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Abstract. We study some limit theorems for the law of a generalized
one-dimensional diffusion weighted and normalized by a non-negative function
of the local time evaluated at a parametrized family of random times (which

we will call a clock). As the clock tends to infinity, we show that the initial
process converges towards a new penalized process, which generally depends
on the chosen clock. However, unlike with deterministic clocks, no specific
assumptions are needed on the resolvent of the diffusion. We then give a

path interpretation of these penalized processes via some universal σ-finite
measures.

1. Introduction.

1.1. Penalizations.

The systematic studies of penalizations started in 2003 with the works of Roynette,

Vallois and Yor; see for instance [15], [14] for early papers, and [16] for a monograph

on this subject. The starting point of our study is the following classical penalization

result: if |B| is a standard reflected Brownian motion with local time at 0 denoted by L,

then, for any positive integrable function f and any bounded adapted (with respect to

the filtration of |B|) process (Ft),

lim
t′→+∞

P[Ftf(Lt′)]

P[f(Lt′)]
= P

[
Ft
Mt

M0

]
=: Q[Ft] (1.1)

where M is the classical Azéma–Yor martingale (see [1]):

Mt = f(Lt)|Bt|+
∫ +∞

0

f(x+ Lt)dx, t ≥ 0.

Then, under the new penalized measure Q, the random variable L∞ is finite and the

penalized process is seen to be transient. In fact, its paths may roughly be described

as the concatenation of a weighted reflected Brownian bridge and a three-dimensional

Bessel process; see [14].
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This classical example on the reflected Brownian motion was generalized to many

other processes: we may refer in particular to Debs [5] for random walks, Najnudel,

Roynette and Yor [10] for Markov chains and Bessel processes, Yano, Yano and Yor [20]

for stable processes, or Salminen and Vallois [17] and Profeta [11], [12] for linear diffu-

sions. In most of these papers, a (sometimes implicit but rather strong) condition is made

on the considered process, basically stating that a given quantity is regularly varying.

We shall give a short account of this classical setup at the end of this introduction.

In this paper, we shall focus on local time penalizations for generalized linear diffu-

sions, but without any assumption of regular variations. To do so, we shall replace the

constant time t′ by a clock τ = τλ, i.e., a family of random times parametrized by λ in

a directed set such that τ = τλ tends to +∞ a.s. We will deal, for example, with the

exponential clock τ = eq := e/q, q > 0 for an independent standard exponential random

variable e and with a parameter q > 0 equipped with the decreasing direction; in fact,

eq → +∞ a.s. as q ↓ 0. We shall study limits such as

lim
τ→+∞

P[Ftf(Lτ )]

P[f(Lτ )]

(the limit here is taken along τ = τλ with respect to the parameter λ, and it can also be

understood in the sense of Moore–Smith convergence) and prove in particular that

i) no conditions are needed on the characteristics of the diffusion for the existence of

a limit,

ii) the limit depends, in general, of the chosen clock.

Examples of such results already appear in the literature, dealing with processes con-

ditioned to avoid 0, i.e. with the function f(u) = 1{u=0}. We refer to Knight [8] for

Brownian motions, Chaumont and Doney [4] and Doney [4] for Lévy processes, and Yano

and Yano [19] for diffusions.

1.2. Notations.

We start with some notations which are borrowed from [19]. Let us consider a

generalized one-dimensional diffusion X (in the sense of Watanabe [18]) defined on an

interval I whose left boundary is 0, with scale function s(x) = x and speed measure

dm(x). We assume that the function m : [0,+∞) → [0,+∞] is non-decreasing, right-

continuous, null at 0 and such that

m is


strictly increasing on [0, ℓ′),

flat and finite on [ℓ′, ℓ),

infinite on [ℓ,+∞)

where 0 < ℓ′ ≤ ℓ ≤ +∞. The choice of the right boundary point of I will depend on m;

see Section 7 for a sum-up of the different situations (as well as some examples), or [19,

Section 2] for a detailed explanation. As for the left boundary point, we assume that 0

is regular-reflecting for X. This implies in particular that X admits a local time at 0,

which we shall denote (Lt, t ≥ 0), normalized so that
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Px

[∫ ∞

0

e−qtdLt

]
= rq(x, 0), x ∈ I ′, (1.2)

where rq(x, y) denotes the resolvent density of X with respect to dm(y) and where I ′ is

defined in Section 7 (see also [19, Section 2]). From this formula, we easily obtain the

Laplace transform of the first hitting time of the level 0 by X:

Px[e
−qT0 ] =

rq(x, 0)

rq(0, 0)
, x ∈ I ′, (1.3)

where T0 = inf{t ≥ 0 : Xt = 0}. The right-continuous inverse η0u = inf{t ≥ 0 : Lt > u} of

L is, when considered under P0, a subordinator. We can compute its Laplace exponent

easily by using (1.2), as

Px

[
e−qη0

u

]
= e−u/H(q) with H(q) := rq(0, 0). (1.4)

Let ϕq and ψq be the two classical eigenfunctions associated to X via the integral

equations, for x ∈ [0, ℓ):

ϕq(x) = 1 + q

∫ x

0

dy

∫
(0,y]

ϕq(z)dm(z),

ψq(x) = x+ q

∫ x

0

dy

∫
(0,y]

ψq(z)dm(z). (1.5)

With these notations, the resolvent density of X is given by

rq(x, y) = rq(y, x) = H(q)ϕq(x)

(
ϕq(y)−

ψq(y)

H(q)

)
, 0 ≤ x ≤ y, x, y ∈ I ′,

We denote m(∞) := limx→+∞m(x), π0 := 1/m(∞) and

hq(x) = rq(0, 0)− rq(0, x).

We finally define, following [19],

h0(x) = lim
q↓0

hq(x) = x− π0

∫ x

0

m(y)dy, (1.6)

and we call h0 the normalized zero resolvent.

1.3. Main results.

We now outline the main results of the paper. For simplicity in this introduction,

we assume that ℓ′ = ℓ = ∞ and we take up the following three cases:

Boundary ∞ m(∞)
∫
(1,∞)

xdm(x)

(i) type-1-natural = ∞ = ∞
(ii) type-2-natural <∞ = ∞
(iii) entrance <∞ <∞
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For instance, the Brownian motion reflected at 0 is an example of case (i), where π0 = 0

and h0(x) = x.

Let F 0
t = σ(Xs : s ≤ t) and Ft = F 0

t+. Let L1
+ denote the set of non-negative

functions f on [0,∞) such that
∫∞
0
f(u)du < ∞. For each choice of a clock τ = τλ

parametrized by λ and a function f ∈ L1
+, we shall find a positive function ρ(λ), a

supermartingale Nf and a martingale Mf with respect to (Ft) such that the following

convergences hold: for any t > 0 and any bounded adapted process (Ft), we have

ρ(λ)Px[Ftf(Lτλ); t < τλ] −→
τ=τλ→∞

Px[FtN
f
t ] and ρ(λ)Px[Ftf(Lτλ)] −→

τ=τλ→∞
Px[FtM

f
t ].

From these formulae we can obtain the penalization limits of the form

Px[Ftf(Lτ ); t < τ ]

Px[f(Lτ )]
−→
τ→∞

Px

[
Ft
Nf

t

Nf
0

]
and

Px[Ftf(Lτ )]

Px[f(Lτ )]
−→
τ→∞

Px

[
Ft
Mf

t

Mf
0

]

which allow to construct new (sub-)probabilities. Note that Nf
t and Mf

t may differ

according to a particular choice of a clock.

We shall study such penalization limits with four different clocks as below.

1.3.1. The exponential clock (see Theorem 2.4).

Recall that e denotes a standard exponential random variable which is independent

of the considered diffusion X and eq = e/q with a parameter q > 0. We may adopt

{eq : q > 0} as a clock since eq → ∞ a.s. as q ↓ 0.

Here we assume for notational simplicity that e is defined on the same probability

space as X; in particular, the expectations are taken on X and eq = e/q at the same

time. Note that eq is independent of σ(
∪

t Ft) because the filtration (Ft) is generated

by X.

