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Abstract. We develop a study on local polar invariants of planar com-
plex analytic foliations at (C2, 0), which leads to the characterization of second
type foliations and of generalized curve foliations, as well as to a description
of the GSV -index. We apply it to the Poincaré problem for foliations on the

complex projective plane P2
C, establishing, in the dicritical case, conditions

for the existence of a bound for the degree of an invariant algebraic curve S
in terms of the degree of the foliation F . We characterize the existence of a
solution for the Poincaré problem in terms of the structure of the set of local

separatrices of F over the curve S. Our method, in particular, recovers the
known solution for the non-dicritical case, deg(S) ≤ deg(F) + 2.

1. Introduction.

Let F be a singular holomorphic foliation on P2
C. The number of points of tangency,

with multiplicities counted, between F and a non-invariant line L ⊂ P2
C is the degree

of the foliation and is denoted by deg(F). In [27], Poincaré proposed the problem of

bounding the degree of an algebraic curve S invariant by F in terms of deg(F) as a step

in finding a rational first integral for a polynomial differential equation in two complex

variables. Known in Foliation Theory as the Poincaré problem, along the past few decades

this problem has gained some partial answers. In 1991, Cerveau and Lins Neto proved in

[13] that if S has at most nodal singularities then deg(S) ≤ deg(F)+2, this bound being

reached if and only if F is a logarithmic foliation — one induced by a closed meromorphic

1-form with simple poles. Later, in 1994, Carnicer obtained in [10] the same inequality

when the singularities of F over S are all non-dicritical, meaning that the number of

local separatrices — local irreducible invariant curves — is finite. In 1997, in the works

[3] and [4], Brunella formulated the Poincaré problem in terms of GSV -indices, defined

by Gómez-Mont, Seade and Verjovsky in [19] as a kind of Poincaré–Hopf index of the

restriction to an invariant curve of a vector field tangent to F . To wit, Brunella shows

that the bound deg(S) ≤ deg(F)+2 occurs whenever the sum over S of the GSV -indices

of F with respect to the local branches of S is non-negative [4, p.533]. It is well known

that, in general, the Poincaré problem has a negative answer in the dicritical case (see
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6.1 and 6.2 below). Some advances in the understanding of the dicritical case have been

made in the past years, as shown in the works [7], [8], [16], [12], [17].

The study of global invariant curves leads us to the universe of local foliations on

(C2, 0), in which we distinguish two families with relevant properties. First, generalized

curve foliations, defined in [5] by Camacho, Lins Neto and Sad, which are foliations

without saddle-nodes in their desingularization. They have a property of minimization

of Milnor numbers and are characterized, in the non-dicritical case, by the vanishing

of the GSV -index [4], [11]. The second family, which contains the first one, is formed

by second type foliations, introduced by Mattei and Salem in [22], which may admit

saddles-nodes when desingularized provided that they are non-tangent saddles-nodes,

meaning that no weak separatrix is contained in the desingularization divisor. They

are characterized by the fact that their desingularizations coincide with the reduction of

the set of formal separatrices. These foliations satisfy a property of minimization of the

algebraic multiplicity [22], [18].

In a recent work [9], Cano, Corral and Mol developed a study of local polar in-

variants obtaining, in the non-dicritical case, a characterization of generalized curves

and of foliations of second type as well as an expression of the GSV -index in terms of

these invariants. Essentially, the technique therein consists in calculating the intersec-

tion number between a generic polar curve of a local foliation F and a curve of formal

separatrices C. The same number is produced for the formal “reference foliation” having

the local equation of C as a first integral. The difference of these two numbers is the

GSV -index of F with respect to C. In this way, the known answers to the Poincaré

problem just mentioned are obtained.

In this paper we extend this approach to dicritical foliations — those with infinitely

many separatrices. The difficulty now lies in choosing a finite set of separatrices in order

to produce such a “reference foliation”. The solution is to use a balanced equation of

separatrices, a concept introduced by Genzmer in [18] for the study of the “realization

problem” — the existence of foliations with prescribed reduction of singularities and

projective holonomy representations. Given a local foliation F̂ at (C2, 0) with minimal

reduction of singularities E : (M,D) → (C2, 0), an irreducible component D ⊂ D is said

to be non-dicritical — respectively dicritical — if it is invariant — respectively non-

invariant — by the strict transform foliation E∗F̂ . The valence of D ⊂ D is the number

v(D) of other components of D intersecting D. A balanced equation of separatrices

turns out to be a formal meromorphic function F̂ that encompasses the equations of all

isolated separatrices — the ones crossing non-dicritical components ofD — along with the

equations of 2− v(D) separatrices associated to each dicritical component D ⊂ D. This

can be a negative number, so dicritical separatrices may engender poles in the balanced

equation. We can additionally adjust this definition when a local set of separatrices C

for F̂ is fixed in order to get a balanced equation adapted to C. This is achieved by

rebalancing the number of dicritical separatrices of F̂ in such a way that C ⊂ (F̂ )0. We

develop these concepts in Section 3.

In Section 4, our starting point is the extension of the definition of the polar inter-

section number introduced in [9] to a formal meromorphic 1-form, which will normally

be dF̂ , where F̂ is a balanced equation of separatrices of the foliation F̂ . For a fixed set

of separatrices C of F̂ , the comparison of the polar intersection numbers of F̂ and dF̂ ,
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where F̂ is a balanced equation of separatrices such that C ⊂ (F̂ )0, gives rise to the polar

excess index, denoted by ∆p(F̂ , C). This non-negative invariant works as a measure of

the existence of saddles-nodes in the desingularization of the foliation: ∆p(F̂ , (F )0) = 0

if and only if F̂ is a generalized curve. This is the content of Theorem A, which extends

to the dicritical case the characterization of generalized curve foliations provided, in the

non-dicritical case, by the vanishing of the GSV -index with respect to the complete set

of separatrices. Actually, in Section 5, Theorem B establishes a link between the polar

excess and the GSV -index for a convergent set of separatrices:

GSVp(F̂ , C) = ∆p(F̂ , C) + (C, (F̂ )0\C)p − (C, (F̂ )∞)p,

where F̂ is a balanced equation of separatrices such that C ⊂ (F̂ )0. Here, (S1, S2)p
stands for the intersection number of two germs at p of curves S1 and S2 defined by

(S1, S2)p = dimC
Op

(f1, f2)
,

where f1 and f2 are reduced local equation of S1 and S2. Notice that, when F̂ is non-

dicritical and C is the complete set of separatrices, this gives GSVp(F̂ , C) = ∆p(F̂ , C).
This formulation of the GSV -index enables us in Theorem C in Section 6 to propose

a bound to the Poincaré problem in terms of local balanced sets of separatrices. For a

foliation F on P2
C having an invariant algebraic curve S, if d = deg(F) and d0 = deg(S),

it holds

d0 ≤ d+ 2 +
1

d0

∑
p∈Sing(F)∩S

[
(S, (F̂p)∞)p − (S, (F̂p)0\S)p

]
,

where F̂p is a balanced equation adapted to the local branches of S. Besides, equality

holds if all singularities of F over S are generalized curves. In particular, this inequality

recovers the bound d0 ≤ d+ 2 for the cases treated in [13] and [10].

In the right side of the previous formula, the terms (S, (F̂p)∞)p are obstructions to

the existence of a “universal bound” for the Poincaré problem. This is precisely what

happens in two classical counterexamples to be discussed in Section 6: the foliations of

degree 1 on P2
C given by ω = d(xpzq−p/yq), with p < q, and the pencil of Lins Neto

[20], a family of foliations of degree 4 admitting rational first integrals with unbounded

degrees. In the first case, the typical fiber has a local branch at a dicritical singularity

crossing a dicritical component of valence two. In the second family, the generic fiber

repeatedly crosses radial singularities in a number of times which is unbounded within

the family.

In Section 7 we study topologically bounded invariants of local foliations — those

bounded by a function of the Milnor number. The central result of this section —

Theorem D — states that a local curve of separatrices that contains, besides the isolated

separatrices, one separatrix attached to each dicritical component of valence one and a

fixed number of separatrices attached to dicritical components of valence three or higher

— separatrices crossing components of valence two are forbidden — has a reduction

process whose length is topologically bounded, the same being true for the algebraic
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multiplicity. This result is sharp, as shown by the example pxdy − qydx = 0 with

p, q ∈ Z+ coprime. Here, the Milnor number is one and curves of separatrices — with

a single branch passing by a component of valence two, when q > p > 1, or with two

branches passing through a dicritical component of valence one, when q > p = 1 — may

be obtained with reduction trees of arbitrarily large length. Returning to the Poincaré

problem, in Theorem E we use the inequality of Theorem C in order to prove the existence

of a bound for the Poincaré problem whenever the local branches of the algebraic curve

S are subject to the conditions of topological boundedness of Theorem D. This result

especially indicates that the classical counterexamples for the Poincaré problem just

mentioned offer essentially the two ways to violate the existence of a bound: either

by means of highly degenerated separatrices crossing dicritical components of valences

one or two, or through a multiple branched curve of separatrices attached to dicritical

components of other valences.

We close this article with Section 8, where we apply local polar invariants in a result

on the topological invariance of the algebraic multiplicity of a foliation. In Theorem F

we prove that, for local foliations at (C2, 0) having only convergent separatrices, the

property of being second class and the algebraic multiplicity are topological invariants.

This extends similar results in [5], for generalized curve foliations, and in [22], for non-

dicritical second class foliations.

2. Basic notions and notation.

A germ of formal foliation F̂ in C2 is the object defined by a germ of formal 1-form

at 0 ∈ C2

ω̂ = â (x, y) dx+ b̂ (x, y) dy,

where â, b̂ ∈ C [[x, y]]. A separatrix for F̂ is a germ of formal irreducible invariant

curve. If S is defined by a formal equation f̂ , then the invariance condition is expressed

algebraically as

f̂ divides ω̂ ∧ df̂ in C [[x, y]] .

