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Abstract. For a two-sided sequence of compact linear operators acting
on a Banach space, we consider the notion of spectrum defined in terms of the
existence of exponential dichotomies under homotheties of the dynamics. This

can be seen as a natural generalization of the spectrum of a matrix—the set of
its eigenvalues. We give a characterization of all possible spectra and explicit
examples of sequences for which the spectrum takes a form not occurring in
finite-dimensional spaces. We also consider the case of a one-sided sequence

of compact linear operators.

1. Introduction.

We study a notion of spectrum for a nonautonomous dynamics inspired on a corre-

sponding notion introduced by Sacker and Sell in [9] in a finite-dimensional space. This

can be seen as a generalization of the spectrum of a matrix (the set of its eigenvalues).

More precisely, let (Am)m∈Z be a sequence of invertible d× d matrices and consider the

dynamics

xm+1 = Amxm, m ∈ Z.

For a constant sequence Am = A, a number a ∈ R is of the form a = − log |µ| for some

eigenvalue µ of A if and only if the constant sequence (e−aA)m∈Z admits an exponential

dichotomy. For an arbitrary sequence of matrices, an appropriate notion of spectrum

was introduction by Aulbach and Siegmund in [1] (following work in [11] in the case

of continuous time) by declaring that a is in the spectrum if the sequence (e−aAm)m∈Z
admits an exponential dichotomy. For related work we refer the reader to [2], [3], [8],

[10], [12].

We consider a corresponding notion in an infinite-dimensional setting. Namely, given

a sequence (Am)m∈Z of compact linear operators acting on a Banach space, we define its

spectrum as the set Σ of all a ∈ R such that the sequence (e−aAm)m∈Z does not admit

an exponential dichotomy. We emphasize that in the notion of an exponential dichotomy

we only assume the dynamics to be invertible along the unstable direction.

Our main result describes all possible types of spectra and how they relate to certain

natural invariant subspaces (see Theorem 3). In particular, we show that each trajectory
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has lower and upper Lyapunov exponents inside the same connected component of the

spectrum. We note that this mimics the behavior in the multiplicative ergodic theorem

in the particular case of Lyapunov regular trajectories, which is the typical behavior for

example in all mechanical systems on a compact energy hypersurface.

Moreover, we provide examples of sequences for which the spectrum takes a form

that does not occur in finite-dimensional spaces. More precisely, we provide explicit

examples of sequences of compact linear operators acting on the Hilbert space of L2

functions on the circle with the induced Lebesgue measure for which the spectrum is of

the form

Σ =
∞∪
j=1

[aj , bj ] or Σ =
∞∪
j=1

[aj , bj ] ∪ (−∞, b∞],

for some numbers

b1 ≥ a1 > b2 ≥ a2 > b3 ≥ a3 > · · · ,

respectively, with limn→+∞ an = −∞ or limn→+∞ an = b∞ > −∞.

Finally, we consider briefly the case of a one-sided sequence of compact linear oper-

ators and we describe corresponding notions and results.

2. Spectrum on the line.

2.1. Exponential dichotomies.

Let (An)n∈Z be a sequence of compact linear operators acting on a Banach space

X = (X, ∥·∥). For each m ≥ n, let

A(m,n) =

{
Am−1 · · ·An, m > n,

Id, m = n.
(1)

We say that (An)n∈Z admits an exponential dichotomy if:

1. there exist projections Pn : X → X for n ∈ Z satisfying

AnPn = Pn+1An (2)

for n ∈ Z such that each map

An|KerPn : KerPn → KerPn+1 (3)

is invertible;

2. there exist constants D,λ > 0 such that

∥A(m,n)Pn∥ ≤ De−λ(m−n) for m ≥ n (4)

and

∥A(m,n)Qn∥ ≤ De−λ(n−m) for m ≤ n, (5)
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where Qn = Id− Pn and

A(m,n) = (A(n,m)|KerPm)
−1

: KerPn → KerPm (6)

for m < n.

The sets ImPn and ImQn are called, respectively, the stable and unstable spaces of the

exponential dichotomy. The following result shows in particular that they are uniquely

determined.

Proposition 1. For each n ∈ Z,

ImPn =

{
v ∈ X : sup

m≥n
∥A(m,n)v∥ < +∞

}
and ImQn consists of all v ∈ X for which there exists a sequence (xm)m≤n ⊂ X such that

xn = v, xm = Am−1xm−1 for m ≤ n and supm≤n∥xm∥ < +∞. Moreover, dim ImQn <

+∞ for n ∈ Z.