Theorem 1.1. Let f ∈ L1
+ and x ≥ 0. For any t > 0 and any bounded adapted

process (Ft),

H(q)Px

[
Ftf(Leq ); t < eq

]
−→
q↓0

Px

[
FtN

h0,f
t

]
and H(q)Px

[
Ftf(Leq )

]
−→
q↓0

Px

[
FtM

h0,f
t

]
where the Px-supermartingale Nh0,f and the Px-martingale Mh0,f are defined by

Nh0,f
t = h0(Xt)f(Lt) +

∫ +∞

0

f(Lt + u)du, t ≥ 0 (1.7)

and

Mh0,f
t = Nh0,f

t + π0

∫ t

0

f(Lu)du, t ≥ 0. (1.8)

1.3.2. The hitting time clock (see Theorem 3.3).

For a ∈ I, let Ta = inf{t ≥ 0 : Xt = a} denote the first hitting time of a by X. We

may adopt {Ta : a ≥ 0} as a clock since Ta → ∞ a.s. as a→ ∞.
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Theorem 1.2. Assume that ∞ is natural. Let f ∈ L1
+ and x ≥ 0. For any t > 0

and any bounded adapted process (Ft),

aPx[Ftf(LTa); t < Ta] −→
a↑+∞

Px

[
FtM

s,f
t

]
and aPx[Ftf(LTa)] −→

a↑+∞
Px

[
FtM

s,f
t

]
where Ms,f is the Px-martingale defined by

Ms,f
t = Xtf(Lt) +

∫ +∞

0

f(Lt + u)du, t ≥ 0. (1.9)

(Here by the superscript s we mean the scale function s(x) = x.)

1.3.3. The inverse local time clock (see Theorems 4.5 and 4.7).

For a ≥ 0, let (La
t , t ≥ 0) denote the local time of X at level a, and define its

right-continuous inverse:

ηau = inf{t ≥ 0, La
t > u}.

We may adopt as a clock {ηau : a ≥ 0} for a fixed u > 0, since ηau ≥ Ta → ∞ a.s. as

a→ ∞.

Theorem 1.3. Assume that ∞ is natural. Let f ∈ L1
+, x ≥ 0 and u > 0. For any

t > 0 and any bounded adapted process (Ft),

aPx

[
Ftf(Lηa

u
); t < ηau

]
−→
a↑+∞

Px

[
FtM

s,f
t

]
and aPx

[
Ftf(Lηa

u
)
]

−→
a↑+∞

Px

[
FtM

s,f
t

]
where Ms,f is the Px-martingale defined above.

We obtain here the same penalization limit as that of Theorem 1.2. In spite of this

fact, the proofs of the two theorems are quite different; we know that ηau
law
= Ta + η̃au

where η̃au is the inverse local time at a of (an independent copy of) X started at a but

this fact cannot reduce Theorem 1.3 to Theorem 1.2.

We may also adopt as a clock {ηau : u ≥ 0} for a fixed a > 0, since ηau → ∞ a.s. as

u→ ∞. For this clock we only consider the weights f(Lηa
u
) for f(u) = e−βu.

Theorem 1.4. Let x, a ≥ 0 and β > 0. For t > 0 and any bounded adapted

process (Ft),

eβu/(1+aβ)Px

[
Fte

−βLηa
u ; t < ηau

]
−→
u↑+∞

Px[FtM
β,a
t ]

and

eβu/(1+aβ)Px

[
Fte

−βLηa
u

]
−→
u↑+∞

Px[FtM
β,a
t ]

where Mβ,a is the Px-martingale defined by
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Mβ,a
t =

1 + β(Xt ∧ a)
1 + βa

exp

(
−βLt +

β

1 + βa
La
t

)
, t ≥ 0.

1.4. Comparison among the penalized measures.

Let f ∈ L1
+. We denote by Qh0,f

x the probability measure such that for any t > 0,

Qh0,f
x (A) = Px

[
1A
Mh0,f

t

Mh0,f
0

]
, A ∈ Ft.

We also define Qs,f
x (resp. Qβ,a

x ) by replacingMh0,f byMs,f (resp.Mβ,a); when we speak

of Ms,f or Qs,f
x we always assume ∞ is natural. Let us compare these three measures.

We assume for simplicity that
∫∞
0
f(u)du = 1 and we notice that Mh,f

0 = Nh,f
0 = 1 for

both h = h0 and h = s.

When π0 = 0, we have h0 = s and hence the processes Mh0,f and Ms,f agree,

which implies Qh0,f
x = Qs,f

x . Therefore, in this specific situation, Theorems 1.1, 1.2

and 1.3 yield the same penalized process. This is for instance the case for the reflected

Brownian motion. When π0 > 0, i.e., 0 is positive recurrent, the two processesMh0,f and

Ms,f disagree; they can be considered to be different generalizations of the Azéma–Yor

martingales.

Let us focus on the laws of the total local time L∞. The aim of the penalization

procedure was to reduce the local time of the original process, so we shall check, for each

case, if the strength of the penalization was strong enough to make the total local time

of the penalized process finite. For simplicity we only consider the case x = 0. For u ≥ 0,

from the optional stopping theorem,

Qh0,f
0 (Lt ≥ u) = P0

[
Mh0,f

t 1{Lt≥u}

]
= P0

[
Mh0,f

η0
u

1{η0
u≤t}

]
, (1.10)

and then from the monotone convergence theorem,

Qh0,f
0 (L∞ ≥ u) = lim

t→∞
Qh0,f

0 (Lt ≥ u) = P0

[
Mh0,f

η0
u

]
. (1.11)

By definition of Mh0,f , since Xη0
u
= 0 and since Lη0

u
= u,

P0

[
Mh0,f

η0
u

]
=

∫ +∞

u

f(y)dy + π0 P0

[∫ η0
u

0

f(Lr)dr

]
.

By the change of variables r = η0s and since P0[η
0
u] = m(∞)u,

π0 P0

[∫ η0
u

0

f(Lr)dr

]
= π0 P0

[∫ u

0

f(s)dη0s

]
= π0m(∞)

∫ u

0

f(s)ds.

We therefore deduce that{
Qh0,f

0 (L∞ ∈ du) = f(u)du (if π0 = 0),

Qh0,f
0 (L∞ = ∞) = 1 (if π0 > 0).
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In other words, when π0 = 0, we went from an original process spending an infinite

amount of time at 0 to a penalized process whose total local time at 0 is finite. A similar

analysis shows that:

Qs,f
0 (L∞ ∈ du) = f(u)du (in any case π0 = 0 or π0 > 0).

By the same argument as (1.10)–(1.11), we can obtain

Qβ,a
0 (L∞ ≥ u) = P0

[
Mβ,a

η0
u

Mβ,a
0

]
= exp(−βu)P0

[
exp

(
β

1 + βa
La
η0
u

)]
.

Then, by a direct adaptation of the proof of Lemma 4.1 and by analytic continuation,

we obtain

P0

[
exp

(
λLa

η0
u

)]
= exp

(
λu

1− λa

)
, λ < 1/a.

Hence we deduce that Qβ,a
0 (L∞ ≥ u) = 1 for all u > 0, from which we conclude that

Qβ,a
0 (L∞ = ∞) = 1 (in any case π0 = 0 or π0 > 0).

Finally, we see that the three cases we have studied provide three different behaviors:

(i) Qs,f
0 is a strong penalization: Qs,f

0 (L∞ <∞) = 1 whatever the case.

(ii) Qh0,f
0 is an intermediate penalization: Qh0,f

0 (L∞ <∞) = 1 or 0 according to π0.

(iii) Qβ,a
0 is a weak penalization: Qβ,a

0 (L∞ <∞) = 0 whatever the case.

1.5. The case of a constant clock.

One of the most interesting features of the previous theorems is their universality:

the results we obtain are the same for any diffusions, and no conditions are imposed on

their characteristics. Such universality is no longer true for constant clocks.

Assume for instance that the diffusion X is recurrent, with ∞ a natural boundary.

Then, to get the convergence

Px[Ftf(Lt′)]

Px[f(Lt′)]
−→
t′→∞

Px

[
Ft
Ms,f

t

Ms,f
0

]
(1.12)

like in the reflected Brownian case (with Ms,f given by (1.9)), one needs to add an extra

assumption. A sufficient condition is given by Salminen–Vallois [17], who require that

the (normalized) Lévy measure ν of the subordinator η0 be subexponential. (1.13)

It may be shown that (1.13) holds for instance if the function 1/(qH(q)) is regularly

varying at q → 0+ with exponent in (0, 1). We refer here to Profeta [11], where other

conditions are also discussed.
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If such extra assumptions are not fulfilled, then generally the martingale we obtained

is different and the asymptotics of Px[f(Lt′)] depends on the function f (as in Theorem

1.4). We give below two examples.

(i) Take to simplify f(u) = 1{u=0}. Then, under Salminen–Vallois’ condition (1.13),

Px(T0 > t′) ∼
t′→∞

x ν((t′,+∞)) and
Px[Ft1{T0>t′}]

Px(T0 > t′)
−→
t′→∞

Px

[
Ft
Xt

x
1{T0>t}

]
which is a special instance of (1.12). If we now consider an Ornstein–Uhlenbeck

process Z with parameter γ > 0, for which their condition (1.13) on ν does not

hold since for ε small enough

lim
x→+∞

eεxν(x,+∞) = 0 (instead of +∞),

then

Px(T0 > t′) ∼
t′→∞

2x

√
γ

π
e−γt′ and

Px[Ft1{T0>t′}]

Px(T0 > t′)
−→
t′→∞

Px

[
Ft
Zt

x
eγt 1{T0>t}

]
,

in which case the structure of the martingale is different.