A formal foliation is said to be non-dicritical when it has finitely many separatrices.

From now on, E : (M,D) → (C2, 0) stands for the process of reduction of singularities

or desingularization of F̂ (see [29] and also [5]), obtained by a finite sequence of punctual

blowing-ups having D = E−1(0) as the exceptional divisor, formed by a finite union of

projective lines with normal crossings. In this process, all separatrices of F̂ become

smooth, disjoint and transverse to D, none of them passing though a corner. Besides,

the singularities along D of the pull-back foliation E∗F̂ become reduced or simple, which

means that, under some local formal change of coordinates, their linear parts belong to

the following list:

(i) ydx− λxdy , λ ̸∈ Q+;

(ii) xdy.
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In the first case — which is referred to as non-degenerate—, there are two formal

separatrices tangent to the axes {x = 0} and {y = 0}. In the convergent category, both

separatrices converge. In the second case, the singularity is said to be a saddle-node.

The formal normal form for such a singularity is given in [22]: up to a formal change of

coordinates, the singularity is given by a 1-form of the type(
ζxk − k

)
ydx+ xk+1dy, k ∈ N∗, ζ ∈ C. (2.1)

The invariant curve {x = 0} is called strong invariant curve while {y = 0} is the weak

one. In the convergent category, the strong separatrix always converges whereas the weak

separatrix may be purely formal, as in the famous example of Euler

(x− y) dx+ x2dy,

where y (x) =
∑

n≥1 (n− 1)!xn is the Taylor expansion of the weak invariant curve. The

integer k + 1 > 1 will be called weak index of the saddle-node.

If, in the reduction process, the germ of the divisor D happens to contain the weak

invariant curve of some saddle-node, then the singularity is said to be a tangent saddle-

node. A non-tangent saddle-node is also said to be well-oriented with respect to D. We

will denote by T(F̂) the set of all tangent saddle-nodes of F̂ . Following [22], we say that

the foliation F̂ is in the second class or is of second type when none of the singularities

of E∗F̂ over D are tangent saddle-nodes.

Let F̂ be a germ of foliation having (S, p) as a germ of formal smooth invariant

curve. Take local coordinates (x, y) in which S is the curve {y = 0} and p the point

(0, 0). Let ω = â(x, y)dx+ b̂(x, y)dy be a defining 1-form for F̂ . The integer ord0b̂(x, 0)

is called the tangency index of F̂ at p with respect to S and is denoted by Ind(F̂ , S, p).
This is an invariant associated to F̂ and S, independent of the choices made. If S is the

weak separatrix of a saddle-node, then Ind(F̂ , S, p) > 1 is precisely the weak index. On

the other hand, if S is either the strong separatrix of a saddle-node or a separatrix of a

non-degenerate reduced singularity, then Ind(F̂ , S, p) = 1.

In the exceptional divisor D, we denote by Dic(F̂) the set of dicritical components,

comprising all projective lines generically transverse to E∗F̂ . A separatrix S of F̂ is said

to be isolated if its strict transform E∗S does not meet a dicritical component. This

concept is well defined as long as we fix a minimal reduction of singularities for F̂ —

see that, in the definition of reduction of singularities, there are also conditions on the

desingularization of the separatrices. We denote by I(F̂) the set of isolated separatrices.

On the other hand, a separatrix whose strict transform crosses a dicritical component is

called a curvet. The set of all curvets associated to D ∈ Dic(F̂) is denoted by Curv(D).

Finally, v(D) stands for the valence of D ∈ Dic(F̂), defined as the number of components

of D intersecting D, other from D itself.

Remark 2.1. The above definitions can be formulated in the convergent category

and it may seem somewhat strange to introduce them in the formal category. Indeed, for

convergent foliations, the natural and geometric notion of leaves does exist whereas only

the notion of separatrix makes sense in the formal setting. However, the interest and

the need to work with formal objects will be evident as soon as the concept of balanced
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equation is defined.

3. Balanced equation of separatrices.

With a slight change in the definition, we follow [18] in the concept below.

Definition 3.1. A balanced equation of separatrices for a germ of formal singular

foliation in (C2, 0) is a formal meromorphic function F̂ whose divisor has the form

(F̂ )0 − (F̂ )∞ =
∑

C∈I(F̂)

(C) +
∑

D∈Dic(F̂)

∑
C∈Curv(D)

aD,C(C),

where, for every dicritical component D ⊂ D, the coefficients aD,C ∈ {−1, 0, 1} are zero

except for finitely many C ∈ Curv(D) and satisfy the following equality:∑
C∈Curv(D)

aD,C = 2− v(D). (3.1)

The balanced equation of separatrices F̂ is said to be adapted to a curve of separatrices

C if C ⊂ (F̂ )0.

Since aD,C belongs to {−1, 0, 1}, the function F̂ has reduced zeros and poles without

multiplicities. For instance, the radial foliation given by xdy−ydx has only one dicritical

component whose valence is 0. Thus F = xy is a balanced equation of separatrices.

However, F = xy(x − y)/(x + y) is also a balanced equation, adapted to the curve

C = {x − y = 0}. If F̂ is non-dicritical, then a balanced equation is nothing but any

equation of the finite set of separatrices.

We recall some basic facts about balanced equations of separatrices established in

[18]. First a definition:

Definition 3.2. Let F̂ be a formal foliation at (C2, 0) and E : (M,D) → (C2, 0)

be a minimal process of reduction of singularities. The tangency excess of F̂ along D is

the number

τ(F̂) =
∑

q∈T(E∗F̂)

∑
D∈V (q)

ρ(D)(Ind(E∗F̂ , D, q)− 1), (3.2)

where q runs over all the tangent saddle-nodes of E∗F̂ and V (q) stands for the set of

irreducible components of D containing the point q. The number ρ(D) stands for the

multiplicity of D, which coincides with the algebraic multiplicity of a curve γ at (C2, 0)

such that E∗γ is transversal to D outside a corner of D.

It is clear that τ(F̂) ≥ 0. Besides, τ(F̂) = 0 if and only if there are no tangent

saddle-nodes in the reduction of singularities of F̂ , that is, if and only if F̂ is a foliation

of second type. Having the definition in mind, the following fact is proved in [18]:

Proposition 3.3. Let F̂ be a balanced equation of separatrices for the formal
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foliation F̂ . Denote by ν0(F̂ ) and ν0(F̂) their algebraic multiplicities. Then

ν0(F̂) = ν0(F̂ )− 1 + τ(F̂).

Inspired in this result, if F̂ is a balanced equation of separatrices for the foliation

F̂ , we define the number

ν∗0 (F̂) = ν0(F̂ )− 1

and call it the pure algebraic multiplicity of F̂ at 0 ∈ C2. This invariant assembles the

contribution to the algebraic multiplicity given by the separatrices and the reduction

structure — by which we mean the combinatory of the desingularization tree along with

the position of the dicritical components —, but discarding the contribution given by

the tangent saddles-nodes. Evidently, ν∗0 (F̂) ≤ ν0(F̂), equality holding if and only if F̂
is of second type. The number ν∗0 (F̂) would turn out to be the algebraic multiplicity of

some second type foliation sharing with F̂ the same reduction structure and the same

balanced equation. However, we cannot assure the existence of such a foliation and we

do not know if ν∗0 (F̂) is realizable as an algebraic multiplicity in this way. Nevertheless,

we can prove the following:

Lemma 3.4. We have ν∗0 (F̂) ≥ 0. The inequality is strict when F̂ is dicritical.

Proof. We have to proof that, if F̂ is a balanced equation of separatrices for F̂ ,

then ν0(F̂ ) ≥ 1, the equality being strict in the dicritical case. The result is obvious

if F̂ is non-dicritical, since the balanced equation has no poles and a separatrix always

exits by the Separatrix Theorem [6]. For the dicritical case, let E : (M,D) → (C2, 0)

be a minimal reduction process for F̂ . The proof relies on the fact that through each

connected component of the invariant part of the divisor D passes at least one separatrix

of F̂ (see [26]). Let us start by supposing that D contains only dicritical components

with valence up to two. Then F̂ is devoid of poles and ν0(F̂ ) ≥ 0. Aside from the trivial

case D = D with v(D) = 0, for which ν0(F̂ ) = 2, we get ν0(F̂ ) > 1 in the two following

cases:

(i) There exists a dicritical component D ∈ D with v(D) = 1; here, F̂ contains a

separatrix crossing D and there exists at least one isolated separatrix crossing the

invariant part of D.

(ii) There exists a dicritical component D ∈ D with v(D) = 2; then D disconnects the

invariant part of D giving rise to two connected components, where we find at least

two isolated separatrices.

Now, we admit the existence of a dicritical componentD ⊂ D of valence v(D) ≥ 3. In

the course of the reduction process, D appears as the result of a blowing-up at 0 ∈ C2, at

non-corner point or at a corner point. Corresponding to these three cases, new sequences

of blowing-ups will be needed starting at, respectively, v(D), v(D)−1 or v(D)−2 points

of D. Each of these points gives rise to at least to one isolated separatrix with algebraic

multiplicity no less than that of any dicritical separatrix crossing D. Therefore, the
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negative contribution to ν0(F̂ ) given by the v(D)− 2 dicritical separatrices attached to

D will be neutralized by the contribution of these isolated separatrices. Now, in order to

see that ν0(F̂ ) > 1, it suffices to take D as the first dicritical component with v(D) ≥ 3

appearing in the reduction process. The extra separatrices we need are found using the

arguments of cases (i) and (ii) above. □

Remark 3.5. In the non-dicritical case, we may have ν∗0 (F̂ ) = 0, even if 0 ∈ C2

is a singularity of F̂ . For instance, the local foliation F̂ given by the non-linearizable

Poincaré–Dulac normal form ω = (nx+ζyn)dy−ydx, where ζ ̸= 0 and n ∈ N with n ≥ 2,

has y = 0 as the unique separatrix, giving ν0(F̂ ) = 1. Another example is given by the

nilpotent singularity by η = d(y2 + x4) + 4x2dy, whose unique separatrix is y = −x2.

