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Abstract. In preceding papers we gave estimates on string-lengths,
string-cosines and zenith angles of trajectory-harps under the condition that

sectional curvatures of the underlying manifold are bounded from above. In
this paper we study the cases that equalities hold in these estimates. Refining
the previous proofs we give conditions that trajectory-harps are congruent to
trajectory-harps on a complex space form.

1. Introduction.

A constant multiple Bκ = κBJ (κ ∈ R) of the Kähler form BJ on a complete Kähler

manifold (M,J) with complex structure J is said to be a Kähler magnetic field. We call

a smooth curve γ parameterized by its arclength a trajectory for Bκ if it satisfies the

differential equation ∇γ̇ γ̇ = κJγ̇. Since trajectories are geodesics when κ = 0, and as

trajectories induce a dynamical system on the unit tangent bundle of M , we may say

that trajectories are generalizations of geodesics (see [1] and also [8], [11]). Moreover,

as J is parallel with respect to Riemannian connection ∇, trajectories are circles. Here,

a smooth curve σ parameterized by its arclength is said to be a circle if it satisfies

∇σ̇σ̇ = kY, ∇σ̇Y = −kσ̇ with a field Y of unit vectors and a nonnegative constant k. We

may hence say that trajectories are simplest curves next to geodesics from the viewpoint

of Frenet-Serre formula, and are curves which are closely related with complex structure

on the underlying manifold. The author therefore intend to study Kähler manifolds by

investigating trajectories. In [2], [3], by studying variations of trajectories, he defined

magnetic Jacobi fields and gave a result corresponding to Rauch’s comparison theorem.

As applications of this result, Bai and the author [6], [7] showed comparison theorems

on volumes of trajectory-balls and trajectory-spheres.

To show some global properties of the underlying Kähler manifold, he studied

trajectory-harps in [4], [5], which are variations of geodesics associated with trajectories.

He compared trajectory-harps with those on a complex space form under the condition

that sectional curvatures are bounded from above, and showed a result corresponding to

Hadamard–Cartan theorem on a Kähler manifold of negative curvature. Unfortunately,

being different from Toponogov’s comparison theorem on triangles, his proof of a com-

parison theorem on trajectory-harps was based on reductio ad absurdum, hence he could

not study the case that equality holds. In this paper, by mixing the arguments in [4], [5]
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and refining them we show that if an equality on string-lengths holds or if that on zenith

angles holds in our comparison theorems on trajectory-harps then this trajectory-harp is

congruent to that on a complex space form.

2. Trajectory-harps.

On a complete Kähler manifold M , every trajectory for a Kähler magnetic field Bκ

is defined on a whole real line R. When we restrict a trajectory to a finite closed interval

we call it a trajectory-segment, and when we restrict it to a infinite interval like [0,∞)

and (−∞, 0] we call it a trajectory half-line. Still, for the sake of simplicity, we shall call

trajectory-segment and trajectory half-line also a trajectory.

Let γ : [0, T ] →M be a trajectory for a non-trivial Kähler magnetic field Bκ (κ ̸= 0).

That is, it is a trajectory-segment when T <∞ and is a trajectory half-line when T = ∞.

We suppose γ(t) ̸= γ(0) for 0 < t < T . A smooth variation αγ : [0, T ] × R → M of

geodesics is said to be a trajectory-harp associated with γ if it satisfies the following

conditions:

i) αγ(t, 0) = γ(0) for all t ∈ [0, T ],

ii) the curve s 7→ αγ(0, s) is the geodesic of initial vector γ̇(0),

iii) the curve s 7→ αγ(t, s) is a geodesic of unit speed which joins γ(0) and γ(t) when

γ(t) ̸= γ(0).