(ii) Assume now that X is a Brownian motion reflected on [0, 1] and take f(u) = e−αu

with α > 0. Then

Px[e
−αLt′ ] ∼

t′→∞
κ e−r2t′ cos(r

√
2(1− x))

where r is defined as the unique solution in (0, π/(2
√
2)) of the equation α =

r
√
2 tan(r

√
2), and κ is an explicit constant. In this case, the asymptotics depend

on the chosen weight, i.e. on α here. This yields thus a martingale different from

(1.9)

Px[Fte
−αLt′ ]

Px[e−αLt′ ]
−→
t′→∞

Px

[
Ft e

r2t−αLt
cos

(
r
√
2(1−Xt)

)
cos

(
r
√
2(1− x)

) ]
.

Such a result may be generalized to other reflected diffusions on [0, 1], under the

assumption that the analytic continuation of H(q) is smaller (at infinity) than a

negative power of |q| on a given strip on the complex plane, see Profeta [12].

1.6. Organization.

The remaining of this paper is organized as follows. The local time penalizations

are studied with an independent exponential clock in Section 2, then with a hitting time

clock in Section 3 and finally with inverse local time clocks in Section 4. In Section 5,

we discuss some features of the penalized processes, and give a path decomposition via

some universal σ-finite measures. In Section 6, we characterize the limit measure for an

exponential weight, in which case the penalized process remains a generalized diffusion.

The final section, Section 7, is an appendix on our boundary classification, with some

examples.



211

Local time penalizations with various clocks for one-dimensional diffusions 211

2. Local time penalization with an exponential clock.

The proof of Theorem 1.1 will be decomposed in three parts. We shall first study

the law of Leq , then obtain some a.s. convergence results, and finally extend them to get

the L1 convergence. Once the law of Leq has been computed via the excursion theory,

the method consists in decomposing Px[f(Leq )|Ft] according to {t < eq} or {t ≥ eq},
and then studying both limits separately.

2.1. The law of Leq .

We start by computing Px[f(Leq )].

Lemma 2.1. Let f be a non-negative measurable function. Let q > 0 and x ∈ I.

Then

Px[f(Leq )] =
1

H(q)

{
hq(x)f(0) +

rq(x, 0)

rq(0, 0)

∫ ∞

0

e−u/H(q)f(u)du

}
. (2.1)

Proof. Using the excursion theory, we have, when starting the diffusion at 0:

P0

[∫ ∞

0

f(Lt)qe
−qtdt

]
= P0

[∑
u

∫ η0
u

η0
u−

f(u)qe−qtdt

]

= P0

[∑
u

f(u)e−qη0
u−

(
1− e−qT0(p(u))

)]

where η0u denotes the inverse local time defined around (1.4), p the excursion point process

and T0(p(s)) = η0u − η0u− the length of the excursion of p(s). Now, denoting by n the

Itô’s excursion measure, we have

n
[
1− e−qT0

]
=

1

H(q)
, (2.2)

which follows from (1.4) and the formula η0u =
∑

s≤u T0(p(s)). Using the Master Formula

(see [13, p.475]), we further obtain:

P0

[∫ ∞

0

f(Lt)qe
−qtdt

]
= P0

[∫ ∞

0

f(u)e−qη0
udu

]
n
[
1− e−qT0

]
=

∫ ∞

0

f(u)e−u/H(q)du · 1

H(q)
.

Here we used (1.4) and (2.2). The Markov property then yields the announced result for

any starting point x ∈ I:

Px[f(Leq )] = Px

[∫ ∞

0

f(Lt)qe
−qtdt

]
= Px

[∫ T0

0

f(Lt)qe
−qtdt

]
+ Px

[
e−qT0

]
P0

[∫ ∞

0

f(Lt)qe
−qtdt

]
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= f(0)

{
1− rq(x, 0)

rq(0, 0)

}
+
rq(x, 0)

rq(0, 0)
·
∫ ∞

0

f(u)e−u/H(q)du · 1

H(q)
.

where we used (1.3) and the fact that Lt = 0 for t ≤ T0. □

Letting q ↓ 0, we then deduce the following formulae in the transient and positive

recurrent cases. (Note that in the null recurrent case, the limit equals +∞).

Theorem 2.2. Let f be a non-negative measurable function and let x ∈ I. Then

the following assertions hold :

(i) If ℓ <∞, i.e., 0 is transient, then

Px[f(L∞)] =
1

ℓ

{
xf(0) +

(
1− x

ℓ

)∫ ∞

0

e−u/ℓf(u)du

}
. (2.3)

(ii) If π0 > 0, i.e., 0 is positive recurrent, then

Px

[∫ ∞

0

f(Lt)dt

]
=

1

π0

{
h0(x)f(0) +

∫ ∞

0

f(u)du

}
. (2.4)

Proof. (i) We first suppose that f is bounded and set g = sup{t : Xt = 0}. We

see that, almost surely, f(Leq ) = f(Lg) = f(L∞) for q > 0 small enough. Thus

Px[f(Leq )] −→
q↓0

Px[f(L∞)]

by the dominated convergence theorem (here we do not need continuity of f). Equation

(2.3) then follows by letting q ↓ 0 in (2.1). To remove the boundedness assumption, it

remains to apply Equation (2.3) with f ∧ n and then let n→ ∞.

(ii) We may rewrite (2.1) as

Px

[∫ ∞

0

f(Lt)e
−qtdt

]
=

1

qH(q)

{
hq(x)f(0) +

rq(x, 0)

rq(0, 0)

∫ ∞

0

e−u/H(q)f(u)du

}
.

Equation (2.4) then follows by letting q ↓ 0 and applying the monotone convergence

theorem. □

2.2. A.s. convergence for the exponential clock.

Recall that eq is independent of σ(
∪

t Ft).

Lemma 2.3. Let f ∈ L1
+ and x ∈ I. For q > 0, set

Nq
t = H(q)Px

[
f(Leq )1{t<eq}|Ft

]
, Mq

t = H(q)Px

[
f(Leq )|Ft

]
and set

Nh0,f
t = h0(Xt)f(Lt) +

(
1− Xt

ℓ

)∫ ∞

0

e−u/ℓf(Lt + u)du, (2.5)

Mh0,f
t = Nh0,f

t +Ah0,f
t ,
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Ah0,f
t = π0

∫ t

0

f(Lu)du (2.6)

(notice that (1.7) and (1.8) are the special cases for ℓ = ℓ′ = ∞ of (2.5) and (2.6),

respectively). Then the following assertions hold :

(i) Nq
t → Nh0,f

t and Mq
t →Mh0,f

t , Px-a.s. as q ↓ 0;

(ii) (Nh0,f
t ) is a Px-supermartingale.

Proof. In what follows in this section we sometimes write to simplify Nt, Mt and

At for N
h0,f
t , Mh0,f

t and Ah0,f
t , respectively.

(i) Since (Lt) is an additive functional and eq an exponential random variable, we

have

Nq
t = H(q)e−qt PXt [f(a+ Leq )]

∣∣
a=Lt

= e−qt

{
hq(Xt)f(Lt) +

rq(Xt, 0)

rq(0, 0)

∫ ∞

0

e−u/H(q)f(Lt + u)du

}
where we have used Lemma 2.1 with f(a + ·) ∈ L1

+. It is now clear that Nq
t −→

q↓0
Nt,

Px-a.s. Since

Aq
t :=Mq

t −Nq
t

= H(q)Px[f(Leq )1{eq≤t}|Ft]

= qH(q)

∫ t

0

f(Lu)e
−qudu,

we obtain Aq
t −→

q↓0
At and M

q
t −→

q↓0
Mt, Px-a.s.

(ii) Since for s ≤ t we have 1{t<eq} ≤ 1{s<eq}, we easily see that (Nq
t ) is a Px-

supermartingale. For s ≤ t, we apply Fatou’s lemma to obtain

Px[Nt|Fs] ≤ lim inf
q↓0

Px[N
q
t |Fs] ≤ lim inf

q↓0
Nq

s = Ns,

which shows that (Nt) is a Px-supermartingale. □

2.3. L1 convergence for the exponential clock.

Theorem 2.4. Let f ∈ L1
+ and x ∈ I.

(i) For any finite stopping time T , there is the L1 convergence

Nq
T −→

q↓0
Nh0,f

T in L1(Px).