Definition 3.6. Let F̂ be a local foliation at (C2, 0) and E : (M,D) → (C2, 0) be

a minimal process of reduction of singularities. If D ⊂ D is an irreducible component,

the valuation of F̂ along D, denoted by νD(F̂), is the order of vanishing of E∗ω along

D, where ω is any 1-form inducing F̂ .

For instance, if D arises from the first blowing-up at 0 ∈ C2, then

νD(F̂) =

{
ν0(F̂) if D is non-dicritical

ν0(F̂) + 1 if D is dicritical.

In much the same way, if F̂ is a formal meromorphic function at (C2, 0), then,

given some process of reduction of singularities E : (M,D) → (C2, 0), we can define the

valuation of F̂ along D, denoted by νD(F̂ ), as the order of vanishing of E∗F = F ◦ E
along D. The following fact also appears in [18]:

Proposition 3.7. Let F̂ be a foliation of second type having F̂ as a balanced

equation of separatrices. Let E : (M,D) → (C2, 0) be a minimal process of reduction of

singularities for F̂ . Then, for every component D ∈ D, it holds

νD(F̂ ) =

{
νD(F̂) + 1 if D is non-dicritical

νD(F̂) if D is dicritical.

In particular, νD(F̂ ) > 0 for all D ∈ D.

Let F̂ be a foliation, not necessarily of second type, with balanced equation of

separatrices F̂ and minimal reduction process E : (M,D) → (C2, 0). Following what

was done for the algebraic multiplicity, we associate to F̂ an invariant ν∗D(F̂) called pure

valuation along D ∈ D. As before, this would be the valuation νD(Ĝ) for some foliation

Ĝ of second type sharing with F̂ the same reduction structure and the same balanced

equation, if such a Ĝ existed. Since this is not guaranteed, we appeal to the following

recursive definition: if D arises from the first blowing-up at 0 ∈ C2, then

ν∗D(F̂) =

{
ν∗0 (F̂) if D is non-dicritical

ν∗0 (F̂) + 1 if D is dicritical.
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In order to proceed to the inductive step, write E = Ek ◦ · · · ◦ E1 the divided blowing-

up, where k ≥ 2, and, for 1 ≤ j ≤ k, let Dj be the divisor associated to Ej and

F̂j = (Ej ◦ · · · ◦ E1)
∗F̂ be the strict transform foliation. Let 1 ≤ i < k and suppose

that the pure valuation is defined for irreducible components appearing at the height i.

Suppose that Ei+1 is a blowing-up at a point p ∈ Di = ∪i
j=1Dj . We define:

ν∗Di+1
(F̂) = ν∗p(F̂i) + (1− ϵ(Di+1)) +

∑
D∈V (p)

ν∗D(F̂), (3.3)

where V (p) stands for the set of irreducible components of Di containing p and, for a

component D ⊂ D,

ϵ(D) =

{
1 if D is non-dicritical

0 if D is dicritical.
(3.4)

Notice that, as a consequence of Lemma 3.4, except for the case of a non-dicritical

foliation with a unique smooth separatrix, ν∗D(F̂) > 0 for every D ∈ D. Formula (3.3)

is satisfied by the usual valuation. This is the key for the inductive step in the proof of

Proposition 3.7 in [18]. The same arguments therein give us a new version for this result:

Proposition 3.8. Let F̂ be a foliation having F̂ as a balanced equation of sepa-

ratrices. Let E : (M,D) → (C2, 0) be a minimal process of reduction of singularities for

F̂ . Then, for every component D ∈ D, it holds

νD(F̂ ) =

{
ν∗D(F̂) + 1 if D is non-dicritical

ν∗D(F̂) if D is dicritical.

In particular, νD(F̂ ) > 0 for all D ∈ D.

When F̂ is non-dicritical and of second type, it is well known (see [22], Corollary

3.1.10) that F̂ and dF̂ share the same process of reduction of singularities. However,

this fails to be true when F̂ is dicritical. For instance, the quasi-radial foliation given

by pxdy − qydx, with p, q ∈ N∗ relatively prime, admits a balanced equation whose

differential is dF̂ = d (xy) = xdy+ydx. The latter is reduced whereas pxdy−qydx needs

a reduction process attached to the Euclid’s algorithm of the pair (p, q). Nevertheless,

we can establish the following link between the two reduction processes:

Proposition 3.9. Let F̂ be a foliation having F̂ as a balanced equation of sepa-

ratrices. Let E be the reduction process of F̂ . Then:

(a) Any component D ⊂ E−1 (0) is invariant by E∗dF̂ .

(b) Any singularity of E∗dF̂ is reduced except possibly along the dicritical components

of F̂ , where E∗dF̂ might have dicritical singularities.

Proof. The proof relies on Proposition 3.8. At a point p ∈ D there are local

coordinates (x, y) such that the pull-back of F̂ is written in the following way:
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(1) if p is neither a zero nor a pole of the strict transform of F̂ , then (E∗F̂ )p = xνD(F̂ ),

where x is a local equation for D near p.

(2) if p is a corner, say p = D1 ∩ D2, then (E∗F̂ )p = xνD1 (F̂ )yνD2 (F̂ ), where x and y

are local equations for D1 and D2, respectively.

(3) if p is either a zero or a pole of the strict transform of F̂ , then (E∗F̂ )p is either

xνD(F̂ )y or xνD(F̂ )/y, where x is a local equation for D and y a local equation for

the zero or the pole.

The combination of the above remarks with the upcoming lemma yields the propo-

sition.

Lemma 3.10. Let Ĥ be any meromorphic function, E be any blowing-up process

and D be any component of the exceptional divisor. Then D is dicritical for E∗dĤ if

and only if νD(Ĥ) = 0.

Indeed, according to Proposition 3.8, if D ⊂ E−1 (0) then νD(F̂ ) is strictly positive.

Thus, any component of the exceptional divisor of E is invariant. Moreover, around the

points of intersection of the poles of F̂ with the divisor, there are local coordinates (x, y)

such that (E∗F̂ ) = xN/y, which is a dicritical singularity for E∗dF̂ , reduced after N

blowing-ups. □

Even when F̂ is convergent, it is not enough to consider a balanced equation formed

only by convergent invariant curves. Of course, formal separatrices may appear as weak

invariant curves of saddle-nodes. For instance, a balanced equation for the Euler singu-

larity is given by the formal equation

F̂ = x

(
y −

∑
n≥1

(n− 1)!xn
)
.

Evidently, for a convergent foliation F̂ , all possible formal separatrices are isolated, the

ones in Dic(F̂) being all convergent.

One of the main features of balanced equations is their good behavior under blowing-

ups:

Lemma 3.11. Let F̂ be a balanced equation of separatrices for F̂ . Let π : (C̃2, D) →
(C2, 0) be the standard blowing-up at the origin. Then, for any point p ∈ D, singular for

π∗F̂ , the germ at p of the meromorphic function

F̂ ◦ π

h
ν0(F̂ )−ϵ(F̂)
p

,

where hp is a local equation of D and ϵ(F̂) = ϵ(D) is defined in (3.4), is a balanced

equation for the germ of π∗F̂ at p.

Proof. We examine separately the non-dicritical and the dicritical cases.
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First case: D is non-dicritical. We consider the reduction of singularities of π∗F̂ at p as

part of that of F̂ . From the point of view of π∗F̂ , the germ of D at p is no longer part of

the divisor, turning into a separatrix. The matter is to decide whether it is an isolated

or a dicritical separatrix. Let D′ be the component of the desingularization divisor of

π∗F̂ intersecting D. If D′ is non-dicritical, then the germ of D is an isolated separatrix

for π∗F̂ . Thus,

F̂ ◦ π

h
ν0(F̂ )
p

hp (3.5)

is a balanced equation for π∗F̂ at p. On the other hand, if D′ is dicritical, then its

valence as a dicritical component of π∗F̂ at p is one unit less its valence as a dicritical

component of F̂ . Thus, in view of (3.1), equation (3.5) is again a balanced equation for

π∗F̂ at p.

Second case: D is dicritical. Then, by the definition of reduction of singularities, the

component D′ touching D in the reduction of singularities of F̂ cannot be dicritical.

Since D is not π∗F̂-invariant, F̂ ◦ π/hν0(F )
p is a balanced equation of π∗F̂ at p. □

This lemma is the key ingredient for most of the properties to be proved in this

article, allowing us to reason inductively on the length of the reduction process.

4. Polar intersection and polar excess.

Let η̂ be a formal meromorphic 1-form defined near a point p of a complex surface.

It can be regarded as a 1-form at (C2, 0) by taking analytic coordinates (x, y) for which

p = (0, 0), so that

η̂ =
ω̂

H
=
Pdx+Qdy

H
,

where P , Q and H are formal functions in C [[x, y]]. For (a : b) ∈ P1
C, the polar curve of η̂

with respect to (a : b) is the curve P η̂
(a:b) with formal meromorphic equation (aP+bQ)/H.

In the convergent case, when a ̸= 0, the points of P η̂
(a:b) outside (H)0 are those where

η̂ defines a tangent line with inclination b/a. Now, suppose that B̂ is an irreducible

curve invariant by η̂ such that B̂ ⊈ (η̂)∞ = (H)0, having γ (t) as a formal Puiseux

parametrization. We calculate the intersection number

(P η̂
(a:b), B̂)p = ordt=0

(
aP + bQ

H
◦ γ

)
,

which does not depend on the choice of coordinates (x, y). This enables us to set the

following definition:

Definition 4.1. The polar intersection number of η̂ and B̂ at p is the integer

(P η̂, B̂)p = (P η̂
(a:b), B̂)p
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obtained for a generic point (a : b) ∈ P1
C.

This is an adaptation, for formal meromorphic forms, of the definition in [9]. Clearly,

polar intersection numbers are well defined, independent both of the coordinates and of

the choice of the Puiseux parametrization of B.