Proof. By (4) we have

sup
m≥n

∥A(m,n)v∥ < +∞ (7)

for v ∈ ImPn. Conversely, if (7) holds for some v ∈ X, then it follows from (4) that

sup
m≥n

∥A(m,n)Qnv∥ < +∞. (8)

By (5), for m ≥ n we have

∥Qnv∥ ≤ De−λ(m−n)∥A(m,n)Qnv∥,

that is,

1

D
eλ(m−n)∥Qnv∥ ≤ ∥A(m,n)Qnv∥.

Whenever Qnv ̸= 0, we obtain

sup
m≥n

∥A(m,n)Qnv∥ = +∞,

which contradicts to (8). Hence, Qnv = 0 and so v ∈ ImPn.

Now take v ∈ ImQn and consider the sequence xm = A(m,n)v for m ≤ n.

Clearly, xn = v and xm = Am−1xm−1 for m ≤ n. Moreover, it follows from (5) that

supm≤n∥xm∥ < +∞. Conversely, one can show that there is no v ∈ X \ ImQn for which

there exists a sequence (xm)m≤n ⊂ X with the properties in the proposition. Indeed, it

follows from (2) and (4) that

∥Pnv∥ = ∥A(n,m)Pmxm∥ ≤ De−λ(n−m)∥xm∥
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for m ≤ n. Hence, if Pnv ̸= 0, then supm≤n∥xm∥ = +∞.

It remains to show that the unstable spaces are finite-dimensional. Let

Bn =
{
v ∈ ImQn : ∥v∥ ≤ 1

}
and take n ∈ N such that eλn > D. We claim that Bn ⊂ A(n, 0)B0. For each v ∈ Bn,

there exists x ∈ ImQ0 such that v = A(n, 0)x. If ∥x∥ > 1, then it follows from (5) that

1 <
1

D
eλn∥x∥ ≤ ∥A(n, 0)x∥ = ∥v∥,

which contradicts to the assumption that ∥v∥ ≤ 1. Hence ∥x∥ ≤ 1 and so Bn ⊂
A(n, 0)B0. Since B0 is bounded and A(n, 0) is compact, the set A(n, 0)B0 is relatively

compact and so Bn is compact. This shows that ImQn is finite-dimensional. On the

other hand, it follows from (2) that the dimensions dim ImQm are independent of m ∈ Z.
This completes the proof of the proposition. □

2.2. Spectrum.

The spectrum of a sequence (An)n∈Z of compact linear operators is the set Σ of

all numbers a ∈ R such that the sequence (e−aAn)n∈Z does not admit an exponential

dichotomy. For each a ∈ R and n ∈ Z, let

Sa(n) =

{
v ∈ X : sup

m≥n

(
e−a(m−n)∥A(m,n)v∥

)
< +∞

}
and let Ua(n) be the set of all vectors v ∈ X for which there exists a sequence (xm)m≤n ⊂
X such that xn = v, xm = Am−1xm−1 for m ≤ n and

sup
m≤n

(
e−a(m−n)∥xm∥

)
< +∞.

We note that if a < b, then

Sa(n) ⊂ Sb(n) and Ub(n) ⊂ Ua(n)

for n ∈ Z. By Proposition 1, if a ∈ R \ Σ, then

X = Sa(n)⊕ Ua(n) for n ∈ Z

and the projections Pn and Qn associated to the sequence (e−aAn)n∈Z satisfy

ImPn = Sa(n) and ImQn = Ua(n).

Moreover, by (2), for each a ∈ R \Σ, the numbers dimSa(n) and dimUa(n) are indepen-

dent of n. We shall simply denote them by dimSa and dimUa.

Proposition 2. The following statements hold :

1. The set Σ is closed. Moreover, for each a ∈ R \ Σ we have Sa(n) = Sb(n) and

Ua(n) = Ub(n) for all n ∈ Z and all b in some open neighborhood of a.
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2. Take a1, a2 ∈ R \ Σ with a1 < a2. Then [a1, a2] ∩ Σ ̸= ∅ if and only if dimUa1 >

dimUa2 .