Consequently, for any bounded adapted process (Ft), it holds that

lim
q↓0

H(q)Px[FT f(Leq );T < eq] = Px[FTN
h0,f
T ].
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(ii) Assume furthermore that

Px

[∫ T

0

f(Lu)du

]
<∞. (2.7)

Then, we have

Mq
T −→

q↓0
Mh0,f

T in L1(Px), (2.8)

and for any bounded adapted process (Ft), it holds that

lim
q↓0

H(q)Px[FT f(Leq )] = Px[FTM
h0,f
T ].

(iii) Any bounded stopping time satisfies (2.7). In particular,

Mh0,f
t = h0(Xt)f(Lt) +

(
1− Xt

ℓ

)∫ ∞

0

e−u/ℓf(Lt + u)du+ π0

∫ t

0

f(Lu)du

is a Px-martingale and the identity Nh0,f =Mh0,f −Ah0,f may be regarded as the

Doob–Meyer decomposition of the supermartingale Nh0,f .

Proof. (i) Observe first by Fatou’s lemma that

Px[NT ] ≤ lim inf
n→∞

Px[NT∧n] ≤ Px[N0] <∞.

Let us compute Nq
T . We have

Nq
T = e−qThq(XT )f(LT ) + e−qT rq(XT , 0)

rq(0, 0)

∫ ∞

0

e−u/H(q)f(LT + u)du

= (I)q + (II)q.

We write similarly

NT = h0(XT )f(LT ) +

(
1− XT

ℓ

)∫ ∞

0

e−u/ℓf(LT + u)du

= (I) + (II).

Since (II)q ≤
∫∞
0
f(u)du, we may apply the dominated convergence theorem to obtain

(II)q → (II) in L1(Px).

If π0 = 0, then we have (I)q ≤ XT f(LT ) = h0(XT )f(LT ) ≤ NT . If π0 > 0 and

ℓ′ is regular-reflecting, then we have h0(x) ≥ cx with c = h0(ℓ
′)/ℓ′ > 0, since h0(x) is

concave. We now have (I)q ≤ XT f(LT ) ≤ c−1h0(XT )f(LT ) ≤ c−1NT . In both cases,

since Px[NT ] ≤ Px[N0] <∞, we may apply the dominated convergence theorem to obtain

(I)q → (I) in L1(Px).

If π0 > 0 and ℓ′ is either entrance or natural, we have (I)q ≤ XT f(LT ). Since we

see by (ii) of Lemma 2.3 that
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Px[XT f(LT )] ≤ Px[N
s,f
T ] ≤ Px[N

s,f
0 ] = xf(0) +

(
1− x

ℓ

)∫ ∞

0

e−u/ℓf(u)du <∞,

we may apply the dominated convergence theorem to obtain (I)q → (I) in L1(Px). There-

fore we have obtained the former assertion. For the latter assertion, we have

H(q)Px[FT f(Leq );T < eq] = Px[FTN
q
T ] −→

q↓0
Px[FTNT ].

(ii) To prove (2.8), it suffices to observe that by (2.7), we have
∫ T

0
f(Lu)e

−qudu →∫ T

0
f(Lu)du in L1(Px). This shows that Aq

T → AT in L1(Px), which implies Mq
T → MT

in L1(Px).

(iii) Since

q2
∫ ∞

0

Px

[∫ t

0

f(Lu)du

]
e−qtdt = Px

[∫ ∞

0

f(Lu)qe
−qudu

]
= Px

[
f(Leq )

]
<∞

and since t 7→ Px[
∫ t

0
f(Lu)du] is increasing, we see that Px[

∫ t

0
f(Lu)du] <∞ for all t ≥ 0.

Thus (2.8) holds for all constant times, which implies that Mh0,f is a martingale. □

Remark 2.5. As mentioned in the Introduction, if ℓ′ is type-1-natural, then the

identity (2.6) becomes

Mh0,f
t = Xtf(Lt) +

∫ ∞

0

f(Lt + u)du,

which is nothing else but the Azéma–Yor martingale ([1]). In this sense we may regard the

identity (2.6) as a generalization of the Azéma–Yor martingale. Another generalization

will be given in Theorem 3.3.

Remark 2.6. If we take f(u) = 1{u=0}, we have

Mh0,f
t = h0(Xt)1{T0>t} + π0(T0 ∧ t).

In particular, from the identity Px[M
h0,f
0 ] = Px[M

h0,f
t ], we obtain

h0(x) = Px[h0(Xt);T0 > t] + π0Px[T0 ∧ t],

which is nothing else but the first assertion of Theorem 6.4 of [19].

3. Local time penalization with a hitting time clock.

In this section we assume that ℓ (= ℓ′) is either entrance or natural. Since any point

in [0, ℓ) is accessible but ℓ is not, we have

Px(Ta → ∞ as a ↑ ℓ) = 1.

We start by computing the law of LTa using the formula (2.3) for the stopped process

at a. We then prove a.s. and L1 convergence results upon separating the cases {t < Ta}
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and {t ≥ Ta} and using some estimates on the cumulative distribution function of Ta.

3.1. A.s. convergence for hitting times clocks.

We start by computing the quantity Px[f(LTa)].

Lemma 3.1. Let f ∈ L1
+ and x ∈ I. Then, for any a ∈ I with x < a,

Px[f(LTa)] =
1

a

{
xf(0) +

(
1− x

a

)∫ ∞

0

e−u/af(u)du

}
. (3.1)

Proof. Let Pa
x denote the law of X·∧Ta under Px. Then we have

Px[f(LTa)] = Pa
x[f(L∞)].

Since {X,Pa
x} is a diffusion process on [0, a] where a is a regular-absorbing boundary, we

may use (i) of Theorem 2.2 and obtain (3.1). □

Lemma 3.2. Let f ∈ L1
+ and x ∈ I. For any a ∈ I with x < a, set

Na
t = aPx

[
f(LTa)1{t<Ta}|Ft

]
, Ma

t = aPx[f(LTa)|Ft]

and

Ms,f
t = Xtf(Lt) +

(
1− Xt

ℓ

)∫ ∞

0

e−u/ℓf(Lt + u)du. (3.2)

Then the following assertions hold :

(i) Na
t →Ms,f

t and Ma
t →Ms,f

t , Px-a.s. as a ↑ ℓ;

(ii) (Ms,f
t ) is a Px-supermartingale and is a local Px-martingale.

Proof. In what follows in this section we sometimes write to simplify Mt for

Ms,f
t .

(i) Since f(b+ ·) ∈ L1
+, we have, by Lemma 3.1,

Na
t = a PXt [f(b+ LTa)]|b=Lt

1{t<Ta}

=

{
Xtf(Lt) +

(
1− Xt

a

)∫ ∞

0

e−u/af(Lt + u)du

}
1{t<Ta}.

Using that Ta → ∞ as a ↑ ℓ, we then deduce that Na
t →Mt, Px-a.s. Set

Aa
t =Ma

t −Na
t = af(LTa

)1{Ta≤t}.

Since Aa
t → 0, Px-a.s., we further obtain that Ma

t →Mt, Px-a.s.

(ii) In the same way as (ii) of Lemma 2.3, we can see that (Mt) is a Px-

supermartingale.

It is obvious that (Ma
t ) is a Px-martingale. Let {an} be a sequence of I such that

an ↑ ℓ. If we take σn = inf{t : Xt > an}, we have Aa
σn∧t = af(LTa)1{Ta≤σn∧t} = 0 for
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any a > an, so that we have Ma
σn∧t → Mσn∧t in L1(Px) as a ↑ ℓ. This shows that (Mt)

is a local Px-martingale. □

3.2. L1 convergence for hitting times clocks.

Theorem 3.3. Let f ∈ L1
+ and x ∈ I.

(i) For any finite stopping time T , there is the L1 convergence

Na
T −→

a↑ℓ
Ms,f

T in L1(Px). (3.3)

Consequently, for any bounded adapted process (Ft), it holds that

aPx[FT f(LTa);T < Ta] −→
a↑ℓ

Px

[
FTM

s,f
T

]
.

(ii) Suppose furthermore that ℓ is natural. Then, for any f ∈ L1
+ and for any bounded

stopping time T , we have

Ma
T −→

a↑ℓ
Ms,f

T in L1(Px) (3.4)

and for any bounded adapted process (Ft), it holds that

aPx[FT f(LTa)] −→
a↑ℓ

Px

[
FTM

s,f
T

]
. (3.5)

In particular, Ms,f is a Px-martingale.

Proof. We start with Point (i). We have

Na
T = XT f(LT )1{T<Ta} +

(
1− XT

a

)∫ ∞

0

e−u/af(LT + u)du 1{T<Ta},

MT = XT f(LT ) +

(
1− XT

ℓ

)∫ ∞

0

e−u/ℓf(LT + u)du.