Polar intersection numbers have a nice behavior under blowing-ups:

Lemma 4.2. Let η̂ be a formal meromorphic 1-form at p ∈ C2 and B̂ be an irre-

ducible invariant curve as in the previous definition. Let π : (C̃2, D) → (C2, p) be the

standard blowing-up at p. Denote by B̃ the strict transform of B̂ and q = B̃ ∩D. Then

(Pπ∗η̂, B̃)q = (P η̂, B̂)p + νq(B̃).

Proof. Let us fix coordinates (x, y) and a Puiseux parametrization γ(t) =

(x(t), y(t)) of B̂ with νp(B̂) = ordt=0x(t). Let us write π(x, u) = (x, ux). In these

coordinates, B̃ is parametrized by γ̃(t) = (x(t), u(t) = y(t)/x(t)). We have

π∗η̂ =
1

H(x, ux)
((P (x, ux) + uQ(x, ux))dx+ xQ(x, ux)du) .

For (a : b) ∈ P1
C, we make the following computation:

(Pπ∗η̂
(a:b), B̃)q = ordt=0

(
a (P (x, ux) + uQ (x, ux)) + bxQ (x, ux)

H (x, ux)
◦ γ̃

)
= ordt=0

(
a (P ◦ γ (t) + u (t)Q ◦ γ (t)) + bx (t)Q ◦ γ (t)

H ◦ γ (t)

)
= min {ordt=0(P ◦ γ (t) + u (t)Q ◦ γ (t)), ordt=0(x (t)Q ◦ γ (t))}
− ordt=0H ◦ γ (t) .

Now, since B̂ is invariant, we have P ◦ γ(t)x′ (t) + Q ◦ γ(t)y′ (t) = 0. Noting that

ordt=0x(t) ≤ ordt=0y(t), this gives in particular that ordt=0Q◦γ(t) ≤ ordt=0P ◦γ(t) and
therefore (P η̂

(a:b), B̂)p = ordt=0Q ◦ γ(t)− ordt=0H ◦ γ(t). It is straightforward that

ordt=0(P ◦ γ (t) + u (t)Q ◦ γ (t)) = ordt=0

(
−u′ (t)x (t)

x′ (t)
Q ◦ γ (t)

)
= ordt=0u (t) + ordt=0Q ◦ γ (t) .

We finally find

(Pπ∗η̂
(a:b), B̃)q = min {ordt=0u (t) + ordt=0Q ◦ γ (t) , ordt=0x (t) + ordt=0Q ◦ γ (t)}

− ordt=0H ◦ γ (t)
= min {ordt=0u (t) , ordt=0x (t)}+ ordt=0Q ◦ γ (t)− ordt=0H ◦ γ (t)

= νq(B̃) + (P η̂
(a:b), B̂)p.

The proof is finished by taking generic (a : b) ∈ P1
C. □
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Our interest does not lie in the absolute values of polar intersection numbers. The

idea is to compare polar intersection numbers of a foliation and a “reference foliation”

having the balanced equation as a first integral. This is the same principle developed in [9]

for the non-dicritical case. There, however, the finiteness of the set of separatrices gives

a straight choice for this reference foliation. More specifically, we define the following

invariant:

Definition 4.3. Let F̂ be a germ of singular foliation at a point p ∈ C2 having

F̂ as a balanced equation of separatrices. Let C ⊂ (F̂ )0 be a union of zeros of F̂ and

consider the decomposition in irreducible components C = ∪n
i=1Ci. We define the polar

excess index of F̂ with respect to the irreducible component Ci as

∆p(F̂ , Ci) = (PF̂ , Ci)p − (PdF̂ , Ci)p,

and with respect to the whole curve C as

∆p(F̂ , C) =
n∑

i=1

∆p(F̂ , Ci),

where (PdF̂ , Ci)p refer to the polar intersection numbers of the formal foliation defined

by dF̂ . We also introduce a relative version of the polar excess index: if f is the formal

equation of the curve of separatrices C ⊂ (F̂ )0 above, instead of using the whole balanced

equation F̂ = G/H as done in the calculation of the polar excess, we take f/H. More

precisely:

∆rel
p (F̂ , C) =

n∑
i=1

(
(PF̂ , Ci)p − (Pd(f/H), Ci)p

)
.

Example 4.4. Let us see what is ∆p(F̂ , B) for a branch of separatrix B in the

reduced case.

(1) F̂ is non singular at p. In this case, B is the local leaf at p and it is easy to see

that ∆p(F̂ , B) = 0.

(2) F̂ has a reduced non-degenerate singularity at p. Now we can take local coordinates

such that p = (0, 0) and F̂ is given by

x (1 + u (x, y)) dy + y (λ+ v (x, y)) dy.

The function F̂ = xy is a balanced equation. If B is either x = 0 or y = 0, it is

straight that (PF̂ , B)p = 1 and also (PdF̂ , B)p = 1. Therefore ∆p(F̂ , B) = 0.

(3) F̂ has a saddle-node at p. We take the formal coordinates (x, y) inducing the

normal form of equation (2.1):(
ζxk − k

)
ydx+ xk+1dy, k ∈ N∗, ζ ∈ C.
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Again, F̂ = xy is a balanced equation. If B is the strong separatrix, x = 0, we

find (PF̂ , B)p = 1 and, thus, ∆p(F̂ , B) = 0. On the other hand, if B is the weak

separatrix, y = 0, we have (PF̂ , B)p = k + 1, which results in ∆p(F̂ , B) = k > 0.

Keeping the notation of Lemma 4.2, we have:

Proposition 4.5. Let B be an irreducible component of (F̂ )0. Then

∆p(F̂ , B) = ∆q(π
∗F̂ , B̃) + τ(F̂)νp(B),

where τ(F̂) is tangency excess of F̂ defined in equation (3.2). In particular,

∆p(F̂ , B) ≥ ∆q(π
∗F̂ , B̃),

equality holding if and only if F̂ is of second type.

Proof. Consider adapted coordinates (x, u) for which π(x, u) = (x, ux) and B is

given by γ(t) = (x(t), y(t)), where νp(B) = ordt=0x(t). In order to avoid any confusion,

let us denote by F̂p the balanced equation for F̂ at p and F̂q the balanced equation for

π∗F̂ at q. Following Lemma 3.11, the relation between the two balanced equations is

π∗F̂p = xνp(F̂p)−ϵ(F̂)F̂q.

Taking derivatives in the above relation, we get

π∗dF̂p = xνp(F̂p)−ϵ(F̂)dF̂q + (νp(F̂p)− ϵ(F̂))xνp(F̂p)−ϵ(F̂)−1F̂qdx.

Since F̂q vanishes along B̃, for a fixed (a : b) ∈ P1
C one has

(Pπ∗dF̂p

(a:b) , B̃)q = ordt=0x(t)
νp(F̂p)−ϵ(F̂) + (PdF̂q

(a:b), B̃)q.

Now, taking (a : b) ∈ P1
C generic and using Lemma 4.2, we obtain

(PdF̂q , B̃)q = (PdF̂p , B)p − (νp(F̂p)− ϵ(F̂))νp(B) + νq(B̃). (4.1)

Moreover, following [9, Proposition 3] we also have

(Pπ∗F̂ , B̃)q = (PF̂ , B)p − (νp(F̂) + 1− ϵ(F̂))νp(B) + νq(B̃). (4.2)

Combining (4.1), (4.2) and Proposition 3.3 yields

∆q(π
∗F̂ , B̃) = ∆p(F̂ , B)− (νp(F̂) + 1− νp(F̂p))νp(B)

= ∆p(F̂ , B)− τ(F̂)νp(B).

The final statement follows from τ(F̂) ≥ 0, this number vanishing if and only if F̂ is a

foliation of second type. □
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Proposition 4.6. Let F̂ be a germ of formal foliation at p ∈ S having F̂ as a

balanced equation of separatrices. If B is an irreducible component of (F̂ )0, then

∆p(F̂ , B) ≥ 0.

Proof. The proof goes by induction on the length of the reduction process of F̂ .

The inductive step is an obvious consequence of Proposition 4.5. The initialization in its

turn follows from the three cases in Example 4.4. □

As a consequence of the above, we obtain that the polar excess somehow gives a

measure the existence of saddle-nodes in the desingularization of a foliation. This is the

content of

Theorem A. Let F̂ be a germ of singular foliation at p in a surface S and F̂ be

a balanced equation for its separatrices. Then F̂ is a generalized curve if and only if

∆p(F̂ , (F̂ )0) = 0.

Proof. Suppose first that F̂ is a generalized curve. Then F̂ is in particular a

foliation of second type. For a fixed branch B ⊂ (F̂ )0, Proposition 4.5 asserts that the

polar excess ∆ is invariant under blowing-ups. Thus, it suffices to follow the transforms

of B along the reduction of singularities of F̂ . Now, from Example 4.4, ∆p(F̂ , B) > 0 if

and only if B is transformed into the weak separatrix of a saddle-node. We are however

in the generalized curve case and we must have ∆p(F̂ , B) = 0. We finally conclude that

∆p(F̂ , (F̂ )0) = 0 by summing up ∆p(F̂ , B) for all branches B ⊂ (F̂ )0.

Reciprocally, note that ∆p(F̂ , (F̂ )0) = 0 implies that ∆p(F̂ , B) = 0 for every branch

B ⊂ (F̂ )0. Since (F̂ )0 is non-empty, Proposition 4.5 ensures that τ(F̂) = 0 and thus F̂
is a foliation of second type. This means that all possible saddle-nodes in the reduction

of F̂ are well-oriented. On the other hand, the weak separatrix of a well-oriented saddle-

node would contribute positively to the polar excess of F̂ , as shown in Example 4.4. This

leads to the conclusion that saddle-nodes do not exist at all and, by definition, F̂ is a

generalized curve at p. □

5. Polar excess and the GSV -index.

The GSV -index was defined by Gómez-Mont, Seade and Verjovsky in [19] for a holo-

morphic vector field on an analytic hypersurface V at (Cn, 0) having isolated singularity.

