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Abstract. We prove that the Kobayashi pseudo distance of a closed
subvariety X of an abelian variety A is a true distance outside the special set

Sp(X) of X, where Sp(X) is the union of all positive dimensional translated
abelian subvarieties of A which are contained in X. More strongly, we prove
that a closed subvariety X of an abelian variety is taut modulo Sp(X); Every

sequence fn : D → X of holomorphic mappings from the unit disc D admits
a subsequence which converges locally uniformly, unless the image fn(K) of a
fixed compact set K of D eventually gets arbitrarily close to Sp(X) as n gets
larger. These generalize a classical theorem on algebraic degeneracy of entire

curves in irregular varieties.

1. Introduction.

Let X be a complex space. In this paper, by complex space, we mean a reduced and

irreducible complex space, unless otherwise specified. Let ∆ ⊂ X be a closed subset. We

say that X is Kobayashi hyperbolic modulo ∆ if the Kobayashi pseudo distance dX of X

satisfies dX(p, q) > 0 for every pair of distinct points p, q ∈ X not both contained in ∆.

When ∆ is an empty set, this definition reduces to the usual definition of Kobayashi hy-

perbolicity. We say that a complex projective variety X is pseudo Kobayashi hyperbolic

if there exists a proper Zariski closed subset Z ⫋ X such that X is Kobayashi hyperbolic

modulo Z. It is conjectured that a projective variety X is pseudo Kobayashi hyperbolic

if X is of general type (cf. [19, 7.4.13], [21, p.180]). We discuss this problem when X is

a closed subvariety of an abelian variety. We first state a corollary of our main theorem.

Corollary 1.1. Let X be a closed subvariety of an abelian variety. Assume that

X is of general type. Then X is pseudo Kobayashi hyperbolic.

To make the statement more precise, we introduce the special set. Let X be a closed

subvariety of an abelian variety A. We define the special set Sp(X) of X by

Sp(X) = {x ∈ X; ∃B ⊂ A, an abelian variety s.t. dim(B) > 0 and x+B ⊂ X}.

Then fundamental facts due to Ueno [32, Theorem 10.9] and Kawamata [15, Theorem 4]

are the followings:
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• (Ueno) If X is not of general type, then Sp(X) = X.

• (Kawamata) If X is of general type, then Sp(X) is a Zariski closed subset of X and

Sp(X) ̸= X.

We remark that Sp(X) is an empty set if X is Kobayashi hyperbolic. This follows from

the vanishing dB ≡ 0 of the Kobayashi pseudo distances dB of abelian varieties B and

the distance decreasing property of Kobayashi pseudo distances. We refer the readers to

[21, p.36] and [7, p.119] for another, but equivalent definition of the special set, which

works for general projective varieties.

We state our main theorem.

Theorem 1.2. Let X be a closed subvariety of an abelian variety. Then X is

Kobayashi hyperbolic modulo Sp(X).

By Kawamata’s theorem above, Corollary 1.1 immediately follows from Theorem

1.2. By Ueno’s theorem above, Theorem 1.2 is trivial when X is not of general type,

because X is always Kobayashi hyperbolic modulo X itself. We may generalize our

theorem to the case of closed complex subspaces of complex tori (cf. Corollary 11.3).

However, this generalization is not essential, because a closed complex subspace X of a

complex torus is actually a closed subvariety of an abelian variety, provided that X is of

general type (cf. Lemma 11.1).

We remark that Sp(X) is the minimum closed subset of X that can be taken in the

statement of Theorem 1.2; If a closed subvariety X of an abelian variety is Kobayashi hy-

perbolic modulo some closed subset ∆ ⊂ X, then ∆ necessarily contains Sp(X). Indeed,

suppose x ∈ Sp(X). We take a positive dimensional abelian variety B ⊂ A such that

x+B ⊂ X, and a point b ∈ B with b ̸= 0. By dB ≡ 0, the distance decreasing property

yields dX(x, x+ b) = 0. This shows x ∈ ∆ (and x+ b ∈ ∆), and hence Sp(X) ⊂ ∆.

As a consequence of this observation, we get a converse of Corollary 1.1.

Corollary 1.3. A closed subvariety of an abelian variety is of general type if and

only if it is pseudo Kobayashi hyperbolic.

Indeed, if a closed subvariety X of an abelian variety is not of general type, then

Sp(X) = X by Ueno’s theorem above. Hence X is not Kobayashi hyperbolic modulo Z

for any proper Zariski closed subset Z ⫋ X because of the minimality of Sp(X). Thus

X is not pseudo Kobayashi hyperbolic.

Theorem 1.2 is a generalization of a theorem of Green [9], who proved that a closed

subvariety X of an abelian variety is Kobayashi hyperbolic, if Sp(X) is empty. His

proof is based on Brody’s criterion of compact Kobayashi hyperbolic spaces: A compact

complex space V is Kobayashi hyperbolic if there is no entire curve C → V with bounded

derivatives. Here an entire curve C → V is a non-constant holomorphic map from the

complex plane C. Thus the proof is reduced to show the non-existence of an entire curve

C → X with bounded derivatives under the assumption Sp(X) = ∅. However unlike the

case of Kobayashi hyperbolicity, no criterion is known for pseudo Kobayashi hyperbolicity

in terms of entire curves. This is a major difference between the problem of Kobayashi

hyperbolicity and that of pseudo Kobayashi hyperbolicity (cf. [34]).
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Our proof of Theorem 1.2 is based on a stronger result. To state it, we introduce

another terminology called tautness (cf. [19, Chapter 5]). Let X be a complex space. Let

Hol(D, X) be the set of all holomorphic mappings from the unit disc D = {z ∈ C; |z| < 1}
toX. Let ∆ ⊂ X be a closed subset. We say thatX is taut modulo ∆ if for each sequence

{fn}∞n=1 in Hol(D, X), we have one of the followings: (1) {fn}∞n=1 has a subsequence

which converges locally uniformly to some f ∈ Hol(D, X), or (2) for each compact subset

K ⊂ D and each compact subset L ⊂ X \ ∆, there exists an integer n0 such that

fn(K)∩L = ∅ for all n ≥ n0. We have the following theorem of Kiernan and Kobayashi

(cf. [16, Theorem 1], [19, 5.1.3]): If X is taut modulo ∆, then X is Kobayashi hyperbolic

modulo ∆. (We remark that the converse of this does not hold. See Example 2.2.) Hence

Theorem 1.2 immediately follows from the following theorem.

Theorem 1.4. Let X be a closed subvariety of an abelian variety. Then X is taut

modulo Sp(X).

According to a geometric interpretation due to [16], a variant of Theorem 1.4 for a

closed subvariety of an algebraic torus, instead of an abelian variety, includes a classical

theorem of Bloch [1], supplemented by Cartan [5] (cf. [20, Chapter VIII]). This will

be achieved by generalizing Theorem 1.4 to the logarithmic case, namely the case of

subvarieties of semi-abelian varieties.

As an application of Corollary 1.1, we prove a generalization of the theorem of Bloch–

Ochiai. For a compact complex manifold X, the irregularity q(X) of X is defined by

q(X) = dimH0(X,Ω1
X). The statement of the Bloch–Ochiai theorem is the following: If

X is a projective manifold such that q(X) > dim(X), then no entire curve f : C → X has

Zariski dense image in X. This statement was first claimed by Bloch [2] with incomplete

proof in 1920’s. Then it was proved by Ochiai [29] and Kawamata [15]. A generalization

to the logarithmic case was proved by Noguchi [25]. See also [10], [17], [22], [27]. For

the detailed discussion of this theorem including its history, we refer the readers to [28,

Section 4.8]. We generalize the Bloch–Ochiai theorem as follows.

Corollary 1.5. Let X be a compact Kähler manifold such that q(X) > dimX.

Then for every x ∈ X, the set Ex = {y ∈ X; dX(x, y) = 0} is contained in a proper

analytic subset of X.

The implication of the Bloch–Ochiai theorem from Corollary 1.5 is as follows. Let

f : C → X be an entire curve into a projective manifold X with q(X) > dimX. We have

dX(f(0), f(z)) = 0 for all z ∈ C. This follows from the vanishing dC ≡ 0 of Kobayashi

pseudo distance dC of the complex plane C. Hence f(C) ⊂ Ef(0). Thus by Corollary 1.5,

f(C) is contained in a proper analytic (hence algebraic) subset of X.

The outline of this paper is as follows. In Section 2, we derive Theorem 1.4 from

a Schottky–Landau type estimate (cf. Theorem 2.1) for holomorphic maps f : D → X

from the unit disc D to a closed subvariety X of an abelian variety.

The most of the paper (Sections 3 to 10) is devoted to the proof of Theorem 2.1. An

important issue in the proof of Theorem 2.1 is to formulate an appropriate proposition

(cf. Proposition 2.3), from which we can derive Theorem 2.1, and for which we can adapt

induction. In Sections 3–8, we prove Proposition 2.3. More detailed outline of the proof



262

262 K. Yamanoi

of Proposition 2.3 is discussed at the end of Section 2. In Sections 9 and 10, we derive

Theorem 2.1 from Proposition 2.3.

In Section 11, we generalize our results to the case of complex subspaces of complex

tori, and prove Corollary 1.5.

Remark 1.6. In this paper, an algebraic variety (or simply a variety) is an integral,

separated scheme of finite type over the complex number field C (cf., e.g., [12, p.105]).

In particular, every variety is reduced, irreducible and non-empty (cf. [12, Chapter II,

Proposition 3.1]). Every variety has a canonically associated complex space structure

(cf. [12, p.439], [30, Section 2]).

2. A Schottky–Landau type estimate.

Let M be a complex manifold, and let ωM be a smooth, positive (1, 1)-form on M .

For v ∈ TM , we denote by |v|ωM the norm of v defined by the Hermitian metric on M

associated to ωM . When A is an abelian variety, we equip A with a positive (1, 1)-form

ωA which is invariant under the translation of A. We call this ωA a positive invariant

(1, 1)-form. A positive invariant (1, 1)-form ωA is expressed as

ωA =
i

2
(dz1 ∧ dz̄1 + · · ·+ dzn ∧ dz̄n) (2.1)

for some basis dz1, . . . , dzn ∈ Γ(A,Ω1
A), where n = dimA. A crucial consequence of

this presentation (2.1) is that, for every holomorphic map f : D → A, the function

log |f ′(z)|ωA is subharmonic on D. For s > 0, we set D(s) = {z ∈ C; |z| < s}: hence,

D(1) = D.

Theorem 2.1. Let X be a closed subvariety of an abelian variety A. Assume that

X is of general type. Let ωA be a positive invariant (1, 1)-form on A. Let U ⊂ X be

an open neighborhood of Sp(X) and let 0 < s < 1. Then there exists a positive constant

c > 0 such that for every f ∈ Hol(D, X) with f(D(s)) ̸⊂ U , we have |f ′(0)|ωA
≤ c.

Derivation of Theorem 1.4 from Theorem 2.1. We remark that Theorem

1.4 is obvious if X is not of general type. Indeed, in this case, Sp(X) = X, but X is

always taut modulo X itself. Hence in the following, we assume that X is of general

type.

Let {fn} be a sequence in Hol(D, X). Assume that there exist a compact set K ⊂ D
and an open set U ⊂ X with Sp(X) ⊂ U such that fn(K) ̸⊂ U for arbitrarily large n.

By taking a subsequence if necessary, we may assume that fn(K) ̸⊂ U for all n. Let

0 < σ < 1. We shall show that the sequence {fn} is equi-continuous on D(σ). For each

w ∈ D(σ), let Qw : D → D be a conformal automorphism such that Qw(0) = w. Let

s ∈ (0, 1) be a constant such that Q−1
w (K) ⊂ D(s) for all w ∈ D(σ). Then

fn ◦Qw(D(s)) ̸⊂ U

for all n and all w ∈ D(σ). Hence by Theorem 2.1, there exists a positive constant c > 0

such that
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|(fn ◦Qw)′(0)|ωA
≤ c

for all n and all w ∈ D(σ). Hence

|f ′n(w)|ωA
=

|(fn ◦Qw)′(0)|ωA

|Q′
w(0)|

≤ c

1− σ2

for all n and all w ∈ D(σ). This shows that the sequence {fn} is equi-continuous on

D(σ). By the Arzelà–Ascoli theorem, the sequence {fn} is normal. Thus we have proved

that X is taut modulo Sp(X). □

We remark that Theorem 1.4 conversely implies Theorem 2.1. Indeed suppose con-

trary, that there exists a sequence {fn} in Hol(D, X) such that fn(D(s)) ̸⊂ U for all n,

but |f ′n(0)|ωA → ∞ as n → ∞. Then Theorem 1.4 implies that the sequence {fn} is

normal. Hence after taking a subsequence, the sequence {fn} converges locally uniformly

to a holomorphic map f : D → X. Hence |f ′n(0)|ωA → |f ′(0)|ωA as n → ∞. This is a

contradiction.

