sequence of emanating solutions {u,} of the mKdV equation satisfies: un(t) — y(¢)
in HP(T).

Note that a solution in the sense of this definition is necessarily unique. With this
notion of solution they proved the global well-posedness of the defocusing mKV equation
(with a + sign in front of the nonlinear term) in H*(T) s > 0, with a solution-map
which is continuous from L?(T) into C(R; L?(T)). Their proof is based on the inverse
scattering method and thus depends in a crucial way of the complete integrability of this
equation. It is worth noticing that, by Sobolev embedding theorem, their solutions of
the defocusing mKdV equation satisfy the equation in the distributional sense as soon as
s > 1/6. In [14] Molinet proved that, actually, the solutions constructed by Kappeler—
Topalov always satisfy the equation at least in a weak sense. He also proved that the
flow-map cannot be continuously extended in H*(T) as soon as s < 0. Therefore the
result of Kappeler—Topalov is in some sense optimal. However it is not known to hold
for the focusing equation. Moreover, it uses the integrability of the equation and is thus
not suitable to solve perturbations of the defocusing mKdV equation. Also, the question
of the existence of a resolution space where the uniqueness holds remains open at this
low regularity level.

Another interesting question about uniqueness, even in higher regularity, is to know
whether uniqueness also holds in some larger spaces that contain weak solutions. This
kind of question was first raised by Kato [8] in the Schrodinger equation context. We refer
to such uniqueness in L*°(]0,T[; H®), without intersecting with any auxiliary function
space as unconditional uniqueness. This ensures the uniqueness of the weak solutions
to the equation at the H®-regularity. This is useful, for instance, to pass to the limit
on perturbations of the equation as the perturbative coefficient tends to zero (see for
instance [15] for such an application).

Unconditional uniqueness was proved for the mKdV equation to hold in H'/ 2(T)
by Kwon and Oh ([12]) following an approach developed in [3]. In this paper we push
down the local well-posedness and the unconditional uniqueness for the mKdV equation
to H'/3(T).

To obtain our unconditional uniqueness result we gather the approach developed
in [17] based on the construction of modified energies with some ideas of [20] and [19]
to derive the smoothing effect. On the one hand, the absence of very small frequencies
enables to simplify some estimates on the nonlinear term with respect to [17]. On the
other hand, because of true resonances, we need to derive a smoothing effect as in [20].
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Actually this is the obtention of the smoothing effect that limits us to the Sobolev index
s > 1/3 (see Remark 4.3). It is also worth noticing that we do not succeed to get
an estimate on the L3 H*®-norm of the difference of two solutions with different initial
data—this seems to be related to the fact that the flow-map is not Lipschitz below
s = 1/2. Instead we will establish an a priori estimate in Ly¥H ' for some s’ < s, on
the difference of two solutions emanating from the same initial datum. This estimate
will lead to the unconditional uniqueness result. It will be also sufficient to prove the
well-posedness result thanks to the smoothing effect which ensures that, given a sequence
of solutions {u,} C L>°(0,7; H*(T)) to (2.1) associated with a sequence of initial data
{uon} relatively compact in H*(T), the set {u,(t),t € [0,T]} is relatively compact
in H5(T).

2. Notations, functions spaces and statement of the result.

We will not work directly with the mKdV equation but with the renormalized mKdV
equation defined by

uy + 2u F 0 (u® — 3Py(u?)u) = 0. (2.1)

We explain how to come back to the mKdV equation (1.1) in Subsection 6.3. In the
sequel of this paper, we choose to the take the sign “+” since this sign will not play any
role in our analysis. Let us start by giving our notion of solution.

DEFINITION 2.1. Let T > 0 and s > 1/6. We will say that w € L*>°(0,T; H*(T)) is
a solution to (1.1) (resp. (2.1)) associated with the initial datum ug € H*(T) if u satisfies
(1.1) and (1.2) (resp. (2.1) and (1.2)) in the distributional sense, i.e. for any test function
¢ € C®(]—T,T[XT), there holds

/Ooo /T [(¢t +0p¢)u + q%F(u)} dxdt + /Tcﬁ(O, Jugdr =0 (2.2)

where F(u) = u® (resp. F(u) = u3 — 3P (u?)u).

REMARK 2.1. Note that for v € L*(0,T;H*(T)), with s > 1/6, u® is well-
defined and belongs to L°°(0,T; L'(T)). Therefore (2.2) forces u; € L>(0,T; H3(T))
and ensures that (1.1) (resp. (2.1)) is satisfied in L>°(0,T; H3(T)). In particular,
u € C([0,T); H3(T)) and (2.2) forces the initial condition u(0) = ug. Note that,
since u € L*(0,T;H*(T)), this actually ensures that u € C,([0,7]; H*(T)) and
uw € C([0,T]; H* (T)) for any s’ < s. Finally, we notice that this also ensures that u
satisfies the Duhamel formula associated with (1.1) and (1.2) (resp. (2.1) and (1.2)).

DEFINITION 2.2. Let s > 1/6. We will say that the Cauchy problem associated
with (1.1) (resp. (2.1)) is unconditionally locally well-posed in H*(T) if for any initial
data ug € H*(T) there exists T = T'(|Jug||g=) > 0 and a solution u € C([0, T]; H*(T)) to
(1.1) (resp. (2.1)) emanating from uy. Moreover, u is the unique solution to (1.1) (resp.
(2.1)) associated with ug that belongs to L>°(]0,T[; H*(T)). Finally, for any R > 0, the
solution-map ug + u is continuous from the ball of H*(T) with radius R centered at the
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origin into C([0, T(R)]; H*(T)).

THEOREM 2.3. The mKdV equation (1.1) and the renormalized mKdV equation
(2.1) are unconditionally locally well-posed in H*(T) for s > 1/3.

2.1. Notation.

Throughout this paper, N denotes the set of non negative integer numbers. For any
positive numbers a and b, the notation a < b means that there exists a positive constant
¢ such that a < cb. We also denote a ~ b when a < b and b < a. Moreover, if a € R, a4,
respectively a_, will denote a number slightly greater, respectively lesser, than «.

For real numbers aq, as, a3z > 0, we define the quantities amax > Gmed = Amin tO be
the maximum, sub-maximum and minimum of a1, as and a3. Usually, we use k;, j; to
denote integers and N; = 2%, L; = 2Ji to denote dyadic numbers. For f = f(x) € L?(T),
we denote its Fourier transform by f : Z — C by f(k) = Jpe %k f(z) dz and or any
integer k € N we set

Pof = f(k)e¥™ = Py = Z Fg)e* ™ and Peju = Z Flg)e*mae,
lal~k la| <k

In particular,
Rt = F0) = [ 1) de

For u = u(x,t) € 8'(R?), Fipu = (u)= will denote its space-time Fourier transform,
whereas F,u = U, respectively Fyu = (u)"t, will denote its Fourier transform in space,
respectively in time. For s € R, we define the Bessel and Riesz potentials of order —s,
JZ and D3, by

Jou=F, (L4 k)2 Fou) and  Diu= F, ' (|k|* Fou).

We also denote by U(t) = e~19: the unitary group associated to the linear part of
(1.1), i.e.,

U(tyug = e~ P2ug = F; (™ Fy(uo) (K)).
Throughout the paper, we fix a smooth cutoff function x such that
X €CYPR), 0<x<1, X1y =1 and supp(x) C [-2,2].
We set ¢(k) := x(k) — x(2k). For any | € N, we define
a1 (k) == 9(27'k),

and

Yo (k, 7) = o (T — K3).
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By convention, we also denote
¢o(k) = x(2k) and  ho(k,7) = x(2(T — k7).

Any summations over capitalized variables such as N, L, K or M are presumed to be
dyadic. We work with non-homogeneous dyadic decompositions i.e., these variables range
over numbers of the form {2* : k € N} U {0}. We call those numbers nonhomogeneous
dyadic numbers. Then, we have that )y ¢n(k) =1

N
supp(¢én) C Iy = {2 < |k < QN}, N >1, and supp(¢o) C Ip:= {|k|] <1}.

Finally, let us define the Littlewood—Paley multipliers Py, Rx and Q1 by
Pyu=F; ' (¢nFou), Rrxu=TF; ' (¢xFeu) and Qru=F '(YrFu),

P>y = ZKEN Py, P<n = ZKSN Pr, Q> = ZKEL Qk and Q< = ZKSL Qk-
Sometimes, for the sake of simplicity and when there is no risk of confusion, we also
denote uy = Pyu.

2.2. Function spaces.

For 1 < p < oo, LP(T) is the usual Lebesgue space with the norm || - ||z». For s € R,
the Sobolev space H*(T) denotes the space of all distributions of (C°°(T))" whose usual
norm ||u||gs = |[Jiu||z2 is finite.

If B is one of the spaces defined above, 1 < p < oo and T > 0, we define the
space-time spaces L{ B, and L%.B, equipped with the norms

1/p T 1/p
||u|LfBI=(/R ||f<-,t>||%dt) , ||u||u;31=(/0 ||f(~,t)ll%dt)

with obvious modifications for p = co. For s, b € R, we introduce the Bourgain spaces
X*? related to linear KAV group as the completion of the Schwartz space S(R?) under
the norm

1/2
|| xsp = 7 — E)2 ()2 Frou(k, 7)2dr , .
lullx- <Z/< K32 ()2 | Fou(k >|d> (2.3)

where (z) := (1 + |z|?)}/2. Tt is easy to check that
lullxes ~ 00l oy where [l gzt = 737 ulze (24

We defined the function space Z¢, with s > 0, by
7% = XsH/A0 npeopgs, (2.5)

Finally, we will also use restriction in time versions of these spaces. Let T > 0 be a
positive time and B be a normed space of space-time functions. The restriction space
By will be the space of functions u : Rx]0, T[— R or C satisfying



152 L. MoLINET, D. PiLob and S. VENTO
lull B, == inf{lJallp | &: R xR = R or C, tlgxo,r| = u} < 0.

2.3. Extension operator.
The aim of this subsection is to construct a bounded linear operator from

X;_H/lo’l N LF H; into Z° with a bound that does not depend on s and T'. For this we

follow [13] and introduce the extension operator pr defined by

pr(u)(t) := U@)xO)U(=pr ) u(pr(t)), (2.6)

where y is the smooth cut-off function defined in Section 2.1 and pp is the continuous
piecewise affine function defined by

0 for ¢ ¢ 10,277,
pr(t) =4 t for t € [0, ), (2.7)
2T —t for t € [T,2T).

LEMMA 2.4. Let0<T <1 and s € R. Then,

pr X0 A e gs oy 7

u— pr(u)

is a bounded linear operator, i.e.,

lpr ()l g g + llpr (@)l xamr1100 S ullnge g + [lull z-r110, (2.8)

for allu e X570 A Lo Hs.
Moreover, the implicit constant in (2.8) can be chosen independent of 0 < T <1
and s € R.

PROOF.  On one hand, the unitarity of the free group U(-) in H*(T) easily leads to
lor(Wllzge s S lulpr (Dllogas S llullg sV lluol -

On the other hand, the definition of the X **-norm and the continuity of ur lead to

o2 ()] x--s210
= I U=z (Duluar ()l gz m01

S InU (= (Dulr )z + [0 (x U(=pz(Dutur ()|

S 1O z--11710 + U (=-Yull 2o o210 + [T (=) (e + 2| 2 g -0
+[o@ = (= ulr =) = d2u(r - )

LtZHs—ll/lo

L2(T,2T;Ho~11/10)
5 HU,(O)”Hsfu/m + ||’LL||X;711/10,1.

Now, since it is well-known (see for instance [6]), that X;711/10,1 — C([0,T];
Hs~1/10(R)), we infer that u € C([0, T]; H*~'Y/1°(R)) N L$° HE and we claim that
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[u(O)las < llullzg ms- (2.9)

Indeed, if [[u(0)||gs > [|ullLeems there would exist € > 0 and a decreasing sequence
{tn} C (0,T) tending to 0 such that for any n € N, ||u(t,)||m: < ||[u(0)||gs —e. The
continuity of u with values in H*~1(R) then ensures that u(t,) — u(0) in H*(R), which
forces ||u(0)|| s < liminf ||u(t,)| s and yields a contradiction.

Gathering the two above estimates, we thus infer that for any (7, s) €10, +00[xR,
pr is a bounded linear operator from LFH*® N X;_n/lo’l into L{°H® N X5711/101 with
a bound that does not depend on (T, s). O

3. A priori estimates on solutions.

3.1. Preliminaries.

DEFINITION 3.1.  Let 1 be a (possibly complex-valued) bounded function on Z3.
We define the pseudo-product II, (that will also be denoted by IT when there is no risk
of confusion) in Fourier variable by

Fo((fog. ) (k)= Y n(ky, ko, ks) f(ky)G(ka)(ks). (3.1)

ki+ko+ks=k

Moreover for any dyadic integer M > 1 and any j € {1,2,3}, we also denote Hf% M

(or ng when there is no risk of confusion) the operator defined in Fourier variable by

Fo(l (fg ) (k)= > nlkr ko ks)onr | > kg | F(k1)G(k2)h(ks). (3.2)

ki1+kot+ks=k 1§LIS_3
a#j

The following technical lemma corresponds to integration by parts for some pseudo-
products (cf. [17]).

LEMMA 3.2.  Assume that the (possibly complez-valued) bounded measurable func-
tion n satisfies on Z>

n(k1, k2, k3) = n(ka, k1, k3) = A(k1, k2)O(|ka + k3|, |k1 + ksl [k1 + ko) (3.3)

for some functions © on Z3 and A on Z? with A(ky,ks) = A(ka, k1), V(ky, ko) € Z2. Let
N and M be two nonhomogeneous dyadic numbers satisfying N > 1. For any real-valued
functions fi1, f2,9 € L*(R), we define

Ty, (f1, f2,9,9) = /5mPNH2,M(f1af2,g)PNgdx- (3.4)
T

Then, for M < N, it holds

Ty (fr for.9) = M [ T8, il o Porg) Prg . (3.5)

where 1y is a function of (k1, ke, ks) whose 1°°-norm is uniformly bounded in N and M.
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Proor. From Plancherel’s identity we may rewrite T;) ar,n as

Tym,N(f15 f2,9,9)
= Z (ik)n(k1, ko, ks)par (kr + K)o (k)2 1 (k1) fa (R2) G ()3 (k).