It is the Poincaré–Hopf index of a differentiable vector field obtained by isotopically dis-

placing the original vector field over the Milnor fiber of V . The formulation below, for

foliations at (C2, 0) having an invariant curve, was introduced by Brunella in [4].

Definition 5.1. Let F be an analytic foliation at
(
C2, 0

)
and C be the union of

some analytic separatrices of F . If ω is a 1-form that induces F and f = 0 is a reduced

equation for C, then it is possible to write a decomposition

gω = kdf + fη,
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where η is a 1-form and g, k ∈ C {x, y} with g and f relatively prime. The GSV -index

of F with respect to C at
(
C2, 0

)
is defined by

GSV c
0 (F , C) = 1

2πi

∫
∂C

g

k
d

(
k

g

)
.

Here ∂C is the intersection C ∩ S3
ϵ , where S3

ϵ is a small sphere centered at 0 ∈ C2,

oriented as the boundary of C ∩B4
ϵ , for a ball B4

ϵ such that S3
ϵ = ∂B4

ϵ .

The superscript “c” in GSV c
0 (F , C) stresses the fact that this definition works in the

convergent category. Nevertheless, we can extended the GSV -index to formal foliations

using the following:

Definition 5.2. Let F̂ be a formal foliation at (C2, 0) and Ĉ be a germ of sepa-

ratrix of F . If ω̂ is a 1-form inducing F̂ and f = 0 is a reduced equation for Ĉ, then, as

in the convergent case, it is possible to write a decomposition

gω̂ = kdf + fη̂

where η̂ is a formal 1-form and g, k ∈ C [[x, y]] with g and f relatively prime. Now, if γ

is a Puiseux parametrization of Ĉ, we define

GSV0(F̂ , Ĉ) = ordt=0
k

g
◦ γ.

If Ĉ = Ĉ0 ∪ Ĉ1 is the union of two disjoint sets of separatrices, then we define the

GSV -index inductively by the formula

GSV0(F̂ , Ĉ) = GSV0(F̂ , Ĉ0) +GSV0(F̂ , Ĉ1)− 2(Ĉ0, Ĉ1)0, (5.1)

where (Ĉ0, Ĉ1)0 stands for the intersection number at 0 ∈ C2.

The relation (5.1) simply follows the relation satisfied in the convergent category as

shown in [4]. Thus, the following lemma is straightforward and justifies a posteriori the

definition.

Lemma 5.3. Let F be a germ of analytic foliation and let C be a union of convergent

separatrices. Then

GSV0 (F , C) = GSV c
0 (F , C) .

Next, we establish a link between the GSV -index and the relative polar excess.

Proposition 5.4. Let F̂ be a germ of singular foliation at p ∈ C2 and F̂ be a

balanced equation of separatrices. If B ⊂ (F̂ )0 is irreducible then

∆rel
p (F̂ , B) = GSVp(F̂ , B) + ((F̂ )∞, B)p.

Proof. Let us write ω = Pdx+Qdy, F̂ = G/H and consider f a reduced equation
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of B. The decomposition gω = kdf + fη gives us

aP + bQ =
k

g

(a∂xf + b∂yf)

H
H +

f

g
(aηx + bηy) ,

where η = ηxdx + ηydy. Let γ be a Puiseux parametrization of B. Since f and g are

relatively prime, g ◦ γ is not identically zero. Moreover, by definition, f ◦ γ = 0. Hence,

for a fixed (a : b) ∈ P1
C, we obtain

ordt=0 (aP + bQ) ◦ γ︸ ︷︷ ︸
(PF̂

(a:b)
,B)p

= ordt=0
k

g
◦ γ︸ ︷︷ ︸

GSVp(F̂,B)

+ordt=0
(a∂xf + b∂yf)

H︸ ︷︷ ︸(
Pd(f/H)

(a:b)
,B

)
p

+ordt=0H ◦ γ︸ ︷︷ ︸
((F̂ )∞,B)p

,

which, after taking generic (a : b), gives the proposition. □

Lemma 5.5. Let B1 and B2 be two branches of (F̂ )0. Then

∆rel
p (F̂ , B1 ∪B2) = ∆rel

p (F̂ , B1) + ∆rel
p (F̂ , B2)− 2(B1, B2)p.

Proof. Let f and g be respectively the equations of B1 and B2. Let γ be a

Puiseux parametrization of B1. For (a : b) ∈ P1
C, we have

(Pd(fg/H)
(a:b) , B1)p = ordt=0

(
a∂x(fg) + b∂y(fg)

H

)
◦ γ

= ordt=0

(
g (a∂xf + b∂yf) + f (a∂xg + b∂yg)

H

)
◦ γ

= ordt=0 (g ◦ γ) + ordt=0

(
a∂xf + b∂yf

H

)
◦ γ

= (B1, B2)p + (Pd(f/H)
(a:b) , B1)p.

Since, by symmetry, the same holds for B2, we get

∆rel
p (F̂ , B1 ∪B2) = (PF̂

(a:b), B1 ∪B2)p − (Pd(fg/H)
(a:b) , B1 ∪B2)p

= (PF̂
(a:b), B1)p + (PF̂

(a:b), B2)p

− (Pd(fg/H)
(a:b) , B1)p − (Pd(fg/H)

(a:b) , B2)p

= (PF̂
(a:b), B1)p − (Pd(f/H)

(a:b) , B1)p

+ (PF̂
(a:b), B2)p − (Pd(g/H)

(a:b) , B2)p

− 2(B1, B1)p

= ∆rel
p (F̂ , B1) + ∆rel

p (F̂ , B2)− 2(B1, B2)p. □

By simple induction on the number of irreducible components, we can extend Propo-

sition 5.4, replacing B1 and B2 by two disjoint sets of separatrices. Moreover, since the

GSV -index satisfies the very same adjunction formula, this result implies that
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Corollary 5.6. For any set of separatrices C ⊂ (F̂ )0, one has

∆rel
p (F̂ , C) = GSVp(F̂ , C) + ((F )∞, C)p.

In order to make a link between the total polar excess of F̂ and its GSV -index, we

will start by providing a connection between the total and the relative polar excess.

Lemma 5.7. Let C ⊂ (F̂ )0 be a set of separatrices. Then

∆p(F̂ , C) = ∆rel
p (F̂ , C)− (C, (F̂ )0\C)p.

Proof. We will present the proof for a branch of separatrix. The general case is

a simple induction based upon Lemma 5.5. As usual, denote F̂ = G/H = g1 · · · gn/H
and let γ be a Puiseux parametrization of the irreducible component B = {g1 = 0} of

(F̂ )0. Let us denote by g the product g2 · · · gn. Then, for (a : b) ∈ P1
C, we have

(Pd(G/H)
(a:b) , B)p = ordt=0

(
a∂xG+ b∂yG

H

)
◦ γ

= ordt=0

(
g

(
a∂xg1 + b∂yg1

H

))
◦ γ

= ordt=0g ◦ γ︸ ︷︷ ︸
(B,(F )0\B)

+ordt=0

(
a∂xg1 + b∂yg1

H

)
◦ γ︸ ︷︷ ︸(

Pd(g1/H)

(a:b)
,B

)
p

,

which ensures the lemma. □

Finally, the combination of Corollary 5.6 and Lemma 5.7 yields the next result,

which expresses the GSV -index in terms of the polar excess index and the balanced

equation of separatrices.

Theorem B. Let F̂ be a germ of singular foliation at (C2, p). Let F̂ be a balanced

equation of separatrices and C be a union of isolated separatrices of F̂ . Then

GSVp(F̂ , C) = ∆p(F̂ , C) + (C, (F̂ )0\C)p − (C, (F̂ )∞)p.

In particular, if F̂ is a generalized curve then

GSVp(F̂ , (F̂ )0) = −((F̂ )0, (F̂ )∞)p.

In the non-dicritical case, the GSV -index and the polar excess index coincide, as

shown in [9]:

Corollary 5.8. If F̂ is non-dicritical and C is its complete set of separatrices,

then

GSVp(F̂ , C) = ∆p(F̂ , C).
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6. The Poincaré problem for dicritical singularities.

We now work with global foliations on P2
C. Let F be an analytic foliation of degree

d having an invariant algebraic curve S of degree d0. In [3] and [4], the sum of the

GSV -indices over S is expressed as

(d+ 2− d0) d0 =
∑

p∈Sing(F)∩S

GSVp (F , S) .

Using the expression of the GSV -index in terms of polar excess given in Theorem B,

we get a control of the degree of the invariant curve d0 in terms of local invariants of the

foliation. We have:

d0 = d+ 2− 1

d0

∑
p∈Sing(F)∩S

GSVp(F , S)

= d+ 2− 1

d0

∑
p∈Sing(F)∩S

(
∆p(F , S) + (S, (F̂p)0\S)p − (S, (F̂p)∞)p

)
,

where, at each point p ∈ Sing(F) ∩ S, we chose a balanced equation F̂p adapted to to

the local branches of S at p. Using Proposition 4.6, we find

Theorem C. Let F be an analytic foliation on P2
C of degree d having an invariant

algebraic curve S of degree d0. Then

d0 ≤ d+ 2 +
1

d0

∑
p∈Sing(F)∩S

[
(S, (F̂p)∞)p − (S, (F̂p)0\S)p

]
, (6.1)

where F̂p is a balanced equation of separatrices adapted to to the local branches of S at p.

Besides, if all singularities of F over S are generalized curves, then the equality holds.

This theorem allows us to recover the main result in [10]:

Corollary 6.1. If (F̂p)∞ = ∅ for all p ∈ Sing(F) ∩ S then d0 ≤ d + 2. This

happens in particular when all such points are non-dicritical.