Since Na
T ≤MT and since

Px[MT ] ≤ lim inf
n→∞

Px[MT∧n] ≤ Px[M0] <∞,

we may apply the dominated convergence theorem to obtain (3.3). The remaining asser-

tion is obvious.

To prove Point (ii), we shall rely on the following Lemma:

Lemma 3.4. Suppose that ℓ is natural. Then

aPx(Ta ≤ t) −→
a↑ℓ

0 for all t ≥ 0. (3.6)

Proof. If ℓ <∞, i.e., ℓ is type-3-natural, then (3.6) is obvious.

Suppose ℓ = ∞. Since the Laplace transform of Ta may be written as a ratio of

eigenfunctions, we have
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aPx(Ta ≤ t) ≤ aetPx

[
e−Ta

]
= etϕ1(x) ·

a

ϕ1(a)
.

Going back to the integral equation (1.5) of ϕ1 and using that ℓ = ∞ is natural, we

deduce that

ϕ1(a) = 1 +

∫ a

0

dx

∫
(0,x]

ϕ1(y)dm(y) ≥
∫ a

0

dx

∫
(0,x]

dm(y) −→
a↑ℓ

∞

and, for a > 1,

ϕ′1(a) ≥
∫
(0,a]

dm(x)

∫ x

0

ϕ′1(y)dy ≥ ϕ′1(1)

∫
(1,a]

dm(x)

∫ x

1

dy −→
a↑ℓ

∞.

Thus, by the l’Hôpital’s rule, we obtain a/ϕ1(a) → 0 as a ↑ ℓ = ∞ which yields (3.6). □

We now come back to the proof of Point (ii) of Theorem 3.3. Suppose that f ∈ L1
+

is bounded. Since Aa
T → 0, Px-a.s. and since

Px[A
a
T ] ≤ a∥f∥∞Px(Ta ≤ T ) −→

a↑ℓ
0,

we see that Aa
T → 0 in L1(Px). Hence we obtain (3.4) and (3.5) in this special case.

We now see that Px[M
s,f
t ] = Px[M

s,f
0 ], i.e.,

Px

[
Xtf(Lt) +

(
1− Xt

ℓ

)∫ ∞

0

e−u/ℓf(Lt + u)du

]
= xf(0) +

(
1− x

ℓ

)∫ ∞

0

e−u/ℓf(u)du (3.7)

holds for all t ≥ 0 and all bounded f ∈ L1
+. By considering f ∧ n, taking n → ∞ and

applying the monotone convergence theorem, we can drop the boundedness assumption

and obtain (3.7) for all t ≥ 0 and all f ∈ L1
+. By (ii) of Lemma 3.2, we see, for any

f ∈ L1
+, that (M

s,f
t ) is a Px-supermartingale with constant expectation, which turns out

to be a Px-martingale.

Let f ∈ L1
+. Since (Ms,f

t ) is a Px-martingale, we may apply the optional stopping

theorem to see that

Px[A
a
T ] = Px[XTaf(LTa);Ta ≤ T ]

≤ Px[MTa ;Ta ≤ T ]

= Px[MT ;Ta ≤ T ] −→
a↑ℓ

0.

Since Aa
T → 0, Px-a.s., we see that Aa

T → 0 in L1(Px). Hence we obtain (3.4) and (3.5)

in the general case. □

Remark 3.5. Suppose ℓ is entrance. We claim that M = Ms,f is not a true

Px-martingale. Indeed, suppose M were a Px-martingale. On the one hand, we would

have
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Px[Mη0
u
] = lim

t→∞
Px

[
Mη0

u∧t1{η0
u≤t}

]
=M0 = xf(0) +

∫ ∞

0

f(r)dr.

On the other hand, since Xη0
u
= 0 and ℓ = ∞, we have

Px[Mη0
u
] =

∫ ∞

u

f(r)dr −→
u→∞

0,

which would be a contradiction. Note that in the special case f(u) = 1{u=0} and Ms,f
t =

Xt1{T0>t} this result has already been obtained in Theorem 6.5 of [19] in other words:

s(x) = x is not invariant with respect to the stopped process.

4. Local time penalization with inverse local time clocks.

We recall that ηau denotes the right-continuous inverse of (La
t , t ≥ 0):

ηau = inf{t ≥ 0, La
t > u}.

The proofs given in this Section follow the same pattern as before. The main in-

gredients are excursion theory away from a ̸= 0 and some estimates on modified Bessel

functions.

4.1. Limit as a tends to infinity with u being fixed.

Suppose ℓ′ (= ℓ = ∞) is either entrance, type-1-natural or type-2-natural. We thus

have, for any x ∈ I and any u > 0,

Px(η
a
u <∞) = 1 and ηau ≥ Ta −→

a→∞
∞,Px-a.s.;

in fact, the former is implied by

Px[e
−qηa

u ] −→
q↓0

1

since rq(a, a) −→
q↓0

∞ and

Px[e
−qηa

u ] = Px[e
−qTa ]Pa[e

−qηa
u ] =

ϕq(x)

ϕq(a)
exp

(
− u

rq(a, a)

)
. (4.1)

For ν ≥ 0, we denote by Iν(x) the modified Bessel function of the first kind, which

may be represented as a series expansion formula (see e.g. [9], Equation (5.7.1) on

page 108) by

Iν(x) =
∞∑

n=0

(x/2)ν+2n

n!Γ(ν + n+ 1)
, x > 0. (4.2)

We recall the asymptotic formulae (see e.g. [9], Section 5.16):

Iν(x) ∼
x↓0

(x/2)ν

Γ(1 + ν)
, Iν(x) ∼

x→∞

ex√
2πx

. (4.3)
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Lemma 4.1. Let a ∈ (0,∞). Then the process {(Lηa
u
)u≥0,Pa} is a compound

Poisson process with Laplace transform

Pa

[
e−βLηa

u

]
= exp

{
−u

∫ ∞

0

(1− e−βs)
1

a2
e−s/ads

}
= e−uβ/(1+βa). (4.4)

For any u > 0 and f ∈ L1
+,

Pa[f(Lηa
u
)] = e−u/af(0) +

∫ ∞

0

f(y)ρau(y)dy, (4.5)

where

ρau(y) = e−(u+y)/a

√
u/y

a
I1

(
2
√
uy

a

)
.

Proof. Let pa(v) denote the point process of excursions away from a and na its

excursion measure. Since L increases only on the intervals (ηav−, η
a
v ), we have

Lηa
u
=

∑
v≤u: pa(v)∈{T0<∞}

(Lηa
v
− Lηa

v−
) =

∑
v≤u: pa(v)∈{T0<∞}

LTa(p
a(v)). (4.6)

Since na(T0 < Ta) = 1/a < ∞, the sum of (4.6) is a finite sum, and so we see that

{(Lηa
u
)u≥0,Pa} is a compound Poisson process with Lévy measure

na(LTa ∈ ds;T0 < Ta).

By the strong Markov property of na (see, e.g., [3, Theorem III.3.28]), we have

na(LTa > s;T0 < Ta) = na(T0 <∞)P0(LTa > s) =
1

a
P0(LTa > s).

Let λ0a = inf{v : p0(v) ∈ {Ta <∞}}. Then we have

P0(LTa > s) = P0(Ta > η0s) = P0(λ
0
a > s) = e−sn0(Ta<∞) = e−s/a.

Thus we obtain (4.4).

Let {Sn} be a process with i.i.d. increments P(Sn − Sn−1 > s) = e−s/a such that

S0 = 0 and let N be a Poisson variable with mean u/a which is independent of {Sn}.
Then we have Lηa

u

law
= SN , and hence

Pa[f(Lηa
u
)] = P(N = 0)f(0) +

∞∑
n=1

P(N = n)P[f(Sn)]

= e−u/af(0) +
∞∑

n=1

e−u/a (u/a)
n

n!

∫ ∞

0

f(y)
(y/a)n−1

(n− 1)!
e−y/a dy

a
.

Thus, using (4.2), we obtain (4.5). □
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Lemma 4.2. For u > 0, x, a ∈ I and f ∈ L1
+, it holds that

Px[f(Lηa
u
)] =

x ∧ a
a

Pa[f(Lηa
u
)] +

(
1− x

a

)
+
Pa[f(e1/a + Lηa

u
)] (4.7)

=
x ∧ a
a

Pa[f(Lηa
u
)] +

1

a

(
1− x

a

)
+

∫ ∞

0

f(y)ρ̃au(y)dy, (4.8)

where

ρ̃au(y) = e−(u+y)/aI0

(
2
√
uy

a

)
.

Proof. When a ≤ x, we have Px[f(Lηa
u
)] = Px[f(LTa +Lηa

u
◦ θTa)] = Pa[f(Lηa

u
)],

which proves identity (4.7).