3. For each c /∈ Σ, the set Σ ∩ [c,+∞) consists of finitely many closed intervals.

Proof. Given a ∈ R \ Σ, there exist projections Pn for n ∈ Z satisfying (2) and

a constant λ > 0 such that

∥e−a(m−n)A(m,n)Pn∥ ≤ De−λ(m−n)

for m ≥ n and

∥e−a(m−n)A(m,n)Qn∥ ≤ De−λ(n−m)

for m ≤ n. Therefore, for each b ∈ R,

∥e−b(m−n)A(m,n)Pn∥ ≤ De−(λ−a+b)(m−n)

for m ≥ n and

∥e−b(m−n)A(m,n)Qn∥ ≤ De−(λ+a−b)(n−m)

for m ≤ n. Therefore, b ∈ R \ Σ whenever |a− b| < λ and it follows from Proposition 1

that Sb(n) = Sa(n) and Ub(n) = Ua(n) for n ∈ Z.
For statement 2, assume that [a1, a2] ∩Σ ̸= ∅. If dimUa1 = dimUa2 , then Ua1(n) =

Ua2(n) and Sa1(n) = Sa2(n) for n ∈ Z. By Proposition 1, there exist projections Pn for

n ∈ Z and constants λ1, λ2 > 0 such that for i = 1, 2 we have

∥e−ai(m−n)A(m,n)Pn∥ ≤ Die
−λi(m−n) for m ≥ n (9)

and

∥e−ai(m−n)A(m,n)Qn∥ ≤ Die
−λi(n−m) for m ≤ n. (10)

For each a ∈ [a1, a2], by (9),

∥e−a(m−n)A(m,n)Pn∥ ≤ D1e
−λ1(m−n) for m ≥ n

and similarly, by (10),

∥e−a(m−n)A(m,n)Qn∥ ≤ D2e
−λ2(n−m) for m ≤ n.

Taking λ = min{λ1, λ2} and D = max{D1, D2}, we conclude that [a1, a2] ⊂ R\Σ, which
contradicts to the initial assumption. Therefore, dimUa1 = dimUa2 . For the converse,

assume that dimUa1
> dimUa2

and let

b = inf
{
a ∈ R \ Σ : dimUa = dimUa2

}
.

Since dimUa1 > dimUa2 , it follows from statement 1 that a1 < b < a2. We claim that
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b ∈ Σ. Otherwise, either dimUb = dimUa2 or dimUb ̸= dimUa2 . In the first case, by

statement 1 there exists ε > 0 such that dimUb′ = dimUa2 and b′ ∈ R\Σ for b′ ∈ (b−ε, b].

This contradicts to the definition of b. In the second case, by statement 1 there exists

ε > 0 such that dimUb′ ̸= dimUa2 and b′ ∈ R\Σ for b′ ∈ [b, b+ε). Again this contradicts

to the definition of b. Hence, b ∈ Σ and [a1, a2] ∩ Σ ̸= ∅.
For statement 3, we proceed by contradiction. Write dimUc = d and assume that

Σ∩[c,+∞) contains at least d+2 disjoint closed intervals Ii = [αi, βi], for i = 1, . . . , d+2,

where

α1 ≤ β1 < α2 ≤ β2 < · · · < αd+2 ≤ βd+2 ≤ +∞.

For i = 1, . . . , d+ 1, take ci ∈ (βi, αi+1). It follows from statement 2 that

d > dimUc1 > dimUc2 > · · · > dimUcd+1
,

which is impossible. This completes the proof of the proposition. □

3. Structure of the spectrum.

Our main result describes all possible forms of the spectrum for a sequence of com-

pact linear operators acting on a Banach space.

Theorem 3. Let (An)n∈Z be a sequence of compact linear operators for which the

spectrum is neither ∅ nor R.

1. One of the following alternatives holds :

(a) Σ = I1∪
∪k

n=2[an, bn], where I1 = [a1, b1] or I1 = [a1,+∞), for some numbers

b1 ≥ a1 > b2 ≥ a2 > · · · > bk ≥ ak; (11)

(b) Σ = I1 ∪
∪k−1

n=2[an, bn] ∪ (−∞, bk], where I1 = [a1, b1] or I1 = [a1,+∞), for

some numbers an and bn as in (11);

(c) Σ = I1∪
∪∞

n=2[an, bn], where I1 = [a1, b1] or I1 = [a1,+∞), for some numbers

b1 ≥ a1 > b2 ≥ a2 > b3 ≥ a3 > · · · (12)

and with limn→+∞ an = −∞ ;

(d) Σ = I1 ∪
∪∞

n=2[an, bn] ∪ (−∞, b∞], where I1 = [a1, b1] or I1 = [a1,+∞), for

some numbers an and bn as in (12) and with b∞ := limn→+∞ an > −∞.