6.1. A dicritical foliation of degree 1 in P2
C.

As an example, let us consider the foliation of P2
C given by the meromorphic homo-

geneous first integral

ω = d

(
xpzq−p

yq

)
,

where p < q. This is a foliation of degree 1 on P2
C whose generic separatrix has degree q

and is given by xpyq−p − czq = 0. Let us consider S = {xpyq−p − zq = 0}. The foliation

has three singularities: two of them—denoted by a and b on the picture below—are

dicritical, the other one is a saddle.
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Figure 6.1. The foliation of P2
C given by ω = d(xpzq−p/yq).

In this situation, the sum in inequality (6.1) reduces to

(S, (Fa)∞)a − (S, (Fa)0\S)a + (S, (Fb)∞)b − (S, (Fb)0\S)b.

In a neighborhood of a, in the affine chart z = 1, we can choose

F̂a =
xy(xp − yq)

xp − 2yq

as a balanced equation. Thus

(S, (Fa)∞)a − (S, (Fa)0\S)a = (xp − yq, xp − 2yq)0 − (xp − yq, xy)0

= pq − p− q.

On the other hand, in a neighborhood of b and in the affine chart x = 1, F̂b =

zy(zq−p − yq)/(zq−p − 2yq) is a balanced equation of separatrices. Thus

(S, (Fb)∞)b − (S, (Fb)0\S)b = (zq−p − yq, zq−p − 2yq)0 − (zq−p − yq, zy)0

= q2 − qp− 2q + p.

Finally, we get checked the equality

d0︸︷︷︸
=q

= d︸︷︷︸
=1

+2− 1

q
((pq − p− q) + (q2 − qp− 2q + p)).

6.2. The pencil of Lins Neto.

One of the most remarkable counterexamples for the Poincaré’s problem is the pencil

of Lins Neto (see [20]) defined by

Pα = ω + αη

ω =
(
x3 − 1

)
xdy +

(
y3 − 1

)
ydx

η =
(
x3 − 1

)
y2dy +

(
y3 − 1

)
x2dx.

When α ∈ Q (j) where j = e2iπ/3, the foliation Pα of P2
C of degree 4 admits a mero-

morphic first integral whose degree cannot be bounded, although the singular locus

and the local analytical type of the singularities do not depend on α. Actually, when

α ∈ Q (j) \
{
1, j, j2,∞

}
, the singular locus consists of 21 points: 9 of them are non-
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degenerate singularities and the 12 remaining are radial singularities, given in local co-

ordinates (u, v) by d(u/v) = 0. These singularities are the locus of intersection of the 9

lines defined in homogeneous coordinates by(
x3 − y3

) (
x3 − z3

) (
y3 − z3

)
= 0.

The group of automorphisms of Pα is generated by the following five transformations:

[x : y : z] 7→ [y : x : z] , [x : y : z] 7→ [z : y : x] , [x : y : z] 7→ [x : z : y] ,

[x : y : z] 7→
[
jx : j2y : z

]
, [x : y : z] 7→

[
j2x : jy : x

]
.

The action of this group on the radial singular points divides them in 4 classes of 3 points:

{s1 = [0 : 0 : 1] , [0 : 1 : 0] , [1 : 0 : 0]} ,{
s2 = [1 : 1 : 1] ,

[
j : j2 : 1

]
,
[
j2 : j : 1

]}
,{

s3 = [1 : j : 1] , [j : 1 : 1] ,
[
j2 : j2 : 1

]}
,{

s4 =
[
1 : j2 : 1

]
, [j : j : 1] ,

[
j2 : 1 : 1

]}
.

Let us now consider α ∈ Q (j) \
{
1, j, j2,∞

}
and S a generic invariant algebraic curve

of Pα. The intersection of S with the singular locus contains only radial singularities,

because the set of algebraic invariant curves passing through the non-degenerated singu-

larities is finite. Let us denote Ni the number of times that S goes through the singular

point si. This number does not depend on the choice of S. In view of the description

of the group of automorphisms of Pα, for any point s̃i in the same orbit of si, S goes

through s̃i also Ni times. The following lemma is easy:

Lemma 6.2. Let R be the germ of radial foliation xdy − ydx and S be a union of

N invariant curves. Let F be an adapted balanced equation. Then

(S, (F )∞)
0
− (S, (F )0 \S)0 = N2 − 2N.

Therefore, according to Theorem C, we have

d20 − 6d0 =
∑

s∈Sing(S)(Pα)∩S

{(S, (Fs)∞)s − (S, (Fs)0\S)s}

= 3

4∑
i=1

(
N2

i − 2Ni

)
.

Thus, we find

d0 = 3 +

√√√√9 + 3
4∑

i=1

(N2
i − 2Ni). (6.2)

Now, in view of the description in [23], the numbers Ni can be computed in the following

way: let us write α = α1/β1, where α1, β1 ∈ Z [j] are relatively prime. Then
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N1 = N (α1) , N2 = N (β1) , N3 = N (α1 − β1) and N4 = N (α1 + jβ1) ,

where N (a+ jb) = a2 + b2 − ab. Therefore, the radicand in equation (6.2) is

9 + 3
4∑

i=1

(
N2

i − 2Ni

)
= 9 + 3

(
N (α1)

2 − 2N (α1) +N (β1)
2 − 2N (β1)

)
+ 3

(
N (α1 − β1)

2 − 2N (α1 − β1) +N (α1 + jβ1)
2 − 2N (α1 + jβ1)

)
.

This gives

d0 = N (α1) +N (β1) +N (α1 − β1) +N (α1 + jβ1) ,

which is consistent with [28].

7. Topologically bounded invariants of a singularity.

The singularity pxdy− qydx = 0, where p and q are coprime non-negative numbers,

can be desingularized by a blowing-up process following Euclid’s algorithm applied to

the couple (p, q). The algebraic multiplicity of the non-isolated separatrix is min {p, q},
whereas its Milnor number is 1 for any p and q. Thus, neither the length of the whole

reduction process of a foliation nor the algebraic multiplicity of a general invariant curve

can be bounded by a function of the Milnor number. This remark brings us to introduce

the following definition:

Definition 7.1. Let Fol(C2, 0) denote the set germs of singular foliations at

(C2, 0). A numerical datum in Fol(C2, 0) is a function N : Fol(C2, 0) → Z. We say

that the numerical datum N is topologically bounded if there exists a function ψ : N → N
such that, for any foliation F ,

|N (F)| ≤ ψ (µ0 (F)) ,

where µ0 (F) is the Milnor number of F .

Notice that the sum of two topologically bounded numerical data is topologically

bounded. The algebraic multiplicity of a foliation is topologically bounded, since

ν0 (F)
(ν0 (F) + 1)

2
≤ µ0 (F) .

Indeed, if F ∈ Fol
(
C2, 0

)
is given by ω = adx+ bdy then

µ = dimC
C {x, y}
(a, b)

= dimC
C {x, y}
(x, y)

ν × (x, y)
ν

(a, b)
≥ dimC

C {x, y}
(x, y)

ν =
ν (ν + 1)

2
,

where µ = µ0 (F) and ν = ν0 (F). However, as illustrated by the above example,

the length of the reduction process is not topologically bounded. In [15], Corral and

Fernández proved the following:
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Theorem 7.2. Let F be a germ of foliation at (C2, 0) and S be the union of its

formal isolated separatrices. Then the algebraic multiplicity of S and the length of its

reduction process are topologically bounded.

In this section, we intend to extend this result to a wider class of invariant curves.

This is the content of:

Theorem D. Let F be a germ of foliation in C2. For a fixed r ∈ N, let S be

formed by the union of the following curves :

(a) all formal isolated separatrices ;

(b) one copy of non-isolated separatrix attached to each dicritical component of valence

one ;

(c) r copies of non-isolated separatrices attached to each dicritical component of valence

three or greater.

Then the algebraic multiplicity of S and the length of its reduction process are topologically

bounded.

7.1. Topological boundedness for saddle-nodes singularities.

In this section, we are going to prove the following lemma:

Lemma 7.3. The following data, concerning singularities appearing along the re-

duction process, are topologically bounded :

(a) Milnor numbers;

(b) The number of saddle-node and their weak indices.

Proof. Let E1 be a single blowing-up at the singular point p and letD1 = E−1
1 (p).

The following formulas are classical (see [21]):

µp (F) =


ν2p (F)− νp (F)− 1 +

∑
p′∈D1

µp′ (E∗
1F) if E1 is non-dicritical

ν2p (F) + νp (F)− 1 +
∑

p′∈D1

µp′ (E∗
1F) else.

(7.1)

Milnor numbers usually decrease with blowing-ups. Suppose however that, in the reduc-

tion process of F , there is a blowing-up for which this fails. We focus at the first moment

this happens, denoting by E the sequence of blowing-ups done so far and by c the singular

point of E∗F that, once blown-up, produces a singularity with higher or equal Milnor

number. According to formulas (7.1), such blowing-up has to be non-dicritical and the

algebraic multiplicity must satisfy

νc (E
∗F) = 1.

E is an intermediate step in the minimal reduction process, thus c is not a reduced

singularity. Thus, looking at all possible cases, we are limited to the following two:
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(i) (E∗F)c is given by ω = pxdy− qxdx+ · · · . In that case, all Milnor numbers in the

reduction process are 1 or less.

(ii) (E∗F)c is nilpotent and, following [14], is given locally by

d
(
y2 + xn

)
+ xpU (x) dy.

Here µc (E
∗F) = n − 1. One blowing-up yields a singular point with algebraic

multiplicity 2 and Milnor number n. After this point, Milnor numbers decrease.

Anyhow, along the blowing-up process starting at c, they cannnot exceed n.

We therefore conclude that, along the reduction process of F , Milnor numbers cannot

exceed µ0 (F) + 1.

For the second part of the lemma, consider the formal normal form of a saddle-node

singularity:

xp+1dy + y (p− λxp) dx, p ≥ 1.

Its Milnor number and its weak index are both p+1, which gives the topological bound-

edness for the latter. Now, let N be the number of saddle-nodes in the reduction of F .