Suppose x < a. Using Lemma 3.1, we have

Px[f(Lηa
u
)] = Px

[
f
(
LTa + Lηa

u
◦ θTa

)]
=
x

a
Pa[f(Lηa

u
)] +

1

a

(
1− x

a

)
Pa

[∫ ∞

0

e−v/af(v + Lηa
u
)dv

]
,

which coincides with (4.7). Using the same notation as that of the proof of Lemma 4.1,

we obtain

Pa[f(e1/a + Lηa
u
)] =

∞∑
n=0

P(N = n)P[f(Sn+1)]

=
∞∑

n=0

e−u/a (u/a)
n

n!

∫ ∞

0

f(y)
(y/a)n

n!
e−y/a dy

a
.

Thus, using (4.2), we obtain (4.8). □

By (4.3), there exists a constant C such that{
Iν(x) ≤ Cxν for 0 < x ≤ 1,

Iν(x) ≤ Cex for x ≥ 1.

Lemma 4.3. For any u > 0, a > 0 and y > 0, it holds that

ρau(y) ≤
2Cu

a2
and ρ̃au(y) ≤ C. (4.9)

For any fixed u > 0 and y > 0, it holds that

ρ̃au(y) −→
a→∞

1. (4.10)

Proof. Using (4.3), we easily have (4.10).

If 2
√
uy/a ≤ 1, we have

ρau(y) ≤ C
2u

a2
and ρ̃au(y) ≤ C.
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If 2
√
uy/a > 1, we have

ρau(y) ≤ Ce−(
√
u+

√
y)2/a

√
u/y

a
≤ C

2u

a2
,

ρ̃au(y) ≤ Ce−(
√
u+

√
y)2/a ≤ C.

Therefore we obtain (4.9). □

Lemma 4.4. Let f ∈ L1
+, x ∈ I and u > 0. For any a ∈ I, set

Na,u
t = aPx

[
f(Lηa

u
)1{t<ηa

u} | Ft

]
,

Ma,u
t = aPx

[
f(Lηa

u
) | Ft

]
.

Then it holds that Na,u
t → Ms,f

t and Ma,u
t → Ms,f

t in probability with respect to Px as

a→ ∞, where Ms,f
t has been defined in (3.2).

Proof. In what follows in this section we sometimes write to simplify Mt for

Ms,f
t .

(i) By the strong Markov property and by Lemma 4.2, we have, for a > Xt,

Na,u
t = a PXt [f(b+ Lηa

u−c
)]
∣∣∣b=Lt
c=La

t

1{t<ηa
u} = (I)a + (II)a,

where

(I)a = Xt

{
e−(u−c)/af(b) +

∫ ∞

0

f(b+ y)ρau−c(y)dy

}∣∣∣∣b=Lt
c=La

t

1{t<ηa
u},

(II)a =

(
1− Xt

a

)∫ ∞

0

f(b+ y)ρ̃au−c(y)dy

∣∣∣∣b=Lt
c=La

t

1{t<ηa
u}.

Letting a→ ∞, we deduce from Lemma 4.3 that in probability with respect to Px

(I)a −→
a→∞

Xtf(Lt),

(II)a −→
a→∞

∫ ∞

0

f(Lt + y)dy.

We thus obtain Na,u
t →Ms,f

t in probability with respect to Px. Set

Aa,u
t =Ma,u

t −Na,u
t = af(Lηa

u
)1{ηa

u≤t}.

Since Aa,u
t → 0, we obtain Ma,u

t →Ms,f
t in probability with respect to Px. □

Theorem 4.5. Let f ∈ L1
+, x ∈ I and u > 0.

(i) For any finite stopping time T , there is the L1 convergence

Na,u
T −→

a→∞
Ms,f

T in L1(Px).
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Consequently, for any bounded adapted process (Ft), it holds that

aPx[FT f(Lηa
u
);T < ηau] −→

a→∞
Px[FTM

s,f
T ].

(ii) Assume furthermore that ℓ′ (= ℓ = ∞) is either type-1-natural or type-2-natural.

Then, for any bounded stopping time T , we have

Ma,u
T −→

a→∞
Ms,f

T in L1(Px) (4.11)

and, for any bounded adapted process (Ft), it holds that

aPx

[
FT f(Lηa

u
)
]
−→
a→∞

Px

[
FTM

s,f
T

]
. (4.12)

Proof. (i) By the proof of Lemma 4.4 and by Lemma 4.3, we obtain, for a > 1,

Na,u
t ≤ Xtf(Lt) +

(
2Cu

a
+ C

)∫ ∞

0

f(Lt + y)dy

≤Ms,f
t +(2Cu+ C)

∫ ∞

0

f(y)dy,

where the last quantity is integrable with respect to Px. Thus we obtain the desired

result by the dominated convergence theorem.

(ii) Observe that since (Ms,f
t ) is a Px-martingale, we may apply the optional stop-

ping theorem to obtain

Px[A
a,u
T ] = Px

[
Xηa

u
f(Lηa

u
); ηau ≤ T

]
≤ Px

[
Mηa

u
; ηau ≤ T

]
= Px[MT ; η

a
u ≤ T ] −→

a→∞
0.

Since Aa,u
T → 0, Px-a.s., we see that Aa,u

T → 0 in L1(Px). Hence we obtain (4.11) and

(4.12). □

4.2. Limit as u tends to infinity with a being fixed.

Suppose ℓ′ (= ℓ = ∞) is either entrance, type-1-natural or type-2-natural. We thus

have, for any x, a ∈ I,

Px(η
a
u <∞) = 1 and ηau −→

u→∞
∞ Px-a.s.

In fact, ηau increases to a limit ηa∞ which must be infinite Px-a.s. by (4.1). For the clock

(τ = ηau, u > 0), we only consider the weights f(Lηa
u
) for f(u) = e−βu and f(u) = 1{u=0}.

Lemma 4.6. Let x, a ∈ I, β > 0 and t > 0. For u > 0, set

Nu,β,a
t = eβu/(1+βa)Px

[
e−βLηa

u 1{t<ηa
u}
∣∣Ft

]
, Mu,β,a

t = eβu/(1+βa)Px

[
e−βLηa

u

∣∣Ft

]
and
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Mβ,a
t =

1 + β(Xt ∧ a)
1 + βa

exp

(
−βLt +

β

1 + βa
La
t

)
.

Then it holds that Nu,β,a
t →Mβ,a

t and Mu,β,a
t →Mβ,a

t , Px-a.s. as u→ ∞.

Proof. By the strong Markov property and by Lemmas 4.1 and 4.2, we have, for

u large enough to have ηau > t,

Nu,β,a
t = eβu/(1+βa) exp(−βLt) PXt

[
exp

(
−βLηa

u−c
)
)]∣∣∣

c=La
t

=

{
1{a≤Xt} +

1 + βXt

1 + βa
1{Xt<a}

}
exp

(
−βLt +

β

1 + βa
La
t

)
=Mβ,a

t .

Thus we obtain Nu,β,a
t →Mβ,a

t , Px-a.s. as u→ ∞. Since

Au,β,a
t :=Mu,β,a

t −Nu,β,a
t = eβu/(1+βa)e−βLηa

u 1{ηa
u≤t},

we have Au,β,a
t → 0, Px-a.s., and thus we obtain Mu,β,a

t →Mβ,a
t , Px-a.s. □

Theorem 4.7. Let x, a ∈ I and β > 0. Then, for any t > 0, it holds that

Nu,β,a
t −→

u→∞
Mβ,a

t and Mu,β,a
t −→

u→∞
Mβ,a

t in L1(Px).

Consequently, for any bounded adapted process (Ft), it holds that

lim
u→∞

eβu/(1+βa)Px[Fte
−βLηa

u ; t < ηau] = lim
u→∞

eβu/(1+βa)Px[Fte
−βLηa

u ] = Px[FtM
β,a
t ].

It also holds that (Mβ,a
t ) is a Px-martingale.

Proof. Let us first prove that Px[e
cLa

t ] < ∞ for all c > 0 and t > 0. Following

the same argument as in the proof of Lemma 2.1, we obtain

Pa

[
exp

(
cLa

eq

)]
=

1

rq(a, a)

∫ ∞

0

ecue−u/rq(a,a)du.

Since rq(a, a) → 0 as q → ∞, we may take q > 0 large enough so that rq(a, a) < 1/c.

This shows that Pa[exp(cL
a
eq
)] <∞. By the monotonicity, we see that Px[e

cLa
t ] <∞ for

all t > 0.

The fact that La
t admits exponential moments implies that Mβ,a

t ∈ L1(Px) for all

t > 0. Thus, by the dominated convergence theorem, we see that Nu,β,a
t −→

u→∞
Mβ,a

t in

L1(Px) for all t > 0.