We call the trajectory and each geodesic segment joining two points of the trajectory

the arch and a string of this trajectory-harp, respectively. When the image γ
(
[0, T ]

)
is

contained in the geodesic ball Bιp(p) centered at p = γ(0) and of radius ιp of injectivity at

p, by joining the unique minimal geodesic of γ(0) and γ(t) for each t, we obtain a unique

trajectory-harp associated with γ. Therefore, when the image γ
(
[0, T ]

)
is contained in

Bcp(p) whose radius is the minimal cp of first conjugate values at p, we have a trajectory-

harp associated with γ. Given a trajectory-harp αγ associated with a trajectory γ for

Bκ we denote by ℓγ(t) the length of geodesic joining γ(0) and γ(t), and call it the string-

length at t. We set δγ(t) =
⟨
γ̇(t), (∂αγ/∂s)(t, ℓγ(t))

⟩
and call it the string-cosine at t. It

is known that the differential of the string-length is the string-cosine (ℓ′γ(t) = δγ(t)).

On a complex space form CMn(c) of constant holomorphic sectional curvature c,

which is a complex projective space CPn(c), a complex Euclidean space Cn and a complex

hyperbolic space CHn(c) according as c > 0, c = 0 and c < 0, these functions are

expressed explicitly. For a constant C, we define a function s(t;C) by

s(t;C) =


(
1/
√
C
)
sin

√
C t, when C > 0,

t, when C = 0,(
1/
√
|C|

)
sinh

√
|C| t, when C < 0.

Since a complex space form is a symmetric space of rank one, two trajectories γ1, γ2
for Bκ1 , Bκ2 are congruent to each other if and only if |κ1| = |κ2|. Here we say two
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smooth curves γ1, γ2 are congruent to each other if there are an isometry φ and a con-

stant tc satisfying γ2(t) = φ ◦ γ1(t + tc) for all t. Therefore, string-lengths and string-

cosines of trajectory-harps only depend on strengths of Kähler magnetic fields. The

string-length ℓκ(·; c) of a trajectory-harp for Bκ on CMn(c) is given by the relationship

s
(
ℓκ(t; c)/2; c

)
= s

(
t/2;κ2 + c

)
, and its string-cosine δκ(t; c) is given as

δκ(t; c) =



√
κ2 + c cos(

√
κ2 + c t/2)√

κ2 + c cos2(
√
κ2 + c t/2)

, when κ2 + c > 0,

2/
√
|c|t2 + 4, when κ2 + c = 0,√
|c| − κ2 cosh(

√
|c| − κ2 t/2)√

|c| cosh2(
√
|c| − κ2 t/2)− κ2

, when κ2 + c < 0.

Thus, the string-length ℓκ(·; c) is monotone increasing in the interval
[
0, π/

√
κ2 + c

]
,

where we regard π/
√
κ2 + c as infinity when κ2 + c ≤ 0. We frequently use such a

convention throughout of this paper. The function δκ(·; c) is monotone decreasing in the

interval
[
0, 2π/

√
κ2 + c

]
.

For the sake of our study we briefly recall comparison theorems on trajectory-

harps given in [4], [5]. In [4] we estimate string-lengths under a condition that sec-

tional curvatures are bounded from above. For a trajectory-harp αγ associated with

a trajectory γ : [0, T ] → M for Bκ and for a constant c, we set Rγ = sup{t |
δγ(t) > 0} (≤ T ), and set Tγ(c) so that Tγ(c) = min{t∗} if there is t∗ satisfying

0 < t∗ ≤ T and ℓγ(t∗) = ℓκ
(
π/

√
κ2 + c; c

)
and Tγ(c) = T in other case. We

denote by τκ(·; c) :
[
0, ℓκ

(
π/

√
κ2 + c; c

)]
→ R the inverse function of the function

ℓκ(·; c) :
[
0, π/

√
κ2 + c

]
→ R.

Proposition 1 ([4]). Let αγ be a trajectory-harp associated with a trajectory

γ : [0, T ] →M for a non-trivial Kähler magnetic field Bκ on a Kähler manifold M whose

sectional curvature satisfy RiemM ≤ c with a constant c. We have the following estimates

on string-lengths and string-cosines:

(1) ℓγ(t) ≥ ℓκ(t; c) for 0 ≤ t ≤ min
{
Rγ , 2π/

√
κ2 + c

}
,

(2) δγ(t) ≥ δκ
(
τκ(ℓγ(t); c); c

)
for 0 ≤ t ≤ Tγ(c).

In particular, we have min
{
Rγ , π/

√
κ2 + c

}
≥ Tγ(c).