We are going to prove by induction on the length of the reduction process that

N ≤ µ0 (F) .

If the length is 0, then the singularity is reduced. Thus N ≤ 1 ≤ µ0 (F). Let k ≥ 1

and suppose that the proposition is proved for foliations with reduction process of length

smaller than k. Consider a foliation F with reduction process of length k. Blow-up F
once. The resulting foliation E∗

1F has a finite number of singularities c1, . . . , cp. For

any i = 1, . . . , p, the local foliation (E∗
1F)ci has a reduction process of length less than

k, giving rise to ni saddle-node singularities. Evidently
∑p

i=1 ni = N . Besides, by

induction, ni ≤ µci (E
∗
1F) for i = 1, . . . , p. We have:

(i) If ν0 (F) ≥ 2 then, according to (7.1),

µ0 (F) ≥
p∑

i=1

µci (E
∗
1F) ≥

p∑
i=1

ni = N.

(ii) If ν0 (F) = 1, then either F is of the form ω = pxdy − qxdx+ · · · , and no saddle-

nodes appear in its reduction, or F is nilpotent. In the second case, µ0 (F) ≥ 2

and N ≤ 1 and the inequality also holds. □

7.2. Dicritical components of valences v(D) = 1 and v(D) ≥ 3.

We have the following properties concerning dicritical components of valence one:

Lemma 7.4. The number and the multiplicities of the dicritical components of

valence one are topologically bounded.

Proof. We perform a blowing-up process E in order to reduce all formal isolated

separatrices of F . According to Theorem 7.2, the number of blowing-ups composing E



1443
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is topologically bounded. Then, the dicritical components of valence 1 in the exceptional

divisor of E have topologically bounded multiplicities.

The remaining dicritical singularities of E∗F are of special kind: they are crossed

by at most one isolated separatrix of F , which are smooth and transversal to the divisor

D = E−1(0). If c ∈ D is a singularity of E∗F , then the reduction process of (E∗F)c
cannot have dicritical components of valence three or greater. To see this, we use the

fact that each invariant connected component of the reduction divisor carries an isolated

separatrix, as done in the proof of Lemma 3.4. If such a dicritical component existed,

then we would find isolated separatrices outside D, one or two, respectively if c is a corner

or a non-corner point of D. This is a contradiction, since all isolated separatrices of F
are reduced.

The reduction process of (E∗F)c thus contains only dicritical components of valences

1 or 2 and at most one isolated separatrix of F attached to some invariant component of

multiplicity one. The expression for the algebraic multiplicity given by Proposition 3.3

and Formula (3.2) lead to

νc ((E
∗F)c) =

∑
D dicritical, v(D)=1

ρ (D) + (· · · ) ,

where the dots is an expression that depends only on the saddle-node singularities and

their weak indices. Since these data are topologically bounded, this formula ensures that

the number and multiplicities of dicritical components of valence one are topologically

bounded. □

In what concerns dicritical components of higher valences, we achieve the following:

Corollary 7.5 (of the proof). All dicritical components of valence three or greater

appear after a topologically bounded number of blowing-ups. Besides, their number, mul-

tiplicities and valences are also topologically bounded.

Proof. All dicritical components of valence at least three appear as soon as all

isolated separatrices are desingularized. It then follows from Theorem 7.2 that a topo-

logically bounded number of blowing-ups create them. This is enough to bound their

number and multiplicities. For their valences, it suffices to notice that, for a dicriti-

cal component D, v(D) ≤ ι(D) + 2, where ι(D) is the number of isolated separatrices

originating on D. □

7.3. Proof of Theorem D.

Proof of Theorem D. We observe that, in formulas (7.1), if νp (F) > 2 then

both second degree expressions in νp (F) provide strictly positive integers. Let us then

apply these formulas inductively along the reduction process of F as long as the blown-

up singularities have algebraic multiplicities at least 2. In doing so we are led to an

expression of the form

µ (F) = (· · · ) +
∑
c∈D

µc (E
∗F) ,
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where E is the blowing-up process and D = D−1(0) is the exceptional divisor. The

expression represented by (· · · ) is a positive integer, greater than or equal to the number

of blowing-ups in E. In particular, this number is at most µ (F) and, thus, topologically

bounded. Let c ∈ D and Sc be the local component of the strict transform of S by E.

The multiplicity νc (E
∗F) is equal to 0 or 1. Thus, the foliation (E∗F)c belongs to the

following list:

(i) A regular foliation.

(ii) A simple singularity with two eigenvalues whose quotient is not a positive rational

number, ω = λ1xdy − λ2ydx+ · · · , with λ1/λ2 /∈ Q+.

(iii) A Dulac singularity, ω = xdy−nydx+ · · · , with n ∈ N∗. The normal form is given

by (x+ ayn) dy − nydx. The foliation is dicritical if and only if a = 0. If a ̸= 0

then it has only one regular separatrix.

(iv) A non-degenerated dicritical singularity, ω = pxdy−qydx+ · · · , with p, q ∈ N∗ and

p/q /∈ N ∪ (1/N).

(v) A nilpotent singularity, ω = ydy + · · · .

If the singularity of (E∗F)c provides only isolated separatrices in Sc then, according

to Theorem 7.2, the number of blowing-ups in their reduction process is topologically

bounded. From previous lemmas and results about simple, Dulac, resonnant and nilpo-

tent singularities in [1], [14], [24], [25], the local curve Sc possibly contains a dicritical

separatrix only in the following three cases:

Their analysis depends on whether or not c is a corner of D.

First case: c ∈ D is a non-corner point. Denoting by D the local irreducible component

of D at c, we have the following possibilities:

(i) (E∗F)c is a resonant dicritical singularity of the form pxdy − qydx with p/q /∈
N ∪ (1/N). Then all leaves are singular, except those given by x = 0 and y = 0.

Thus, locally D is defined by x = 0, by y = 0 or is transverse to the foliation.

In all cases, the reduction process will produce a unique dicritical component of

valence 2. So the local trace of Sc reduces to x = 0 or to y = 0, which are isolated

separatrices.

(ii) (E∗F)c is a dicritical Dulac singularity of the form xdy − nydx. Then all leaves

are smooth, given by x = 0 or by y = αxn, with α ∈ C. If D is locally given by
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x = 0, then the local trace of Sc is some leaf y = αxn, which is smooth transverse

to D and thus reduced. If D is of the form y = αxn, then either the local trace of

Sc is x = 0, hence reduced, or it is given by y = βxn with β ̸= α. In the latter

case, the reduction process provides a dicritical component of valence 2, which is

not allowed in the definition of S. Suppose finally that D is not invariant. If it is

transverse to every leaf or tangent to x = 0, then the local trace of S is written as

x (y − αxn) = 0 for some α and is reduced after one blowing-up. If it is tangent to

y = 0, then two cases can occur: if D is tangent to y = 0 with an order n or greater,

then the reduction process of (E∗F)c produces a dicritical component of valence

2. If D is tangent to y = 0 with an order p < n, then the dicritical component D0

appearing in the reduction process of (E∗F)c is of valence 1. However, since the

multiplicity is an additive function, we have

ρ (D0) = p ρ (D) ≥ p.

Lemma 7.4 ensures that ρ (D0) is topologically bounded and so is the integer p.

Now, after p+1 blowing-ups the curves Sc = {y = αxn} and D are separated. So,

Sc becomes reduced after a topologically bounded number of blowing-ups.

(iii) (E∗F)c is a dicritical nilpotent singularity. Then after a topologically bounded

number of blowing-ups, we are led to a resonant or Dulac dicritical singularity

c′. Indeed, according to [24], [25], in this situation, 2p = n = µ ((E∗F)c), so the

integer p is topologically bounded. If c′ is a regular point of the exceptional divisor,

then we are in situations (i) or (ii) above. The case where c′ is a corner will be

treated below.

Second case: c ∈ D is at a corner. Now we denote locally (D)c = D1 ∪D2. The following

subcases occur:

(i) (E∗F)c is a resonant dicritical singularity. The proof goes as in First case, (i). All

leaves except x = 0 and y = 0 are singular and the reduction process produces a

dicritical component of valence 2. Therefore, Sc coincides with one of the isolated

separatrices x = 0 or y = 0.

(ii) (E∗F)c is a dicritical Dulac singularity. Suppose first that both local components

of D are invariant. Then necessarily (D)c has an equation of the form x (y − αxn)

for some α ∈ C. The reduction process produces a dicritical component of valence

2 and Sc contains no dicritical components.

Suppose now that only one local component of (D)c, say D1, is invariant. If D1 =

{x = 0} and D2 is transverse to y = 0, then Sc is of the form y = αxn for some

α ̸= 0. In this situation, one more blowing-up reduces Sc. Suppose next that D2 is

tangent to y = 0. Then two cases can occur: if D2 is tangent to y = 0 with order

at least n, then the reduction process of (E∗F)c produces a dicritical component

of valence 2. On the other hand, if D2 is tangent to y = 0 with order p < n, then

the dicritical component D0 appearing in the reduction of (E∗F)c has valence 1.

The multiplicity of D0 is written
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ρ (D0) = ρ (D1) + pρ (D2) ≥ p.

Lemma 7.4 assures that ρ (D0) is topologically bounded and so is the integer p.

Now, after p + 1 blowing-ups, the curve Sc = {y = αxn} and D2 are separated.

So, Sc is reduced after a topologically bounded number of blowing-ups. If D1 =

{y = αxn} for some α ∈ C, then D2 is transverse to y = 0. Thus, the reduction

process produces a dicritical component of valence 2. Hence Sc is the isolated

separatrix x = 0.

Suppose that both components D1 and D2 are non-invariant. As before, we have

the following alternatives: if neither D1 nor D2 is tangent to y = 0 then one

blowing-up is enough to reduce Sc. If one of the components is tangent to y = 0,

then either the order of tangency is greater than or equal to n and a dicritical

component of valence 2 appears, or it is smaller than n and, then, topologically

bounded.