The following is a counter example for the converse of the theorem of Kiernan and

Kobayashi.

Example 2.2. Let X be a closed subvariety of an abelian variety such that

Sp(X) = ∅. Assume that d = dimX ≥ 2. Let p : X̃ → X be the blow-up of X

along a smooth point x ∈ X. Set ∆ = p−1(x). Then, according to the theorem of

Green (or Theorem 1.2), it is easy to see that X̃ is Kobayashi hyperbolic modulo ∆.

However, X̃ is not taut modulo ∆. Indeed, let (y1, . . . , yd) ∈ Dd be a local coordinate

around x ∈ X such that the origin of Dd corresponds to x. Let fn : D → X be de-

fined by fn(z) = (z, 1/2n, 0, . . . , 0). Then the sequence {fn} converges locally uniformly

to f(z) = (z, 0, . . . , 0). However, if we denote by f̃n : D → X̃ the lift of fn, we have

|f̃ ′n(0)| → ∞ as n → ∞. In particular, any subsequence of the sequence {f̃n} does not

converge locally uniformly to the lift f̃ ∈ Hol(D, X̃) of f . This shows that X̃ is not taut

modulo ∆.

This example shows that the procedure of blowing-up may cause a delicate problem

when we consider the norm of the derivatives of holomorphic maps. In the proof of

Theorem 2.1, we need to take several blowing-ups. These actually cause main technical

issues in the proof.

Now we introduce the main proposition (cf. Proposition 2.3) in the proof of The-

orem 2.1. Although the statement of this proposition is rather complicated, it states a

Nevanlinna theoretic version of Theorem 2.1 in relative setting for a family X ⊂ A × S

of closed subvarieties of an abelian variety A over a smooth projective variety S.

For a positive dimensional abelian variety A, we denote by Σ(A) the set of all

proper abelian subvarieties of A including the trivial one {0} ⊂ A. Hence we remark

that A ̸∈ Σ(A) and {0} ∈ Σ(A).

Conventions. Let V1 and V2 be algebraic varieties and let f ∈ Hol(D, V1 × V2).

Then we denote by fV1 ∈ Hol(D, V1) and fV2 ∈ Hol(D, V2) the compositions with f and

the first projection p1 : V1 × V2 → V1 and the second projection p2 : V1 × V2 → V2,
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respectively. If ωV1 and ωV2 are (1, 1)-forms on V1 and V2, respectively, then we set

ωV1×V2 = p∗1ωV1 + p∗2ωV2 .

Proposition 2.3. Let A be a positive dimensional abelian variety and let S be

a smooth projective variety. Let X ⊂ A × S be a closed subscheme such that for every

y ∈ S, the fiber Xy over y satisfies Xy ⫋ A. Then there exists a non-empty finite subset

Λ ⊂ Σ(A) with the following property : Let ωA be a positive invariant (1, 1)-form on A,

and let ωS be a smooth, positive (1, 1)-form on S. For each B ∈ Σ(A), let ωA/B be a

positive invariant (1, 1)-form on A/B and ϖB : A → A/B be the quotient map. Let

0 < s < 1, ε > 0 and δ > 0. Then there exist positive constants c1, c2, c3 such that, for

every f ∈ Hol(D, X), the estimate

min
B∈Λ

{∫ r

s

dt

∫
D(t)

(ϖB ◦ fA)∗ωA/B

}
≤ ε

∫ r

s

dt

∫
D(t)

f∗AωA + c1

∫ r

s

dt

∫
D(t)

f∗SωS

+ c2 max

{
0,

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π

}
+ c3

holds for all r ∈ (s, 1) outside some exceptional set E ⊂ (s, 1) with the linear measure

|E| < δ.

Here Hol(D, X) is the set of all holomorphic mappings D → X, where X is consid-

ered as a possibly non-reduced and reducible complex space. Hence Hol(D, X) = {f ∈
Hol(D, A × S); f(D) ⊂ suppX}. In the statement of Proposition 2.3, we only need to

consider the support of X. However we consider the scheme structure of X for the sake

of convenience in the proof.

The outline of the proof of Proposition 2.3 is as follows. The proof is done by

transfinite induction with respect to the maximum Hilbert polynomial attached to the

family X → S. In Section 3, we prove an algebro-geometric lemma (cf. Lemma 3.1),

which states that this maximum Hilbert polynomial reduces by blowing-up the base space

S by a closed subscheme T ⊂ S. Here the support of T is the locus T ⊂ S over which the

Hilbert polynomials are maximum. At first glance, this process works well to complete

the transfinite induction for the proof of Proposition 2.3, but this is not the case; If the

image fS(D) is very close to T , we can not get the desired estimate for f : D → A × S

using the induction hypothesis for the lift D → A × BlT S of f (cf. Example 2.2). Here

BlT S is the blow-up of S along T . To handle this problem, we consider Demailly jet

space A× S[ν] of A× S with sufficiently high order ν, which has a property described in

Lemma 4.2 (cf. Section 4). By the tautological inequality (cf. Section 5), we may reduce

the estimate of Proposition 2.3 for holomorphic maps f : D → A × S to that of their

jet lifts f[ν] : D → A × S[ν]. We consider the jet space Xν ⊂ A × S[ν] of X as a family

of closed subschemes of A over S[ν]. By Lemma 3.1 mentioned above, we may reduce

the maximum Hilbert polynomial after blowing-up S[ν] by T[ν] ⊂ S[ν] with a prescribed

closed subscheme structure T . Here T[ν] ⊂ S[ν] is the locus over which the Hilbert

polynomials are maximum. Now we need to consider the two cases according to whether

or not the image (f[ν])S[ν]
(D(r)) is almost contained in a neighborhood of T[ν]. Here the

terminology almost is introduced in Section 6. If this is the case, then without using the
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induction hypothesis, the desired estimate follows from the geometric conclusion about

the Demailly jet spaces (cf. Lemma 4.4) and an application of Vitali covering theorem

(cf. Section 7). Next if (f[ν])S[ν]
(D(r)) is not almost contained in the neighborhood of

T[ν], we apply the induction hypothesis. In this case, the main issue is to get the estimate

for f[ν] : D → A × S[ν] from the estimate obtained by the induction hypothesis for the

lift D → A × BlT S[ν] of f[ν]. This is done by applying the Bloch–Cartan estimate (cf.

Lemma 6.1).

3. Hilbert polynomial and blowing-up.

Let S be a variety (cf. Remark 1.6). Let X ⊂ Pn × S be a closed subscheme and

let p : X → S be the composite of the closed immersion X ↪→ Pn × S and the second

projection Pn × S → S. Let L be a relatively very ample invertible sheaf on X which

is obtained by the pull-back of OPn(1) by the composite of X ↪→ Pn × S and the first

projection Pn × S → Pn. For s ∈ S, let Xs ⊂ Pn be the fiber over s, and Ls be the

restriction of L on Xs. We denote by PXs the Hilbert polynomial of Xs with respect to

Ls. Hence for m≫ 1, we have

PXs(m) = dimH0(Xs,L⊗m
s ).

Then the set {PXs}s∈S is finite (cf. [31, p.201, Step 2]). Since S ̸= ∅, the set {PXs}s∈S
is non-empty.

Let P be the set of all numerical polynomials which appear as Hilbert polynomials

of closed subschemes of the projective space Pn. Then P is an ordered set by P1 ≤ P2

if and only if P1(m) ≤ P2(m) for all large integers m. This order is a total order. We

may take the maximum element Pmax from the non-empty, finite set {PXs}s∈S ⊂ P with

respect to this order. We set

T =

{
{s ∈ S; PXs = Pmax} if X ̸= ∅,
∅ if X = ∅.

(3.1)

We remark that T ⊂ p(X).

Lemma 3.1. (1) T is a Zariski closed subset of S.

(2) Assume T ̸= S. Then there exists a closed subscheme T ⊂ S such that supp T =

T with the following property : Let α : BlT S → S be the blow-up along T , let X̂ ⊂
Pn×BlT S be the scheme-theoretic closure of p−1(S−T ) in X×SBlT S ⊂ Pn×BlT S. Let

p̂ : X̂ → BlT S be the composite of the closed immersion X̂ ↪→ Pn×BlT S and the second

projection Pn × BlT S → BlT S. Then, for every t ∈ BlT S such that α(t) ∈ T , the closed

immersion X̂t ↪→ Xα(t) is not an isomorphism, where X̂t is the fiber of p̂ : X̂ → BlT S

over t ∈ BlT S.

(3) Assume T ̸= S and X ̸= ∅. Let p̂ : X̂ → BlT S be the object described in the

previous assertion. Set P̂ = maxs∈BlT S{PX̂s
} and P = maxs∈S{PXs}. Then P̂ < P .

Remark 3.2. Assume that S is smooth. Then in the assertion (2), we may take

T ⊂ S so that S̃ = BlT S is also smooth. Indeed, if S̃ is not smooth, we replace S̃ by a
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smooth model ˜̃S → S̃ which is isomorphic outside the support of α∗T .

Proof. When X = ∅, our assertions (1) and (2) are trivial. In the following, we

assume X ̸= ∅.
We first prove (1). By [31, p.201, Step 3], there exists N1 > 0 such that for every

s ∈ S and every m ≥ N1, the natural morphism

(p∗L⊗m)⊗ C(s) → Γ(Xs,L⊗m
s ) (3.2)

is an isomorphism, and

Hj(Xs,L⊗m
s ) = {0}

for all j > 0. Hence PXs(m) = dim{(p∗L⊗m)⊗C(s)} for every s ∈ S and every m ≥ N1.

Replacing N1 by a lager integer if necessary, we may assume, moreover, that PXs(m) <

Pmax(m) for every s ∈ S−T and everym ≥ N1. The function s 7→ dim{(p∗L⊗N1)⊗C(s)}
is upper semicontinuous and the locus where the value of this function is greater than or

equal to Pmax(N1) is exactly equal to T . Hence T is Zariski closed. This shows (1).

Next we prove (2). We apply the stratification defined by p∗L⊗m ([31, Theorem

4.2.7]). For m ≥ N1, we obtain a closed subscheme Tm ⊂ S such that supp Tm = T

with the following property: If q : V → S is a scheme morphism, the sheaf q∗(p∗L⊗m) is

locally free of rank Pmax(m) if and only if q factors through Tm. We set T =
∩
m≥N1

Tm.

By the Noetherian property, T is well-defined closed subscheme of S with supp T = T .

We shall show that T satisfies the property of (2). Let α : S̃ → S be the blow-up

along T . Set X̃ = X ×S S̃ and let p̃ : X̃ → S̃ be the projection. Let L̃ be the pull-back

of L by X̃ → X. Then L̃ is a relatively very ample invertible sheaf. Let α∗T be the

pull-back of T by α. Then α∗T ⊂ S̃ is a Cartier divisor.

We construct a closed subscheme T̃ ⊂ S̃ in a similar manner as the construction of

T ⊂ S above. We take N2 ≥ N1 such that the natural morphism

(p̃∗L̃⊗m)⊗ C(s) → Γ(X̃s, L̃⊗m
s ) (3.3)

is an isomorphism for every m ≥ N2 and every s ∈ S̃. Replacing N2 by a lager integer if

necessary, we may assume, moreover, that the natural map

α∗(p∗L⊗m) → p̃∗L̃⊗m (3.4)

is an isomorphism for every m ≥ N2 (cf. [31, Proposition 4.2.4]). For m ≥ N2, we obtain

a closed subscheme T̃m ⊂ S̃ such that supp T̃m = suppα∗T with the following property:

If q : V → S̃ is a scheme morphism, the sheaf q∗(p̃∗L̃⊗m) is locally free of rank Pmax(m) if

and only if q factors through T̃m. We set T̃ =
∩
m≥N2

T̃m. Then T̃ is a closed subscheme

such that supp T̃ = suppα∗T .

We shall show T̃ = α∗T to conclude that T̃ ⊂ S̃ is a Cartier divisor. Let q : α∗T → S̃

be the closed immersion. Then α ◦ q : α∗T → S factors through Tm for every m ≥ N1.

Hence (α ◦ q)∗(p∗L⊗m) is locally free of rank Pmax(m) for every m ≥ N1. For m ≥ N2,

(3.4) yields (α ◦ q)∗(p∗L⊗m) = q∗(p̃∗L̃⊗m). Hence q∗(p̃∗L̃⊗m) is locally free of rank
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Pmax(m) for every m ≥ N2. Hence q factors through T̃m ⊂ S̃ for every m ≥ N2. This

shows α∗T ⊂ T̃ .

Next we shall show T̃ ⊂ α∗T . Let ψ : T̃ → S̃ be the closed immersion. Set

XT̃ = X̃ ×S̃ T̃ and let pT̃ : XT̃ → T̃ be the projection. Let LT̃ be the pull back of L̃
on XT̃ .