The above is an estimate on “lengths” of trajectory-harps. We estimate “fatness” of

trajectory-harps in [5]. For a trajectory-harp αγ associated with a trajectory γ : [0, T ] →
M and a constants a, b with 0 ≤ a < b ≤ T , we call the restriction of αγ to [a, b] × R
a subharp. The length ϑγ(a, b) of the curve [a, b] ∋ t 7→ (∂αγ/∂s)(t, 0) ∈ Uγ(0)M in the

unit tangent space is called the zenith angle of this subharp. Trivially the angle between

two strings are estimated from above as ∠
(
(∂αγ/∂s)(a, 0), (∂αγ/∂s)(b, 0)

)
≤ ϑγ(a, b).

Proposition 2 ([5]). Let αγ be a trajectory-harp associated with a trajectory

γ : [0, T ] → M for a non-trivial Kähler magnetic field Bκ on a Kähler manifold M
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whose sectional curvature satisfy RiemM ≤ c with a constant c. For arbitrary a, b with

0 ≤ a < b ≤ Tγ(c), we set â = τκ
(
ℓγ(a); c

)
, b̂ = τκ

(
ℓγ(b); c

)
.

(1) the zenith angle of a subharp is estimated as

ϑγ(a, b) ≤ ϑκ(â, b̂; c) := cos−1 δκ(b̂; c)− cos−1 δκ(â; c);

(2) the length of the arch of this subharp is estimated as b− a ≤ b̂− â.

For a trajectory-harp αγ associated with a trajectory γ : [0, T ] → M and t0 with

0 < t0 ≤ T , we set

Hγ(t0) =
{
αγ(t, s)

∣∣ 0 ≤ t ≤ t0, 0 ≤ s ≤ ℓγ(t)
}
,

and call it a harp-body of this trajectory-harp.

Remark 1. Since Propositions 1 and 2 are based on Rauch’s comparison theorem

applied to Jacobi fields tangent to harp-bodies, we can weaken the condition on sectional

curvatures of the underlying manifold to the condition that sectional curvatures of planes

tangent to the harp-bodyHγ(T ) are not greater than c. Needless to say that if RiemM ≤ c

then every trajectory-harp satisfies this curvature condition on its harp-body.

3. String-lengths.

In this section we study the case that the equality on string-lengths holds in the

comparison theorem on trajectory-harps (Propositions 1). In Toponogov’s comparison

theorem on triangles we suppose that two triangles have equi-lengths of three edges.

Since we only suppose that two trajectory-harps have the same lengths of arches and

the same lengths of strings, it seems that our condition is weaker than the condition

in Toponogov’s comparison theorem. But we note that string-cosines are derivatives of

string-lengths and they give us information on angles between arches and strings. Our

main result in this section is the following.

Theorem 1. Let αγ be a trajectory-harp associated with a trajectory γ : [0, T ] →M

for Bκ on a Kähler manifold M . Suppose sectional curvatures of planes tangent to

its harp-body Hγ(T ) are not greater than c. If ℓγ(t0) = ℓκ(t0; c) holds for some t0
satisfying 0 ≤ t0 ≤ Tγ(c), then the harp-body Hγ(t0) is totally geodesic, holomorphic and

of constant sectional curvature c. In particular ℓγ(t) = ℓκ(t; c) and δγ(t) = δκ(t; c) hold

for 0 ≤ t ≤ t0.

In order to show this, we study the case that the equality on string-cosine holds in

Proposition 1.

Proposition 3. Let αγ be a trajectory-harp for Bκ on a Kähler manifold M .

Suppose sectional curvatures of planes tangent to its harp-body Hγ(T ) are not greater

than c. If δγ(t0) = δκ
(
τκ(ℓγ(t0; c); c

)
holds at some t0 with 0 < t0 ≤ Tγ(c), then we have

the following :
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1) The derivatives of string-cosines satisfy δ′γ(t0) = δ′κ
(
τκ(ℓγ(t0); c); c

)
;

2) The vector (∂αγ/∂t)(t0, s) is parallel to J(∂αγ/∂s)(t0, s) for 0 ≤ s ≤ ℓγ(t0);

3) The sectional curvature Riem
(
(∂αγ/∂t)(t0, s), (∂αγ/∂s)(t0, s)

)
of the tangent plane

spanned by (∂αγ/∂t)(t0, s) and (∂αγ/∂s)(t0, s) is equal to c for 0 < s ≤ ℓγ(t0).