(k1,ko,k3,k)€z4
k1+kothg—k=0

We decompose Thr,n(f1, f2,9,9) as follows:

Ty n(f1, f2.9.9)
MY k)t ) (D) 7 ) ) i

(k1,kg k3, k) €24
ky+ko+kz—k=0

LD

(ik)n(ky, kz, k3)ar (ki + ka) f1 (k1) Fa (ko) gn ()G (k)

(ky.ko, k3, k)€Zs
kq+ko+kz—k=0
=11 + L. (36)

We notice that I; can be rewritten as

L = M/H:'?ml,M(flaf%PNNg)PNgdx
T

with
. ki + ko +k3) — k
Ul(kl,k27k3)22¢N( Lo M3) onl 3)(k‘1+k‘2+k‘3)1supp¢M(k1 + k)

and that it clearly follows from the mean value theorem and the frequency localization

that 77 is uniformly bounded in M and N.
Next, we deal with I5. Since g is real-valued, we have gy (k) = gn(—k), so that

L= >

(k1 ko, k3,k)€z4
k1 + ko +og — k=0

(ik)n(ky, ko, ks)ar (k1 + k) fi (k1) Fa (ko) Gn (— k)G (— k).

Performing the change of variables (ks, k) = (—k, —ks) so that k = ky + ko + ks, we get

L= >

(k,ky,ko,kg)ezt
ki+ko+ks—k=0

Now, observe that |k; — k| = |ko + ks| and |ky — k| = |k1 + ks|. Thus, according to (3.3)

(—iks)n(kr, ko, =) dar (ky + ko) Fi (k1) Fa (ko) g (k) g (ks).

(ki k2, —k) = n(k, k1, —k) = Ak, k2)O(|k2 + ks, k1 + ks, |k1 + ka|) = (k1. k2, k3)

so that
i(k1 + kao)n(k1, ko, ks)dar (ky + ko) i (k1) fo (k)G (k)G (ks) — Io.

L= >

(k,ky ko, k3)ezt
kq+ko+ks—k=0
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Setting
5 (k1 + k
k1, ko, k3) = %lsuPIMﬁM (k1 + k2) o (k3),
this leads to
Ty (f15 f2,9,9) = MAH%U2,M(f17 f2, Pung)Pngdx (3.7)

where o = 11 + (1/2)7); is also uniformly bounded function in M and N and completes
the proof of the Lemma. O

The following proposition gives suitable estimates for the pseudo-products IT,;.

PROPOSITION 3.3. Let M be a dyadic number with M > 1 and n is a bounded
measurable function. Then for all j = 1,2,3 and all f; € L?(T)it holds that

‘ JRAE ST <MH\|szLz (3.8)

where the implicit constant only depends on the L*°-norm of the function n.

PROOF. By symmetry we can assume that j = 3. Since the norms in the right-
hand side only see the size of the modulus of the Fourier transform, we can assume that
all the functions have non negative Fourier transform. By using Plancherel’s formula,
Holder and Bernstein inequalities, we get that

‘/ v (f1, f2, f3) fad

dar (k1 + ko) fi (ko) fo (ko) f (k — ky — ko) fa(k)dky dksdk

(kl,kg,k)€Z3
:/PM(flf2)f3f4d-75

T
S Pa(frf)lleee ll f3lloe Nl fall o2

4
5MH||fi||L§~ O

i=1
Before stating the main result of this subsection, let us define the resonance function
of order 3 by
Q3(k1, ko, k3) = k3 4+ k3 + k3 — (k1 + ko + k3)®
= —3(1{31 + k’g)(kl + kg)(k’g + ]{33) (39)
ProroSITION 3.4.  Assume that 0 < T < 1, n is a bounded measurable function

and u; are functions in Z3 where Z° is defined in (2.5). Assume also that N > 28,
Ny, Ny N3 >1, M >1 and j € {1,2,3}. We define
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GaM(ul,ug,ug,,u;;) = / H'Z]}M(U17u2,u3)u4dxdt. (3.10)
10,T[xT

Then for any K > 1 it holds

11/10 4
‘GZH\93IZK1M(P§N1UI7 Pen,uz, P<y,us, PNU4)’ S Tl/gM% H ||Uz‘|\zga (3.11)
i=1

where Niax = max(Ny, No, N3). Moreover, the implicit constant in estimates (3.11) only
depend on the L™ -norm of the function 7.

REMARK 3.1. Sometimes, when there is no risk of confusion, we also denote
T T
GM(ul, Uz, U3, 7_L4) = Gn,M(ul, Uz, U3, U4)~

To prove Proposition 3.4, we need the following technical lemmas derived in [16]. For
any 0 < T <1, let us denote by 1y the characteristic function of the interval |0, T[. One
of the main difficulty in the proof of Proposition 3.4 is that the operator of multiplication
by 17 does not commute with Q). To handle this situation, we follow the arguments
introduced in [16] and use the decomposition

lp = 1% + 105, with 7 (1R%)(7) = x(r/R)F (17) (7), (3.12)
for some R > 0 to be fixed later.

LEMMA 3.5. Let L be a nonhomogeneous dyadic number. Then the operator Q<.
is bounded in L$° L2 uniformly in L. In other words,

Q<rullzerz S llullzserz, (3.13)
for all uw € L{°L2 and the implicit constant appearing in (3.13) does not depend on L.
LEMMA 3.6.  For any R >0 and T > 0 it holds
178 ST AR (3.14)
and
7% |z + TR~ S 1. (3.15)
LEMMA 3.7.  Assume that T >0, R >0 and L > R. Then, it holds
1QL(IR %) > S Q~rul L2, (3.16)
for all u € L?(R?).

PROOF OF PROPOSITION 3.4. We take the extensions @; = pr(u;) of u; defined
in (2.7) and to lighten the notations we denote Pcy,u; by 4, i = 1,2,3 and Pyug by
tiy. We first notice that (3.9) ensures that for K > 28N2__| the set |Q3] > K is empty

max?’
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and thus (3.11) holds trivially. We can thus assume that K < 28N2_ . We set

K 8/ K v 8 205\ /7
R= <Nu/m> - K<N44/5> < K(Q N2 ) < K, (3.17)

max

since N > 28 ensures that Nya.x > 2°, and decompose 11 as 1y = 1h]gh + 11:,97‘%. The

contribution of the first term is easily estimated thanks to Holder’s 1nequahty in time,
(3.8), (3.14) and (3.15) by

high. - .
|Gty oo (Lp R G, T, U3, i) |

<T1/8||1h‘gh||L8/7 /H{W(al,ag,ag)amx
T

L

4
s Tl/sR_7/8MH i Lo 2
=1
M NLl/10 4
Tl/S max H ||Uz||L°°L2

To deal with the contribution of 1%‘}’%, we first note (3.17) ensures that we are in the hy-
potheses of Lemma 3.7. Now, by the definition of {23, we may decompose the contribution
of 1R as
Gnﬂmg_‘zK,M(lﬁvﬁﬂh T, U3, Us)
= Gty oM (@ k(1R 1), o, U3, 1)
+ Gty 5 k.M (Q<<K(1T RrU1), Q> KUz, U3, Us)
1),
)

+ Gntjags M (Q<<K(llow

1 ~
+ Gnl\QS\szM(Q<<K( '19“1,%11’

Qi lz, Q> ks, Ua)
Q< iz, Qe iz, Q> k). (3.18)

The first term of the right-hand side of the above equality can be estimated thanks to
(3.8) and (3.16) by

|Gty 510 M Qi (VR )il iz, 3, ) | S TV M|Q e (Vg0 |12, H 5l Loe 2

M N0 ) 4 .
S TV2EEEE iy ynson [T slezre
j=2
11/10 4

M max
STV H l[uill zg.-

The other terms can be controlled in exactly the same way. Note that we use (3.13) and
not (3.16) for these terms. O
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3.2. Uniform estimates on solutions.

The preceding subsection enables us to easily get an uniform H®-bound for solutions
to (2.1). This is the aim of this subsection where we do not attempt to get the lowest
propagated regularity since we will be forced to take s > 1/3 in the estimate on the
difference.

We first prove refined Strichartz estimates. The following linear estimate in Bour-
gain’s space is established in [1],

||UHL4(]O,1[><T) 5 Hu||Xo,1/3 Yu € X0,1/3.

We will make use of a Strichartz estimate which follows directly from the above estimate
(see for instance [6]),

IU® ¢l sgorixm S TYClellzz, VT €]0,1], Ve € LX(T), (3.19)
where the implicit constant does not depend on T

LEMMA 3.8. Let 0 < T < 1 and let uw € L*>(0,T; H*(T)) be a solution to (2.1)
emanating from ug € H*(T). For s > 11/35 it holds

lulla 2o S lullpgrrs (1 + [ullF e ) (3.20)
and for s > 9/28,
1D * ull 1 s S ullpge ms (1 [ful 2o 72)- (3.21)

PROOF. Let u be a solution to (2.1) defined on a time interval [0,7]. We use a
nonhomogeneous Littlewood-Paley decomposition, u = Y 5 un where uy = Pyu and N
is a dyadic integer. Since, (3.20) and (3.21) are obvious for N < 1, it suffices to control
lunllza r20 for any N > 1. For such N, Sobolev and Bernstein inequalities lead to

lunllzs 2o S N unllzs, -

Let 0 be a nonnegative number to be fixed later. We chop out the interval in small
intervals of length N~°. In other words, we have that [0, 7] = Ujes Ij where I; = [a;, bj],
|I;| ~ N7° and #.J ~ N?. Since uy is a solution to the integral equation

. t ,
un (t) = e (79)% 0y \ (a;) + / e~ (=9 Py, (ud — 3Py (u2)u)(¢)dt!

aj

for t € I;, we deduce from (3.19) that

lun|l 4. 20
T x

1/4
< (Z |Dm5/6+1/5uzv<aj>||ig>

J
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4\ 1/4
+ (Z ( /1 1Dz 8/6+6/5 Py (u® — 3Py (u?)u)(t')]| 2 dt’) )

S N5/4HD;6/6+1/5UN||L§9L§

1/4
+ (E IIjIB/I |D /54675 Py (u® — 3Po(u2)U)(t’)|‘igdt’>
j J

J
< N0 (D205 | g+ (DS 2950/5% Py (18 — 3Py (u )| 12 |
(3.22)

Now, to prove (3.20) we notice that Sobolev’s inequalities and the fractional Leibniz rule
lead to

||DJ(C—11/12)6+6/5+PN(u3 _ 3P0(u2)u)||L4TL§
S HD;115/12+1/P+7/10+PN(U3 o 3P0(u2)u)||L‘7{L£
S Hu||i%°Lg||D;+u||L%°Li (3.23)

forall 1 < p <2and 2 < g < oo satisfying 2/¢g+1/2 =1/p and 0 < k = (—11/12)§ +
7/10 + 1/p < 1. Thus, the Sobolev embedding yields

| DSBS Py (u® — 3Py (u)u) |1 12 S Nullf s gy (3.24)

if we choose  satisfying k = 1/2 — 1/q = 3/4 — 1/2p. This implies that

n——25+l+1——25+2—2n = /i_—E(S'FE
127 10 p 12 5 360 15

(3.25)
Then, we choose 0 such that 6/12 4+ 1/5 = x which leads to

48 11 70 70
b=—, k=—, p=— and ¢= —.
35 35 61 13

Therefore, we conclude gathering (3.22)—(3.25) that if w is a solution to (2.1) and (1.2)
defined on the time interval [0,T7], then for N > 1,

|Pwullzg o S N DI Pauollzz + D2 ulf ] (3.26)

which proves (3.20) with s > 11/35, by summing over N.
To prove (3.21) we proceed in the same way. We eventually obtain for N > 1,

|\D2/24UN||L4TL§ S ||Dg/12+5/24+UN||LEFL§ + ||D§:11/12)5+29/24+PN(US *3P0(U2)U)||L4TL§
with
IDS DT Py (0 — 3Py (uP)u)ll s 2 S llulfs D5 ull g re,

forall 1 <p <2 and 2 < g < oo satisfying 2/¢g+1/2 =1/p and 0 < k = (—11/12)§ +
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17/24 + 1/p < 1. Thus, the Sobolev embedding yields

||D§:_11/12)6+29/24+PN(U3 _ :_))PO(UQ),U/)”L%Li 5 ||u||i%cH:;+7

if we choose k satisfying Kk = 1/2 —1/q¢ = 3/4 — 1/2p. This implies that

n——25+5+1——ﬂ5+§—2n = n——Eé—i-@
120 24 p 120 24 36 T2

Then, choosing § such that §/12 4+ 5/24 = x which leads to

19 9 7 28
57ﬁ’ 57278’ p*é and quy
we obtain (3.21) with s = 9/28+. O

LEMMA 3.9. Assume that 0 < T <1, s > 11/35 and u € L*>(0,T; H*(T)) is a
solution to (2.1) emanating from ug € H*(T). Then,

lull zz. < lullge s + lull o prs (14 [|ull e ) (3.27)
T

ProOOF. By using Lemma 2.4, it is clear that we only have to estimate the

X;_H/lo’l—norm of u to prove (3.27). Now, using the Duhamel formula associated to

(2.1), the standard linear estimates in Bourgain’s spaces and the fractional Leibniz rule
(c.f. Theorem A.12 in [10]), we have that

ol s=11/100 S Nlwollgrs=11/10 + 100 (u) g s-11/10.0 + [ Po ()t | o-11/10.0
< et llgo-sasio + 37200 g 22+l 2 Nl o0
S lullegme + 172 g povs + lull T p2llull cam
S lullzg me + el Za poo 13wl g 22 + lullgze 12 llull o2 s (3.28)
which leads to (3.27) by using (3.20). O

To prove the main result of this section we need to define some subsets of Z3. In
the sequel we set

D = {(k1, ko, k3) € Z% : (k1 + ko) (k1 + k3) (k2 + k3) # 0}, (3.29)

and

1_ . . 1) < 9—9
D {(kl,]{ig,k‘3) ecD: 1SI£1£](1§3(‘]€1+]€]|)N2 |k1+k2+k3|},

D? = D\D". (3.30)

To bound from below the resonance function |Q3| (see (3.9)) on D! and D? we will
make a frequent use of the following lemma.
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LEMMA 3.10. On D', it holds

al ~ ol ~ kol ~ k] and | mmanx (ki + k) 2 [,

where |k| = |k1 + ko + k3|, whereas on D? it holds

. 1) > .
(Jmed (ki + kj[) 2 max [Kil.