(iii) (E∗F)c is a dicritical nilpotent singularity. Then after a topologically bounded

number of blowing-ups, we are led either to a resonant or to a Dulac dicritical

singularity. These cases were already treated.

This ends the proof of Theorem D. □

7.4. Consequences to the Poincaré problem.

Theorems C and D allow us to give an answer to the Poincaré problem in the

dicritical case which generalizes the one in [15]:

Theorem E. For every d, r ∈ N there exists N = N(d, r) ∈ N with the following

property : if F is an analytic foliation on P2
C of degree d having an invariant algebraic

curve S of degree d0 such that, for every p ∈ Sing(F) ∩ S, the local component (S)p is

composed by :

(a) any number of isolated separatrices;

(b) at most one separatrix attached to each dicritical component of valence one;

(c) no branches of separatrices attached to dicritical components of valence two;

(d) at most r branches of separatrices attached to each dicritical component of valence

three or greater ;

(e) if p is a radial singularity, at most r branches of separatrices attached to the dicrit-

ical component of valence zero.

Then d0 ≤ N .

Proof. We start by remarking that Bézout’s Theorem for foliations,∑
p∈Sing(F)

µp(F) = d2 + d+ 1,
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gives a bound for the number of points p ∈ Sing(F) as well as for each µp(F) in terms

of d. Besides, Theorem D gives that the reduction process of (S)p has a topologically

bounded length. All we have to do is to find a topological bound to the term (S, (F̂p)∞)p
in Theorem C, where F̂p is a balanced equation adapted to the invariant curve S at

p. Hypotheses (b) and (c) on the structure of (S)p imply that all branches in (F̂p)∞
are associated to dicritical components of valence v(D) ≥ 3. By Lemma 7.5, these

components arise after a topologically bounded number of blowing-ups, their number and

their valences are also topologically bounded. This is enough to conclude that the number

of branches and the length of the reduction process of (F̂p)∞ are both topologically

bounded. In the same way, Sp ∪ (F̂p)∞ has a reduction process of topologically bounded

length. This is enough to bound (S, (F̂p)∞)p in terms of µp(F), and thus in terms

of d. □

In a sense, Theorem E provides the ultimate criterion to obtain a bound of the

degree of an invariant curve from local topological data associated to the singularities of

a foliation. Indeed, the foliations described in Sections 6.1 and 6.2 violate the conclusion

of Theorem E. They appear to be prototypes of foliations from which one can construct

exemples of families of foliations having algebraic invariant curves that do not satisfy

conditions (b), (c), (d) or (e).

8. Topological invariance of the algebraic multiplicity.

Let F1,F2 ∈ Fol(C2, 0) be two local analytic foliations. We say that a germ of

homeomorphism Φ : (C2, 0) → (C2, 0) is a topological equivalence between F1 and F2

if Φ takes leaves of F1 into leaves of F2. The Milnor number (see [5]) of a foliation

and the GSV -index (see [19]) are well known topological invariants. On the other hand,

the topological invariance of the algebraic multiplicity is so far not known. This is true

when F is either a generalized curve foliation (by [5])—in which case all separatrices are

convergent—or a non-dicritical second type foliation with only convergent separatrices

(by [22]).

Let Φ : (C2, 0) → (C2, 0) be a topological equivalence between foliations F1,F2 ∈
Fol(C2, 0). It is clear that if S is a convergent separatrix of F1 then Φ∗S := Φ(S) is

a convergent separatrix for F2. Actually, Φ(S) is an analytic curve as a consequence

of Remmert–Stein Theorem, since Φ(S \ {0}) = Φ(S \ {0}) ∪ {0}. We recall that non-

convergent separatrices appear as the weak separatrices of non-tangent saddle-nodes and

thus are all isolated separatrices. On the other hand, dicritical separatrices converge.

We start by a remark: a topological equivalence respects the “dicritical structure” of

the desingularization. This means that the same combinatory of blowing-ups that desin-

gularizes the dicritical separatrices of F1, when applied to F2, will produce dicritical

components at exactly the same positions. This is a consequence of Zariski’s Equidesin-

gularization Theorem for curves (see for instance [2]). Actually, if D is a dicritical

component of the desingularization of F1, it suffices to take two dicritical separatrices

S1 and S2 attached to D. Zariski’s Theorem gives that they correspond to separatrices

S′
1 and S′

2 of F2 which will be attached to a component D′ produced by the same se-

quence of blowing-ups as D. This argument actually works to any pair of curves passing
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through D, thus D′ will be crossed by infinitely many separatrices and will be dicritical.

We will call D and D′ equivalent dicritical components. This term is also justified by

the following:

Proposition 8.1. Let F1 and F2 be topological equivalent foliations. Let D and

D′ be equivalent dicritical components in their desingularizations. Then D and D′ have

the same valence.

Proof. We look at D and D′ at the very moment they appear in the desingular-

ization process. Denote by F̃1 and F̃2 the transforms of F1 and F2 at this step. We first

notice that if p ∈ D is regular for F̃1 then the Equidesingularization Theorem implies

that the leaf L containing p corresponds, by the topological equivalence, to a smooth

curve L′ crossing D′ transversely at a point p′. The same occurs for all points near p

and this forces q to be a regular point for F̃2. Let us first prove that v(D) ≤ v(D′). This

is evidently true if v(D) = 0. If v(D) = 1, since D′ appears by applying the same se-

quence of blowing-ups that produce D, it arises from a blowing-up at a non-corner point.

Thus v(D′) is 1 at least. The same argument works when v(D) = 2, now D′ also arising

from the blowing-up at a non corner point. Let us now suppose that v(D) > 2. In the

case in which both D and D′ appear from the blowing-up at a non corner point, in order

to proceed towards the desingularization of F1, we will start a sequence of blowing-ups

at v(D)−1 different points in D, which either correspond to singular points of F̃1 over D

or to points where F̃1 and D are tangent. In the first case, a convergent separatrix exists

by the separatrix Theorem [6]. In the second, the tangent leaf gives rise to a convergent

separatrix. Following these separatrices by the topological equivalence, we find v(D)− 1

points over D′ where F̃2 is not desingularized. We conclude therefore that v(D) ≤ v(D′).

The same argument works when D and D′ arise from the blowing-up at a corner point.

In all cases, we have v(D) ≤ v(D′). Finally, inverting the roles of D and D′, we also

have v(D′) ≤ v(D) and this finishes the proof of the proposition. □

The main drawback in dealing with topological equivalences is that they do not

track formal separatrices as these are not realizable geometric objects. Thus, when

considering topological equivalent foliations F1 and F2, it is reasonable to suppose that all

separatrices for at least one of the foliations, say F1, are convergent. With this hypothesis,

given a balanced equation of separatrices F1 for F1, we can choose a balanced equation

F2 for F2 in such a way that Φ∗(F1)0 ⊂ (F2)0 and Φ∗(F1)∞ = (F2)∞, the inclusion

being an equality when all separatrices of F2 are convergent. We can also formulate an

analogous statement for balanced equations adapted to sets of separatrices C of F1 and

Φ∗C of F2.

Now, our idea is to explore the formula in Theorem B. Let C1 be a set of separatrices

of F1—with only convergent separatrices—and F1 be a C1-adapted balanced equation.

Let F2 be a balanced set of separatrices for F2 adapted to C2 = Φ∗C1 as described in

the previous paragraph. In Theorem B, we denote

δ0(Fi, Ci) = −
[
(Ci, (Fi)0 \Ci)0 − (Ci, (Fi)∞)

0

]
, i = 1, 2.

With the notations above, the next result is straightforward:
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Proposition 8.2. If all separatrices of F1 are convergent, then

δ0(F1, C1) ≥ δ0(F2, C2).

Moreover, equality holds if and only if all separatrices of F2 are convergent.

The next result, a consequence of Theorem B, says in particular that the ∆-index

is a topological invariant when both foliations have convergent separatrices.

Proposition 8.3. Suppose that all separatrices of F1 are convergent and let C1

be a set of some of its separatrices. Then

∆p(F1, C1) ≤ ∆p(F2, C2),

where C2 = Φ∗C1. Furthermore, equality holds if and only if all separatrices of F2 are

convergent.

Proof. The result follows straight from the topological invariance of the GSV -

index and from Proposition 8.2. □

We close this article by presenting a result on the topological invariance of the

algebraic multiplicity. It generalizes at a time the results contained in [5] and in [22]

mentioned in the beginning of the section.

Theorem F. Suppose that F1 and F2 are topologically equivalent analytic folia-

tions having only convergent separatrices. Then F1 is of second type if and only if F2 is

of second type. As a consequence, F1 and F2 have the same algebraic multiplicities.

Proof. We start by remarking that a local foliation always has a separatrix which

does not arise as the weak separatrix of a saddle-node. This is the essence of the proof of

the Separatrix Theorem in [6]. Let B1 be such a separatrix for F1 and set B2 = Φ∗B1.

If F1 is of second type then, as a consequence of Proposition 4.5, ∆p(F1, B1) does not

change along the desingularization of B1 and, using Example 4.4, we find ∆p(F1, B1) = 0.

By Proposition 8.3, we also have ∆p(F2, B2) = 0. Proposition 4.5 then gives τ(F2) =

0, which means that F2 is a foliation of second type. Now, since a balanced set of

separatrices for F1 is taken by Φ into a balanced set for F2, both sets have the same

algebraic multiplicity as a consequence of the Equidesingularization Theorem for curves.

Finally, Proposition 3.3 assures that the same will be true for the algebraic multiplicities

of F1 and F2. □
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· · · = 0, Bull. Soc. Math. France, 116 (1988), 459–488.

[15] N. Corral and P. Fernández, Isolated invariant curves of a foliation, Proc. Amer. Math. Soc., 134

(2006), 1125–1132.

[16] E. Esteves and S. Kleiman, Bounds on leaves of one-dimensional foliations, Bull. Braz. Math. Soc.

(N.S.), 34 (2003), 145–169.
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