Proof. We put Zt(s) = (∂αγ/∂t)(t, s), which is a Jacobi field along a string

s 7→ αγ(t, s). By direct computation we have

δ′γ(t) = κ
⟨
Jγ̇(t),

∂αγ

∂s

(
t, ℓγ(t)

)⟩
+
⟨
γ̇(t),

(
∇∂αγ/∂sZt

)(
ℓγ(t)

)⟩
. (3.1)

The first term of the right hand side of (3.1) is estimated as

κ
⟨
Jγ̇(t),

∂αγ

∂s

(
t, ℓγ(t)

)⟩
≥ −|κ|

√
1− δγ(t)2. (3.2)

Since γ(t) = αγ

(
t, ℓγ(t)

)
, we have Zt

(
ℓγ(t)

)
= γ̇(t) − δγ(t)(∂αγ/∂s)

(
t, ℓγ(t)

)
. In partic-

ular, we have ∥Zt

(
ℓγ(t)

)
∥2 = 1 − δγ(t)

2. As Zt(s) is orthogonal to (∂αγ/∂s)(t, s), the

second term of the right hand side of (3.1) is expressed as⟨
γ̇(t),

(
∇∂αγ/∂sZt

)(
ℓγ(t)

)⟩
=

{
1− δγ(t)

2
}
×

⟨
Zt

(
ℓγ(t)

)
,
(
∇∂αγ/∂sZt

)(
ℓγ(t)

)⟩
∥Zt

(
ℓγ(t)

)
∥2

.

We take a trajectory-harp α̂γ̂ associated with a trajectory γ̂ for Bκ on CMn(c). We

put Ẑt(s) = (∂α̂γ̂/∂t)(t, s). Since t0 ≤ Tγ(c), we have ℓγ(t0) ≤ ℓκ(π/
√
κ2 + c; c) ≤

π/
√
κ2 + c. As δγ(t0) = δκ

(
τκ(ℓγ(t0); c); c

)
, Rauch’s comparison theorem (see [9], [10],

for example) shows that⟨
γ̇(t0),

(
∇∂αγ/∂sZt0

)(
ℓγ(t0)

)⟩
≥

{
1− δκ

(
τκ(ℓγ(t0; c); c

)2}
×

⟨
Ẑτκ(ℓγ(t0);c)

(
ℓκ(t0; c)

)
,
(
∇∂α̂γ̂/∂sẐτκ(ℓγ(t0);c)

)(
ℓκ(t0; c)

)⟩
∥Ẑτκ(ℓγ(t0);c)

(
ℓκ(t0; c)

)
∥2

=
⟨
˙̂γ
(
τκ(ℓγ(t0); c); c

)
,
(
∇∂α̂γ̂/∂sẐτκ(ℓγ(t0);c)

)(
ℓκ(t0; c)

)⟩
.

(3.3)

By (3.2) and (3.3) we have

δ′γ(t0) ≥ δ′κ
(
τκ(ℓγ(t0); c); c

)
=

d

dt
δκ
(
τκ(ℓγ(t); c); c)

∣∣∣
t=t0

because ℓ′γ(t0) = δγ(t0) = δκ
(
τκ(ℓγ(t0); c); c

)
= ℓ′κ

(
τκ(ℓγ(t0); c); c

)
. If we suppose

δ′γ(t0) > (d/dt)δκ
(
τκ(ℓγ(t); c); c)

∣∣
t=t0

, as we have δγ(t) ≥ δκ
(
τκ(ℓγ(t); c); c) for 0 ≤ t ≤

Tγ(c), we find that δγ(t0) = δκ
(
τκ(ℓγ(t0); c); c) leads us to a contradiction. Hence we see

δ′γ(t0) = δ′κ
(
τκ(ℓγ(t0); c); c

)
.
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We now go back to inequalities (3.2) and (3.3). Since we have δ′γ(t0) =

δ′κ
(
τκ(ℓγ(t0); c); c

)
, we see equalities hold in these equations. By the equality in

(3.2) we find that γ̇(t0) is contained in the plane in Tγ(t0)M which is spanned by