2. Let (ck)k be a finite or infinite sequence of numbers such that ck ∈ (bk+1, ak) for

each k. For each n ∈ Z and v ∈ Sck(n) ∩ Uck+1
(n) \ {0}, we have[

lim inf
m→+∞

1

m
log∥A(m,n)v∥, lim sup

m→+∞

1

m
log∥A(m,n)v∥

]
⊂ [ak+1, bk+1].

Moreover, there exists a sequence (xm)m≤n ⊂ X such that xn = v, xm =

Am−1xm−1 for m ≤ n and
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lim inf
m→−∞

1

m
log∥xm∥, lim sup

m→−∞

1

m
log∥xm∥

]
⊂ [ak+1, bk+1].

Proof. We first show that Σ has one of the forms in alternatives (a)–(d). Assume

first that Σ is not given by alternatives (a)–(b) and take c1 /∈ Σ. By statement 3

of Proposition 2, the set Σ ∩ (c1,+∞) consists of finitely many disjoint closed intervals

I1, . . . , Ik. We note that Σ∩(−∞, c1) ̸= ∅, since otherwise we would have Σ = I1∪· · ·∪Ik,
which contradicts to our assumption. Now we observe that there exists c2 < c1 such that

c2 /∈ Σ and (c2, c1) ∩ Σ ̸= ∅. Indeed, otherwise we would have (−∞, c1) ∩ Σ = (−∞, a]

for some a < c1 and thus,

Σ = (−∞, a] ∪ I1 · · · ∪ Ik,

which again contradicts to our assumption. Proceeding inductively, we obtain a decreas-

ing sequence (cn)n∈N such that cn /∈ Σ and (cn+1, cn) ∩ Σ ̸= ∅ for each n ∈ N. Now

there are two possibilities: either limn→+∞ cn = −∞ or limn→+∞ cn = b∞ for some

b∞ ∈ R. In the first case, it follows from statement 2 of Proposition 2 that Σ is given by

alternative (c). In the second case, it follows from statement 3 of Proposition 2 that

(a∞,+∞) ∩ Σ = I1 ∪
∞∪

n=2

[an, bn],

where I1 = [a1, b1] or I1 = [a1,+∞), for some sequences (an)n∈N and (bn)n∈N as in (12)

with b∞ = limn→+∞ an. Again by statement 3 of Proposition 2, we have (−∞, b∞] ⊂ Σ

and so Σ is given by alternative (d). This concludes the proof of statement 1.

For statement 2, we first note that it follows easily from statement 2 of Proposition 2

that the subspaces

Ek(n) = Sck(n) ∩ Uck+1
(n)

are independent of the choice of numbers ck. Since ck /∈ Σ, the sequence (e−ckAn)n∈Z
admits an exponential dichotomy and so there exist projections Pn for n ∈ Z satisfy-

ing (2)–(3) and constants λ,D > 0 such that

∥A(m,n)Pn∥ ≤ De(ck−λ)(m−n) for m ≥ n (13)

and

∥A(m,n)Qn∥ ≤ De−(λ+ck)(n−m) for m ≤ n,

where Qn = Id − Pn. By Proposition 1, we have ImPn = Sck(n) for n ∈ Z. Hence,

v ∈ Ei(n) belongs to ImPn and it follows from (13) that

lim sup
m→+∞

1

m
log∥A(m,n)v∥ ≤ ck − λ < ck.

Letting ck ↘ bk+1, we obtain
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lim sup
m→+∞

1

m
log∥A(m,n)v∥ ≤ bk+1.

Similarly, since ck+1 /∈ Σ, the sequence (e−ck+1An)n∈Z admits an exponential dichotomy

and so there exist projections P ′
n for n ∈ Z satisfying (2)–(3) and constants µ,D > 0

such that

∥A(m,n)P ′
n∥ ≤ De(ck+1−µ)(m−n) for m ≥ n

and

∥A(m,n)Q′
n∥ ≤ De−(µ+ck+1)(n−m) for m ≤ n, (14)

where Q′
n = Id − P ′

n. By Proposition 1, we have ImQ′
n = Uck+1

(n) for n ∈ Z. Hence,

v ∈ Ei(n) belongs to ImQ′
n and it follows from (14) that

∥v∥ ≤ De−(µ+ck+1)(m−n)∥A(m,n)v∥ for m ≥ n.

Thus,

lim inf
m→+∞

1

m
log∥A(m,n)v∥ ≥ µ+ ck+1 > ck+1

and letting ck+1 ↗ ak+1,

lim inf
m→+∞

1

m
log∥A(m,n)v∥ ≥ ak+1.