ProOOF. To prove the first assertion, we assume without loss of generality that
|k2 + k3| Z ‘kl + k3| 2 |]€1 + k2| On Dl, this forces |]€2| ~ |k3| ~ ‘kl + k2 + k3| On one
hand |k1| < k1 + k2 + k3| would imply |k1 + k3| ~ |k1 + k2 + k3| which can not hold. On
the other hand, |ki| > |k1 + k2 + k3| would imply max(|ks|, |ks|) ~ |k1] > |k1 + k2 + k3|
which is in contradiction with the preceding deduction. Therefore |k1| ~ |k1 + ko + k3.
Finally, either k3ks > 0 and then |k2 + k‘3| Z ‘k)l + ko + k3| or koks < 0 and then
max(|k:1 + /{32|, |k‘1 + k‘3|) > |k1 + ko + kg‘.

To prove the second assertion, we first notice that this assertion is trivial when
maxi<;<3 |ki| ~ |k| where k = k1 +ka+ks. We thus can assume that maxj<;<s |ki| > |k|.
By symmetry, we can assume that |k1| > |k2| > |ks|. This forces |ka| ~ |ki| > |k|.
Therefore |]€1 + k‘3| = |k’ — /€2| ~ |]€1| and |k2 + kg‘ = |]€ — k1| ~ |k1‘ O

Let us also set

Mmin = 1§Ig1;2;1§3 |kz + k]‘ (331)

and
Al = {(klak27k3) S Z3 : ‘kQ +k3| - mmin}y

Ay = {(k1, k2, ks) € Z% /A1 : |ky + ks| = Mimin },
Az = {(k1, ko, k3) € Z3 /(A1 U As) : |ky + ko| = mmin } = Z3/(A1 U A5).  (3.32)

Then, it is clear from the definition of those sets that
3
Z 1a, (k1 koo ks) =1, V(ki, ko, ks) € Z°. (3.33)
j=1

However, we will not work directly with this partition because of a lack of symme-
try. Note that xa, (ki, k2, k3) = xa, (K1, k3, k2) and xa, (K1, k2, k3) = xa,(k2, k1, k3) but
X4, (K1, ko, k3) # xa,(ks, k2, k1) on some set of Z3. Therefore, in order to apply Lemma
3.2, we have to symmetrize this partition'. For this we set

L4, (K1, ko, ks) = 1a, (ks ko, ky).

Then, for all (ki, ko, k3) € Z3,

!Note that one does not need such symmetrization on the real line since the sets |k; + k;| = |k; + k|
with (¢,7) # (¢/,j’) are of measure zero.



162 L. MoLINET, D. PiLob and S. VENTO

3 3
1
1= (11,4]. +1; ) kikaoks) = > 0;(ke, ko, ky) (3.34)
j=1 j=1
where
1 1 1
@125(1A1+1A3)7 @225(1,42-1-]1142) and @325(]1143"’_]1,41)' (3.35)

Note that this new partition satisfies the following symmetry property: for all j € {1, 2,3}
and (kl,kg, kg) € ZB,

O;(k1, ko, k3) = ©;(ko, (1), ko, (2): Ko (3)) (3.36)

where o; € S is defined by 0,(j) = j and 0;(7) # i for i # j.
We are now in position to prove the main result of this section.

PRrROPOSITION 3.11.  Assume that 0 < T < 1, s > 3/10 and that v € Z37 is a
solution to (2.1) with initial data ug € H*(T). Then,

Nl s s S Tuaoll3e + T3] (3.37)

PROOF. By using (2.1), we have

2dt||PNU( )72 =—9ﬁi{/a PN w? — 3P (u)u )PNuda:]

which yields after integration in time between 0 and ¢ and summation over N

Z | Pyu(t)]|: < [luoll3s + ZNQS m[/ 0. Py <u3 - 3P0(u2)u)PNu d:z:ds} .
N ‘ N Tx[0,¢]

(3.38)

In the case where N < 1, we easily get

S |

0z Pn <u3 - 3P0(u2)u> Pyudzds
Tx[0,t]

S lullzy o llPvull g ree + llullzee 12

Slld o S lulldye (3:39)

In the following, we can then assume that N > 1 and we use the classical de-

composition of N(u) := 0,(u® — 3Py(u?)u) in a resonant and a non resonant part by
writing:
Fu[N(w)](k) = ik > a(k1)a(ke)a(ks) — 3a(k)a(k)a(-k)

k1+kotks=k
(k1+k2)(k1+ks)(ka+kg)#0

= (]-'z [A(u, u, u)} (k) — F, [B(u, u, u)} (k;))
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Bu(u® — 3Py (u2)u) = B, (A(u, u,u) — B(u, u, u)). (3.40)

Now, we notice that, since u is real-valued, we have

/TaxPNB(u,u,u)PNu =ik Y |a(k)]*|en (k)a(k)]® € iR. (3.41)
keZ

Therefore (3.38) and (3.40) lead to

> IPult)lr; S luolly + || 35 v @PN(A(u,u,u))PNudmds]
N>1 N>1 Tx[0,1]
< uollzre + D7 ().
N>1

By using the decomposition in (3.34), we get that J;, y(u) = |§R(Zf’:1 Ji n ()| with
Jtl’N(u) = N? Z / 8mPNHl@l]lD7M(u,u,u)PNu dxds, (3.42)
M>1 Tx[0,t]

where D is defined in (3.29) and where Hln, u 1s defined in (3.2). Thus, by symmetry, it
is enough to estimate Jg ~ (1) that will be still denoted J3 (u) for sake of simplicity. We
rewrite J3,(u) as

st< Z / Tos1, 0.5 (U, w, u, u)ds + / T@31D7M,N(u,u,u,u)ds>
1<M<NL/2 10, 10,¢[

=t 19" (u) + I (u), (3.43)

M>N1/2

where T, ar,n(u, u, u,u) is defined in (3.4). At this stage it worth noticing that ©31p
satisfies the symmetry hypothesis (3.3) of Lemma 3.2.

e Estimate for I}0% (u).
According to (3.5) we have

low,1 s
Iy (u) = Z MN? / Hf’]ﬂD,M(u,u,uNN)PNudzds
1§MSN1/2 TX[Ovt]

2 3
- E E MN 5/ Hnle’M(PNlu,PNzu,uNN)PNudxds,
Ni,No>11<M<N1/2 Tx[0,t]

where 13 is a function of (ki, ko, k3) whose L°-norm is uniformly bounded in N and
M. We now separate the contributions of I}f,’w’l of D' and I}\(,’W’Q of D? to I'¢". On D*,
Lemma 3.10 and (3.9) ensure that |ki| ~ |ka| ~ |k3| ~ N and |Q3| = M?N. Therefore,
(3.11) leads to
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M2N11/10
|I}\C;W’1(U)| < Z T1/8N28 N74SHP

~ M2N
1<M<N1/2
1/8 AT—25+1/10 4
STVENT2HVIOM Pyl

which is acceptable for s > 1/20. On D?, Lemma 3.10 and (3.9) ensure that |Q3] >
MN2,. and (3.11) leads to

max

A2 NLL/10 2
|I}$W’2(u)| S Z Z T1/8N2s MNr;lax 72SHPNNU||QZ;} H NZ‘_SHPNiU”Z%
N1,N2>11<M<N1/2 max i=1

< T1/8 N—2/5

which is acceptable.

e Estimate for Th%"(u).
We separate the contributions of I]}i,lgh’l of D! and I?,lgh’Q of D? to I]}i,lgh. On D',
(3.11) yields

MNNll/lO
7]\[—45‘”

high,1 s L
‘INg (u)’ 5 § : T1/8N2 M2N PNNU”%%
M>N1/?

/S T1/8N725+6/10HP~NU‘ %

s
T’

which is acceptable for s > 3/10. On D?, noticing that M > N'/2 forces N1V Ny > N1/2,
(3.11) leads to

MN Nll?
5 Z Z T1/8N23 MN2 _2$||P~NU|

Nj,Ng>1 M>N1/2
Ni{VNy>N1/2

< T1/8 \1/10—s/2

high, 2
[In®

2

2 —s

Z: 11V
i=1

4
[ullZs.,
which is acceptable for s > 1/5. This concludes the proof of the proposition. O

Combining Lemma 3.9 and Proposition 3.11 we can easily get an a priori estimate
on the H3/10(T)-norm of smooth solutions to (2.1). This will be done in Section 6.

4. The smoothing estimate.

The aim of this section is to prove the proposition below that show a kind of smooth-
ing effect first observed in [20]. This smoothing effect is the only way we know to treat
some resonant terms involving B (see (3.40)) when estimating the difference of two so-
lutions. Note that, by symmetry, the terms involving B do cancel in the proof of the
energy estimate (3.37).

THEOREM 4.1.  Let s > 1/3 be fized. For any solution v € Z5 of (2.1) and (1.2)
and any k > 29 it holds
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~ — EN\®™
sup K0 - @0E| < s () IPexu
N>k

2. (1+ [ P<yul
te ]0,T[

1)) @

where the implicit constant does not depend on k.

4.1. Notations.
In this section we will widely use the following notations: kzy = (k1, ko, k3). Let D,
D' and D? be defined as in (3.29)—(3.30). We set

Fg(k) = {E(g) e7? . ki+ ko + ks = k)},
D(k) :=T3(k)nD, D' k)= D(k)nD' and D?*(k)= D(k)n D?

my = |ka + k3|, ma = k1 + k3|, m3 = |k1 + ka|, Mmin = min(my, ma, m3) and mmeq =
med(my, ma, m3).

Dui(k) = {k@) € D(k) : Mumin ~ M} and Dy (k) = Dy(k) N D, i=1,2.

My, My, M3, My, and My,eq are the dyadic integers associated with respectively myq,
ma, M3, Mmin and Mmed-
For i € {1, 2, 3,4}, we set k‘,(g,) = (kil, ko, kig),

M min = min(|ki + Kizl, [k + Eisl, [Ki2 + Kas)),
M med = med{|k;1 + kial, |ki1 + kisl, [ki2 + kis| }-

M; min and M; meqa are the dyadic numbers associated with respectively m; min and
™M med-
4.2. L2%-multilinear space-time estimates.

4.2.1. L2-trilinear estimates.
LEMMA 4.2. Let f; € I>(Z), j =1,...,4. Then it holds

4
j,f = Z ¢M(k1+k2)]:[‘fj(kj)|
Es)€03 (k) ka=—k J=1
2
S| fslli2) A (M| fallioo I fallioe TT 1512 (4.2)
j=1
PrOOF. We can assume without loss of generality that f; > 0 for i = 1,...,4.

Then, we get by using Holder and Young’s inequalities that

T2 < | fa(B)|dar (f1 * f2)lli2 | f3 2
< MY2| 1 fallise 1 £z (2 | falli

3
< MY2TT 05l fallie

j=1
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and
T < | fatk)lloar(fr* f2)llir @z f3lliee
< M| f1* falliee | flliee || fallioe
2 4
<M [Tl TT Il
j=1 i=3
which proves (4.2). O

PROPOSITION 4.3. Assume that 0 <T <1, n:Z3> — C is a bounded function and
w; are functions in Z%. Assume also that k > 2% M > 1 and j € {1,2,3}. We define

Js,’;\c/’[T(ul, Ug, U3, Uyg) 1= / Hi}’M(u17 Ug, uz) Prugdadt, (4.3)
[0,T]xT

where H%’M is defined in (3.2). Then for any K > 1 it holds

3.k6.T MY2NLLO &
’Jn]’lﬁ’lg\zK,JW(P,SNlul?P§N2u27P§N3u37u4)| S K H Huinzga (4.4)
K3

P

where Nyax = max(N1, No, N3). Moreover, the implicit constant in estimate (4.4) only
depends on the L*-norm of the function 7.

PRrROOF. Keeping in mind that [?(Z) < [°°(Z), we proceed exactly as in the proof
of Proposition 3.4 but with the help of (4.2) instead of (3.8). O

4.2.2. L?-quintic linear estimates.
We use the notations k(s = (k1, ks, ..., ke) € Z° and for any k € Z,

6
Ts(k) = {1%'(5) €z8:) k= k}
i=1

Before stating our quintic space-time estimates, let us define the resonance function of
order 5 for k(5 = (k1,...,kg) € T°(0) by

P (ks)) = k3 + k3 + k3 + k3 + k2 + K. (4.5)
It is worth noticing that a direct calculus leads to
Q5 (K(s)) = Q3(k1, ko, k3) + Q3 (ka, ks, ko). (4.6)
In the sequel we set
Fig) = (ki1 bz, kig).

LEMMA 4.4. Let f; €1%(Z), j =1,...,6. Then it holds that
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6 6
Tt = Z orr(k1tka)pnr (katks) H £ (k)| S LM M)A (MM H [1£51le2
k(o)€F5(0) j=1 j=1
keg=—k
(4.7)
and
2 5 3 5
Tt S | folle min (M’H Y fille TT I s M T e TT ||<->1/4fi||12>- (4.8)
i=1 j=3 j—1 i=4
To2i= Y (b + ko +ks) + ka) o (kr + k) H £ (k) < MM H [1£illiz-
k(o)er5(0) j=1 j=1
kg=—k
(4.9)
3 6
T = Z O (ky + k2)onrr (ks + ks) H |15 (k)| S MY2M1? H 11£5le=-
E(3)€rd (k) j=1 j=1
(k4. ks, ke)ET3(—k)
(4.10)
PrROOF. We can assume without loss of generality that f; > 0 for ¢ = 1,...,6.