We second note that, for q > 0,

Px(η
a
u ≤ t) ≤ eqtPx[e

−qηa
u ] ≤ eqtPa[e

−qηa
u ] = eqte−u/rq(a,a).

We may take q > 0 large enough so that rq(a, a) < (1 + βa)/β. Then we obtain
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Px[A
u,β,a
t ] ≤ eβu/(1+βa)Px(η

a
u ≤ t) ≤ eqt exp

{
−
(

1

rq(a, a)
− β

1 + βa

)
u

}
−→
u→∞

0.

Thus we obtain Au,β,a
t −→

u→∞
0 in L1(Px) for all t > 0, which implies Mu,β,a

t −→
u→∞

Mβ,a
t

in L1(Px) for all t > 0. □

We conclude this section by looking at the weight 1{Lηa
u=0} = 1{ηa

u<T0}.

Theorem 4.8. Let x, a ∈ I. For u > 0 and t > 0, set

Nu,∞,a
t = eu/aPx(t < ηau < T0 | Ft)

Mu,∞,a
t = eu/aPx(η

a
u < T0 | Ft)

M∞,a
t =

Xt ∧ a
a

eL
a
t /a1{t<T0}.

Then,

Nu,∞,a
t −→

u→∞
M∞,a

t and Mu,∞,a
t −→

u→∞
M∞,a

t Px-a.s. and in L1(Px).

Consequently, for any bounded adapted process (Ft), it holds that

lim
u→∞

eu/aPx[Ft; t < ηau < T0] = lim
u→∞

eu/aPx[Ft; η
a
u < T0] = Px[FtM

∞,a
t ].

It also holds that (M∞,a
t ) is a Px-martingale.

Proof. Letting β → ∞, we see, from Lemma 4.6 and Theorem 4.7, that

Nu,∞,a
t =M∞,a

t 1{t<ηa
u}

and

Au,∞,a
t :=Mu,∞,a

t −Nu,∞,a
t = eu/a1{ηa

u<T0}1{ηa
u≤t}.

The remainder of the proof is the same as that of Theorem 4.7. □

5. Universal σ-finite measures.

In this section we shall describe the law of some penalized processes using universal

σ-finite measures. We deal with the transient and recurrent cases separately.

5.1. The transient case.

Theorem 5.1. Suppose ℓ < ∞, i.e., 0 is transient. Let f ∈ L1
+ and x ∈ I. Let t

be a constant time and let Ft be a bounded Ft-measurable functional. Then

lim
q↓0

Px[Ftf(Leq ); t < eq] = lim
q↓0

Px[Ftf(Leq )] = Px[Ftf(L∞)]. (5.1)

If, in particular, ℓ is type-3-natural (see Section 7), then
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lim
a↑ℓ

Px[Ftf(LTa); t < Ta] = lim
a↑ℓ

Px[Ftf(LTa)] = Px[Ftf(L∞)]. (5.2)

Proof. By Theorem 2.4, we see that (5.1) is equivalent to

Px[Ftf(L∞)] = Px[FtMt], (5.3)

where

Mt =
1

ℓ

{
Xtf(Lt) +

(
1− Xt

ℓ

)∫ ∞

0

e−u/ℓf(Lt + u)du

}
.

On the other hand, we use (i) of Theorem 2.2 and obtain

Px[f(L∞)|Ft] = PXt [f(a+ L∞)]|a=Lt
=Mt.

Thus we obtain (5.3).

Using Theorem 3.3 instead of Theorem 2.4, we can obtain (5.2) in the same way as

above. □

Remark 5.2. Observe that both penalizations yield the same measure Qx

Qx =
f(L∞)

Px[f(L∞)]
· Px,

which is absolutely continuous with respect to Px. This is not very surprising since the

initial process spends little time at 0, hence the penalization by the local time at 0 has

no real impact on the measure Px.

5.2. The recurrent case.

Let P(u)
x,y denote the law of the bridge with duration u starting from x and ending at

y. Following [6], this measure can be characterized by

P(u)
x,y(A) = Px

[
1A
pu−t(Xt, y)

pu(x, y)

]
, A ∈ Ft, 0 < t < u,

where pu(x, y) denotes the transition density of the process X with respect to dm(y).

We have the conditioning formula:

Px

[∫ ∞

0

FudLu

]
=

∫ ∞

0

Px[dLu]P(u)
x,0[Fu]

for all non-negative predictable processes (Fu), where we write symbolically (see Itô–

McKean [7, p.183]):

Px[dLu] = pu(x, 0)du.

We also have the last exit decomposition formula (see Biane–Yor [2]):

Px[Ft;T0 ≤ t] =

∫ t

0

Px[dLu]
(
P(u)
x,0 • n[t−u]

)
[Ft]
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for all non-negative Ft-measurable functionals (Ft), where • denotes the concatenation

operator and

n[t](·) = n(· ∩ {t < T0}).

For h = h0 (see (1.6)) or h = s (the scale function), let Ph
x denote the law of the

h-transform:

Ph
x(A; t < ζ) =

1

h(x)
Px[1A∩{t<T0}h(Xt)] (x > 0),

Ph
0 (A; t < ζ) = n[1Ah(Xt)]

for A ∈ Ft and where ζ denotes the lifetime of the process. Note that, when h = h0 or

h = s, the coordinate process under Ph
x never hits zero; see [19, Theorems 7.6 and 7.3].

We now define the σ-finite measure

Ph
x =

∫ ∞

0

Px[dLu]
(
P(u)
x,0 • Ph

0

)
+ h(x)Ph

x. (5.4)

Theorem 5.3. Suppose ℓ = ∞, i.e., 0 is recurrent. Let f ∈ L1
+ and x ∈ I. Let t

be a constant time and let Ft be a bounded Ft-measurable functional. Then

lim
q↓0

H(q)Px[Ftf(Leq ); t < eq] = Ph0
x [Ftf(Lζ); t < ζ].

Proof. By Theorem 2.4, it suffices to show

Ph0
x [Ftf(Lζ); t < ζ] = Px

[
FtN

h0,f
t

]
. (5.5)

Denote g = sup{t < ζ : Xt = 0}, where sup ∅ = 0. Observe first that on the set

{0 = g ≤ t < ζ}, we have

Ph0
x [Ftf(Lζ); 0 = g ≤ t < ζ] = h0(x)Ph0

x [Ftf(Lt); t < ζ]

= Px[Ftf(Lt)h0(Xt); t < T0].

Next, on the set {0 < g ≤ t < ζ}, we have

Ph0
x [Ftf(Lζ); 0 < g ≤ t < ζ] =

∫ t

0

Px[dLu]
(
P(u)
x,0 • Ph

0

)
[Ftf(Lt); t < ζ]

=

∫ t

0

Px[dLu]
(
P(u)
x,0 • n

)
[Ftf(Lt)h0(Xt)]

= Px[Ftf(Lt)h0(Xt);T0 ≤ t].

Finally, on the set {t < g < ζ}, we have

Ph0
x [Ftf(Lζ); t < g < ζ] =

∫ ∞

t

Px[dLu]P(u)
x,0[Ftf(Lu)]
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= Px

[
Ft

∫ ∞

t

f(Lu)dLu

]
= Px

[
Ft

∫ ∞

Lt

f(u)du

]
.

Summing all three terms yields (5.5). □

Theorem 5.4. Suppose ℓ′ is either entrance, type-1-natural or type-2-natural. Let

f ∈ L1
+ and x ∈ I. Let t be a constant time and let Ft be a bounded Ft-measurable

functional. Then

lim
a↑ℓ

aPx[Ftf(LTa); t < Ta] = Ps
x[Ftf(Lζ); t < ζ].

The proof is similar to that of Theorem 5.3, where we use Theorem 3.3 instead of

Theorem 2.4, so we omit it.

Remark 5.5. Define, for h = h0 or h = s, the penalized measures

Qh,f
x (A; t < ζ) = Px

[
1A
Nh,f

t

Nh,f
0

]
(for A ∈ Ft).

Looking at (5.4), we see that, under the assumptions of Theorems 5.3 or 5.4, the paths of

the coordinates processes under Qh,f
x are essentially given, up to some killing time ζ, by

the concatenation of a weighted bridge of the original diffusion, and a process conditioned

not to hit 0. In particular, the penalized process is no longer recurrent, even if ζ = ∞,

i.e. if Nh,f is a Px-martingale. Of course, in this case, the two probability measures Qh,f
x

and Px are singular.

6. Exponential weights.

Let us investigate the example where we take

f(x) = e−cx, c > 0.

In this specific case, the penalized process remains a generalized diffusion, which is not

the case with other functions f . The supermartingales Nt = Nh0,f
t and Nt = Ms,f

t ,

which have been given by (2.5) and (3.2), respectively, may be represented at the same

time as

Nt = hc(Xt)e
−cLt

where h = h0 and s, respectively, and

hc(x) = h(x) +
1− (x/ℓ)

c+ (1/ℓ)
.