XT̃ −−−−→ X̃ −−−−→ XypT̃ yp̃ yp
T̃ −−−−→

ψ
S̃ −−−−→

α
S

There exists a positive integer N3 ≥ N2 such that the natural map

ψ∗(p̃∗L̃⊗m) → (pT̃ )∗L
⊗m
T̃

is an isomorphism for every m ≥ N3 (cf. [31, Proposition 4.2.4]). Hence (pT̃ )∗L
⊗m
T̃ is

locally free for every m ≥ N3. Hence by [31, Proposition 4.2.1], pT̃ : XT̃ → T̃ is flat.

Now we look at the natural map

(α ◦ ψ)∗p∗L⊗m → (pT̃ )∗L
⊗m
T̃ . (3.5)

Then in view of (3.2), the natural map

(pT̃ )∗L
⊗m
T̃ ⊗ C(s) → Γ((XT̃ )s, (LT̃ )

⊗m
s ) (3.6)

is surjective for every m ≥ N1 and s ∈ T̃ . We apply the theorem of cohomology and

base change to conclude that (3.6) is an isomorphism for every m ≥ N1 and s ∈ T̃ (cf.

[12, Chapter III, Theorem 12.11 (a)]), and (pT̃ )∗L
⊗m
T̃ is locally free of rank Pmax(m) for

every m ≥ N1 (cf. [12, Chapter III, Theorem 12.11 (b)]). By the isomorphisms (3.2) and

(3.6), the natural map

(α ◦ ψ)∗p∗L⊗m ⊗ C(s) → (pT̃ )∗L
⊗m
T̃ ⊗ C(s)

induced by (3.5) is an isomorphism for every m ≥ N1 and s ∈ T̃ . Since (pT̃ )∗L
⊗m
T̃ is

locally free, Nakayama’s lemma yields that (3.5) is an isomorphism for every m ≥ N1.

Hence (α ◦ψ)∗p∗L⊗m is locally free of rank Pmax(m) for every m ≥ N1. This shows that

α ◦ ψ : T̃ → S factors through T . Hence T̃ ⊂ α∗T . We have proved T̃ = α∗T .

We take t ∈ supp T̃ . Then for m ≥ N2, we have an exact sequence on a Zariski open

neighborhood Um of t,

O⊕dm
S̃

Gm→ O⊕em
S̃

→ p̃∗L̃⊗m → 0 (3.7)

such that the induced

O⊕em
S̃

⊗ C(t) → p̃∗L̃⊗m ⊗ C(t) (3.8)
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is an isomorphism. We take a positive integer l such that T̃ = T̃N2 ∩ · · · ∩ T̃N2+l. We

take an affine open neighborhood U of t such that U ⊂ Um for m = N2, . . . , N2 + l. We

may assume that T̃ ∩U is defined by the ideal σ · OS̃(U) ⊂ OS̃(U) for some σ ∈ OS̃(U).

Since S̃ is a variety (cf. [12, Chapter II, Proposition 7.16]) and supp T̃ ̸= S̃, we have

σ ̸= 0 as elements of OS̃(U). Let Gm be expressed by the matrix (g
(m)
ij ). We denote

by Im ⊂ OS̃(U) the ideal generated by all g
(m)
ij , where 1 ≤ i ≤ em and 1 ≤ j ≤ dm.

Then Im is the ideal associated to the closed subscheme T̃m ∩ U ⊂ U . Hence we have

IN2 + · · · + IN2+l = σ · OS̃(U). We may write g
(m)
ij = σh

(m)
ij by h

(m)
ij ∈ OS̃(U). Since

OS̃(U) is an integral domain, there exists µ
(m)
ij ∈ OS̃(U) such that∑

µ
(m)
ij h

(m)
ij = 1.

Hence there exists h
(m′)
i′j′ such that h

(m′)
i′j′ (t) ̸= 0. Let τ ∈ Γ(U, p̃∗L̃⊗m′

) be the image

of (h
(m′)
1j′ , . . . , h

(m′)
em,j′

) under (3.7). Then στ = 0, but τ |t ̸= 0, where we consider τ |t ∈
Γ(X̃t, L̃⊗m′

t ) under the isomorphisms (3.3) and (3.8). Let

V (τ) ↪→ p̃−1(U) (3.9)

be a closed subscheme defined by τ = 0, where τ ∈ Γ(p̃−1(U), L̃⊗m′
). Since σ is a unit

on U − supp T̃ , the immersion (3.9) is an isomorphism over U − supp T̃ . Hence we have

X̂ ∩ p̃−1(U) ⊂ V (τ). Here we remark that X̂ ∩ p̃−1(U) is the scheme theoretic closure

of p̃−1(U − supp T̃ ) in p̃−1(U), because the scheme theoretic closure of a Noetherian

scheme commutes with restriction to open subset. On the other hand, by τ |t ̸= 0, we

have V (τ)t ⫋ X̃t. Hence we have

X̂t ⊂ V (τ)t ⫋ X̃t = Xα(t).

This completes the proof of Lemma 3.1 (2). (Compare with the proof of [14, Theorem

1.14].)

Before going to prove (3), we prepare another lemma.

Lemma 3.3. Let Y ⊂ PN be a closed subscheme and let Z ⊂ Y be a closed sub-

scheme. Then PZ ≤ PY , where PY and PZ are the Hilbert polynomials of Y and Z,

respectively. If, moreover, the closed immersion Z ↪→ Y is not an isomorphism, then

PZ < PY .

Proof of Lemma 3.3. Let I ⊂ OY be the ideal sheaf of Z ⊂ Y . Then we have

the following short exact sequence

0 −→ I −→ OY −→ OZ −→ 0.

By H1(Y, I(m)) = 0 for m≫ 1, this sequence yields

0 −→ Γ(Y, I(m)) −→ Γ(Y,OY (m)) −→ Γ(Y,OZ(m)) −→ 0

for m ≫ 1. By PY (m) = dimΓ(Y,OY (m)) and PZ(m) = dimΓ(Y,OZ(m)) for m ≫ 1,
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we get

PY (m) = PZ(m) + dimΓ(Y, I(m))

for m≫ 1. Thus PZ ≤ PY .

Now assume moreover Z ̸= Y . Then I ̸= 0. Since I(m) is generated by its global

sections for m≫ 1, we get Γ(Y, I(m)) ̸= {0} for m≫ 1. Hence PZ < PY . □

Now we return to the proof of Lemma 3.1 (3). We take t ∈ BlT S such that PX̂t
= P̂ .

The proof is divided in the two cases whether α(t) ∈ T or not. If α(t) ∈ T , then by Lemma

3.1 (2), we have X̂t ⫋ Xα(t). Thus by Lemma 3.3, we have P̂ = PX̂t
< PXα(t)

= P . If

α(t) ̸∈ T , then the assumption X ̸= ∅ yields PXα(t)
< P . Hence P̂ = PX̂t

≤ PXα(t)
< P .

In both cases, P̂ < P . This completes the proof of Lemma 3.1 (3). □

4. Demailly jet spaces.

We introduce Demailly jet spaces (cf. [6]). Let M be a positive dimensional smooth

algebraic variety. Let V ⊂ TM be an algebraic vector subbundle, whose bundle rank

is positive. Set M̃ = P (V ). Let π : M̃ → M be the projection. We define a vector

subbundle Ṽ ⊂ TM̃ as follows: For every point (x, [v]) ∈ M̃ associated with a vector

v ∈ Vx \ {0}, we set

Ṽ(x,[v]) = {ξ ∈ T(x,[v])M̃ ; π∗(ξ) ∈ Cv}.

Let f : D → M be a non-constant holomorphic map. We say that f is tangent to V

if f ′(z) ∈ Vf(z) for all z ∈ D. If f is tangent to V , we may define f[1] : D → M̃ by

f[1](z) = (f(z), [f ′(z)]). Then f[1] is tangent to Ṽ .

Let Z ⊂M be a closed subscheme. We define a closed subscheme Z̃ ⊂ M̃ as follows.

LetW ⊂M be an affine open set where Z∩W is defined by ϕ1, . . . , ϕl ⊂ Γ(W,OW ). Then

we define the closed subscheme Z̃ ∩W ⊂ π−1(W ) by ϕ1, . . . , ϕl, dϕ1|V , . . . , dϕl|V . Then

this definition of Z̃ ∩W does not depend on the choice of generators ϕ1, . . . , ϕl, so well

defined overW . In general, we coverM by open affines {Wi} and make closed subschemes

Z̃ ∩Wi ⊂ π−1(Wi). Then we glue these subschemes and define the subscheme Z̃ ⊂ M̃ .

We inductively define the Demailly jet space Mk together with a vector subbundle

Vk ⊂ TMk by

(M0, V0) = (M,TM), (Mk, Vk) = (M̃k−1, Ṽk−1).

For a non-constant holomorphic map f : D → M , we define f[k] : D → Mk inductively

by f[0] = f and f[k] = (f[k−1])[1]. For a closed subscheme Z ⊂ M , we define a closed

subscheme Zk ⊂Mk inductively by Z0 = Z and Zk = Z̃k−1. Then for each non-constant

f ∈ Hol(D, Z), we have f[k] ∈ Hol(D, Zk) for all k ≥ 0.

Now let A be a non-trivial abelian variety, let S be a smooth projective variety, and

let M = A×S. We denote by Lie(A) the tangent space to A at the identity point 0 ∈ A.

Let TS × Lie(A) → S be the composite of the first projection TS × Lie(A) → TS and
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the natural projection TS → S. We then consider TS × Lie(A) → S as a vector bundle

of rank dimM over S. Then TM = q∗(TS × Lie(A)), where q : M → S is the second

projection.

Lemma 4.1. For each k ≥ 0, there exist a smooth projective variety S[k] and a

vector subbundle V †
k ⊂ TS[k] × Lie(A) such that Mk = A× S[k] and Vk = q∗kV

†
k ⊂ TMk,

where qk :Mk → S[k] is the second projection.

Proof. We prove by induction on k ≥ 0. Our assertion is valid for k = 0, where

S[0] = S and V †
0 = TS × Lie(A). For the induction step, suppose our assertion is valid

for k − 1. We set S[k] = P (V †
k−1). Then S[k] is a smooth projective variety. We have

Mk = P (q∗k−1(V
†
k−1)) =Mk−1 ×S[k−1]

S[k] = A× S[k].

Next let τ : S[k] → S[k−1] be the projection. We have a vector bundle map (τ∗, idLie(A)) :

TS[k] × Lie(A) → TS[k−1] × Lie(A). We define V †
k ⊂ TS[k] × Lie(A) as follows. For each

(x, [v]) ∈ S[k], where x ∈ S[k−1] and v ∈ V †
k−1 \ {0}, we set

(V †
k )(x,[v]) = {ξ ∈ T(x,[v])S[k] × Lie(A); (τ∗, idLie(A))(ξ) ∈ C · v}.

Then we have q∗kV
†
k = Vk. □

Let TMk/S[k]
⊂ TMk

be the relative tangent bundle with respect to the second pro-

jection qk :Mk → S[k]. We define Mo
k ⊂Mk by

Mo
k = {x ∈Mk; (Vk ∩ TMk/S[k]

)x ̸= {0}}.

We set So[k] = qk(M
o
k ). Then S

o
[k] ⊂ S[k] and M

o
k = A× So[k].

We claim that

So[k] = S × P(Lie(A)) (4.1)

for all k ≥ 1. We prove this. For k ≥ 1, let πk : Mk → Mk−1 be the projection. Let

(x, [v]) ∈ Mk, where x ∈ Mk−1 and v ∈ (Vk−1)x with v ̸= 0. Let (πk)∗ : (TMk)(x,[v]) →
(TMk−1)x be the induced map. Then we have (Vk)(x,[v]) = ((πk)∗)

−1(Cv). The map

(πk)∗ induces an isomorphism (TMk/S[k]
)(x,[v]) → (TMk−1/S[k−1]

)x. Hence (πk)∗ induces

an isomorphism

(Vk ∩ TMk/S[k]
)(x,[v])

∼→ (Cv) ∩ (TMk−1/S[k−1]
)x. (4.2)

This shows that (x, [v]) ∈ Mo
k if and only if x ∈ Mo

k−1 and v ∈ (Vk−1 ∩ TMk−1/S[k−1]
)x.

Hence we have

Mo
k = P((Vk−1 ∩ TMk−1/S[k−1]

)|Mo
k−1

).

We first check (4.1) for k = 1. We have Mo
1 = P(TA×S/S) = A × S × P(Lie(A)).

This shows (4.1) for k = 1. Next we assume that (4.1) is true for k, where k ≥ 1.
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Then by (4.2), the restriction (Vk ∩ TMk/S[k]
)|Mo

k
is a rank one vector bundle. Hence

Mo
k+1 = P((Vk ∩ TMk/S[k]

)|Mo
k
) =Mo

k . Thus (4.1) also holds for k+ 1. By the induction,

we have proved (4.1).

For v ∈ Lie(A)−{0}, let φv : C → A be a one parameter subgroup such that φ′
v(0) =

v. For (a, s) ∈ A× S, let φv,(a,s) : C → A× S be defined by φv,(a,s)(z) = (a+ φv(z), s).