Proceeding in the same way as in the proof of Lemma 4.2, we get

TN < fo () f3 e
xcmin (llgar (= fo)llzlloar (Fas S5l lloar (o Sl I one (fa  f) e )
6
< (M2 A (M) T 1l
j=1

In the same way,

Tt < 1fo(k)
X min (||f1 * fox falliol|@nrr (fax f5)llons [[@ar (f1 % fo)|lin || f3 % fa = f5Hl<>°)
5 3
S s (k)] min<|f1 s folle M T fillizs L fax folleM ] ||fi||l2>
i=3 i=1
which leads to the desired result by using that
2
£y % falle S IO fille- (4.11)
i=1

To derive (4.9), we notice that

T2 < 156l sl [onr (10 fo)) £ 2 1) |,
S M2 fllis 1 fs izl fallizga lfdar (fr % f2)] # falle
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S MY folle ol e sl Ninr ¢ Fo)) s,

which yields the desired estimate. Finally,

T2 < loar(f1* f2)lliz | f3lliz | [@arr (fa % f5)] * folliee
< MY2||fy % falli || f3llizlldaz (Fa % f5) izl folliz

6
< MY2MYETT 15l O
j=1
PROPOSITION 4.5. Assume that 0 < T <1, n: Z®> — C is a bounded function and
u; are functions in Z%. Assume also that k > 2°, M, M’ > 1 and K > 1. We define

g5k T ~
nyM,Mf)K(ul(B)a Uz, us, U4)

3 4
- Z Z /[OT] /‘61(3),k2,k3 H i (k1) H i(k:)
» 7j=1 =2

E(3)EDM(I¢) El(a)GDM,(kl)
[k1[Z k2 VIk3| |25 (ky(3) ka,k3,ka)IZK

and

JokT (o
n,M,K(u1(3)7 Ug, U3, Uyg)

3 4
- ¥ > [ kb TTms ) [T atk)
s j=1 1=2

E(3)ED%/I(I¢) E1(3>6D(k1) =
[k1I>1k2lVIks] Q5 (Ry gy, ke k3. ka) |2 K

with ky = —k and where iy (3) := (u11,u12,u13).
Then
5,k,T
|Jn MM’ K (PNnUllvPleulz,Pleuw,U27U37U4)|
11/10
< 1;axM1/zM/ H 1] 20 H il 29 (4.12)
j=1 1=2
and
J;@%(Pmluny PN12U12,PN13U13,U2,U3,U4)‘

M N1L/10 172
5K1¢XQJH%MJMMW (4.13)

Moreover, the implicit constant in estimate (3.11) only depends on the L>-norm of the
function n.

PROOF. By symmetry, we may assume that N7 yax = Ni1 to prove (4.12). We

proceed as in the proof of Proposition 3.4. Setting R = K/NH/10 < K and using (4.7)
and (4.9) we can easily estimate the contribution of ll;’fj%PNllun by
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5,k,T low
’JW,M’M/’K(]-T,RPNuullv Py, u12, PNyjuts, ug, us, u4)’

S Y > 1r7l L

E(3y€Das (k) k1(3) €D ppr (k1)
195 (ky(3) k2:k3,ka) IR K

3 4
ﬁ(k1(3)7 ko, k3) P,y (k1) H PNljulj(klj) Hﬁ’(kl)
j=2 1=2 Ly
N11/10 4
< I L pvRhp H |uallLee 2 H lwillgerz-
j=1 1=2

Then we decompose the contribution of 13}%PN11U11 in the same way as in (3.18). The

contribution of Q> n2, lgfg}gPNllun can be estimated by using (4.7) and (4.9)

Js 1]TJTM' x(@>mrn2, 1};,%131\7111&11, Pny,u12, PNyguts, ug, us, U4)’
NLL/10
Sl (YROYOINCTAEIE) [ ey § (N o H il 22

j=1

Nll/lO
0 MM H [ zg. H l[will zg.,
Jj=1

and the other contributions can be estimated in the same way.
Now to prove (4.13) we use (4.2) instead of (4.7). Actually, since |k1| > |ka| V |k3]

on the support of JS,’]@[’Q,)K, we know that mmin = |k2 + k3| and |k1| ~ k. Therefore
(4.2) and Bernstein inequalities lead to

3 4
Z Z U(E1(3)7 ko, k3) H PNlj kl] H

E(3)ED}’W(1¢) El(g)eD(h) j=1
[k [>|k2|V]kg| 195 (Rq(3). k2. k3. ka) |2 K

4
[T luillzz

Ll i=2

3

| Y

j=1

<M

3 4
1/2
< MNl /mm H ||PNlju1j||L% H ||UZ||L3

With this estimate in hand, (4.13) follows from the same considerations as (4.12) by

taking R = K/N; /20 < K. 0

REMARK 4.1. Proceeding as in Proposition 4.5 but with the help of (4.10) we get
in the same way
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3
> > /[O}T] n(k2, ks, kas)) HPN4] u,;(kaj) H

E(g,)GDM(k) Ey(3) €D ppr (—F) Jj=1 i=1
|25 (k1 k2 k3, k4(3))\>K
11/10
< 4[?“]\41/2]\4'1/2 H (| Pajuagll 2o H l[will zo, (4.14)

j=1 i=1

and

3 3
Z Z /[OT] (K2, k3, kacs)) H i (kaj) H@(k
' j=1 i=1

E(3y€D3, (k) Ey(3)€D(—k)
[k1 > k2 VIkg] Q5 (k1 k2 kg ky(3)) 2K

11/10 3 3
4,max 1/2
SJ(MWMJH%WWHMM. (4.15)

The above estimates will be actually also needed in the proof of Proposition 4.9.

4.2.3. L2-7-linear estimates.
We use the notations : ki) = (ki,k2,...,kg) € 78 and for any k € Z,

8
F7(k){E(7)eZS : Zkk}
i=1

The proof of the following lemma follows from exactly the same considerations as the
ones used in the proof of Lemma 4.4.

LEMMA 4.6. Let f; € 1*(Z), j =1,...,8. Setting

6
Tt = Z Pm (Z kq) Oy (R + k) ar, (Fa + ks) H i (ks

E(7)er7(o) q=1 j=1
kg=—k
and
7 8
j,:’z = Z ¢M (Z kq) ¢M1(k1 +k2)¢M2(k4+k5)H |f](k3)
k(7)€1“7(0) q=4 j=1
kg=—k
it holds

8 5 8
#wﬂ%m{wﬂmﬂpmwwwM%HmepHnmJ
i=1 j=4 Jéiis)
(4.16)
Similarly, by setting
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8
Tli= > k) H|f]

k(7) er7(o0) j=1

with
. 6 4
1(kr)) = ém (Z k) b, (Zk )% ki + k2),
R 6
Ya(k(ry) = dum (Z kq) Oty (ks + ks)dar, (k1 + k2),
=1
— q 4
Y3(kery) = oar(ke + k7)oar, (Zk >¢M2 (k1 + k2)
q=1
and
Palkery) = dar(ks + kr)par, (ka + ks)dar, (k1 + ko),
it holds
4 . 8 2 8
> J7" < min <M1/2M1M2 T 1502 M 2000y TT 4 £ T T ||fj|lz>.
=1 j=1 j=1 j=3

(4.17)

PROPOSITION 4.7.  Assume that 0 < T <1, n: Z7 — C is a bounded measurable
function. Assume also that uy;, ug; with i =1,2,3, and ug, uy are functions in Z$ and
that k> 2% M > 1 and My > 1. Fori=1,2, we set i3y = (Uit Wiz, u;3) and define

J7’k,T,i _ R
n, M, My (u1(3)’ U2(3), U3, u4)

- T ¥ >

k(3 €D}, (k) k13 €Dy, (k1) FagePi(h2)
Q5(ky(3) k2,k3, k4>7493(’€2(3))

4

3
/[ | (k1(3 k2 (3)s k3) H kl; H Uz (k2m) H tg(kq)
0, T j=1 m=1

q=3

with ks = —k.
Then

3 4
7.kT1 [ -
| T i, (), fiagsy, us, wa)| S MY2MEY YO T Nluasll o gl zo [T lugll 2o (4.18)
j=1 q=3

and
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3 4

TRT2 /o . _
| ToNit (G s)  fiaay, us, wa)| S MYPME™ 0 TT uagll g lluzi |20 T Nugll zo.-
j:l q=3
(4.19)

Moreover, the implicit constant in estimate (3.11) only depends on the L>-norm of the
function n.

PROOF. We define the resonance function of order 7 for E(7) = (k1,...,ks) €
I'7(0) by
8
O (k) = > k. (4.20)
i=1

Again a direct calculation shows that
Q7(];1(3), 122(3), k3, ks) = Q5(7;1(3)7 ko, k3, kq) + Q3(];2(3)) (4.21)

and thus \97(E1(3),E2(3), ks, ky) 2 |93(E2(3))| on the support of J7 JkuTA} with ¢ € {1,2}.

Moreover, we deduce from Lemma 3.10 that [Qs(ko )| Z M3k on the support of J; ZIT/ITN}I

and that |Q3(kags))| = Mak? on the support of J; J]QTle

Estimates (4.18)—(4.19) follow then from the same considerations as in the proof of
Propositions 4.3 and 4.5 by making use of (4.16). Note that we loose a factor k°T in
(4.19) by resuming over M2 min. O

REMARK 4.2. Setting

J7 k,T,i
n,M, M, (u11(3)7 U2, U13, U2, U3, ’Ll,4)

- T ¥ >

E(g)ED]lw(k’) E1(3>€D]1V11 (k1) = Ell(S)EDi(kQ) -
95(}91(3) k2~k3‘k4>7493(7€11(3))
3 3 4
/ n(k11(3), k12, k13, ka2, k3) H 115 (K115) H Uty (k1m) Huq(k‘q)
[0,T7] j=1 m=2 q=2

and proceeding as in the proof of the preceding proposition but with the help of (4.17)
we obtain

4
| T (s, w2, s, ua, us, wa)| S MY2MEYO T sl 20 lluzgllzo T gl 2o
j=1 q=3
(4.22)
and
kK, _
Tovi (W1(s), ura, s, vz, us, ua)| S MY M= TT (gl 29 luzs |l 2o [T ugll zo.-
j=1 q=3
(4.23)

These estimates are actually also needed in the proof of Proposition 4.9.
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4.3. Proof of Theorem 4.1.

To prove Theorem 4.1 we construct a modified energy in the same way as in [17].
Note that this way of construction of modified energies has much in common with the
I-method [4].

Theorem 4.1 will be a direct consequence of Lemma 4.8 and Proposition 4.9 below.

DEFINITION OF THE MODIFIED ENERGY. For ¢ > 0, we define the modified energy
at the mode k > 2° by

Ex(t) = Ex(ult) = St k)P + a2 (1) + BEL(1) +ER(1) (4.24)

where «, v and [ are real constants to be determined later.
In the sequel of this subsection, to simplify the formula, we set ky = —k.
5,‘3’1, 5,‘3’2, &Y are then defined as follows:

EM(u) =k*R L : a(k;) |,
[ 2. 93(k<3>)H ( )1

M<Kk™/12 g eDY (k)

4
1 ~
5,3’2(@&):1@29%[ Y = Hu(kj)]
E(3)6D2(k) Q (k(3))
[kmed | <k2/3

where E(g) = (k1, k2, k3) and the dyadic decompositions in N; are nonhomogeneous,

HO)

4 4 3
2 ~
LPIED DS > GiF oy Lt [ at)
=1 1<M<k7/12 E(s)ED}u(k) E;(3)€Dl(k;) ( (3) ;}
Q3 (K (3)) <3 (Kj (3))

with the notation

—
— =

Fis) = (Fj) i) € T°(R), (4.26)

where Ej(g) is defined by

—

ki) = (k2 ks, ka), k2(3 (ki ks ka),  ka@y = (ki ko ka),  kagy = (k1 k2, k).

Next, we show that if s > 1/4, then the non quadratic part of £ (u) is controlled by
the H®-norm of u.