(∂αγ/∂s)
(
t0, ℓγ(t0)

)
and J(∂αγ/∂s)

(
t0, ℓγ(t0)

)
, hence find that Zt0

(
ℓγ(t0)

)
is parallel

to J(∂αγ/∂s)
(
t0, ℓγ(t0)

)
. The equality in (3.3) shows that the sectional curvature sat-

isfies Riem
(
(∂αγ/∂t)(t0, s), (∂αγ/∂s)(t0, s)

)
= c and that the vector field Zt0/∥Zt0∥ is

parallel along the string s 7→ αγ(t0, s) for 0 ≤ s ≤ ℓγ(t0). Thus we get the conclusion. □

Proof of Theorem 1. By the assumption we have t0 = τκ(ℓγ(t0); c). As we

have τκ(ℓγ(0); c) = 0, we find by using Proposition 1 that

t0 =

∫ t0

0

d

dt
τκ(ℓγ(t); c) dt =

∫ t0

0

δγ(t)

δκ
(
τκ(ℓγ(t0); c); c

) dt ≥ ∫ t0

0

dt = t0.

Hence we obtain δγ(t) = δκ
(
τκ(ℓγ(t); c); c

)
for 0 ≤ t ≤ t0. Thus, we find by

Proposition 3 that Riem
(
(∂αγ/∂t)(t, s), (∂αγ/∂s)(t, s)

)
= c and (∂αγ/∂t)(t, s) =

ψ(t, s)J(∂αγ/∂s)(t, s) with a smooth function ψ(t, s) for 0 ≤ t ≤ t0 and 0 ≤ s ≤ ℓγ(t).

As s 7→ αγ(t, s) is a geodesic for each t, this expression of ∂αγ/∂t shows that Hγ(t0) is

totally geodesic. □

Remark 2. Proposition 3 and the proof of Theorem 1 show the following on a

trajectory-harp αγ associated with a trajectory γ : [0, T ] →M for Bκ. Suppose sectional

curvatures of planes tangent to its harp-body Hγ(T ) are not greater than c. If its string-

cosine satisfies δγ(t) = δκ
(
τκ(ℓγ(t; c); c

)
for 0 ≤ t ≤ t0, then the harp-body Hγ(t0) is

totally geodesic, holomorphic and of constant sectional curvature c.

We note that Proposition 1 does not tell on the relationship of string-cosines at the

same arch-length t of trajectory-harps. The author hence does not have idea whether

the condition δγ(t0) = δκ(t0; c) tells on feature of the trajectory-harp or not.

To study more on congruency of trajectory-harps we here introduce some indicator

functions. Let αγ be a trajectory-harp associated with a trajectory γ : [0, T ] →M for a

Kähler magnetic field Bκ on M . For a constant c, we set Sγ(c) so that Sγ(c) = min{s∗}
if there is s∗ satisfying 0 < s∗ ≤ T and ℓκ(s∗; c) = Rγ , and Sγ(c) = T in other case. We

denote by τγ :
[
0, ℓγ(Rγ)

]
→ R the inverse function of ℓγ : [0, Rγ ] → R. We define three

functions Lγ(·; c) : [0, Tγ(c)] → R, Uγ(·; c) : [0, Sγ(c)],→ R and Dγ(·; c) : [0, Tγ(c)] →
R by

Lγ(t; c) =

∫ t

0

δκ
(
τκ(ℓγ(u); c); c)

)
du,

Uγ(u; c) =

∫ u

0

δγ
(
τγ(ℓκ(t; c))

)
dt,

Dγ(t; c) = 1 +

∫ t

0

δ′κ
(
τκ(ℓγ(u); c); c)

)
du.

We call Lγ(·; c) and Uγ(·; c) the c-inner tuning length and c-outer tuning length of this

trajectory-harp, respectively. In view of the estimate on string-cosines in Proposition 1,
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one can easily see that these functions are closely related to string-lengths. We call

Dγ(·; c) the c-tuning cosine of this trajectory-harp,

Proposition 4. Let αγ be a trajectory-harp for Bκ associated with a trajectory

γ : [0, T ] → M . If sectional curvatures of planes tangent to Hγ(T ) are not greater than

c, then we have the following.