Then we have

(φv,(a,s))[k](z) = (a+ φv(z), s, [v]) ∈ A× So[k]. (4.3)

Now let X ⊂ A× S be a closed subscheme. Let pk : Xk → S[k] be the composite of

the closed immersion Xk ↪→ A× S[k] and the second projection A× S[k] → S[k]. We fix

some projective embedding A ⊂ Pn. We define a Zariski closed subset T[k] ⊂ S[k] as in

(3.1) from the projective morphism pk : Xk → S[k]. Then T[k] ⊂ pk(Xk).

Lemma 4.2. Assume that Xs ̸= A for all s ∈ S and that Xk ⊂ A × S[k] is non-

empty for all k ≥ 0. Then there exists a positive integer ν > 0 with the following property :

Let T be a connected component of T[ν] such that T ∩So[ν] ̸= ∅. Then there exists a proper

abelian subvariety B ⫋ A such that T ∩ So[ν] ⊂ S × P(Lie(B)).

Remark 4.3. The proof shows that there exists an integer ν0 > 0 such that all

integers ν ≥ ν0 satisfy the property of Lemma 4.2.

Proof of Lemma 4.2.

Step 1: We first find ν in the statement. The restrictions of the projection maps

πk : Mk → Mk−1 induce isomorphisms Mo
k → Mo

k−1. We consider supp(Xk ∩Mo
k ) as

Zariski closed subsets of Mo
k = A× S × P(Lie(A)), which form a nested sequence

A× S × P(Lie(A)) ⊃ supp(X1 ∩Mo
1 ) ⊃ supp(X2 ∩Mo

2 ) ⊃ supp(X3 ∩Mo
3 ) ⊃ · · · .

By the Noetherian property, there exists an integer ν such that

supp(Xν ∩Mo
ν ) = supp(Xν+1 ∩Mo

ν+1) = supp(Xν+2 ∩Mo
ν+2) = · · · .

We fix this ν.

Step 2: For v ∈ Lie(A) − {0}, let Bv ⊂ A be the Zariski closure of φv(C), where
φv : C → A is the one parameter subgroup. Then Bv is a positive dimensional abelian

subvariety of A. Let (s, [v]) ∈ pν(Xν) ∩ So[ν] ⊂ S × P(Lie(A)). We claim that

Bv ⊂ St(supp p−1
ν ((s, [v]))), (4.4)

where St(supp p−1
ν ((s, [v]))) is the stabilizer of supp p−1

ν ((s, [v])) ⊂ A. Indeed, suppose

a ∈ supp p−1
ν ((s, [v])). Then (a, s) ∈ X ⊂ A× S. By (4.3), the definition of ν yields that

(φv,(a,s))[k](0) = (a, s, [v]) ∈ Xk for all k ≥ 0. By Taylor series, we have φv,(a,s)(C) ⊂ X.

Hence a + Bv ⊂ Xs. Now for arbitrary x ∈ a + Bv, we have φv,(x,s)(C) ⊂ X. This

shows (φv,(x,s))[ν](0) = (x, s, [v]) ∈ Xν . Hence x ∈ supp p−1
ν ((s, [v])). Thus we have

a+Bv ⊂ supp p−1
ν ((s, [v])) for all a ∈ supp p−1

ν ((s, [v])). This shows (4.4).

Step 3: We consider a general situation. Let Σ be a variety (cf. Remark 1.6) and let
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Z ⊂ A×Σ be a non-empty, closed subscheme such that the projection ψ : Z → Σ is flat.

Then the dimension of Zs is independent of s ∈ Σ (cf. [12, III, Corollary 9.10]). We set

this dimension d. For each s ∈ Σ, let (Zs)
′ be the union of all d-dimensional irreducible

components of suppZs. Then (Zs)
′ is a Zariski closed subset of A. Let St0((Zs)

′) be

the connected component of St((Zs)
′) which contains the identity element 0 ∈ A. Then

St0((Zs)
′) is a (possibly trivial) abelian subvariety of A. We prove the following

Claim. St0((Zs)
′) is independent of s ∈ Σ.

When dimΣ = 0, this claim is trivial. In the following, we assume dimΣ > 0.

We fix s0 ∈ Σ arbitrary. Let D = St0((Zs0)
′). We show that D = St0((Zs)

′) for all

s ∈ Σ. By taking a chain of irreducible curves connecting s0 and s (cf. [24, p.56]) and

considering the normalizations of these curves, we may assume that Σ is a smooth curve.

Thus dimZ = d+ 1.

It is sufficient to show that D ⊂ St0((Zs)
′) for all s ∈ Σ. Let Y1, . . . , Yk be the

irreducible components of suppZ. We assume that dimYj = d + 1 for 1 ≤ j ≤ l and

dimYj < d+1 for l+1 ≤ j ≤ k. Let (Yj)s be the fiber of the restriction map ψ|Yj : Yj → Σ

over s ∈ Σ. Since ψ : Z → Σ is flat, we have ψ(Yj) = Σ for every 1 ≤ j ≤ k (cf. [12, III,

Proposition 9.7]). Hence for every 1 ≤ j ≤ k and s ∈ Σ, all irreducible components of

(Yj)s have the same dimension dimYj − 1. Thus for every s ∈ Σ, we have

D ⊂ St0((Zs)
′) ⇐⇒ D ⊂ St0(supp(Yj)s) for all 1 ≤ j ≤ l.

Now we fix 1 ≤ j ≤ l, and prove D ⊂ St0(supp(Yj)s) for all s ∈ Σ. Indeed otherwise,

denoting by Wj ⊂ (A/D)×Σ the image of Yj under the projection A×Σ → (A/D)×Σ,

we have

dimWj + dimD > dimYj = d+ 1.

On the other hand, denoting by ϕj :Wj → Σ the induced map, we have

dimϕ−1
j (s0) = dim(Yj)s0 − dimD = d− dimD.

Hence we have

dimWj − 1 > d− dimD = dimϕ−1
j (s0).

This contradicts to dimϕ−1
j (s0) = dimWj − 1. Thus D ⊂ St0(supp(Yj)s) for all s ∈ Σ.

Hence D ⊂ St0((Zs)
′) for all s ∈ Σ. This conclude the proof of the claim.

Step 4: We return to the proof of our lemma. Let T be a connected component

of T[ν] such that T ∩ So[ν] ̸= ∅. Let T ′ be an irreducible component of T . Then T ′ is

irreducible and reduced, and hence a variety. Let (pν)T ′ : (Xν)T ′ → T ′ be the base

change of pν : Xν → S[ν]. By the construction of T[ν], the Hilbert polynomials of the

fibers of (pν)T ′ are all the same. Hence (pν)T ′ is flat (cf. [12, III, Theorem 9.9]). Note

that (Xν)T ′ ̸= ∅, for Xν ̸= ∅. By the claim above, St0(((Xν)t)
′) is independent of t ∈ T ′.

Since T is connected, St0(((Xν)t)
′) is independent of t ∈ T . We denote this abelian

subvariety by B. Then by the assumption that Xs ̸= A for all s ∈ S and Xν ̸= ∅, we
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have ((Xν)t)
′ ̸= A and ((Xν)t)

′ ̸= ∅ for all t ∈ T . Thus B ̸= A. Now let (s, [v]) ∈ T ∩So[ν].
Then by (4.4), we have

Bv ⊂ St0(supp((Xν)(s,[v]))) ⊂ St0(((Xν)(s,[v]))
′) = B.

Hence [v] ∈ P(Lie(B)), thus (s, [v]) ∈ S×P(Lie(B)). This shows T ∩So[ν] ⊂ S×P(Lie(B)),

which completes the proof of Lemma 4.2. □

We discuss a consequence of Lemma 4.2, which is needed in the proof of Proposition

2.3. For v ∈ T (A × S[ν]), we denote by vA ∈ TA (resp. vS[ν]
∈ TS[ν]) the image of v

under the induced map T (A× S[ν]) → TA (resp. T (A× S[ν]) → TS[ν]).

Lemma 4.4. Let X ⊂ A × S be the same as in Lemma 4.2 and let ν > 0 be a

positive integer which satisfies the property described in Lemma 4.2. Let T be a connected

component of T[ν] ⊂ S[ν]. Then there exists B ∈ Σ(A) with the following property : Let

ε > 0. Let ωA be a positive invariant (1, 1)-form on A and let ωS[ν]
be a smooth positive

(1, 1)-form on S[ν]. Let ωA/B be a positive invariant (1, 1)-form on A/B. Then there

exist an open subset U ⊂ S[ν] with T ⊂ U and a positive constant ρ > 0 such that

|(ϖB)∗((vx)A)|2ωA/B
≤ ε|(vx)A|2ωA

+ ρ|(vx)S[ν]
|2ωS[ν]

(4.5)

for all x ∈ A × U and all vx ∈ (Vν)x ⊂ Tx(A × S[ν]), where (ϖB)∗ : TA → T (A/B) is

the map induced from the quotient map ϖB : A→ A/B.

Proof. For each open set W ⋐ S[ν] \So[ν], there exists a positive constant γW > 0

such that

|(v(a,s))A|ωA
≤ γW |(v(a,s))S[ν]

|ωS[ν]

for all (a, s) ∈ A×W and all v(a,s) ∈ (Vν)(a,s) ⊂ T(a,s)(A× S[ν]). This follows from the

fact that the composition of the natural maps

(Vν)(a,s) ↪→ T(a,s)(A× S[ν]) → Ts(S[ν])

is injective for all (a, s) ∈ A × (S[ν] \ So[ν]). Hence if T ∩ So[ν] = ∅, we take B = {0} and

U ⊂ S[ν] such that T ⊂ U and U ⋐ S[ν] \ So[ν].
We assume that T ∩ So[ν] ̸= ∅. By Lemma 4.2, there exists B ∈ Σ(A) such that

T ∩ So[ν] ⊂ S × P(LieB). We claim that there exists an open subset U1 ⊂ S[ν] with

S × P(LieB) ⊂ U1 such that

|(ϖB)∗((vx)A)|2ωA/B
≤ ε|vx|2ωA×S[ν]

= ε(|(vx)A|2ωA
+ |(vx)S[ν]

|2ωS[ν]
) (4.6)

for all x ∈ A × U1 and all vx ∈ (Vν)x ⊂ Tx(A × S[ν]). We prove this. Let x ∈ A ×
(S × P(LieB)) ⊂ A × So[ν] and vx ∈ (Vν)x. Then by the construction of So[ν], we have

(πν)∗(vx) ∈ TA×S[ν−1]/S[ν−1]
and

(πν)∗(vx) ∈ LieB ⊂ LieA = (TA×S[ν−1]/S[ν−1]
)πν(x).
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Hence |(ϖB)∗((vx)A)|ωA/B
= 0 for all x ∈ A × (S × P(LieB)) and all vx ∈ (Vν)x. We

define a compact set K ⊂ Vν by

K = {v ∈ Vν ; |v|ωA×S[ν]
= 1}.

For x ∈ A× S[ν], we set Kx = K ∩ (Vν)x. We set

K ′ = {v ∈ K; |(ϖB)∗(vA)|ωA/B
≥

√
ε}.

Then K ′ ⊂ K is compact and

K ′ ∩
∪

x∈A×(S×P(LieB))

Kx = ∅.

Hence there exists an open set U1 ⊂ S[ν] such that S × P(LieB) ⊂ U1 and

|(ϖB)∗((vx)A)|ωA/B
<

√
ε

for all x ∈ A×U1 and vx ∈ K. Hence we have (4.6) for all x ∈ A×U1 and all vx ∈ (Vν)x.

Now we take U2 ⋐ S[ν] \ So[ν] such that T ⊂ U1 ∪ U2. We set U = U1 ∪ U2. If

x ∈ A× U2 and vx ∈ (Vν)x, then we have

|(ϖB)∗((vx)A)|ωA/B
≤ c|(vx)A|ωA

≤ cγU2 |(vx)S[ν]
|ωS[ν]

,

where c is a positive constant such that ϖ∗
BωA/B ≤ c2ωA. Hence (4.5) is valid for

ρ = max{ε, c2γ2U2
}. □

5. Tautological inequality.

We introduce a variant of the tautological inequality. For entire curves, this estimate

is due to Kobayashi [18] and McQuillan [23]. See also [3], [33], [35].

Let X be a smooth projective variety. Let ωX be a smooth, positive (1, 1)-form

on X. Then ωX naturally induces a Hermitian metric on the tautological line bundle

OPTX(1) on PTX. Let ωOPTX(1) be the associated curvature form for the tautological

line bundle OPTX(1) on PTX.

Lemma 5.1. Let X, ωX , ωOPTX(1) be as above. Let 0 < s < 1, ε > 0 and δ > 0.