LEMMA 4.8. Let s > 1/4. For any u € H*(T) it holds

& (w)] + 16572 (w)] < || Pyulls (4.27)
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and
R (w)] S [1P<ju| e (4.28)

PROOF.  Since [Q3(K(s))| > Munin Mimeak on D' (k), (4.2) leads to

&0t ()] <

e Pl S K Pyl
1< Mmin <Mmed min med

Z k2M1/2]€ 4s
which is acceptable. In the same way, on D?(k), it holds |Qg( 3))| = Miink? and thus

(4.2) leads this time to

3.2 < kZMl/Zk. 2s Cos 4
£22| $ S0 T NPkl | Pl 1 S b Pyl
M>1

Now, fix i € {1,2,3,4}. For E(g) € D'(k) and 51(3) € D'(k;) we have
Rl ~ k| ~ |ks| ~ [ka| ~ [Kix| ~ [kig| ~ [Kis| ~ k.
Moreover, for kz(s) (see (4.26)) such that QS(k(g)) < Q3(k 1(3)) we have
197 (Kis))| = 19° (kqs)) + 9 (Kigs))| ~ |9 (Figs))| > 97 (ks))| > 0.
Therefore &£ (u) is well defined and according to (4.7)—(4.10),
4 1/2 6s
K3M L= My mink™
min*"*%,min P. 6 .
|gk ‘ Z Z Z MmianlledMl mlIlM7 ,med 1k2 || kUHHT
=1 1< Mmin<Mmned 1SM1,lninSM'i.lI)ed ’

< K0 Pyl

which is acceptable. O

PROPOSITION 4.9.  Let s > 1/3 and u € Z3. be a solution to (2.1). Then for k > 2°,

80 - &I S s [(£) 1Pyl

%;(1 + [[P<nul
N>k

‘;%)} . (4.29)

PROOF. Since u is real valued we can restrict ourself to positive k. As above, we
differentiate £, with respect to time and then integrate between 0 and ¢ to get

Ex(t) = &EL(0) — kR t PpOy(A(u, u,u) — B(u,u,u)) Peu| + t ic‘,’,i”l(t’)dt’
0 o dt

t
+b’/ —832 )dt! +7/ is,f(t’)dt’
0
=: &,(0) + I, JrOka +5Jk + 7K. (4.30)
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As in the preceding section, since u is real-valued, the contribution of 9,B(u,u,u) is
purely imaginary and thus vanishes. Recalling that we set k4 = —k, we can thus rewrite
I;. in Fourier variables as

Ik:kZJl/t S alkn)a(ke)ilks)a (k@]

EsyeD(k)

with D(k) defined as in the beginning of this section. We denote by I} and I? the
contributions to Ij, of respectively D'(k) and D?(k). Finally, we decompose I} and I?
in the following way:

1;:( DS )m[/ 3 a(kna(kz)a(kg)a(m]

M2k7/12 M<k7/12 E(3)€D11\4(k)

_ 7l,high 1,low
=1, +1,

and

I,%:( PO ) [/t (kl)a<k2)a<k3>ﬂ(k4>}

k(3>€D2(k) k(3)ED2(k)
med>k2/3 med<kz/3
_ IZ,high _'_Ilg,low.
e Estimate for I,;l’high.
In view of Lemma 3.10, on D! it holds |ky| ~ |ka| ~ |k3| ~ |k| and (3.9) ensures that
|Q3] = M2k. Therefore (4.4) leads to

. M1/2)11/10 . 4
M S K Y k4H||P

M>k7/12
< k= 45+49/40HP u|

VAR
which is acceptable for s > 49/160.

e Estimate for I,i’low + aJy.
By (2.1), we can rewrite (d/dt)E;" as the sum of the “linear” contribution?

) ik + k3 4+ k3 + k)
> wew| - MBI [T

M<k7/12 E(g)ED}u(k) Jj=1

and the “nonlinear” contribution

2By “linear” contribution, we mean the contribution of the linear part when substituting u; by using
the equation.
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4 : 4 2

—ik; ~ ~ -~ m
> X em Y o Hu(kn(mu(m)ﬁu(ka + > Hu(km)]-
i=1 M<k7/12 s €Dl, (k) (k) % FueD (k) 1=1

Using the resonance relation (3.9), we see by choosing @ = 1 that I ;’low is canceled out
by the linear contribution of fg (d/dt)€E%. Hence,

1
I;’low + Jy = chli,
§=0

where, by symmetry,

_ t 1 3
A=Y k33l/0 > ——TJ k)

B 03(k(g)) -
1<M<k7/12 K€D, (k) (k@) 5

3
><<3|ﬂ(—/€)|2ﬂ(—k)+ > Hﬂ(lm,q))]

k;;(g)ED(—k:) q=1
_ 20,0 0

and

JIEPEE S ml/ DR £

3
0 - k 3 i
1< M <k7/12 ks eDY, (k) (k@) j2s

3
x<3|a(k1)|2a(k1)+ > Hﬂ(kl,q)ﬂ

k1 (s)€D (k1) 171
41,0 1
=A" 4+ A

It thus remains to treat the terms fl{c corresponding to the nonlinear contribution
of (d/dt)E%. Since |k;| ~ k, AY and A} can be treated almost in the same way. Actually,
some estimates on A are easier thanks to (4.10) and (4.14). We thus only consider A}.
First, by using (4.2), Ai’o can be easily estimated by

3as1/2

< k Mmin k—ﬁsHP u||6

DS Monin Mnoak ~REI L
1< Moy <Mypeq iR med

5 k_2765

1,0
A},

PSk“H%;OH;
which is acceptable for s > 1/3.

e Estimate for Aj.

By symmetry we can assume that M;; < Mz < M. We set Nimax =
maX(Nn,ng,ngg).
Case 1: |Qg(E(3))| z \Qg(El(g))|. Then we must have
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Mmiancdk

M, <
N T My My

Case 1-1: El(g) € D?(ky). In this region it holds M5 > k and thus M1y < Myin Miea/ k-
On account of (4.7)—(4.9) we get

3p71/2
|A}] < %k—fss]vfs
Wi~ Moin Mineak 1,max
N min{¥Imed
1< Mmin <min(Mmed,k7/12) 1<M11 SMmin Mmed /k N1 max 2k

x ||P~ku||?i§°H;

PSNl,maqu%fOLg

1/2, 1—4s k *
> % k() Il

N1 max 2k 1< Mipin <k7/12 1,max

Mmin 1/2 _4s k s
S x () () 1eelien,

N1 max 2k 1< Myin <k7/12 1,max

k S
Z k—4s+31/24<N > ||P§N1meu\|ﬁL§cH;

1,max
Ni max2k

PNy ot Loo 1

A

A

N

which is acceptable for s > 31/96.
Case 1-2:  ky3) € D*(k1). Then it holds

|k11] ~ k12| ~ |k1s] ~ K.

~

Since Q3 (k)| 2 [Q3(Fi(s))], we must have Mynin Minea
lead to

> M%. Therefore (4.7)—(4.9)

min ianed)1/2 ks
Mmiancdk

EHPS

K3MMZ (M
Z = ||P~/cUH6L;>°H;
1< Minin < Mimea

S k2765

Pwku”%;”H;

which is acceptable for s > 1/3.

Case 2: |Q§(E(3))| < [Q3(Fy(s))|- Then, by (4.6), |Qs] ~ |Q3(ki(s)| > Q3 (ke).

Case 2-1: ky3y € D?*(k1). By symmetry we may assume ki > ki > kiz. Then
|93(El(3))| ~ M min N3 and according to (4.12) we obtain

3ps1/2 )
|A1| < E E k Mmian,mm Nll/lO
kI~ 2 11
Nii 2k 1< Mppin < Mg Mmianedk (Ml,mianl)

1SNyg<N12<Niy 1SMj qmin<Ni11

x k735 N *|| Pwpul

s k\°
< Z k 4‘+11/10+<Nn> | P< vy, vl

Nllzk

%S PN11U| A PSleu”ZO”PSNl;guHZO

% (4.31)

which is acceptable for s > 11/40.
Case 2-2:  ky3) € D*(k1). Then we must have
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k| ~ |kwa| ~ [Ras| ~ [ki| ~ |ka| ~ |ks| ~ K (4.32)
and

Qs(k_i(b‘)) ~ Ml,mian,mcdk~
We call Ai’low this contribution to A} and Ag’low the same contribution to AY. Using
the equation and the resonance relation (4.5), we can rewrite K}, := fot(d/dt)é',‘;’ as
t 4 ik t 4 3

Wiy ¥ ey Y = [law [Tak)
0 (k) Jo 3o

i=L1<M<k™/2 g eD} (k) Iii(g)eDl(kj) q=1
Q3 (k(3y) <3 (k;(3))

t 4 3
k.
2 i ~
D ED VLD DU D g |0
0 =1l 1<M<k7/12 FseDy, (k) FimeDl() 3) i(5)) ¢=1
sz3(13(3))<<93(1€i<3))

x Z H a(kj)(_ikm) <3|a(k5m)|2@(km) + Z H a(kmp)>

Fon(3) €D (k) P=1

J#i

t 4 4
k.
-|-/ E k? E E — u(k;
0 = 7/12 T i (ks Qg(k(d))Q5(kz(5)) =1 ( ])
=1 1<M<Ek7/ E@yeDl, (k) FieDP! (ki) i

Q3 (R (5)) <23 (F;(3))

3 3
x> 11 a(ki,q)(ikim)<3lﬂ(kim)2ﬂ(kim) Y Hﬂ(ki,m,p)ﬂ

Ei,m(s)eD(k’i,m) p=1

e Estimate for A,lc’lOW + Az,low + 7K.
By choosing v = ¢, the above calculations lead to

ALlow . g0low | g :C(f;}g I gg) (4.33)

Because of (4.32), H2 and H? can be estimated in the same way®. It thus suffices to
consider f[,f for any fixed couple (i,m) € {1,2,3,4}? with i # m. By symmetry, we can
restrict ourselves to (i,m) € {(1,2),(1,4)}. Since the case m = 4 is easier (see (4.10)),
we only consider the case (i, m) = (1,2). We thus have to bound

4

t
vk _
ij / p—y = ’LL(]C)
[ 0 2 2 2 3 (k(3)) Q2 (k1(s), k2, ks) JI;IS ’

1§M<k7/12 E(;;)EDIIW(]C) Iil(s)EDl(k;l)
QS(k(3>)<<ﬂ3(k1(3))

3 Actually one needs to use (4.22) and (4.23) instead of (4.18) and (4.19) to treat ﬁg’
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3 3
x T k) (3fatke) Piithe) + > Hmkzp))]

Ez(sy€D(k2) P=1

= " + H}.

First by (4.7)—(4.9), we easily get

3,0) <« 1/2 . 1.—8s 8
|H | J\/IZ>1 ]VIZ MQkMIQmmkM Mmek ”PNku”HS
1,min >

< KR Pogulle

which is acceptable for s > 1/4.

e Estimate for H}.

Now, to bound H} we separate different contributions.
Case 11 [Q5(Ky(s5))| 2 |Q3(kags))|. Then we must have |Q(kaes))| < [Qs(kis))| since
15 (k1(s))| ~ |93(z€1(3))| This forces My min < M med-

~

Case 1-1: N3 ed ~ N2 max. Then (4.16) leads to

k4M1/2M minM me:
s Y > T
MMmedle,mian,medk

LSMSMyeq N2 maxZ
1SM1 min <M1 med Sk

Xk~ 53N2 maxHPNkuHL"OHS HP~N2 IMXUHLst ||P<N2 ,m,(UHL""L2

B k 2s
S ¥ () WPemtlien:
X

2, ma
No max 2k

which is acceptable for s > 2/7.
Case 1-2:  Na med < Namax. On account of (4.32), it holds Na max ~ k and [Q3(ky(3))| ~
MZ,mink2- The inequality |Q3(E2(3))| S |93(E1(3))| then ensures that

Estimate (4.16) thus leads for s > 1/4 to

Z k4M1/2M1,min(Ml,mirlMl,Irledk71)1/2 kfﬁs

H}| <
| k| ~ MMmedle,mian,medk

1SM <My eq
1SMy min <M1 med Sk

X HP~ku||%g°H; ngUHLme

_6s 1/2
S Y (M )y
M1/2Mmed Ml med <k LeHg

1SM<My,eq
1SMy min <M1 med Sk

S kO Pyl

N
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which is acceptable for s > 1/4.
Case 2:  |Q5(k1(s5))| < |Q3(ka(3))|- Then, |Q7| ~ |Q3(kys))| on account of (4.21).
Case 2-1: Eg(g) € D%(ky). Then (4.19) gives

47s1/2
|H3| < k=M / Ml,min k—SSNfs k_9/10+
e M2EMZ ;. k Zmax
M1 N e 2k 1,min
M1 min=>1 ! ~

X NPkt 5o 1P el 25 | P N a0l 20

—6s k °
S S e G e

max
Nomax 2k ma

~N

which is acceptable for s > 11/60.
Case 2-2:  ky(3) € D*(k2). Then we have

|ka1| ~ |kaz| ~ |kaa| ~ k.
Therefore (4.18) leads to

k4M1/2M1 min
Z M2kM? .k

M>1 1,min
M1 min=>1

5 k’21/10785||PN}€U|

|HY| < k=8 k10| Pogul|%

8
VAR

which is acceptable for s > 21/88.

. 2,high
e Estimate for I,"%".

By symmetry, in the sequel we assume |k1| > |kz2| > |k3|. We note from Lemma 3.10
that on D?(k) it holds |Q3(ks))| 2 Mumink?-
Case 1:  |k1| ~ |k2| > |ks|.
Case 1-1:  |k3| 2 k. Then by (4.4) it holds

2,high k2M1/2N111/10 2 2
M S Y Y kN Pyl 24 | Poi Po v, ull 2+ || P,

2
M N z°
NiZk M>1
k 2s
< 3 o) IRl Pl

N>k !
which is acceptable for s > 11/40.
Case 1-2:  |k3| < k. Tt forces mupin = |k1 + k2| ~ k and thus (4.4) leads to

. ]€2M1/2N11/10 - o
(M S 3T T RN P 2o | P % | P v, ] 20

MN?
Ny >k M~k

k 2s
S Z /55 <N1> [ P< v, ul

N1k

5
AR
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which is acceptable for s > 1/5.

Case 2:  |k1| > |ka| > |ks|. Then |ki| ~ k and myin = |k2 + k3|. In this region we will
make use of the fact that |ky| > k2/3.

Case 2-1:  |k3| < |kz|. Then it holds mumin = |k2 + k3| ~ |k2| = k?/3 and thus by (4.4),

2 high k2M1/2k11/10 ) 9e/3 )
}Ik’ & |§ Z Mik?ki sf—2s/ HPNkU| 7s szz/3P5ku|Zs PSkU”ZU
M>k2/3
< KU/ | Pt
which is acceptable for s > 13/80.
Case 2-2:  |ko| ~ |ks|. Then (4.4) leads to
. k2M1/2I€11/10
,high —92g7.—4s
LM S ) =gk R PPkl | Pgers Pl 7

M>1
< k11/10_105/3||P5ku| 4

VAS]
which is acceptable for s > 33/100.

e Estimate for I,f’low + BJ2.
By (2.1), we can rewrite J§ = fg(d/dt)ci',i”2 as the sum of the “linear” contribution

2o [ 5 (k3+k3+k3+k3 ﬁa
Q3(k -
0 F(3)€D2 (k) (3 j=1
[kmeq | <k2/3

and the “nonlinear” contribution

2 ik - L 2A . (ks
KR / [Z 2 Qg(k(g))Hqu)(w Pack) + 3 Huu@,q))]

i=1 F3)eD2(k) j.:1. ki3 €D (k;) 9=1
[ mecl‘<<kQ/3
ki &
e [[5 F e T (seorieo s 3 Tt ||
i=1 FyeD2(k) ( (3)) szi Ei(s)eD(ki)QZI
Ik med‘<<l€2/3
4
S )

2,low .