Since (Nt) is a supermartingale, we may define the subprobability measure Qh,c
x by
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Qh,c
x (A; t < ζ) = Px

[
hc(Xt)

hc(x)
e−cLt ;A

]
for A ∈ Ft and t ≥ 0.

Then the process {X, (Qh,c
x )x∈I} is a diffusion on I whose local generator on (0, ℓ′)

without killing part is given as (hc)−1(d/dm)(d/ds)hc. Thus the corresponding speed

measure and scale function are given as

mh,c(x) =

∫
(0,x]

hc(y)2dm(y), sh,c(x) =

∫ x

0

dy

hc(y)2
.

Denote ρq = ϕq − ψq/H(q) and

ϕh,cq = hc(0) · ϕq + cψq

hc
, ρh,cq = hc(0) · ρq

hc
.

Then we obtain (see Theorems 7.3 and 7.6 of [19]) that φ = ϕh,cq (resp. ρh,cq ) is a positive

increasing (resp. decreasing) solution to the differential equation(
d

dmh,c

d

dsh,c
− π0
hc

)
φ = qφ (if h = h0),

(
d

dmh,c

d

dsh,c

)
φ = qφ (if h = s)

which satisfies the boundary condition

ϕh,cq (0) = 1 and
dϕh,cq

dsh,c
(0) = 0 (resp. ρh,cq (0) = 1).

Note that we have used here the values

hc(0) =
1

c+ (1/ℓ)
and (hc)′(0) =

c

c+ (1/ℓ)
.

Theorem 6.1. The resolvent operator for the diffusion {X, (Qh,c
x )x∈I} is given as

Qh,c
x

[∫ ∞

0

e−qtf(Xt)dt

]
=

∫
I

rh,cq (x, y)f(y)dmh,c(y), q > 0,

where

rh,cq (x, y) = rh,cq (y, x) =
H(q)

hc(0)2(cH(q) + 1)
ϕh,cq (x)ρh,cq (y), x, y ∈ I, x ≤ y. (6.1)

Consequently, 0 for {X, (Qh,c
x )x∈I} is regular-reflecting.

Proof. Let φc(x) = φ(x)hc(x). Then we have

Px

[∫ ∞

0

e−qtφc(Xt)e
−cLtdt

]
= Px

[∫ T0

0

e−qtφc(Xt)dt

]
+ Px[e

−qT0 ]P0

[∫ ∞

0

e−qtφc(Xt)e
−cLtdt

]
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= R0
qφ

c(x) + Px[e
−qT0 ]P0

[∑
u

e−cu−qη0
u−

∫ T0(p(u))

0

e−qtφc(p(u)t)dt

]

= R0
qφ

c(x) + Px[e
−qT0 ]P0

[∫ ∞

0

e−cu−qη0
udu

]
n

[∫ T0

0

e−qtφc(Xt)dt

]

= R0
qφ

c(x) + Px[e
−qT0 ] · 1

c+ 1
H(q)

· Rqφ
c(0)

H(q)
.

Since Px[e
−qT0 ]Rqφ

c(0) = Rqφ
c(x)−R0

qφ
c(x), we obtain

Qh,c
x

[∫ ∞

0

e−qtφ(Xt)dt

]
=

1

hc(x)

{
1

cH(q) + 1
Rqφ

c(x) +
cH(q)

cH(q) + 1
R0

qφ
c(x)

}
.

From this we obtain (6.1). □

Remark 6.2. The boundary classification at ℓ′ is the same as that for the h-

transform of the stopped process; see Theorems 7.3 and 7.6 of [19].

7. Appendix: the boundary classification.

The following tables explain the boundary classification which we take from [19] and

the recurrence property of the corresponding diffusion to each class:

x = ℓ′ I ′ I x = 0

regular-reflecting ℓ′ < ℓ = ∞ [0, ℓ′] = I ′ positive recurrent

regular-elastic ℓ′ < ℓ <∞ [0, ℓ′] [0, ℓ′] ∪ {ℓ} transient

regular-absorbing ℓ′ = ℓ <∞ [0, ℓ) [0, ℓ] transient

exit ℓ′ = ℓ <∞ [0, ℓ) [0, ℓ] transient

entrance ℓ′ = ℓ = ∞ [0,∞) = I ′ positive recurrent

type-1-natural ℓ′ = ℓ = ∞ [0,∞) = I ′ null recurrent

type-2-natural ℓ′ = ℓ = ∞ [0,∞) = I ′ positive recurrent

type-3-natural ℓ′ = ℓ <∞ [0, ℓ) = I ′ transient

ℓ = ∞ ℓ <∞
m(∞) = ∞ (1) 0 is null-recurrent (3) 0 is transient

π0 = 0 [ℓ′ = ℓ = ∞] [ℓ′ < ℓ <∞]

ℓ′ is type-1-natural ℓ′ is regular-elastic

[ℓ′ = ℓ <∞]

ℓ′ is regular-absorbing

exit

type-3-natural

m(∞) <∞ (2) 0 is positive recurrent [impossible]

π0 > 0 [ℓ′ < ℓ = ∞]

ℓ′ is regular-reflecting

[ℓ′ = ℓ = ∞]

ℓ′ is entrance

type-2-natural
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As the reader may not be familiar with our classification of boundaries, it may be

useful to give below some examples of computation of boundaries. Let X̃ be a diffusion on

[0,∞) where 0 is the reflecting boundary and whose local generator on (0,∞) is given by

L̃f =
1

2
(f ′′ − bf ′) =

d

dm̃

d

ds̃
f on Cc((0,∞))

for some function b of the form b(x) = cxν−1, which we may call the power drift. Then

its scale change X = s̃(X̃) is a diffusion with natural scale s(x) = x and with speed

measure dm(x) defined by m = m̃ ◦ s̃−1.

(i) Let α be a constant and

L̃f =
1

2
f ′′ − 2α− 1

2x
f ′ =

d

dm̃

d

ds̃
f on Cc((0,∞)),

where we may choose m̃(x) = 2/(2− 2α)x2−2α and s̃(x) = 1/(2α)x2α. The corre-

sponding diffusion is called the reflecting Bessel process of index α. As we require

that 0 is regular-reflecting, we assume 0 < α < 1. If we take m = m̃ ◦ s̃−1, then it

falls into the case (1) above.

(ii) Let c and ν be non-zero constants and

L̃f =
1

2

(
f ′′ − cνxν−1f ′

)
on Cc((0,∞)).

If ν = 1, then it is a Brownian motion with constant negative drift. If ν = 2, then

it is an Ornstein–Uhlenbeck process. As we require that 0 is regular-reflecting, we

assume c > 0 and ν > 0. In this case we may choose

s′ = ecx
ν

, s =

∫ x

0

ecy
ν

dy

and

m′ = 2e−cxν

, m = 2

∫ x

0

e−cyν

dy.

In particular, we have m(∞) <∞. Note that

J :=
1

2

∫ ∞

1

{s(x)− s(1)}dm(x) =

∫ ∞

1

(∫ x

1

ecy
ν

dy

)
e−cxν

dx

=

∫ ∞

1

(∫ ∞

y

e−cxν

dx

)
ecy

ν

dy.

We shall prove that

∞ is

{
type-2-natural if 0 < ν ≤ 2,

entrance if 2 < ν <∞

which is equivalent as saying that J = +∞ (resp. J < +∞), see [19].
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If 1 ≤ ν ≤ 2, then∫ x

1

ecy
ν

dy =

∫ x

1

(ecy
ν

)′
y1−ν

cν
dy

=

[
ecy

ν y1−ν

cν

]x
1

+
ν − 1

cν

∫ x

1

ecy
ν

y−νdy

≥ ecx
ν x1−ν

cν
− c′

for some constant c′ > 0. Hence we have

J ≥ 1

cν

∫ ∞

1

x1−νdx− c′
∫ ∞

1

e−cxν

dx = ∞.

For ν > 0, we have∫ ∞

y

e−cxν

dx = −
∫ ∞

y

(e−cxν

)′
x1−ν

cν
dy

= −
[
e−cxν x1−ν

cν

]∞
y

+
1− ν

cν

∫ ∞

y

e−cxν

x−νdx.

If 0 < ν < 1, then∫ ∞

y

e−cxν

dx ≥ e−cyν y1−ν

cν
and J ≥ 1

cν

∫ ∞

1

y1−νdy = ∞.

If ν > 2, then∫ ∞

y

e−cxν

dx ≤ e−cyν y1−ν

cν
and J ≤ 1

cν

∫ ∞

1

y1−νdy <∞.
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