(1) ℓκ(t; c) ≥ Lγ(t; c) for 0 ≤ t ≤ Tγ(c).

(2) If the equality ℓκ(t0; c) = Lγ(t0; c) holds at some t0 with 0 < t0 ≤ Tγ(c), then

the harp-body Hγ(t0) is totally geodesic, holomorphic and of constant sectional

curvature c. In particular, ℓγ(t) = ℓκ(t; c) and δγ(t) = δκ(t; c) hold for 0 ≤ t ≤ t0.

(3) Uγ(u; c) ≥ ℓκ(u; c) for 0 ≤ u ≤ min{T, π/
√
κ2 + c }.

(4) If the equality Uγ(u0; c) = ℓκ(u0; c) holds at some u0 with 0 < u0 ≤
min{T, π/

√
κ2 + c }, then the harp-body Hγ

(
τγ(ℓκ(u0; c))

)
= Hγ(u0) is totally ge-

odesic, holomorphic and of constant sectional curvature c. In particular, ℓγ(u) =

ℓκ(u; c) and δγ(t) = δκ(t; c) hold for 0 ≤ u ≤ u0.

Proof. By Proposition 1 and Remark 1, we have ℓγ(u) ≥ ℓκ(u; c) for 0 ≤ u ≤
Tγ(c). As τκ(·; c) is monotone increasing and δκ(·; c) is monotone decreasing, we find

δκ
(
τκ(ℓγ(u); c); c)

)
≤ δκ

(
τκ(ℓκ(u; c); c); c)

)
= δκ(u; c).

Therefore we obtain Lγ(t; c) ≤
∫ t

0
δκ(u; c) du = ℓκ(t; c) for 0 ≤ t ≤ Tγ(c). The condition

ℓκ(t0; c) = Lγ(t0; c) shows that δκ(u; c) = δκ
(
τκ(ℓγ(u); c); c)

)
for 0 ≤ u ≤ t0. If we

suppose ℓγ(t1) > ℓκ(t1; c) at some t1 with 0 < t1 < t0, we have

δκ(t1; c) = δκ
(
τκ(ℓγ(t1); c); c)

)
< δκ

(
τκ(ℓκ(t1; c); c); c)

)
= δκ(t1; c),

which is a contradiction. Therefore we obtain ℓγ(t) = ℓκ(t; c) for 0 ≤ t ≤ t0. We obtain

the second assertion from Theorem 1.

Next we study c-outer tuning lengths. As we have δγ(u) ≥ δκ
(
τκ(ℓγ(u); c); c

)
for

0 ≤ u ≤ Tγ(c), by putting t = τκ(ℓγ(u); c) we have u = τγ
(
ℓκ(t; c)

)
, hence have

δγ
(
τγ(ℓκ(t; c))

)
≥ δκ(t; c) for 0 ≤ t ≤ min{T, π/

√
κ2 + c }. Therefore, we obtain

Uγ(u; c) ≥
∫ u

0
δκ(t; c) dt = ℓκ(t; c) for 0 ≤ u ≤ min{T, π/

√
κ2 + c }. The condition

Uγ(u0; c) = ℓκ(t0; c) shows that δγ
(
τγ(ℓκ(t; c))

)
= δκ(t; c) for 0 ≤ t ≤ u0. That is,

we have δγ(u) = δκ
(
τκ(ℓγ(u); c); c)

)
for 0 ≤ u ≤ τγ

(
ℓκ(u0; c)

)
. We obtain the fourth

assertion by Remark 2. □

Remark 3. It is known that δ′γ(0) = 0 and δ′′γ (0) = −κ2/4 for a trajectory-harp

αγ for Bκ (see [4]). Therefore δγ is monotone decreasing on some interval [0, ϵ]. On this

interval, as ℓγ(t) ≥ ℓκ(t; c), we find Uγ(t; c) ≥ ℓγ(t).

Proposition 5. Let αγ be a trajectory-harp for Bκ associated with a trajectory

γ : [0, T ] → M . If sectional curvatures of planes tangent to Hγ(T ) are not greater than

c, then we have the following.
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(1) Dγ(t; c) ≥ δκ
(
τκ(ℓγ(t); c); c

)
for 0 ≤ t ≤ Tγ(c).