Using the resonance relation (3.9), we see by choosing = 1 that I,”"°" is canceled

out by the linear contribution of fot(d/dt Slj 2. Hence,
4 . .
I 4 IR = (B + By).

=1

Note that since |kmed| < k2/ 3. we must have |kmax| ~ k. In the sequel, by symmetry we
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assume that Eyay = k1. This forces |k1| ~ k and My, = My < E2/3.

e Estimate for B,i’o, 1 =1,2,3,4.
Let N; be the dyadic variable associated to the dyadic decomposition with respect
to k;. Note that N; < k. According to (4.2) it holds
; k2M'/2N;
,0 —sAT—3
BOIS Y D ngk Ny || Pkl e s || Pyl 30 s
M>11<N;<k

S k—skmax(O,l—Ss) ||P5ku||(ls,§°H;

ngUH%;?Lg

which is acceptable for s > 1/4.

e Estimate for Bﬁ and Bz.

By symmetry, these two contributions can be treated in exactly the same way. So
we only consider Bi. By symmetry we can also assume that |ko1| > |kaa| > |k2s|. For
i = 1,2,3, let Ny; be the dyadic variable associated to the dyadic decomposition with
respect to kg;. Recall also that |ks| < k2/3 on the contribution of B?.

Case 1:  |ka1| > k. Then we must have Nag ~ Na;. On account of (4.2) and Hélder and
Sobolev inequalities, we have for s > 1/4,

k‘2k‘2/3M1/2
Bls Y Y SRk

1< M <k2/3 N21 >k

X | Pkl Foe prs 1PNy ull e s || Pt e 2 || Pevyy ull g oo

5 Z Z k2/3k72sN2—128+1/4+

1<M<k2/3 Na1 >k

X HPN’VUH%,‘}QH; PN21U’||%7°?H;|‘P§k2/3uHLoToH;/4HP§N21U||L%OH}D/4

k
< 2 k74s+11/12+
~ Noy
Na212>k

25—(1/4+)
6
) 1Pyl

which is acceptable for s > 1/4.
Case 2:  |ko1| < k. Using that Na max 2 N2, similar considerations as in (4.2) together
with (4.11), Hélder and Sobolev inequalities, we get for s > 1/4,

KN MY2 o0 1jas
{313’5 Z Z Tkgk 2N2/ ||P~ku||%§9H;
M<<k2/3 N2<<k2/3

S k2 pmax /6= Py )8 e,

ngUHZ.?H;M

which is acceptable for s > 5/16.

e Estimate for B,i.
By symmetry we can assume that

|E11| > k12| > |kis].
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For i = 1,2,3, let Ny ; be the dyadic variable associated to the dyadic decomposition
with respect to kq ;.

Case 1: | Q3(ks)| 7 Qs (kis))].
Case 1-1: My mea > 27%ki1|. Then [Qs] = |Qs(ki3))| = ki and (4.13) leads, for
s>1/4to

K2EMNY2—®

1 13 —sAT—s AT—8 A711/10

‘Bk|§ Z Z Z MEZN2 k SN11 N12 N11
M=<k N112k N13<N12<N11 1

X || Pyul| zs || Pnyy ull 22 | Py tl| 22 | Pags ull 25 | P<gul o
O\ SHo/10
< Z k—2$+1/10+(> ||P<N11u|625
Nu ~
Nll,zk

which acceptable for s > 1/4.
Case 1-2:  Mj jmea < 27%k11|. Then |ki3| ~ |k12| ~ |k11| ~ k and (4.12) leads to

E2kMY2 My i 4 A
BUS Y. X meam ok bR NPl el g
M>1 M1 min>1 1,min

S B0 Pl 2o,

which acceptable for s > 11/40.

Case 2:  [Q3(k(s))| ~ |Qs(ky(s)l-

Case 2-1:  |k11| ~ |ki2|. Then we claim that |ki3] 2 k. Indeed, recalling that |ki; +
klg + k13‘ ~ k, |k13| < k would 1mply that |k11 + k12| ~ k and thus |93(E1(3))| ~
k3 2 k° > |Q(k))| since [Q3(k))| < k%/3. Therefore, [Q5(k1(3))| 2 M2 ki1 and
Q3(k3))| ~ Mik? force My min S (Mik)V/? < (Nok)'/? and (4.7) leads, for s > 1/4, to

2 1/2
’B1’ < k le,mian k—sN75N72sN*1/4
k| ~ Mle 13 11 2
1<My <Ny <k2/3 N11>Niz2k
1<My in S(N2k)1/2

x|

PkUHLgOH; P~Nuu||2L;>°H; HPNm“HL?"H;

PNzu”L%oH;/‘*||P§k2/3u||L§9L§

k 2s
—ds45/4+ 6
Sk <N11> HPSNHUHL’E’OHg

which is acceptable for s > 5/16.

Case 2-2: |k‘11| > |k’12‘ > |]€13|. Then k’/2 < ‘klll < 2]{5, Ml,min = M11 and |93(El(3))| ~
Mi1k?. Therefore, \Qg(ﬁ(3))| ~ |Qg(El(3))| forces My ~ M.

Case 2-2-1: kll # k. Let k' S {klg,klg,k27k3} such that |I€,| = max(|k:12|, |I€13‘7 ‘]’C2|,
|ks|). Since |k'| < |k, it holds

2

k
a1z, =k k)| > - (4.34)
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Case 2-2-1-1:  |Q5| = k2. Then, for 1/4 < s < 1/2, (4.13) leads to

k3MN1/2_S

1 14V13 —2 —s51,11/10

Bils X TRy
M1 Sk2/3 1<N13<N12 Sk '

Zs Zs

PN12u| PN13U"

6
VAR

2ZS ngUHQZO

< L —2s+1/10+ ||P5ku|

X HPNkU|

which is acceptable for s > 1/20.

Case 2-2-1-2:  |Q5| < k2. Recall that we have Mj; ~ M, in this region. Let (21, 22, 23)
be such that {z1, 22, 23} := {k12, k13, k2, ks} \ {k’}. It then follows from (4.34) and (4.6)
that |Q3(z1, 20, 23)| = k2 in this region. Since |ky| V |k3| < k*/3 this forces |kia| A k13| =
k*/3. For s > 1/4, (4.8) thus yields

kSMl 1
1 1 —2s7,—4s/3
|Bk| S Z M k2 k k

My 1~M;Sk2/3

2
1/4

X NPl | Paoss Pl | Pl

S k(_10/3)8+1+HPikuH%;’?Hﬁ7
which is acceptable for s > 3/10.

Case 2-2-2: k13 = k. This is the more complicated case. Following [20] we first notice
that

< [kal Vs
~ TR

‘ k2 - ’ _ ‘ (ks + k3)k — kaky (435)

(k1 + ko) (k1 + ks3) (k1 + ko) (k1 + ks3)

We decompose the contribution of this region to B} as

t
Béj/[
0

K(kl + kz’;z/ﬁ +k3) 1) + 1} kglj‘lk?,

x ﬂ(k)ﬂ(km)ﬂ(klg)@(kz)ﬁ(ks)a(—k)]

[k2|V|ks| <k2/3

=C} + C}.
It is also worth noticing that, since k15 + k13 + k2 + k3 = 0 in this region, we must have
(klg + klg) = 7(]{12 + kg) — M171 = M;. (436)

e Estimate for C}.
Case 1:  |k2| V |ks| > |ka| A |k3|. By symmetry we can assume that |k2| > |ks|, which
forces My ~ |ka|. According to (4.35) and (4.8), C} can be easily estimated for s > 1/4 by

k Ny .
ICHS >, - MikPNGe
Mo M1
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X[ Prul|Foc prs | Pyl Lo s | Pegull? gl Pggul | poe 2
L H!

S k(—8/3)s+2/3 ||P§ku||i§°H,s )

which is acceptable for s > 1/4.
Case 2:  |kz| ~ |k3|. Then |ko|A|ks| Z M, and since My = M 1 we also have |k12| 2 M.
Therefore, according to (4.35)—(4.36) and (4.8), C{ can be easily estimated for s < 1/2 by
k N —4zS —S
Gyl < Z Efo/lek_%Nz *Ni

M1 <Ny<k2/3
Ni,22 My

X | Peull 2o s [1Pvo | Foo ars | P tel| e s || Pegul| g 2
S MNPl B
My <N2<k2/3

S KT Pyl B s
which is acceptable for s > 1/4.

e Estimate for C?.
Rewriting &y as k1 = k11 + k12 + k13 = k + k12 + k13 we decompose C,f as the sum
of three terms C,fl + C’,fz + 0%3.

e Estimate on C?? and C?3.

We only consider 6’132 which is the contribution of kio since C,%g can be treated in
exactly the same way. We proceed as for C}.
Case 1: |kia| > |ki3|. This forces M1 ~ |ki2|. According to (4.36) and (4.8), C?? can
be easily estimated for s > 1/4 by

N-

22 12 4 71/27 —25 Ar—s

|Ck|§ E 71M1 k™" Ny,
Nig~M; <k2/3

: 1/4||P§ku||L%°L§

X ||Pku‘|%t°°H; PN12U||L%°H£”P§’€U”L§9H$

< k8/BsH2/8 ”nguH%f"H;

which is acceptable for s > 1/4.
Case 2: |kio| ~ |k13]. Then |kia| A |k13] 2 My and since My = M;; we also have
|ka|V|k3| = M. Therefore, according to (4.7), C#? can be easily estimated for s < 1/2 by

N
22 12 1/2 —28 AT—S \T—2S
IC7) < E A M, "Mk~ Ny °N,
My SN <k2/3 !
M IN1a<k

PN12U||%%°H; ||P§ku||L§9L§

< Y MNPl e

My $SR2/S
My <Ni2<k

< k_4/3—(14/3)s

X || Prul|Foo s | Pyl Loe s

Hpsku”%goH;



186 L. MoLINET, D. PiLob and S. VENTO

which is acceptable for s > 2/7.

e Estimate for C?'.

We first notice that since k1| > |ko| V |k3| and |k11| > k12| V |k1s], (k1 + ko) (k1 +
kg)(kg-i—k’g) # 0 if and only if ko+k3 # 0 and similarly, (k‘u-ﬁ-k‘lg)(k‘u +k‘13)(k‘12+k13) #0
if and only if k1o + k13 = —(k2 + k3) # 0. We can thus rewrite C,fl as

Cil = k\u(k)|2j/o [ Z b%]%a(ku)a(kls)a(kz)a(ks) :

[k2|VIkg| <k2/3 ko+k3£0
k12+kiz=—ka—k3,|k12|VIk13|<k
We now separate the contributions C,fl’low and CZl’high of the regions |kya|V |ki3| < k?/3
and |kya| V |k13| > k?/3. Let us start by bounding Czl’h‘gh. In the region |k13| ~ k12|, it
can be bounded for s > 1/4, thanks to Sobolev inequalities, by

1/2
|Oil,high| < Z kMLl k725k743/3
My, =M <k?/3 !

X HPkuH%toeH; ngpzkz/suHQL%QH; ngz/e,’uHi%oHuz;

S KT Pegul| B e s
which is acceptable for s > 3/10.

On the other hand, in the region |kja| # |k13|, we must have |kia| > |k13| and thus
M1 ~ |k12|. Moreover, (4.36) forces |ka| V |k3| ~ |k12]. Therefore, Sobolev inequalities
lead for s < 1/2 to

. kN172s
21,high _ _
|Gy S E - ]\}122*]5 28N1228||Pku||%§°H;HPN12UH%§9H;||P§N12u||%§?H;
k2/3<N12<k

S k17145/3|‘P§ku||%;?°H;7

which is acceptable for s > 3/14.

Finally, we claim that C’,f Llow — . Indeed, performing the change of variables

(k2. k3, k12, kis) = (—ki2, —kis, —ka, —ks) = (ko, ks, k12, k13)
and using that u is real-valued we get

ow ~ t- 1 —~ ~ ~ A~ ~ ~ —~ ~
e CTE 3 — U(—klz)u(—kls)u(—k2)U(—k?))]
O Lk Vi Ivifnaiv g1 <h2ra 2 T 73

k12+k13=—Fko—k3#0

o7
. Z 1 7
= k|u(k)|23/ ]% ]% U(klg)u(klg)u(kg)u(kg)]
O Likyivirgivikysivikygl<k?/3 2 TR

k1a+k1g=—ka—k37#0

21,low
= _Ck' s
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which ensures that Cil’low =0.

e Estimate for Bg.

By symmetry we can assume |kyq1| > |ka2| > |kas|. Bj can be controlled exactly
as B} and is even easier (see (4.10) and (4.15)) except for the treatment of the region
(kg1 = —Fky and |kyo| V ks3] < k%/3) which is slightly different to the treatment of the
region (k1 = —k4 = k and |ky2| V |k13] < k?/3) for Bf. We thus only consider the region
k1+ksr = 0 and |kqo|V|kas| < k2/3. In this region, according to (4.35), we can decompose

B} as
t k‘2
4= _
Bk_j/o (%{<(k1+k2)(k1+k‘3) 1)+1}
X (kﬁkkg)ﬂ(lﬁ)ﬂ(kz)a(k3>a(—k1)a(k42)a(k43)>
= Bi' + B,
with

A(k) = {(k1, ka, ks, kao, kaz) € Z° : ki + ko + k3 =k,
kaz + kaz = —ka — k3 # 0, |ka| V [ks| V |kaa| V |kag| < k*/3}.