Then there exists a positive constant µ > 0 such that for every non-constant holomorphic

map f : D → X, the estimate∫ r

s

dt

t

∫
D(t)

(f[1])
∗ωOPTX(1) ≤ ε

∫ r

s

dt

∫
D(t)

f∗ωX +

∫ 2π

0

log
1

|f ′(seiθ)|ωX

dθ

2π
+ µ

holds for all r ∈ (s, 1) outside some exceptional set E ⊂ (s, 1) with the linear measure

|E| < δ.

Proof. We follow the argument in [3]. The metric ωX defines a Hermitian metric

| · |ωX on OPTX(−1), whose curvature form is −ωOPTX(1). By the Poincaré–Lelong
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formula, we have

−(f[1])
∗ωOPTX(1) = [(f ′)∗F ]− 2ddc log |f ′|ωX

as currents on D, where F is the zero section of OPTX(−1). By the Jensen formula, we

have∫ r

s

dt

t

∫
D(t)

(f[1])
∗ωOPTX(1) ≤

∫ 2π

0

log |f ′(reiθ)|ωX

dθ

2π
−
∫ 2π

0

log |f ′(seiθ)|ωX

dθ

2π
.

Using concavity of log, we have∫ 2π

0

log |f ′(reiθ)|ωX

dθ

2π
≤ 1

2
log

∫ 2π

0

|f ′(reiθ)|2ωX

dθ

2π
.

We set

T (r) =

∫ r

s

dt

∫
D(t)

f∗ωX .

Then we have

1

2πr

d2

dr2
T (r) =

∫ 2π

0

|f ′(reiθ)|2ωX

dθ

2π
.

Hence ∫ 2π

0

log |f ′(reiθ)|ωX

dθ

2π
≤ 1

2
log

(
1

2πr

d2

dr2
T (r)

)
.

Hence for r > s, we have∫ 2π

0

log |f ′(reiθ)|ωX

dθ

2π
≤ 1

2
log

(
d2

dr2
T (r)

)
− log 2πs

2
.

Now we apply Lemma 5.2 below twice. We have

log

(
d2

dr2
T (r)

)
≤ log

(
4

δ
max

{
1, (T ′(r))

2
})

≤ log

(
4

δ
max

{
1,

(
4

δ
max{1, T (r)2}

)2
})

= log

(
43

δ3
max

{
1, T (r)4

})
for r ∈ (s, 1) outside some exceptional set E with |E| < δ. Hence∫ r

s

dt

t

∫
D(t)

(f[1])
∗ωOPTX(1) ≤ 2 log+ T (r) +

∫ 2π

0

log
1

|f ′(seiθ)|ωX

dθ

2π
− log 2πs

2
+

3

2
log

4

δ
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for r ∈ (s, 1) outside E. We take a positive constant µ′ > 0 such that 2 log+ x < εx+ µ′

for x ≥ 0. Then we obtain our estimate. □

Lemma 5.2. Let g be a continuously differentiable, increasing function on [s, 1)

with g(s) ≥ 0. Let δ > 0. Then we have

g′(r) ≤ 2

δ
max{1, g(r)2}

for all r ∈ (s, 1) outside a set Eδ with |Eδ| < δ.

Proof. Set

Eδ =

{
r ∈ (s, 1); g′(r) >

2

δ
max{1, g(r)2}

}
.

If Eδ = ∅, then our assertion is trivial. Suppose Eδ ̸= ∅. We have

|Eδ| <
δ

2

∫
Eδ

g′(r)

max{1, g(r)2}
dr ≤ δ

2

∫ 1

s

g′(r)

max{1, g(r)2}
dr.

We have the following three cases.

Case 1: g(r) ≥ 1 for all r ∈ [s, 1). Then we have∫ 1

s

g′(r)

max{1, g(r)2}
dr =

∫ 1

s

g′(r)

g(r)2
dr = lim

t→1−0

[
−1

g(r)

]t
s

≤ 1.

Case 2: g(r) ≤ 1 for all r ∈ [s, 1). Then we have∫ 1

s

g′(r)

max{1, g(r)2}
dr =

∫ 1

s

g′(r)dr ≤ 1.

Case 3: Otherwise, we have g(s) < 1 and limr→1−0 g(r) > 1. We set κ = sup{r ∈
[s, 1); g(r) ≤ 1}. Then we have s < κ < 1 and g(κ) = 1. Hence we have∫ 1

s

g′(r)

max{1, g(r)2}
dr =

∫ κ

s

g′(r)dr +

∫ 1

κ

g′(r)

g(r)2
dr ≤ 1 + lim

t→1−0

[
−1

g(r)

]t
κ

≤ 2.

Thus in all cases, we have proved |Eδ| < δ. □

Now let A be an abelian variety and let S be a smooth projective variety. Then by

Lemma 4.1, there exists a smooth projective variety S[k] such that (A× S)k = A× S[k].

Lemma 5.3. Let ωA be a positive invariant (1, 1)-form on A and let ωS be a smooth,

positive (1, 1)-form on S. For k ∈ Z≥0, let ωS[k]
be a smooth, positive (1, 1)-form on S[k].

Let 0 < s < 1, ε > 0, δ > 0. Then there exist positive constants µ1, µ2, µ3 such that for

every non-constant holomorphic map f : D → A× S, the estimate
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s

dt

∫
D(t)

((f[k])S[k]
)∗ωS[k]

≤ ε

∫ r

s

dt

∫
D(t)

f∗AωA + µ1

∫ r

s

dt

∫
D(t)

f∗SωS

+ µ2 max

{
0,

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π

}
+ µ3

holds for r ∈ (s, 1) outside some exceptional set of linear measure less than δ.

Proof. We prove by the induction on k. When k = 0, our assertion is trivial.

Suppose that our estimate is valid for k − 1, where k ≥ 1. Then P (Vk−1) = A × S[k]

for the vector subbundle Vk−1 ⊂ T (A × S[k−1]). Let q : A × S[k−1] → S[k−1] be the

second projection. By Lemma 4.1, there exists a vector bundle V †
k−1 on S[k−1] such that

q∗V †
k−1 = Vk−1. Then we have P (V †

k−1) = S[k]. We note that ωA and ωS[k−1]
induce

Hermitian metrics on V †
k−1 and Vk−1, hence on the tautological bundles OPV †

k−1
(1) and

OPVk−1
(1). We denote by ωO

PV
†
k−1

(1) and ωOPVk−1
(1) the associated curvature forms on

S[k] and A× S[k], respectively.

Let τ : S[k] → S[k−1] be the induced map. There exist positive constants α1, α2

such that

ωS[k]
≤ α1ωO

PV
†
k−1

(1) + α2τ
∗ωS[k−1]

on S[k]. By Lemma 5.1, we get∫ r

s

dt

t

∫
D(t)

(f[k])
∗ωOPVk−1

(1)

≤ ε

2α1

∫ r

s

dt

∫
D(t)

(f[k−1])
∗ωA×S[k−1]

+

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π
+ µ

for r ∈ (s, 1) outside some exceptional set E1 with |E1| < δ/2. Hence we get∫ r

s

dt

∫
D(t)

((f[k])S[k]
)∗ωS[k]

≤
∫ r

s

dt

t

∫
D(t)

((f[k])S[k]
)∗ωS[k]

≤ α1

∫ r

s

dt

t

∫
D(t)

(f[k])
∗ωOPVk−1

(1) +
α2

s

∫ r

s

dt

∫
D(t)

((f[k−1])S[k−1]
)∗ωS[k−1]

≤ ε

2

∫ r

s

dt

∫
D(t)

(f[k−1])
∗ωA×S[k−1]

+
α2

s

∫ r

s

dt

∫
D(t)

((f[k−1])S[k−1]
)∗ωS[k−1]

+ α1

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π
+ α1µ

≤ ε

2

∫ r

s

dt

∫
D(t)

f∗AωA +
(ε
2
+
α2

s

)∫ r

s

dt

∫
D(t)

((f[k−1])S[k−1]
)∗ωS[k−1]

+ α1 max

{
0,

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π

}
+ α1µ
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for r ∈ (s, 1) outside E1. Now by the induction hypothesis, we have∫ r

s

dt

∫
D(t)

((f[k−1])S[k−1]
)∗ωS[k−1]

≤ εs

2α2 + εs

∫ r

s

dt

∫
D(t)

f∗AωA + µ′
1

∫ r

s

dt

∫
D(t)

f∗SωS

+ µ′
2 max

{
0,

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π

}
+ µ′

3

for r ∈ (s, 1) outside some exceptional set E2 with |E2| < δ/2. Thus our estimate is valid

for k. □

6. Nevanlinna theory and blowing-ups.

We use the notion of Weil functions (cf., e.g., [35, Definition 2.2.1]). Let V be a

smooth projective variety and let Z ⊂ V be a closed subscheme. A Weil function λZ for Z

is a continuous function λZ : V −suppZ → R which satisfies the following condition. For

each x ∈ V , there are a Zariski open neighborhood U ⊂ V of x, holomorphic functions

g1, . . . , gl ∈ Γ(U,OV ) which defines Z ∩ U , and a continuous function α : U → R on U

such that ∣∣∣∣λZ(y) + log max
1≤i≤l

{|gi(y)|}
∣∣∣∣ ≤ α(y)

for all y ∈ U − supp(Z ∩ U). We summarize the needed properties of Weil functions (cf.

[35, Section 2.2]):

• If λZ and λ′Z are Weil functions for Z, then there exists a positive constant γ such

that |λZ(x)− λ′Z(x)| ≤ γ for all x ∈ V − suppZ.

• Let D be an effective Cartier divisor on V . Let L be a line bundle on V as-

sociated to D, and let h be a smooth Hermitian metric on L. Let σ be a sec-

tion of L associated to D such that h(σ(x), σ(x)) ≤ 1 for all x ∈ V . Then

λD(x) = − log
√
h(σ(x), σ(x)), where x ∈ V − suppD, is a Weil function for D

with λD ≥ 0.

• Suppose Z = D1∩· · ·∩Dl as closed subschemes of V , where D1, . . . , Dl are effective

Cartier divisors on V . Then min{λD1 , . . . , λDl
} is a Weil function for Z.

• Suppose that p : Ṽ → V is a morphism from another smooth projective variety Ṽ .

Then λZ ◦ p is a Weil function for the pull-back p∗Z ⊂ Ṽ .

By the second and the third property, we may chose a Weil function λZ such that λZ ≥ 0.

We introduce one terminology from [20, p.242]. Let γ > 0 and let W ⊂ C be an

open set. An assertion concerning points w ∈ W will be said to hold for γ-almost all

w ∈ W if it holds for all w ∈ W possibly except for w contained in at most countably

many closed discs such that the sum of the radii is less than γ.

Lemma 6.1. Let V be a smooth projective variety and let Z ⊂ V be a closed

subscheme such that the blow-up BlZV is smooth. Let ωV and ωBlZV be smooth positive

(1, 1)-forms on V and BlZV , respectively. Let λZ : V −suppZ → R≥0 be a Weil function
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for Z. Let Z1, . . . , Zl be the connected components of Z. For k = 1, . . . , l, let Uk ⊂ V be

an open neighborhood of supp Zk. Let 0 < γ < 1, δ > 0 and 0 < s < 1. Then there exist

positive constants β1, β2 with the following property : Let f ∈ Hol(D, V ) be a holomorphic

map with f(D) ̸⊂ suppZ. Set

σf,k = sup{t ∈ (0, 1) | f(w) ∈ Uk for γ-almost all w ∈ D(t)},

and σf = max{s, σf,1, . . . , σf,l}. Then the estimate∫ 2π

0

λZ(f(re
iθ))

dθ

2π
+

∫ r

s

dt

∫
D(t)

f̂∗ωBlZV ≤ β1

∫ r

s

dt

∫
D(t)

f∗ωV + β2

holds for r ∈ (s, 1) ∩ (σf + δ,+∞), where f̂ : D → BlZV is the lifting of f .

We note that γ ≤ σf,k ≤ 1 for k = 1, . . . , l.

Remark 6.2. By the assumption λZ ≥ 0, the estimate of Lemma 6.1 yields the

following estimate ∫ r

s

dt

∫
D(t)

f̂∗ωBlZV ≤ β1

∫ r

s

dt

∫
D(t)

f∗ωV + β2. (6.1)

By contrast to this estimate, there is no pointwise estimate for |f̂ ′|ωBlZV
from above using

linear function of |f ′|ωV (cf. Example 2.2).

We start the proof of Lemma 6.1 from the following two preliminary estimates.

Lemma 6.3. Let V , Z, ωV , ωBlZV and λZ be the same as in Lemma 6.1. Then there

exist positive constants α1, α2 and α3 with the following property : Let 0 < s < s′ < 1.

For every f ∈ Hol(D, V ) with f(D) ̸⊂ suppZ, we have∫ 2π

0

λZ(f(re
iθ))

dθ

2π
+

∫ r

s

dt

∫
D(t)

f̂∗ωBlZV

≤ α1

s

∫ r

s

dt

∫
D(t)

f∗ωV + α2

∫ 2π

0

λZ(f(s
′′eiθ))

dθ

2π
+ α3 (6.2)

for all r ∈ (s′, 1), where s′′ = (s+ s′)/2 and f̂ : D → BlZV is the lift of f .