The last statement in the theorem can be proved similarly. □

4. Examples.

Now we provide explicit examples of sequences (An)n∈Z for which the spectrum Σ

is given by the last two alternatives in Theorem 3 (the other alternatives already occur

in finite-dimensional spaces).

Let S1 = {λ ∈ C : |λ| = 1} and consider the space X = L2(S1) with respect to the

induced Lebesgue measure on S1. We recall that X is a Banach space when equipped

with the norm induced by the scalar product

⟨x, y⟩ =
∫
S1

x(z)y(z) dz,

already identifying functions that are equal Lebesgue-almost everywhere. Moreover, for

each K ∈ L2(S1 × S1), the operator A : X → X defined by

(Af)(z) =

∫
S1

K(z, w)f(w) dw (15)

is compact (see [4]). For example, one can take K(z, w) = k(z/w), with k ∈ X. We

also consider the orthonormal basis {en : n ∈ Z} of X, where en(z) = zn, for z ∈ S1
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and n ∈ Z. Each function k ∈ X can be written in the form k =
∑

n∈Z knen for some

numbers kn ∈ R. Moreover, one can easily verify that Aen = 2πknen for each n ∈ Z,
taking K(z, w) = k(z/w).

Example 1. Take numbers an and bn as in (12) with limn→+∞ an = −∞. We

consider the linear operators A,B : X → X such that

Ae′i = ebie′i and Be′i = eaie′i

for i ≥ 0, writing e′0 = e0, e
′
2n−1 = en and e′2n = e−n for n ∈ N. Both A and B are of

the form in (15) taking, respectively,

k(z) =
1

2π
eb0 +

1

2π

∞∑
n=1

(
eb2n−1zn + eb2n

1

zn

)
and

k(z) =
1

2π
ea0 +

1

2π

∞∑
n=1

(
ea2n−1zn + ea2n

1

zn

)
.

Now we consider the sequence of compact linear operators

An =

{
A, n ≥ 0,

B, n < 0.

For each a ∈ R and i ≥ 0, we have

e−a(m−n)A(m,n)e′i = Ci(m,n)e′i,

where

Ci(m,n) =


e(bi−a)(m−n), m, n ≥ 0,

e(bi−a)m−(ai−a)n, m ≥ 0, n < 0,

e(ai−a)(m−n), m, n < 0.

(16)

Take a > b1. For each x ∈ X, we have

∥A(m,n)x∥2 =

∞∑
i=0

Ci(m,n)2|⟨x, e′i⟩|2.

Since aj ≤ bj ≤ b1, we have Ci(m,n) ≤ e(b1−a)(m−n) and thus,

∥A(m,n)x∥2 ≤ e2(b1−a)(m−n)
∞∑
i=0

|⟨x, e′i⟩|2 = e2(b1−a)(m−n)∥x∥2.

This shows that
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∥A(m,n)x∥ ≤ e−(a−b1)(m−n)∥x∥ for m ≥ n

and so (e−aAn)n∈Z admits an exponential dichotomy with projections Pn = Id.

Now take a ∈ (bj , aj−1) for some j ≥ 2. Let Pn be the projection given by Pne
′
i = 0

for i < j − 1 and Pne
′
i = e′i for i ≥ j − 1. For each x ∈ X and m ≥ n, we have

∥A(m,n)Pnx∥2 =

∞∑
i=j−1

Ci(m,n)2|⟨x, e′i⟩|2 ≤ e2(bj−a)(m−n)∥x∥2

and thus,

∥A(m,n)Pnx∥ ≤ e−(a−bj)(m−n)∥x∥.

Similarly, for each x ∈ X and m ≤ n, we have

∥A(m,n)Qnx∥2 =

j−2∑
i=0

Ci(m,n)2|⟨x, e′i⟩|2 ≤ e2(aj−1−a)(m−n)∥x∥2

and thus,

∥A(m,n)Qnx∥ ≤ e−(aj−1−a)(n−m)∥x∥.

This shows that the sequence (e−aAn)n∈Z admits an exponential dichotomy. Therefore,

Σ ⊂
∪∞

j=1[aj , bj ].

In order to show that Σ =
∪∞

j=1[aj , bj ], assume that [aj , bj ]\Σ is nonempty for some

j ∈ N and take a ∈ [aj , bj ] \ Σ. Then the sequence (e−aAn)n∈Z admits an exponential

dichotomy say with projections Pn. Let Y be the subspace of X generated by e′i and

let Bn be the restriction of An to Y . Clearly, the sequence (e−aBn)n∈Z admits an

exponential dichotomy, say with projections P ′
n. Moreover, either P ′

n = Id or P ′
n = 0,

but both alternatives are impossible in view of (16).