B}! can be easily estimated as C}. (actually it is even easier) by using (4.10) and the fact
that |kso + k43| = ‘kz + ksl

Finally, we claim that B,%Q = 0. Indeed, performing the change of variables ¢
(k‘l, ]{32, k3, k42, k43,) — (kh —k42, —k‘43, —k27 —kg,) = (/%1, ]272, ];3, ]%42, ]%43) and noticing that
ky+ko+ IA€3 = k1 + (—kao — ka3) = k1 + ko + ks = k ensures that ¢ is a bijection on A(k),
we get

2 _g N ) 2 —hoaz) U —Foas ) (o) (—
Bj —3/0 (1%;) I%2+I%3| (k1) ["U(—kao)u(—kaz)u(—Fka)u( kS))

~ [ P ——
= /o (% Tt I%3|u(k‘1)| u(k42)u(k43)u(k2)u(k3)>

which ensures that B{? = 0 and completes the proof of Proposition 4.9. d

REMARK 4.3. For the same reasons explain in ([19, Remark 3.2]) our method of
proof of the smoothing effect seems to break down for s < 1/3. The reason is that the
term A}, can neither be controlled for s < 1/3 nor be canceled by adding a term of order
7 in the modified energy. Indeed, it is shown in [19] that for any k large enough one
can find many couples of triplets (/g(g),l;l(g)) such that E(3) € D(k), El(g) € D'(ky)
and |Q5(E1(3), ko, k3, —k)| < 1. Therefore, a supplementary term in the modified energy
will not be useful to treat this term since we would not be able to control this term for
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s < 1/3 and the “nonlinear contribution”, of the time derivative of this term would be
even worst.

On the other hand, note that even if we only give an estimate of A" for
s > 1/3, we could lower the Sobolev index here by adding a supplementary term in
the modified energy. This is due to the fact that on the support of A we have
|95 (K1, —k1, k1, ko, ks, kq)| = |Q3(k1, k2, k3)| 2 ||

The following corollary of Theorem 4.1 will be crucial for the local well-posedness
result.

COROLLARY 4.1.  Assume thats >1/3,0<T <1 and u,v € Z3 are two solutions
to (2.1) defined in the time interval [0, T). Then, for all integer number k > 2° such that
[@(0, k)| = [0(0, k)| and all 0 < s' < s, it holds

sup kU0 [t k)P - [0, k)P S flu— vl
te€10,T[

2:)° (L4 |lull 25 + 0]l z5.)*,
(4.37)

zz: (lullz + o]

where the implicit constant is independent of k.

PROOF. Proceeding as in the proof of Proposition 4.9 we obtain (4.30) for u and
for v. Taking the difference of these two identities and estimating the right-hand side
member as in Proposition 4.9 and estimating the non quadratic terms of the modified
energy as in Lemma 4.8, the triangular inequality leads for any k£ > 1 to

- - kT
sup_ e, 0 - (60| < sup () 1Pentu ol
N>k

te 10,7

x ([[P<nul

23)°(1+ ||P<yul

zs. + [[P<nv| 25 + |1P<nvllz5)*.

This last inequality clearly yields (4.37). d

5. Estimates for the difference.

We will need the following multilinear estimates of order three and five.

ProroSITION 5.1.  Assume that 0 < T < 1, ny, m2 are bounded functions and
u; are functions in Z° = X~11/101 L¥L2. Assume also that N > 1, M > 1 and
j' €{1,2,3}. Then

6

|G21,M(H%2,M’ (U17U2,U3),U4, U5,U6)| 5 T™MM' H ||uiHL%°LZ7 (51)
=1

where GiM is defined in (3.10). Let also Ni,No,N3 > 1 be dyadic integers and
(K1, K2) €]0,+00[? such that Ky > Ky. Then it holds

v

T J
GnlllDl Liag)~rcy » M (anllmg‘zKZ,M’(PI\hulv PN2u2v PN3U3)a Uq, Us, PNU6)‘
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6
MM’ max(Ny, Na, Ng) O T Nuill 2o, (5.2)

=1

T1/8
S K,

where D' and H] r are defined in respectively (3.30) and (3.2). Moreover, the implicit
constant in estzmates (5.1) and (5.2) only depends on the L -norm of the functions n;
and nsz.

Proor. (5.1) follows by using twice (3.8). To prove (5.2), we first notice that
K5 > K and (4.6) ensure that [Qs(F 5))] ~ [Q3(k1, ko, k3)| > K5. Then the result follows
by proceeding as in the proof of (3.11) with R = [Ky/ max(Ny, Ny, N3)'1/10]8/7. O

5.1. Definition of the modified energy for the difference.
Let Ny > 2° N be a nonhomogeneous dyadic number and (u,v) € H*(T)? with
s € R. We define the modified energy of the difference at the dyadic frequency N by

1
§||PN(u - U)||2L§ for N < Ny

1
§||PN(u - U)HQLE + E3[u,v]  for N > Ny,

SN[’U,7U,N0] = (53)

where

k
> — o (k)
kEZ F(gyeDl(k) (k)
<nN1/2

Mmin<

x 9 | (kr)i(ks) + @(kn)o (k) + (k1 )o(k2) ) (@ — ) (ks) (@ — ) ()|

where E(g) = (k1, k2, k3), Mmin = miny<;2;<3(|k; + k;|) and where the set Ag is defined
n (3.32). The modified energy E* [u, v, Ny] of the difference u — v is defined by

E¥ [u,0,No = Y N2 Ex[u, v, Nol.
N>1

The following lemma ensures that E* [u, v, No| is well-defined as soon as (u,v) € H*(T)?
with s > 0. Moreover, for Ny > 2° large enough we have E* [u, v, No] ~ ||u — o2,

LEMMA 5.2 Let (u,v) € H*(T)* with s > 0. Then, for any s' € R and any
No > (|l e + |||z )"/*, it holds

CHu—vll30 < E®[u,v,No] < Cllu—vl|3,. (5.4)
for some constant C > 1.

PROOF. Let us recall that Lemma 3.10 ensures that |k1| ~ |ka| ~ |k3| ~ |k| on
D*. Therefore, a direct application of (3.8) leads to
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! NQS/NMmin 4
N> & fu ]| S WN_QS N
Mipin>1 min
X ([ Ponvullzs + 1 PunvllF) | Pon (u — ) |30

Summing over My, and N > Ny, we obtain

> NFE [ oll S Ng P (lullfre + l[olF)lu = vl
N>N,
that clearly implies (5.4) for No > (||ullzs + ||v]| g+ )"/ O

Let now (u, v) be a couple of solutions to the renormalized mKdV equation on |0, 7.
The following proposition enables to control E* [u, v, Ny on ]0,T7.

PROPOSITION 5.3. Let0 < T < 1. Let u and v be two solutions of the renormalized
mKdV (2.1) belonging to L>(0,T : H*(T)) with 1/3 < s < 1/2 and associated with the
same initial data ug € H*(T). Then, for s/2 < s’ < s —1/10 and any Ny > 2'°, it holds

sup E¥ [u(t), v(t), No] S TENG*(1 + ||ul
t€(0,T]

2z + vllz5 )P llwl 5 (5.5)

where we set w = u — v.

PrROOF. To simplify the notation, we denote Ex[u(t),v(t), No] simply by En(t).
Note that u(t) and v(t) are well defined for any t € [0, T since, by the equation, (u,v) €
(C([0,T); H5=3))? and that, for any N € 2V Ex(0) = 0 since u(0) = v(0) = ug. For
N < Ny, the definition of En(t) easily leads to

d

g&v(t) = /11‘PN (w(u2 + uv 4 v?) — 3Py (w(u + v))u — 3P0(’U2)’LU) O Pyw

which yields after applying Bernstein inequalities, integrating on |0, ¢[ and summing over
N < N07

’
> en® S NG (ol e s Ul s + 0] 1)
N<Ng
ol ca Ul oz + I013622))

’
STV Nl oo Ul v+ 10102 275)

x x

3/2
STNG [l ey (il e e + N0l e 1),

since, by hypotheses, 1/6 < s’ < 1/4 and s > 1/3.
Now for N > Ny, we first notice that the difference w = u — v satisfies

wi 4+ OPw = —0, A(u, u, w) — O A(u, v, w) — 0, A(v, v, w)
+ 0, (B, w,w) + (B(u,u,v) = B(v,v,0))), (5.6)
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where A and B are defined in (3.40). Therefore, differentiating €y with respect to time
and integrating between 0 and ¢ yields

t
N2 € (t) = —NQS'/ 9‘{(/ O Pn[A(u, u, w) + A(u, v, w) + A(v, v, w)| Pyw dT)

+N2S’/ (/a Py B(u,u w)PNwdT>
+N2S’/ (/a Pn(B(u,u,v) — B(v,v,v))PNwdT>

+ N2 /0 %%Eﬁ(T)dT
= COn(t) + Dn(t) + Fn(t) + Gu (1)

As in (3.41) we notice that, since u and v are real-valued,

/8 Py B(u,u w)Pwaszku P lon (k)i (k)|? € iR

keZ

and thus Dy (t) = 0. On the other hand, the smoothing effect (4.37) leads to

|Fn(0)] S N>

/ kY (i k)P = [o(r, k) P)en (k)0 (7, k)i (r, —k)dr

kEZ

< sup sup (\k;|1+(s/_s)

kEZ
7€[0,T] N/2<|k|<2N

t
x / o (7)1 e e () | o dir
SONT(1+ |ul Z3)

ja(r, W)~ [o(r, k)|

E;‘H

|wl

zg vl|Lgo s ||w||L;OHs/

with [|(025);llor vy S 1-
It thus remains to control Cn(t) + Gn(t). We notice that Cn(t) can be decom-
posed as

3

On() =3 N*% [ 0.Py (T, +101,, ) (], 2, w) Py
J=1 [0,t]xT

= Cy(t) + CR (D),
with (21, 23) = (u,u), (2%,23) = (u,v) and (23, 23) = (v,v). We then decompose further
Ck(t) and C% (1) as

3

2s’ J
Cn(t) = ZN R 0o Py (HﬂDlm{mmle/Z} +Hlolm{mminszvl/?})(zl’zz’ w)Pyw
=1 [0,¢]xT

= CN*" () + O (1)
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and

3

_ 2s’ J .

- ZN "R Ou P I b2 g ikt T Mb2a g ving iz (21, 23, w) Pyw
[0,¢]xT ~

_ CJQV,IOW (t) + Oﬁhigh (t) )

e Estimate for C’2 slow

From Lemma 3.10, we infer that for any N > 1,

3 3
D20 |k |V|ko| < N}O{Zki € supp@N} = Dn{|k1|V]ke| < N}ﬂ{z ki € SuppCDN}.

=1 =1
Since k1| V |k2| < N ~ |ks| on the support of CJQV’IOW, it can thus be rewritten as

3

2,low _ 2s’ J
CRM()=>_N* Y = OpPNTIE, (21, 25, w) Py,
j=1 1<M<N  70xT

Since 1pngik,|v|k|< N} satisfies the symmetry hypotheses of Lemma 3.2, it can further
be rewritten as

2,low _ 2s’ J I
Cyh () = E N E MiR/ PNHn]le“kle«N} m (#2125, w) Pyw
j=1 ISM<N

with ||7]jec S 1. Using Lemma 3.10, Proposition 3.4 and (3.9) it thus can be estimated by

~

11/10
s s Sy e M
1M <N N1VN2>M max

X || P, z1] P

PN22’2|

zZ5 zZ5

S/
T

STYENYO= (lull g, + lollZ;) ),

which is acceptable for s > 1/10.

e Estimate for C2 shigh

On account of Proposition 3.4 we have

11/10

. ' MNN
2,high 1/8 2s max s S AT—
(o IR A S > N N N~ N;*N;*N;
N32>1 N1VNy 2N 1SM<Nmax

X 1Py 21 25 | P, 22| 25 | P wl 220

STYENTHHON (a3, + |Jo]

Zs

’
el
ZT

Z) w7

which is acceptable since s’ < s — 1/10.
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e Estimate for Cx™&",
Performing a dyadic decomposition in myy;, ~ M, Lemma 3.10, Proposition 3.4 and

(3.9) lead to

; s MNN11/10 :
1,high 1/8 2s —2s —2s
CyME < T > N —py NN
M>N1/2
< (|1 PonulZ + | PanvllZ) I Pavwl?,,
< TS N=2ZHB/5H ||y |2 zs + lvll% :) Jw]|? 73

which is acceptable for s > 3/10.

e Estimate for C}\}low + Gn.
We have

t
, d .
Gn(t) = N* 9%/0 %5,%@) = —ON" + An1 + Ano + An s,

where

3

k2 (k)k
=N 3y ke
0 kez k(S)EDl(lc) 1<q#q’'<2 i=1 Qg(k(S))

in<N1/2

3
xJ [211’,1'(]5(1’)@(143)@(_]“) <3|2q,i(kq)|22q’i(kq) + Z H 2q»i(kt;(,j)>] )

Eq(3)€D(kq) Jj=1

e [y y R
0 keZ k( epl(k) i=1 (k

1/2
II]]H<N /

@(—k)%,i(/ﬁ)?z,i(kz)<(|ﬁ(/€3)|2 + [0(k3)|?) @ (k3) + W(—k3)tu(ks)v(ks)

xJ

+ 0y [ﬂ(/%,l)@(ks,z)+@(/f3,1)5(k3,2)+6(163,1)3(763,2)]@(793,3))]

E3(3)€D(ks)

and

k2% (k)
N2s N
0 kie:z k( >§D:1(k) ; 93 k( 3)

1/2
Mmin = <N /

xJ lgl,i(kl)EQ,i(kQ)w(k3) ((Iﬂ(k)l2 +[0(k)P)B(~k) + D(k)a(—k)o(~k)
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+ Z [W(kyg1)u(ka,2) + (kg 1)0(ka2) + ﬁ(k4,1)6(k4’2)]@(k4,3)>] ,

E4(3)€D(7k)

where we set (21,1,22,1) = (u,u), (21,2, 22,2) = (u,v) and (21 3,22,3) = (v,v). Hence,

3
CN™+ Gy =) An;.

j=1
For any sextuplet N = (N11,N12,N13,Noy N3, N) € (26, any 2 =
(211, 21,2, 21,3, 22, 23, 24) € (Z5)% and any function € L (R), we set
ki, ko, k
Rg (%) = N2S+2/ MPNQZQ(kz)Pstg(kg)PNa( k)
" Q3 (k3))
0 kez k(S)EDl(k) (3)
<nN1/2

Mmin>

X Py 21,1 (k1) Py 21,2(—k1) Py g21,3(k1)

and

. —» 25" +2
SN Z)=N

T

k1, ko, k —
/ wPNQZQ(kz)Pstg(kg)PNQ( k)
0 kez F(g) EDl(k) Q (k(?’))