To estimate the second term in the right hand side of (6.2), we need another

Lemma 6.4. Let V , Z, ωV , ωBlZV and λZ be the same as in Lemma 6.1. Then

there exist positive constants α4 > 0, α5 > 0 and α6 > 0 with the following property : Let

0 < s < s′′ < 1. For every f ∈ Hol(D, V ) with f(D) ̸⊂ suppZ and every biholomorphic

mapping Q : D → D(s′′) with Q(0) ∈ D(s) and f ◦Q(0) ̸∈ suppZ, we have∫ 2π

0

λZ(f(s
′′eiθ))

dθ

2π
≤ α4

s′′ − s

∫ 1

0

dt

t

∫
D(t)

(f ◦Q)∗ωV +
α5

s′′ − s
λZ(f ◦Q(0)) +

α6

s′′ − s
.

(6.3)
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We first prove Lemmas 6.3 and 6.4.

Proof of Lemma 6.3. For r ∈ (s′, 1), we have∫ r

s

dt

∫
D(t)

f̂∗ωBlZV =

∫ s′′

s

dt

∫
D(t)

f̂∗ωBlZV +

∫ r

s′′
dt

∫
D(t)

f̂∗ωBlZV

≤ s′′ − s

r − s′′

∫ r

s′′
dt

∫
D(t)

f̂∗ωBlZV +

∫ r

s′′
dt

∫
D(t)

f̂∗ωBlZV

=
r − s

r − s′′

∫ r

s′′
dt

∫
D(t)

f̂∗ωBlZV

≤ 2

∫ r

s′′

dt

t

∫
D(t)

f̂∗ωBlZV .

Hence, for r ∈ (s′, 1), we have∫ r

s

dt

∫
D(t)

f̂∗ωBlZV ≤ 2

∫ r

s′′

dt

t

∫
D(t)

f̂∗ωBlZV . (6.4)

Let p : BlZV → V be the projection and let p∗Z ⊂ BlZV be the induced closed sub-

scheme. Then p∗Z is a Cartier divisor on BlZV . We denote by L the associated line

bundle. Let M be an ample line bundle on V . Then there exists a positive integer l such

that p∗M⊗l ⊗ L−1 is ample on BlZV . Hence there exist smooth Hermitian metrics hL
on L and hM on M such that

lp∗c1(M,hM )− c1(L, hL)

is a positive (1, 1)-form on BlZV . Here c1(·) are associated curvature forms. Thus there

exist positive constants γ1 > 1 and γ2 > 1, which depend on ωBlZV , ωV , (L, hL), (M,hM ),

such that

ωBlZV ≤ γ1p
∗ωV − γ2c1(L, hL).

We have∫ r

s′′

dt

t

∫
D(t)

f̂∗ωBlZV ≤ γ1

∫ r

s′′

dt

t

∫
D(t)

f∗ωV − γ2

∫ r

s′′

dt

t

∫
D(t)

f̂∗c1(L, hL) (6.5)

for r ∈ (s′′, 1). Let σ be the section of L associated to p∗Z. We may assume that

hL(σ(x), σ(x)) ≤ 1 for all x ∈ BlZV . We set λp∗Z(x) = − log
√
hL(σ(x), σ(x)), where

x ∈ BlZV − supp p∗Z. Then by the first main theorem (cf. [28, Theorem 2.3.31]), we

have ∫ r

s′′

dt

t

∫
D(t)

f̂∗c1(L, hL) ≥
∫ 2π

0

λp∗Z(f̂(re
iθ))

dθ

2π
−
∫ 2π

0

λp∗Z(f̂(s
′′eiθ))

dθ

2π
(6.6)

for r ∈ (s′′, 1). Since λZ ◦ p is a Weil function for p∗Z, there exists a positive constant

γ3, which depends on (L, hL), σ, λZ , such that
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λZ(p(x))− γ3 ≤ λp∗Z(x) ≤ λZ(p(x)) + γ3

for all x ∈ BlZV − supp p∗Z. Hence we have∫ 2π

0

λp∗Z(f̂(s
′′eiθ))

dθ

2π
−
∫ 2π

0

λp∗Z(f̂(re
iθ))

dθ

2π

≤
∫ 2π

0

λZ(f(s
′′eiθ))

dθ

2π
−
∫ 2π

0

λZ(f(re
iθ))

dθ

2π
+ 2γ3. (6.7)

Hence by (6.5)–(6.7), we obtain

γ2

∫ 2π

0

λZ(f(re
iθ))

dθ

2π
+

∫ r

s′′

dt

t

∫
D(t)

f̂∗ωBlZV

≤ γ1

∫ r

s′′

dt

t

∫
D(t)

f∗ωV + γ2

∫ 2π

0

λZ(f(s
′′eiθ))

dθ

2π
+ 2γ2γ3.

By γ2 > 1 and ∫ r

s′′

dt

t

∫
D(t)

f∗ωV ≤ 1

s

∫ r

s

dt

∫
D(t)

f∗ωV ,

we get ∫ 2π

0

λZ(f(re
iθ))

dθ

2π
+

∫ r

s′′

dt

t

∫
D(t)

f̂∗ωBlZV

≤ γ1
s

∫ r

s

dt

∫
D(t)

f∗ωV + γ2

∫ 2π

0

λZ(f(s
′′eiθ))

dθ

2π
+ 2γ2γ3.

Combining this estimate with (6.4), we obtain (6.2). Here we set α1 = 2γ1, α2 = 2γ2,

and α3 = 4γ2γ3. □

Proof of Lemma 6.4. Let D1, · · · , Dν be effective ample divisors such that

λZ = min{λDi}. We have, for i = 1, . . . , ν with f(D) ̸⊂ suppDi,∫ 2π

0

λZ(f(s
′′eiθ))

dθ

2π
≤ s′′ + s

s′′ − s

∫ 2π

0

λZ(f ◦Q(eiθ))
dθ

2π

≤ 2

s′′ − s

∫ 2π

0

λDi(f ◦Q(eiθ))
dθ

2π
.

By the first main theorem, there exist positive constants γ4 and γ5 which depend on ωV
and {λDi} such that∫ 2π

0

λDi(f ◦Q(eiθ))
dθ

2π
≤ γ4

∫ 1

0

dt

t

∫
D(t)

(f ◦Q)∗ωV + λDi(f ◦Q(0)) + γ5

for i = 1, . . . , ν with f(D) ̸⊂ suppDi. Hence we get
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0

λZ(f(s
′′eiθ))

dθ

2π
≤ 2γ4
s′′ − s

∫ 1

0

dt

t

∫
D(t)

(f ◦Q)∗ωV +
2

s′′ − s
λDi(f ◦Q(0)) +

2γ5
s′′ − s

for i = 1, . . . , ν with f(D) ̸⊂ suppDi. We take i such that λZ(f ◦Q(0)) = λDi(f ◦Q(0))

to conclude the proof of (6.3). Here we set α4 = 2γ4, α5 = 2, and α6 = 2γ5. □

Before going to prove Lemma 6.1, we quote the Bloch–Cartan estimate (cf. [13,

Lemma 6.17]): If µ is a mass distribution on C with finite total mass M and γ is a

constant with 0 < γ < 1, then we have∫
C
log

1

|z − w|
dµz ≤ τγM (6.8)

for γ-almost all w ∈ C, where τγ > 0 is a positive constant which depends on γ. For

instance, we may take as τγ = log(6/γ). This estimate is due to Bloch [1] and Cartan

[5]. See also [20, VIII, Section 3].

Proof of Lemma 6.1. If σf + δ ≥ 1, then our claim is trivial. Hence in the

following, we assume σf < 1− δ. Set sf = σf + δ/2, s′f = σf + δ and s′′f = (sf + s′f )/2.

We remark that sf > s and that s′′f − sf = δ/4 does not depend on the choice of f .

For each k = 1, . . . , l, let λZk
: V − suppZk → R≥0 be a Weil function for Zk. Then

λZ1 + · · ·+ λZl
is a Weil function for Z. By the estimate (6.2), we obtain the following:

There exist positive constants α1, α2 and α3 such that, for each f ∈ Hol(D, V ) with

f(D) ̸⊂ suppZ, we have∫ 2π

0

λZ(f(re
iθ))

dθ

2π
+

∫ r

sf

dt

∫
D(t)

f̂∗ωBlZV

≤ α1

sf

∫ r

sf

dt

∫
D(t)

f∗ωV + α2

l∑
k=1

∫ 2π

0

λZk
(f(s′′fe

iθ))
dθ

2π
+ α3

for r ∈ (s′f , 1). We have∫ r

s

dt

∫
D(t)

f̂∗ωBlZV =

∫ sf

s

dt

∫
D(t)

f̂∗ωBlZV +

∫ r

sf

dt

∫
D(t)

f̂∗ωBlZV

≤ sf − s

r − sf

∫ r

sf

dt

∫
D(t)

f̂∗ωBlZV +

∫ r

sf

dt

∫
D(t)

f̂∗ωBlZV

=
r − s

r − sf

∫ r

sf

dt

∫
D(t)

f̂∗ωBlZV

≤ 2(1− s)

δ

∫ r

sf

dt

∫
D(t)

f̂∗ωBlZV

for r ∈ (s′f , 1). Hence by 2(1− s)/δ > 1, we have

∫ 2π

0

λZ(f(re
iθ))

dθ

2π
+

∫ r

s

dt

∫
D(t)

f̂∗ωBlZV ≤ 2α1(1− s)

sδ

∫ r

s

dt

∫
D(t)

f∗ωV
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+
2α2(1− s)

δ

l∑
k=1

∫ 2π

0

λZk
(f(s′′fe

iθ))
dθ

2π
+

2α3(1− s)

δ
(6.9)

for r ∈ (s′f , 1).

For each Zk, we apply the estimate (6.3) to get the following: There exist positive

constants α4,k > 0, α5,k > 0 and α6,k > 0 such that, for each f ∈ Hol(D, V ) with f(D) ̸⊂
suppZk and for each biholomorphic mapping Qk : D → D(s′′f ) with Qk(0) ∈ D(sf ) and

f ◦Qk(0) ̸∈ suppZk, we have∫ 2π

0

λZk
(f(s′′fe

iθ))
dθ

2π
≤ 4α4,k

δ

∫ 1

0

dt

t

∫
D(t)

(f ◦Qk)∗ωV +
4α5,k

δ
λZk

(f ◦Qk(0)) +
4α6,k

δ
.

Set α4 = max1≤k≤l{4α4,k/δ}, α5 = max1≤k≤l{4α5,k/δ} and α6 =
∑l
k=1 4α6,k/δ. Then

we get

l∑
k=1

∫ 2π

0

λZk
(f(s′′fe

iθ))
dθ

2π
≤ α4

l∑
k=1

∫ 1

0

dt

t

∫
D(t)

(f ◦Qk)∗ωV +α5

l∑
k=1

λZk
(f ◦Qk(0)) +α6.

(6.10)

Now we chose Qk. Let µ be a muss distribution on C defined by µ = ID(s′′f )f
∗ωV .

Then µ has finite total mass
∫
D(s′′f )

f∗ωV . We apply the Bloch–Cartan estimate (6.8) to

conclude that, for each 1 ≤ k ≤ l, there exists wk ∈ D(sf ) such that f(wk) ̸∈ Uk and∫
C
log

1

|z − wk|
dµz ≤ τγ

∫
D(s′′f )

f∗ωV .

Indeed otherwise, we have f(w) ∈ Uk for γ-almost all w ∈ D(sf ), which contradicts to

the choice of sf . Let Qk : D → D(s′′f ) be a biholomorphic mapping such that Qk(0) = wk.

Then we have∫ 1

0

dt

t

∫
D(t)

(f ◦Qk)∗ωV =

∫
C
log

1

|ξ|
d(Q∗

kµ)ξ =

∫
C
log

1

|Q−1
k (z)|

dµz

=

∫
C
log

|s′′f − (wk/s
′′
f )z|

|z − wk|
dµz ≤ (τγ + log 2)

∫
D(s′′f )

f∗ωV .

Hence, for r ∈ (s′f , 1), we have∫ 1

0

dt

t

∫
D(t)

(f ◦Qk)∗ωV ≤ 4(τγ + log 2)

δ

∫ r

s

dt

∫
D(t)

f∗ωV . (6.11)

We set ηk = supz∈V−Uk
λZk

(z) and η = max1≤k≤l ηk. Then we have

λZk
(f ◦Qk(0)) ≤ η. (6.12)

Combining (6.9)–(6.12), we get our lemma. □
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7. Application of a covering lemma.