(2) If the equality Dγ(t0; c) = δκ
(
τκ(ℓγ(t0); c); c

)
holds at some t0 with 0 < t0 ≤ Tγ(c),

then the harp-body Hγ(t0) is totally geodesic, holomorphic and of constant sectional

curvature c. In particular, ℓγ(t) = ℓκ(t; c) and δγ(t) = δκ(t; c) hold for 0 ≤ t ≤ t0.

Proof. Since δκ(·; c) is monotone decreasing, we have

Dγ(t; c) ≥ 1 +

∫ t

0

δ′κ
(
τκ(ℓγ(u); c); c)

)
× δγ(u)

δκ
(
τκ(ℓγ(u); c); c

) du
= 1 +

∫ τκ(ℓγ(t);c)

0

δ′κ(s; c) ds = δκ
(
τκ(ℓγ(t); c); c

)
.

Thus, if Dγ(t0; c) = δκ
(
τκ(ℓγ(t0); c); c

)
holds, then we have δγ(t) = δκ

(
τκ(ℓγ(t); c); c

)
for

0 ≤ t ≤ t0. We hence get the conclusion by Remark 2. □

4. Zenith angles.

In this section we study congruency of trajectory-harps through zenith angles. We

consider the cases that equalities hold in Proposition 2.

Theorem 2. Let αγ be a trajectory-harp associated with a trajectory γ : [0, T ] →M

for Bκ on a Kähler manifoldM . Suppose sectional curvatures of planes tangent to Hγ(T )

are not greater than c. We take a subharp αγ |[a,b]×R with 0 ≤ a < b ≤ Tγ(c) and set

â = τκ
(
ℓγ(a); c

)
, b̂ = τκ

(
ℓγ(b); c

)
.

(1) If ϑγ(a, b) = cos−1 δκ(b̂; c) − cos−1 δκ(â; c) holds, then the harp-body Hγ(a, b) ={
αγ(t, s)

∣∣ a ≤ t ≤ b, 0 ≤ s ≤ ℓγ(t)
}
of this subharp is totally geodesic, holomorphic

and of constant sectional curvature c. Moreover, ℓγ(t) = ℓκ(t; c) and δγ(t) = δκ(t; c)

hold for a ≤ t ≤ b.

(2) If the length of the arch satisfies b−a = b̂− â, we have the same conclusion as that

in (1).

Proof. We use the same notations as in the proof of Proposition 3. By Rauch’s

comparison theorem we have ∥Zt(s)∥ ≥
∥∥(∇∂αγ/∂sZt

)
(0)

∥∥ s(s; c). Thus by Proposition 1

we have

ϑγ(a, b) ≤
∫ b

a

∥Zt

(
ℓγ(t)

)
∥

s
(
ℓγ(t); c

) dt =

∫ b

a

√
1− δγ(t)2

s
(
ℓγ(t); c

) dt

≤
∫ b

a

√
1− δκ

(
τκ(ℓγ(t); c); c

)2
s
(
ℓγ(t); c

) dt =

∫ b

a

∥Ẑτκ(ℓγ(t);c)

(
ℓγ(t)

)
∥

s
(
ℓγ(t); c

) dt

≤
∫ b

a

∥Ẑτκ(ℓγ(t);c)

(
ℓγ(t)

)
∥

s
(
ℓγ(t); c

) δγ(t)

δκ
(
τκ(ℓγ(t); c); c

) dt
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=

∫ b̂

â

∥Ẑu

(
ℓκ(u; c)

)
∥

s
(
ℓκ(u; c); c

) du = ϑγ̂(â, b̂) = ϑκ(â, b̂; c).

Thus, if ϑγ(a, b) = ϑκ(â, b̂; c) holds, then we have δγ(t) = δκ
(
τκ(δγ(t); c); c

)
for a ≤ t ≤ b.

Hence we get the first assertion.