Example 2. Now take numbers an and bn as in (12) with limn→+∞ an = b∞ >

−∞. We consider the sequence of compact linear operators (An)n∈Z such that

Ane
′
0 =

{
eb∞ , n ≥ 0,

e−n2

, n < 0
and Ane

′
i =

{
ebi/(1 + i2−|n|), n ≥ 0,

eai/(1 + i2−|n|), n < 0,
i ≥ 1.

For each a ∈ R and i ≥ 0, we have

e−a(m−n)A(m,n)e′i = Ci(m,n)e′i,

where

C0(m,n) =


e(b∞−a)(m−n), m, n ≥ 0,

e(b∞−a)m+an−n2

, m ≥ 0, n < 0,

e−am+an−n2+m2

, m, n < 0
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and

Ci(m,n) =


e(bi−a)(m−n)/

∏m
k=n(1 + i2−|k|), m, n ≥ 0,

e(bi−a)m−(ai−a)n/
∏m

k=n(1 + i2−|k|), m ≥ 0, n < 0,

e(ai−a)(m−n)/
∏m

k=n(1 + i2−|k|), m, n < 0

for i ≥ 1. Notice that 1 + j2−|n| ≥ 1. One can proceed as in the previous example

to show that for a > b1, the sequence (e−aAn)n∈Z admits an exponential dichotomy

with projections Pn = Id. Now take a ∈ (bj , aj−1). For i ≥ j and m ≥ n, we have

Ci(m,n) ≤ e(bj−a)(m−n). Similarly, for 1 ≤ i < j and m ≤ n, we have

Ci(m,n) ≤ e(aj−a)(m−n) max
1≤i<j

∞∏
p=−∞

(1 + i2−|p|).

Proceeding as in the previous example, one can show that the sequence (e−aAn)n∈Z
admits an exponential dichotomy, with projections Pn given by Pne

′
i = 0 for 1 ≤ i < j

and Pne
′
i = e′i otherwise. By statement 3 of Proposition 2, we also have (−∞, b∞] ⊂ Σ.

Hence,

Σ ⊂
∞∪
j=1

[aj , bj ] ∪ (−∞, b∞].

Moreover, one can proceed as in the previous example to show that in fact

Σ =

∞∪
j=1

[aj , bj ] ∪ (−∞, b∞].

5. Spectrum on the half-line.

5.1. Preliminaries.

Let (An)n∈N be a sequence of compact linear operators acting on a Banach space X.

For each m ≥ n we define A(m,n) as in (1). We say that (An)n∈N admits an exponential

dichotomy if there exist projections Pn for n ∈ N satisfying (2)–(3) and there exist

constants D,λ > 0 such that (4)–(6) hold with m,n ∈ N.
The following result can be obtained repeating the first part of the proof of Propo-

sition 1. It shows that the images of the projections Pm are uniquely determined.

Proposition 4. For each n ∈ N, we have

ImPn =

{
v ∈ X : sup

m≥n
∥A(m,n)v∥ < +∞

}
.

On the other hand, the images of the projections Qn are not uniquely determined,

in contrast to what happens in the line.

Proposition 5. Assume that the sequence (Am)m∈N admits an exponential di-
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chotomy with respect to projections Pm. Moreover, let P ′
m, for m ∈ N, be projections

such that

P ′
mA(m,n) = A(m,n)P ′

n for m,n ∈ N

and

An|KerP ′
n : KerP ′

n → KerP ′
n+1

is invertible. Then (Am)m∈N admits an exponential dichotomy with respect to the pro-

jections P ′
m if and only if ImPn = ImP ′

n for n ∈ N.

Proof. If (Am)m∈N admits an exponential dichotomy with respect to the projec-

tions P ′
m, then it follows from Proposition 4 that

ImP ′
n =

{
v ∈ X : sup

m≥n
∥A(m,n)v∥ < +∞

}
= ImPn.

Now assume that ImPn = ImP ′
n. Then

PnP
′
n = P ′

n and P ′
nPn = Pn.