<N1/2

Mmin<

x> Puzalkin) P, zia(kae) Py g 2s (k) |
k1(3y€D (k1)

We observe that to get the desired estimates for the Ay j, it suffices to prove that for
any SeXtuplet N == (Nl 1 Nl 2 Nl 3)N27 N35 N) S (QN)Ga any Z - (Zl,la 21,27 Zl,3a 22,23,
z4) € (Z°)% and any n € L*™ with ||n]lec <

Ry (%) + Sy . (2) S TVEN2E =0 Py 2y

(5.7)

3
z; [T I1Pv.l
=2

Where Nmax = max(NLl, N1’2, Nl’g, NQ, Ng, N)
Indeed, the modulus of the Ay ; are controlled by sums of terms of this form with

3
z [] 1Py, 2,
j=1

kak;

n(k17k2ak3) 1D1¢N(k4) j = 1727374a _k4 - kl +k2+k3a

and where w appears two times in the components of Z and all the other components are
u or v. Therefore (5.7) leads to

4
i+ 1P, vllzg)  (59)

3
> Ain] S TV NGl Py, wl2, (1 Peg, ol
j=1
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and (5 5) then follows by summing over (Ni 1, N7 2, N1 3, Na, N3, N) thanks to the fac-

tor NO-

max*

To simplify the notation, we denote Pp,z;, Pn, j21,; and Pyzs4 by respectively z;

and z; ; and z4 in the sequel.

e Estimate for Ry, (%).

We recall that on D' we must have |ki| ~ |ko| ~ |k3| ~ |k and thus Ry

0(%)

vanishes except if N1 ;1 ~ Ny 2 ~ Ni3~ Ny ~ N3 ~ N. In particular, Nyax ~ N. Then

estimate (3.8) leads to

3
M>1 i=2 =1
STN2 NiafSHHZzHLWHb H||Zl,a||L°°Hb

which is acceptable since for s > 1/4.

e Estimate for Sg ().

N25’+2M 6 4
Ry, ()3 T—py N7 [T 0zillsme TT 12050 o5 a

We set El(g) = (k1,1, k1,2, k1,3). By symmetry, we may assume that Ny 3 > Ny >

Ni,3 so that N1 ~ Npax. We separate different contributions.
Case 1: M med > 279N.

Case 1-1: |Q3(kis))| > [|Q(kes)|. Noticing that |Qs(k())
|93(El(3))| 2 279M; min NNy ;1 in this region, (5.2) leads to

N2s'+2)\1
L (5 E : § : 1/8—mlan/10N 25 N\T—28
SN,W(Z) S ?‘[mmMmchQ max maxN

~

1< M1 min SN1,2 Mmed ZMmin>1

4 3
< [T zllzs T 2151
i=2 j=1

23

4 3
STVENG N NI [ Tzl zs [T vz
i=2 j=1
which is acceptable since for s’ > s/2 and s > 1/3 force s’ > 1/6.
Case 1-2:  |Q3(ky(3))| S |Q3(k(3))|. Then muyin < N2 yields
M, MmlanedN A]\4med]\[3/2 _ j\lmedjvl/2
min 5 My meaN1,1 < NN Nia
Therefore (5.1) leads to
N2s'+2 )01 M edN1/2 5 4 3
— min<{¥m —sA7—3s
Sg,(Z) ST > Moo NN, N H||Zi\|L%°H; H 121,41
1< Mupin <Mmea SN ’ =2 =

~ MminMInedN and

Lo H

x
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4 3
-~ !’ ~ !’ !
S TNR20) Nod 2 N2 =383+ [ il e [ ol
i=2 j=1

which is acceptable since s’ > /2 ensures that s — 1 — 25’ < 0 and since
, , 3 1 1
(5—1—25)+(25—35+§+):—23+§+<0 S s>

Case 2: Ml,med < 279N. Then N171 ~ NLQ ~ N173 ~ Ng ~ N3 ~ N.
Case 2-1: M min < 29 Mpea. Then (5.1) leads to

. N2s’+2M i Med . 4 3
Sea ST N Tzl T sl o
1< Munin < Munea SN min{¥Imed - .

S TN N aett H ll2il| Lgo 1z H 21,51l Lo s+
which acceptable for s > 1/4.
Case 2-2: M min > 29 Mmeq. Then,
|QS(E1(3))| ~ Ml,mian,medMl,max 2 218MmianedN > ‘93(12(3)”)
and thus (5.2) leads to
N2S/+2Mmin

foa 1/8 —6s p71/10
Sua ST 3 X SpwanaaY N

J\lminz1 1SM1,med§N min
4 3
< [T=illzs T 12151
i=2 Jj=1
3

4
STYVEN A N et /10 [T 1z0z [T 1250 2.

i=2 j=1

Zz

which is acceptable for s > 11/40.

LEMMA 5.4. Assume that 0 < T < 1, s > 1/3 and (u,v) € L°(0,T; H*(T))?
are two solution to (2.1) associated to the initial data (ug,vo) € H*(T)%. Then, setting

s’ =1/3—1/8=15/24, it holds

2z S Ut lullLe e + 10llig )’ llu — vl pe - (5.9)

PROOF. We proceed as in Lemma 3.9 so that we are reduced to estimate |ju —

v||Xs/,11/10,1. Setting w = u — v, the Duhamel formula associated to (1.1), the standard
T

linear estimates in Bourgain’s spaces and the fractional Leibniz rule lead to

H’w” 3’711/10 1
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< Nlwo = voll o + 102 (w(w? +uv +v*)|| or-11/10.0 + [ Po(u?)wa yor-11/100
T T
+HP0(U2 — ’UZ)’UxHXsLu/w,O
T

‘l_
< lw — v||L%oH;/ 1T 0w (w? + uo + UQ))HL?TLg + ||U||%;°L§||WHL2TH;/—1/1O

Hllullegerz + 1ollege r2) 1l 2 o1 rollwling 2z (5.10)
Then, we notice that

175 =10 (w(w? + uv + v?)) 2 12

SIS (w(u? + uv + U2>)||L2TL2/3

’
S (||U||24TL§0 + ||UH%4TL30)||J§ WLz r2

(el 20 + ol g 20wl o pzore (1240l g praovan + 1T2/240] . sa0rsn)

x

which leads to (5.9) thanks to (3.20)(3.21) and Sobolev inequalities since H/?4(T) —
L?*/7(T) and for s > 1/3, it holds s’ = s — 1/8 > 5/24 and 120/31 < 4. O

6. Proof of Theorem 2.3.

6.1. Unconditional uniqueness for the renormalized mKdV equation.

Let us start by proving the unconditional uniqueness of (2.1). Let T > 0 and
(v1,v2) € L>®(0,T; H'/?)? be a couple of functions that satisfies (2.1) in the distributional
sense with v1(0) = v2(0) = ug € H*(T). We first notice that Lemma 3.9 ensures that
(u,v) € Z%/B with 7' = min(1,T) and, from Proposition 3.11, we infer that

~ 4
lotll s + llvell s < uollazass + T3 (1 floal oo+ ol asa) -

Hence, taking T < min(1, T, (1 + |Juo|| z1/5) %), we get
[orll g1 + llvall yre S Nluollgrrse-
T T
Then, noticing that 1/6 < 5/24 < 1/3 —1/9, (5.4)—(5.5) and (5.9) lead to

lor = w2l . s S TVENG(1+ ol gra/2) oy = vs?

2
L H L HY/

with No > Hu0||j;/3. This forces

V1 — V2l =0

” 1 2||LT’H‘2/24

with 77 ~ min(T, (1 + [|uo|| g1/2)~3°°). Hence v; = vy a.e. on [0,7"]. Therefore there

exists 1 € [T"/2,T'] such that vi(t1) = va(t1) and [Jvi(t1)|| s < ||v1]l o yi/a- Using
P H,

this bound we can repeat this argument a finite number of times to extend the uniqueness

result on [0, 7.
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6.2. Local well-posedness of the renormalized mKdV equation.

It is known from the classical well-posedness theory that an initial data ug € H*(T)
gives rise to a global solution v € C(R; H*(T)) to the Cauchy problem (1.1). Then
combining Lemma 3.9 and Proposition 3.11 we infer that u verifies

4
el ary S ollee + T (Julluz s + el ) (6.1)

for any 0 < T < 1. Taking T’ = T(|luo| g=) ~ min(1, (1 + |Juol| =) ~?), the continuity of:
T+ |lullLge ms ensures that

lullLee s S |luollms
and Lemma 3.9 then leads to
[l zz. < lwollzs (1 + lluollre)- (6.2)

Moreover, we infer from Theorem 4.1 that for any K € 2V it holds

1P rul)|Fse s < D sup [KI**[u(t, k)

szte[O,T]
< 3 (R + K a1+ )
E>K
< 1Ps ruolf3gs + K271+ [luo ) (6.3)

Now let us fix 1/3 < s < 1/2. For ug € H*(T) we set ug,, = P<puop and we denote
by u, € C(R; H>*(T)) the solutions to (2.1) emanating from ug,. In view of (6.2) we
infer that for any n € N,

[unllzg < lluollzzs (1 + lluollZ-),
with T' = T'(||uo|| =), and (6.3) ensures that

Jmsup P>k un (t)]| g 11z = 0. (6.4)
This proves that the sequence {u,} is bounded in L>°(]0,T[; H*(T)) and thus u3 is
bounded in L*(]0,T[; L*(T)). Moreover, in view of the equation (2.1), the sequence
{0y, } is bounded in L*°(]0, T[; H3(T)). By Aubin-Lions compactness theorem we infer
that, for any 0 < T < T(||luo| m=), {un} is relatively compact in L2(]0, T[xT). Therefore,
using a diagonal extraction argument, we obtain the existence of an increasing sequence
{nr} C N and v € L*>*(]0,T[; H*(T)) such that

Up, — u weak star in L*>(]0,T[; H*(T)) (
Un, — uin L*(J0,T[; L*(T)) N L*(J0, T[; L*(T)) (

, —uwae. in]0,T[xT (
ud — u® in L*(]0, T[; L*(T)). (

Nk

Up
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These convergences results enable us to pass to the limit on the equation and to obtain
that the limit function u satisfies (2.2) with F(u) = u3 — 3Py(u?). Therefore the un-
conditional uniqueness result ensures that u is the only accumulation point of {u,} and
thus {u,} converges to u in the sense (6.5)—(6.8). Now, using the bounds on {u,} and
{0}, 1t is clear that for any ¢ € C°(T) and any T > 0, the sequence {t — (un, P) g}
is uniformly equi-continuous on [0,7]. By Ascoli’s theorem it follows that

(una¢)Hs — (u7¢) in C([OaT])
In particular, for any fixed N > 1, it holds

lim sup ||P<ny(un —w)(t)|gs =0.
n=00 40,7

This last limit combined with (6.4) ensures that
u, — win C([0,T]; H*(T))

and thus u € C([0,T]; H*(T)).

Finally, to prove the continuity with respect to initial data, we take a sequence
{uf*} € Bus(0,2|lup|| =) that converges to ug in H*(T). Denoting by u™ the associated
solutions to (2.1) that we have constructed above, we obtain in exactly the same way as
above that for 7'~ min(1, (1 + |Juo|| =) ~1°) it holds

s < s ]. 2 s 1 P t oo s —
[umll zg. < llwollms (1 + [luoll7-), Kirﬂooilé%” >k Um(t)| Ly e =0

and

(um7¢)HS - (u7¢) in C([O?T])

This ensures that u,, — u in C([0,T]; H*(T)) and completes the proof of the uncondi-
tional well-posedness of (2.1).

6.3. Back to the mKdV equation.
For s > 0 we define the mapping

L¥H, — L¥H;
v t
u=u(t,z) r— Vlu)=T(u)(t,x)= u(t,x —|—/0 Po(UQ(T))dT>.

It is easy to check that W is a bijection from LFH; into itself and also from
C([0,T); H*(T)) into itself with inverse bijection defined by

T (u) = u(t,x - /Ot Po(u?(T)) d7>.

Moreover, for s > 1/3, it is not too hard to check that u € L HZ is a solution of (2.2) with
F(u) = v? if and only if U(u) € L¥ H? is a solution to (2.2) with F(u) = u® — 3Py(u?).
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Finally, we claim that ¥ and ¥~ are continuous from C([0, T]; H*(T)) into itself. Indeed,
let {vn}n>1 C C([0,T]; H*(T)) that converges to v in C([0,T]; H*(T)). Then denoting
fot Py(v2)(s) ds by a,(t) and fot Po(v?)(s) ds by a(t), it is easy to check that

lim  sup (an(t) —a(t)) =0 (6.9)

n=00 ¢c[0,T)

and

sup (| W(v)(t) — U(@)(O)e < sup |
t€[0,1] te[0,1]

+ sup Hv(t,~+an(t))—U(t"+a(t))H

nlt, - an(®)) — vlt, +an ()],

He

It is clear that the first term of the right-hand side of the above estimate converges to 0.
Now, the second term can be rewritten as

1/2

, , 2
I, = sup Z ks(elko‘"(t) — elka(t))ﬁ(t, k)
t€(0,1] kezZ

Since v € C([0,T]; H*(T)), {v(t) : t € [0,T]} is a compact set of H*(T) and thus

lim sup |k|2*[o(t, k)|* = 0,
N—=oo4el0,17] “qu

which combined with (6.9) ensures that lim,, o, I,, = 0 and completes the proof of the
desired continuity result.

These properties of ¥ combined with the unconditional local well-posedness of the
renormalized mKdV equation in H*(T), clearly leads to Theorem 2.3.
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