Lemma 7.1. Let A be an abelian variety and let ωA be a positive invariant (1, 1)-

form on A. Let 0 < s < σ < 1 and δ > 0. Let F ⊂ D(σ) be a relatively closed subset such

that for all σ′ ∈ (0, σ), the set F ∩ D(σ′) is covered by at most countably many closed

discs whose sum of radii is less than δ/800. Then for every f ∈ Hol(D, A), the estimate∫ r

s

dt

∫
D(t)

f∗ωA ≤ 4

∫ r

s

dt

∫
D(t)\F

f∗ωA

holds for r ∈ (s, σ) outside some exceptional set whose linear measure is less than δ.

Proof. Let P ⊂ (0, σ) be defined by

P = {r ∈ (0, σ); {|z| = r} ∩ F ̸= ∅}.

Then |P | ≤ δ/400. For 0 ≤ t < 1, we set

φ(t) =

∫ 2π

0

|f ′(teiθ)|2ωA
dθ.

Then since |f ′(z)|2ωA
is subharmonic (cf. (2.1)), φ(t) is a non-negative, increasing function.

We apply Lemma 7.2 below to get∫
D(r)

f∗ωA =

∫ r

0

φ(t)tdt ≤ 2

∫
(0,r)\P

φ(t)tdt ≤ 2

∫
D(r)\F

f∗ωA

for r ∈ (0, σ) outside some exceptional set E ⊂ (0, σ) whose linear measure is less than

δ/20. Again we apply Lemma 7.2 to get∫ r

s

dt

∫
D(t)

f∗ωA ≤ 2

∫
[s,r]\E

dt

∫
D(t)

f∗ωA ≤ 4

∫
[s,r]\E

dt

∫
D(t)\F

f∗ωA ≤ 4

∫ r

s

dt

∫
D(t)\F

f∗ωA

for r ∈ (s, σ) outside some exceptional set whose linear measure is less than δ. □

Lemma 7.2. Let φ : [0, 1) → R≥0 be a non-negative, increasing function. Let

0 ≤ u < u′ < 1 and γ > 0. Let P ⊂ (0, u′) be a subset such that |P | ≤ γ. Then we have∫
[u,r]

φ(x)dx ≤ 2

∫
[u,r]−P

φ(x)dx

for r ∈ (u, u′) outside some exceptional set whose linear measure is less than 20γ.

Proof. We set

E =

{
x ∈ (u, u′); ∃t > 0 s.t. |[x− t, x] ∩ P | > t

2

}
.

We shall show that |E| < 20γ. For x ∈ E, we take tx > 0 such that
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|[x− tx, x] ∩ P | > tx/2. (7.1)

We set Ix = [x− tx, x+ tx]. Then

E ⊂
∪
x∈E

Ix.

By the Vitali covering theorem [8, p.27], there exists a countable set Q ⊂ E such that,

letting I ′x = [x− 5tx, x+ 5tx], the family {Ix}x∈Q are disjoint and

E ⊂
∪
x∈Q

I ′x.

By (7.1), we have

|Ix ∩ P | > |I ′x|/20.

Hence we have

|E| ≤
∑
x∈Q

|I ′x| < 20
∑
x∈Q

|Ix ∩ P | ≤ 20|P | ≤ 20γ.

Now let r ∈ (u, u′)− E. Then for all a ≤ r, we have

|[a, r]− P | ≥ 1

2
|[a, r]|.

Hence, for r ∈ (u, u′)− E, we have∫
[u,r]−P

φ(x)dx =

∫ φ(r)

0

|[max{u, φ−1(y)}, r]− P |dy

≥ 1

2

∫ φ(r)

0

|[max{u, φ−1(y)}, r]|dy =
1

2

∫
[u,r]

φ(x)dx,

where φ−1(y) = sup{x ∈ [0, 1); φ(x) < y}. □

8. Proof of Proposition 2.3.

We first recall the principle of transfinite induction. Let I be a totally ordered set

which is well-ordered, i.e., every non-empty subset of I has a minimum element. Let

P(i) be a property parametrized by i ∈ I.

Lemma 8.1. For all i ∈ I, assume that :

If P(j) holds for all j < i, then P(i). (8.1)

Then P(i) holds for all i ∈ I.

Proof. We define a subset J ⊂ I by
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J = {i ∈ I; P(i) does not hold}.

To prove that J is an empty set, we assume contrary that J ̸= ∅. Since I is well-ordered,

we may take the minimum element j0 ∈ J . For all i < j0, we have i ̸∈ J , hence P(i)

holds. Hence P(j0) holds by our assumption (8.1). This contradicts to j0 ∈ J . Hence

J = ∅. Thus P(i) holds for all i ∈ I. □

We return to the situation of Proposition 2.3. We fix a closed embedding A ⊂ Pn,
where n > 0. Recall that P is the set of all numerical polynomials which appear as

Hilbert polynomials of closed subschemes of the projective space Pn. Then P is a totally

ordered set by P1 ≤ P2 if and only if P1(m) ≤ P2(m) for all large integers m.

Lemma 8.2. The set P is well-ordered.

Proof. Let PPn be the Hilbert polynomial of Pn. Then PPn is a maximum element

of P. Let J ⊂ P be a non-empty subset. We shall show that J has a minimum element.

We may assume J \ {PPn} ̸= ∅, for otherwise PPn is the minimum element of J . Note

that P \ {PPn} is the set of all Hilbert polynomials of proper closed subschemes of Pn.
By [11, Corollary 5.7], we may write P ∈ P \ {PPn} as

P (z) =
n−1∑
t=0

{(
z + t

t+ 1

)
−
(
z + t−mt

t+ 1

)}
where m0,m1, . . . ,mn−1 ∈ Z≥0 and m0 ≥ m1 ≥ · · · ≥ mn−1 ≥ 0. We associate P

the sequence (mn−1, . . . ,m0) ∈ (Z≥0)
n. Then our order in P \ {PPn} corresponds to

the dictionary order in (Z≥0)
n. Since (Z≥0)

n with the dictionary order is well-ordered,

J \ {PPn} has the minimum element Q. Then Q is the minimum element of J . □

Remark 8.3. The minimum element of P is P∅ = 0 which is the Hilbert polynomial

of ∅ ⊂ Pn.

For a closed subscheme X ⊂ A×S, we attach P = Pmax ∈ P and T ⊂ S as in (3.1),

under the fixed embedding A ⊂ Pn. Here we recall Pmax = maxs∈S{PXs}.

Now we prove Proposition 2.3. We prove the proposition by the transfinite induction

on P ∈ P attached to X → S. So we assume that the proposition is true when the

attached polynomial is less than P .

We first remark that if X is empty or dimX = 0, then our proposition is trivially

valid with Λ = {{0}}. Thus in the following, we assume dimX > 0. Then Xk ⊂ A×S[k]

is non-empty for all k ≥ 0, because there exists a non-constant holomorphic map D → X.

We first find the non-empty finite subset Λ ⊂ Σ(A) in the Proposition 2.3. We take

ν > 0 such that Lemma 4.2 holds. Let T[ν] ⊂ S[ν] be defined as (3.1) by pν : Xν → S[ν].

Let T1, . . . , Tl be the connected components of T[ν]. We have

l ≥ 1. (8.2)
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For each Tk, where k = 1, . . . , l, we take Bk ∈ Σ(A) as in Lemma 4.4. We define Λ ⊂ Σ(A)

in the following two cases. First, if T[ν] = pν(Xν), then we set Λ = {B1, . . . , Bl}. Next

we consider the case T[ν] ̸= pν(Xν). Let T ⊂ S[ν] be a closed subscheme such that

supp T = T[ν] as in Lemma 3.1. Set Ŝ = BlT S[ν]. By Remark 3.2, we may assume

that Ŝ is smooth. Let X̂ ⊂ A × Ŝ be the scheme theoretic closure of p−1
ν (S[ν] − T[ν])

in (Xν) ×S[ν]
Ŝ. Let p̂ : X̂ → Ŝ be the projection. We attach P̂ ∈ P to p̂ : X̂ → Ŝ.

By Lemma 3.1, we have P̂ < P . Thus by the induction hypothesis, Proposition 2.3 is

true for p̂ : X̂ → Ŝ. We take the non-empty finite subset Λ̂ ⊂ Σ(A) which appears in

Proposition 2.3 for p̂ : X̂ → Ŝ. We set Λ = Λ̂ ∪ {B1, . . . , Bl}. By (8.2), we have Λ ̸= ∅
for the both cases above.

Next we take ωA, ωS , ωA/B , s, ε, δ as in Proposition 2.3. Let ωS[ν]
be a

smooth, positive (1, 1)-form on S[ν]. By Lemma 4.4, there exist open neighborhoods

T1 ⊂ U1, . . . , Tl ⊂ Ul and positive constants ρ1, . . . , ρl such that, for k = 1, . . . , l,

|(ϖBk
)∗((vx)A)|2ωA/Bk

≤ ε

8
|(vx)A|2ωA

+ ρk|(vx)S[ν]
|2ωS[ν]

(8.3)

for all x ∈ A× Uk and all vx ∈ (Vν)x. Let γ = δ/3200.

Now let f ∈ Hol(D, X). Since the estimate of Proposition 2.3 is trivial for a constant

map, we assume that f is non-constant. For k = 1, . . . , l, we set

σk = sup{t ∈ (0, 1) | (f[ν])S[ν]
(z) ∈ Uk for γ-almost all z ∈ D(t)}.

Let σ = max{s, σ1, . . . , σl}. We consider two cases.

Case 1: r ∈ (s, 1)∩ (0, σ). Note that this case occurs only when σ > s. In this case,

we shall not use the induction hypothesis. We take k such that σk = σ. We set

Fk = {z ∈ D(σ); (f[ν])S[ν]
(z) ̸∈ Uk}.

Then by (8.3), we have∫ r

s

dt

∫
D(t)\Fk

(ϖBk
◦ fA)∗ωA/Bk

≤ ε

8

∫ r

s

dt

∫
D(t)

f∗AωA + ρk

∫ r

s

dt

∫
D(t)

((f[ν])S[ν]
)∗ωS[ν]

.

Hence by Lemma 7.1, we get∫ r

s

dt

∫
D(t)

(ϖBk
◦ fA)∗ωA/Bk

≤ ε

2

∫ r

s

dt

∫
D(t)

f∗AωA + 4ρk

∫ r

s

dt

∫
D(t)

((f[ν])S[ν]
)∗ωS[ν]

for r ∈ (s, σ) outside some exceptional set of linear measure less than δ/4. Set ρ =

max{ρ1, . . . , ρl}. Then we get

min
B∈Λ

{∫ r

s

dt

∫
D(t)

(ϖB ◦ fA)∗ωA/B

}
≤ ε

2

∫ r

s

dt

∫
D(t)

f∗AωA+4ρ

∫ r

s

dt

∫
D(t)

((f[ν])S[ν]
)∗ωS[ν]

(8.4)

for r ∈ (s, σ) outside some exceptional set of linear measure less than δ/4.
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Case 2: r ∈ (s, 1)∩(σ,+∞). Note that this case occurs only when T[ν] ̸= pν(Xν) and

(f[ν])S[ν]
(D) ̸⊂ T[ν]. Let f̂ : D → X̂ be a holomorphic map induced from f[ν] : D → Xν .

Let ωŜ be a smooth, positive (1, 1)-form on Ŝ such that τ∗ωS ≤ ωŜ , where τ : Ŝ → S is

the composition of the natural maps Ŝ → S[ν] → S. Then

|f ′(seiθ)|ωA×S
≤ |f̂ ′(seiθ)|ωA×Ŝ

.

By Lemma 6.1 (cf. (6.1)), we have∫ r

s

dt

∫
D(t)

f̂∗
Ŝ
ωŜ ≤ β1

∫ r

s

dt

∫
D(t)

((f[ν])S[ν]
)∗ωS[ν]

+ β2

for r ∈ (s, 1) ∩ (σ + δ/4,+∞). Here the constants β1 > 0, β2 > 0 are independent of the

choice of f ∈ Hol(D, X). By the induction hypothesis, we have

min
B∈Λ̂

{∫ r

s

dt

∫
D(t)

(ϖB ◦ f̂A)∗ωA/B

}
≤ ε

2

∫ r

s

dt

∫
D(t)

f̂∗AωA + c′1

∫ r

s

dt

∫
D(t)

f̂∗
Ŝ
ωŜ

+ c′2 max

{
0,

∫ 2π

0

log
1

|f̂ ′(seiθ)|ωA×Ŝ

dθ

2π

}
+ c′3

holds for all r ∈ (s, 1) outside some exceptional set whose linear measure is less than δ/4.

Here the constants c′1 > 0, c′2 > 0, c′3 > 0 are independent of the choice of f ∈ Hol(D, X).

Hence combining the three estimates above, we get

min
B∈Λ

{∫ r

s

dt

∫
D(t)

(ϖB ◦ fA)∗ωA/B

}
≤ ε

2

∫ r

s

dt

∫
D(t)

f∗AωA+c
′
1β1

∫ r

s

dt

∫
D(t)

((f[ν])S[ν]
)∗ωS[ν]

+ c′2 max

{
0,

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π

}
+ (c′1β2 + c′3) (8.5)

holds for all r ∈ (σ, 1) outside some exceptional set whose linear measure is less than δ/2.