In particular,

Pn − P ′
n = Pn(Pn − P ′

n) = (Pn − P ′
n)Qn

and it follows from (4) and (5) that

∥A(n, 1)(P1 − P ′
1)v∥ = ∥A(n, 1)P1(P1 − P ′

1)v∥

≤ De−λ(n−1)∥(P1 − P ′
1)v∥

= eλDe−λn∥(P1 − P ′
1)Q1v∥

≤ eλDe−λn∥P1 − P ′
1∥ · ∥Q1v∥

= eλDe−λn∥P1 − P ′
1∥ · ∥A(1,m)A(m, 1)Q1v∥

= eλDe−λn∥P1 − P ′
1∥ · ∥A(1,m)QmA(m, 1)v∥

≤ e2λD2e−λn−λm∥P1 − P ′
1∥ · ∥A(m, 1)v∥

for m,n ∈ N and v ∈ X. Since

A(n,m)(Pm − P ′
m) = A(n,m)(Pm − P ′

m)Qm

= (Pn − P ′
n)A(n,m)Qm

= (Pn − P ′
n)A(n, 1)Q1A(1,m)Qm

= A(n, 1)(P1 − P ′
1)Q1A(1,m)Qm

= A(n, 1)(P1 − P ′
1)A(1,m)Qm,

we obtain
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∥A(n,m)P ′
mv∥ ≤ ∥A(n,m)Pmv∥+ ∥A(n,m)(Pm − P ′

m)v∥
= ∥A(n,m)Pmv∥+ ∥A(n, 1)(P1 − P ′

1)A(1,m)Qmv∥

≤ De−λ(n−m)∥v∥+ e2λD3e−λ(n−m)∥P1 − P ′
1∥ · ∥v∥

= D′e−λ(n−m)∥v∥

for n ≥ m and some constant D′ > 0. Similarly, letting Q′
m = Id− P ′

m we obtain

∥A(n,m)Q′
mv∥ ≤ ∥A(n,m)Qmv∥+ ∥A(n,m)(Pm − P ′

m)v∥
= ∥A(n,m)Qmv∥+ ∥A(n, 1)(P1 − P ′

1)A(1,m)Qmv∥

≤ De−λ(m−n)∥v∥+ e2λD3e−λ(m−n)∥P1 − P ′
1∥ · ∥v∥

= D′e−λ(m−n)∥v∥

for n ≤ m. This shows that the sequence (Am)m∈N admits an exponential dichotomy

with respect to the projections P ′
m. □

The following proposition is a crucial step of this part.

Proposition 6. Assume that the sequence (Am)m∈N admits an exponential di-

chotomy with respect to projections Pm and P ′
m. Then

dim ImQm = dim ImQ′
m < +∞, m ∈ N.

Proof. By Proposition 5, we have

X = ImPn ⊕ ImQn = ImPn ⊕ ImQ′
n

and all complements of ImPn have the same dimension. □

In view this proposition we will denote by da the unstable dimension of the sequence

(e−aAm)m∈N when it admits an exponential dichotomy.

5.2. Spectrum.

Given a sequence (Am)m∈N of compact linear operators, its spectrum is the set Σ of

all numbers a ∈ R such that the sequence (e−aAm)m∈N does not admit an exponential

dichotomy.

For each a ∈ R and n ∈ N, let

Sa(n) =

{
v ∈ X : sup

m≥n

(
e−a(m−n)∥A(m,n)v∥

)
< +∞

}
.

Clearly, Sa(n) is a linear space and if a < b, then Sa(n) ⊂ Sb(n).

The following result can be obtained repeating the proof of Proposition 2 with

dimUai replaced by dai .

Proposition 7. The following statements hold :
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1. The set Σ is closed. Moreover, for each a ∈ R \ Σ we have Sa(n) = Sb(n) for all

n ∈ N and all b in some open neighborhood of a.

2. Take a1, a2 ∈ R \ Σ with a1 < a2. Then [a1, a2] ∩ Σ ̸= ∅ if and only if da1 > da2 .

3. For each c /∈ Σ, the set Σ ∩ [c,+∞) consists of finitely many closed intervals.

The following is our main theorem for the half-line. It describes all possible forms

of the spectrum for a sequence of compact linear operators.

Theorem 8. Let (An)n∈N be a sequence of compact linear operators for which the

spectrum is neither ∅ nor R.

1. Property 1 of Theorem 3 holds.

2. Let (ck)k be a finite or infinite sequence of numbers such that ck ∈ (bk+1, ak) for

each k. For each n ∈ N and v ∈ Sck(n), we have

lim sup
m→+∞

1

m
log∥A(m,n)v∥ ≤ bk+1.