As we have

b− a =

∫ b

a

∥γ̇(t)∥ dt =
∫ b

a

∥∥ ˙̂γ(τκ(ℓγ(t); c); c)∥∥ dt
≤

∫ b

a

∥∥ ˙̂γ(τκ(ℓγ(t); c); c)∥∥ δγ(t)

δκ
(
τκ(ℓγ ; c); c

) dt = ∫ b̂

â

∥ ˙̂γ(u)∥ du = b̂− â,

the condition shows that δγ(t) = δκ
(
τκ(δγ(t); c); c

)
for a ≤ t ≤ b. Hence we get the

second assertion. □

In the second assertion of Theorem 2 we suppose that lengths of two strings and the

length of arch are the same as the corresponding subharp in a complex space form. We

may hence say that this assertion corresponds to the comparison theorem on geodesic

triangles.

In [5], to show “fatness” of trajectory-harps, we studied sector-arcs of harp-sectors.

Given a trajectory-harp αγ : [0, T ] × R → M and constants a, b with 0 < a < b ≤ T ,

we consider the restriction αa,b
γ = αγ

∣∣
[a,b]×[0,ℓγ(a)]

and call it a harp-sector. Considering

its sector-arc [a, b] ∋ t 7→ αγ

(
t, ℓγ(t)

)
, we denote its length by sℓγ(a, b). When sectional

curvatures of planes tangent to the harp-body Hγ(T ) are not greater than c, we have

s
(
ℓγ(a); c) ∠

(∂αγ

∂s
(a, 0),

∂αγ

∂s
(b, 0)

)
≤ sℓγ(a, b) ≤ s

(
ℓγ(a); c) ϑκ(â, b̂; c)

with â = τκ
(
ℓγ(a); c

)
, b̂ = τκ

(
ℓγ(b); c

)
.

Proposition 6. Let αγ be a trajectory-harp associated with a trajectory γ :

[0, T ] →M for Bκ on a Kähler manifold M . Suppose sectional curvatures of planes tan-

gent to Hγ(T ) are not greater than c. We take its harp-sector αa,b
γ with 0 ≤ a < b ≤ Tγ(c).

If sℓγ(a, b) = s
(
ℓγ(a); c)ϑκ(â, b̂; c) holds, then the harp-body Hγ(a, b) is totally geo-

desic, holomorphic and of constant sectional curvature c. Moreover, ℓγ(t) = ℓκ(t; c)

for a ≤ t ≤ b.

Proof. We use the same notations as in the proof of Proposition 3. As we have

∥Zt

(
ℓγ(t)

)
∥ =

√
1− δγ(t)2 ≤

√
1− δκ

(
τκ(ℓγ(t); c); c

)2
=

∥∥Ẑτκ(ℓγ(t);c)

(
ℓγ(t)

)∥∥,
Rauch’s comparison theorem guarantees that ∥Zt(ℓ)∥ ≤ ∥Ẑτκ(ℓγ(t);c)(ℓ)∥ for 0 ≤ ℓ ≤ ℓγ(t).

Thus we have

sℓγ(a, b) =

∫ b

a

∥Zt

(
ℓγ(t)

)
∥ dt ≤

∫ b

a

∥∥Ẑτκ(ℓγ(t);c)

(
ℓγ(a)

)∥∥ dt
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≤
∫ b

a

∥∥Ẑτκ(ℓγ(t);c)

(
ℓγ(a)

)∥∥ δγ(t)

δκ
(
τκ(ℓγ(t); c); c

) dt
=

∫ b̂

â

∥∥Ẑu

(
ℓγ(a)

)∥∥ du = s
(
ℓγ(a); c) ϑκ(â, b̂; c).

Hence the equality shows that δγ(t) = δκ
(
τκ(ℓγ(t); c); c

)
for a ≤ t ≤ b. We therefore get

the conclusion. □

If sℓγ(a, b) = s
(
ℓγ(a); c)∠

(
(∂αγ/∂s)(a, 0), (∂αγ/∂s)(b, 0)

)
holds under the assump-

tion of RiemM ≤ c, we find by Rauch’s comparison theorem that {αγ(t, s) | a ≤ t ≤
b, 0 ≤ s ≤ ℓγ(a)} is of constant sectional curvature c and

{
(∂αγ/∂s)(t, 0)

∣∣ a ≤ t ≤ b
}
is

contained in a plane of Tγ(0)M .
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