Proof. The proof of statement 1 is the same as in the proof of Theorem 3. For

the second statement, since ck /∈ Σ, the sequence (e−ckAn)n∈N admits an exponential

dichotomy and so there exist projections Pn for n ∈ N satisfying (2)–(3) and constants

λ,D > 0 such that

∥A(m,n)Pn∥ ≤ De(ck−λ)(m−n) for m ≥ n (17)

and

∥A(m,n)Qn∥ ≤ De−(λ+ck)(n−m) for m ≤ n,

where Qn = Id− Pn. By Proposition 7, the space Sck(n) is independent of the choice of

ck and ImPn = Sck(n) for n ∈ N. Hence, for v ∈ Sck(n), it follows from (17) that

lim sup
m→+∞

1

m
log∥A(m,n)v∥ ≤ ck − λ < ck

and letting ck ↘ bk+1,

lim sup
m→+∞

1

m
log∥A(m,n)v∥ ≤ bk+1.

This completes the proof of the theorem. □

6. The case of continuous time.

In this section we consider briefly the case of continuous time and we describe cor-

responding results to those in the former sections.

Let X be a Banach space. We recall that a family T (t, s) for t, s ∈ R with t ≥ s of

bounded linear operators acting on X is called an evolution family if:
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1. T (t, t) = Id for t ∈ R;

2. T (t, s) = T (t, r)T (r, s) for t ≥ r ≥ s.

We say that T (t, s) admits an exponential dichotomy if:

1. there exist projections P (t) : X → X for t ∈ R satisfying

P (t)T (t, s) = T (t, s)P (s)

for t ≥ s such that each map

T (t, s)|KerP (s) : KerP (s) → KerP (t)

is invertible;

2. there exist constants D,λ > 0 such that

∥T (t, s)P (s)∥ ≤ De−λ(t−s) for t ≥ s

and

∥T (t, s)Q(s)∥ ≤ De−λ(s−t) for t ≤ s,

where Q(s) = Id− P (s) and

T (t, s) = (T (s, t)|KerP (t))
−1

: KerP (s) → KerP (t)

for t < s.

The spectrum of an evolution family T (t, s) is the set Σ of all numbers a ∈ R such that

the evolution family

Ta(t, s) = e−a(t−s)T (t, s)

does not admit an exponential dichotomy.

One can easily adapt the arguments in the proof of Theorem 3 to establish the

following result.

Theorem 9. Let T (t, s) be an evolution family for which the spectrum is neither

∅ nor R. If there exists ρ ≥ 0 such that T (t, s) is compact whenever t > s + ρ, then

property 1 of Theorem 3 holds.

The compactness assumption holds in particular for the evolution families associated

to some linear delay equations with ρ > 0 (see [5]) and some linear parabolic partial

differential equations with ρ = 0 (see [6]). It is also straightforward to establish a version

of Theorem 9 for evolution families on the half-line.

Now we consider the particular class of evolution families with bounded growth and

we show how one can use directly the results for discrete time to obtain corresponding

results for this class. More precisely, we obtain the particular case of Theorem 9 for this
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class with a very simple proof applying Theorem 3, instead of having the need to adapt

all arguments in its proof.

Theorem 10. Let T (t, s) be an evolution family with the property that there exist

K, c > 0 such that

∥T (t, s)∥ ≤ Kec(t−s) for t ≥ s. (18)

If there exists ρ ≥ 0 such that T (t, s) is compact whenever t > s + ρ, then one of the

following alternatives hold :

1. Σ = ∅;

2. Σ =
∪k

n=1[an, bn], for some numbers an and bnas in (11);

3. Σ =
∪k−1

n=1[an, bn] ∪ (−∞, bk], for some numbers an and bn as in (11);

4. Σ =
∪∞

n=1[an, bn], for some numbers an and bn as in (12) and with limn→+∞ an =

−∞ ;

5. Σ =
∪∞

n=1[an, bn] ∪ (−∞, b∞], for some numbers an and bn as in (12) and with

b∞ := limn→+∞ an > −∞.

Proof. We first recall that for an evolution family satisfying (18) the following

properties are equivalent (see [7, Theorem 1.3]):

1. T (t, s) admits an exponential dichotomy;

2. taking α > ρ, the sequence (An)n∈Z with

An = T (αn, α(n− 1)), for n ∈ Z,

admits an exponential dichotomy.

Hence, Σ coincides with the spectrum of the sequence (An)n∈Z. Moreover, in view of the

compactness assumption for T (t, s) and since α > ρ, each operator An is compact. The

desired conclusion follows now readily from Theorem 3 since it follows from (18) that

Σ ⊂ (−∞, c]. □
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Universidade de Lisboa

1049-001 Lisboa, Portugal

E-mail: barreira@math.tecnico.ulisboa.pt

Davor Dragičević
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