Now we combine two cases above. By (8.4) and (8.5), we get

min
B∈Λ

{∫ r

s

dt

∫
D(t)

(ϖB ◦ fA)∗ωA/B

}
≤ ε

2

∫ r

s

dt

∫
D(t)

f∗AωA+(4ρ+c′1β1)

∫ r

s

dt

∫
D(t)

(f[ν])
∗
S[ν]

ωS[ν]

+ c′2 max

{
0,

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π

}
+ (c′1β2 + c′3)

for all r ∈ (s, 1) outside some exceptional set whose linear measure is less than 3δ/4. By

Lemma 5.3, we have∫ r

s

dt

∫
D(t)

(f[ν])
∗
S[ν]

ωS[ν]
≤ ε

2(4ρ+ c′1β1)

∫ r

s

dt

∫
D(t)

f∗AωA + µ1

∫ r

s

dt

∫
D(t)

f∗SωS

+ µ2 max

{
0,

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π

}
+ µ3
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for all r ∈ (s, 1) outside some exceptional set whose linear measure is less than δ/4. Here

the constants µ1 > 0, µ2 > 0, µ3 > 0 are independent of the choice of f ∈ Hol(D, X).

Hence we get

min
B∈Λ

{∫ r

s

dt

∫
D(t)

(ϖB ◦ fA)∗ωA/B

}
≤ ε

∫ r

s

dt

∫
D(t)

f∗AωA + c1

∫ r

s

dt

∫
D(t)

f∗SωS

+ c2 max

{
0,

∫ 2π

0

log
1

|f ′(seiθ)|ωA×S

dθ

2π

}
+ c3

for all r ∈ (s, 1) outside some exceptional set whose linear measure is less than δ. Here

we set

c1 = µ1(4ρ+ c′1β1), c2 = c′2 + µ2(4ρ+ c′1β1), c3 = (c′1β2 + c′3) + µ3(4ρ+ c′1β1),

which are positive constants independent of the choice of f ∈ Hol(D, X). This conclude

the induction step. □

9. Nevanlinna theory and blowing-ups: The case of abelian varieties.

In Section 6, we discussed the estimate for f̂ : D → BlZV . When V is an abelian

variety, we obtain a better result than Lemma 6.1.

Lemma 9.1. Let C be an abelian variety and let Z ⊂ C be a closed subscheme such

that the blowing-up BlZC is smooth. Let ωC be a positive invariant (1, 1)-form on C and

let ωBlZC be a smooth, positive (1, 1)-form on BlZC. Let λZ : C − suppZ → R≥0 be a

Weil function for Z. Let W ⊂ C be an open neighborhood of suppZ. Let 0 < s < s′ < 1.

Then there exist positive constants β1, β2 with the following property : Let f ∈ Hol(D, C)
be a holomorphic map such that f(D(s)) ̸⊂W . Then we have∫ 2π

0

λZ(f(re
iθ))

dθ

2π
+

∫ r

s

dt

∫
D(t)

f̂∗ωBlZC ≤ β1

∫ r

s

dt

∫
D(t)

f∗ωC + β2

for r ∈ [s′, 1), where f̂ : D → BlZC is the lift of f .

Proof of Lemma 9.1. We set s′′ = (s+ s′)/2. We apply the two estimates (6.2)

and (6.3) for V = C. We estimate the first term of the right hand side of (6.3). We

prove that for each f ∈ Hol(D, C) and each biholomorphic mapping Q : D → D(s′′),∫ 1

0

dt

t

∫
D(t)

(f ◦Q)∗ωC ≤ 1

2(s′′ − s)

∫ r

s

dt

∫
D(t)

f∗ωC (9.1)

for r ∈ (s′, 1). To prove this, we set for 0 ≤ t ≤ 1,

φ(t) =

∫ 2π

0

|(f ◦Q)′(teiθ)|2ωC
dθ.

Then since |(f ◦Q)′(z)|2ωC
is subharmonic (cf. (2.1)), φ(t) is a positive increasing function.
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Hence we have∫ 1

0

dt

t

∫
D(t)

(f ◦Q)∗ωC =

∫ 1

0

dt

t

∫ t

0

φ(u)udu =

∫ 1

0

dt

t

{[
u2

2
φ(u)

]t
0

−
∫ t

0

u2

2
φ′(u)du

}

≤
∫ 1

0

t2

2
φ(t)

dt

t
=

1

2

∫
D
(f ◦Q)∗ωC =

1

2

∫
D(s′′)

f∗ωC .

Since ∫
D(s′′)

f∗ωC ≤ 1

s′ − s′′

∫ s′

s′′
dt

∫
D(t)

f∗ωC ≤ 1

s′′ − s

∫ r

s

dt

∫
D(t)

f∗ωC

for r ∈ (s′, 1), we get (9.1).

Now we complete the proof of Lemma 9.1. Set η = supz∈C−W λZ(z). Then by

the assumption f(D(s)) ̸⊂ W , we may take w ∈ D(s) such that λZ(f(w)) ≤ η. Let

Q : D → D(s′′) be a biholomorphic mapping such that Q(0) = w. Then by (6.2), (6.3)

and (9.1), we have∫ 2π

0

λZ(f(re
iθ))

dθ

2π
+

∫ r

s

dt

∫
D(t)

f̂∗ωBlZC

≤
(
α1

s
+

α2α4

2(s′′ − s)2

)∫ r

s

dt

∫
D(t)

f∗ωC + α3 +
α2

s′′ − s
(α5η + α6)

for r ∈ (s′, 1). The proof of Lemma 9.1 is finished. □

10. Proof of Theorem 2.1.

We introduce the following lemma from which Theorem 2.1 follows.

Lemma 10.1. Let B and C be (possibly trivial) abelian varieties. Let ωB and ωC
be positive invariant (1, 1)-forms on B and C, respectively. Let Y ⊂ B × C be a Zariski

closed set. Let U ⊂ Y be an open neighborhood of Sp(Y ). Let 0 < s < 1, δ > 0. Then

there exist positive constants γ1, γ2 and γ3 with the following property : For f ∈ Hol(D, Y )

with f(D(s)) ̸⊂ U , we have∫ r

s

dt

∫
D(t)

f∗BωB ≤ γ1

∫ r

s

dt

∫
D(t)

f∗CωC + γ2 log
+ 1

|f ′(0)|ωB×C

+ γ3

for all r ∈ (s, 1) outside some exceptional set E ⊂ (s, 1) whose linear measure is less

than δ.

Here Sp(Y ) is the union of all positive dimensional translated abelian subvarieties of

B ×C which are contained in Y . Then Sp(Y ) = Sp(Y1) ∪ · · · ∪ Sp(Yk), where Y1, . . . , Yk
are the irreducible components of Y . Hence Sp(Y ) is a Zariski closed subset of Y .

We first derive Theorem 2.1 from Lemma 10.1. Let X ⊂ A, ωA, U and 0 < s < 1 be

the objects described in Theorem 2.1. We apply Lemma 10.1 for the special case B = A,
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C = {0}, Y = X and δ = (1− s)/2. Then, for f ∈ Hol(D, X) with f(D(s)) ̸⊂ U , we get∫ (1+s)/2

s

dt

∫
D(t)

f∗ωA ≤ γ2 log
+ 1

|f ′(0)|ωA

+ γ3,

and hence ∫
D(s)

f∗ωA ≤ 2γ2
1− s

log+
1

|f ′(0)|ωA

+
2γ3
1− s

.

Since |f ′(z)|2ωA
is subharmonic on D (cf. (2.1)), we have

|f ′(0)|2ωA
≤
∫ 2π

0

|f ′(teiθ)|2ωA

dθ

2π
.

Hence, we have ∫
D(s)

f∗ωA =

∫ s

0

tdt

∫ 2π

0

|f ′(ueiθ)|2ωA
dθ ≥ πs2|f ′(0)|2ωA

.

Thus we have

|f ′(0)|ωA
≤

√
2γ2

πs2(1− s)
log+

1

|f ′(0)|ωA

+
2γ3

πs2(1− s)
,

and hence

|f ′(0)|ωA
≤ max

{
1,

√
2γ3

πs2(1− s)

}
.

This conclude the derivation of Theorem 2.1 from Lemma 10.1. □

Proof of Lemma 10.1. The proof is done by induction on dimB. When

dimB = 0, Lemma 10.1 is obvious. For the induction step, we assume that dimB > 0

and that Lemma 10.1 is true for all B′ ∈ Σ(B). Let p : Y → C be the composite

of the closed immersion Y ↪→ B × C and the second projection B × C → C. We set

T = {w ∈ C; Yw = B}. We may assume that T ̸= C, for otherwise Y = B × C, and

hence our claim is trivial. We apply Lemma 3.1. There exists a closed subscheme T ⊂ C

such that supp T = T with the following property: If Ŷ ⊂ B × BlT C is the Zariski

closure of p−1(C − T ) in Y ×C BlT C ⊂ B × BlT C, then Ŷs ̸= B for all s ∈ BlT C. We

may assume that BlT C is a smooth projective variety equipped with a smooth positive

(1, 1)-form ωBlT C (cf. Remark 3.2). We apply Proposition 2.3 for Ŷ ⊂ B × BlT C to get

the non-empty, finite subset Λ = {B1, . . . , Bn} ⊂ Σ(B).

For Bi ∈ Λ, let ωBi and ωB/Bi
be positive invariant (1, 1)-forms on Bi and B/Bi,

respectively, and let ϖBi : B → B/Bi be the quotient map. Assume that f ∈ Hol(D, Y )

satisfies f(D(s)) ̸⊂ U . Using the induction hypothesis, we shall show that there exist

positive constants ρi1, ρi2, ρi3, which are independent of the choice of f ∈ Hol(D, Y ),

such that
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∫ r

s

dt

∫
D(t)

f∗BωB ≤ ρi1

(∫ r

s

dt

∫
D(t)

f∗CωC +

∫ r

s

dt

∫
D(t)

(ϖBi ◦ fB)∗ωB/Bi

)

+ ρi2 log
+ 1

|f ′(0)|ωB×C

+ ρi3 (10.1)

for all r ∈ (s, 1) outside some exceptional set Ei with the linear measure |Ei| < δ/3n.

We prove (10.1). We consider Bi as an abelian subvariety Bi × {0} ⊂ B × C. We set

Ci = (B/Bi)× C. Then we have an exact sequence of abelian varieties

0 → Bi → B × C → Ci → 0.

By the Poincaré reducibility theorem, there exists an isogeny κ : Ci → Ci such that the

pull back of the quotient map B × C → Ci by κ fits into the following commutative

diagram:

Bi × Ci
ι−−−−→ B × Cy y

Ci −−−−→
κ

Ci

Here the map Bi × Ci → Ci is the second projection and ι is an isogeny. Then

Sp(ι−1(Y )) = ι−1(Sp(Y )). Hence Sp(ι−1(Y )) ⊂ ι−1(U). We denote by f̃ ∈
Hol(D, ι−1(Y )) a lift of f . Then f̃(D(s)) ̸⊂ ι−1(U). Hence by the induction hypoth-

esis, there exist positive constants γi1, γi2, γi3 which are independent of the choice of

f ∈ Hol(D, Y ) such that∫ r

s

dt

∫
D(t)

f̃∗Bi
ωBi ≤ γi1

∫ r

s

dt

∫
D(t)

f̃∗Ci
ωCi + γi2 log

+ 1

|f̃ ′(0)|ωBi×Ci

+ γi3

for all r ∈ (s, 1) outside some exceptional set Ei with |Ei| < δ/3n. Here ωCi
= ω(B/Bi)×C

is the sum of the pull-bucks of ωB/Bi
and ωC . Hence we have∫ r

s

dt

∫
D(t)

f̃∗ωBi×Ci ≤ (γi1 + 1)

∫ r

s

dt

∫
D(t)

f̃∗Ci
ωCi + γi2 log

+ 1

|f̃ ′(0)|ωBi×Ci

+ γi3

for all r ∈ (s, 1) outside Ei. There exists a positive constant µi > 1 such that

ι∗ωB×C ≤ µiωBi×Ci .

Then we have∫ r

s

dt

∫
D(t)

f∗BωB

≤
∫ r

s

dt

∫
D(t)

f∗ωB×C ≤ µi

∫ r

s

dt

∫
D(t)

f̃∗ωBi×Ci
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≤ µi(γi1 + 1)

∫ r

s

dt

∫
D(t)

f̃∗Ci
ωCi + µiγi2 log

+ 1

|f̃ ′(0)|ωBi×Ci

+ µiγi3

≤ µi(γi1 + 1)

∫ r

s

dt

∫
D(t)

f̃∗Ci
ωCi + µiγi2 log

+ 1

|f ′(0)|ωB×C

+ µiγi3 + µiγi2
logµi
2

for all r ∈ (s, 1) outside Ei. There exists a positive constant µ′
i such that

ωCi ≤ µ′
iκ

∗ωCi .

Then we have∫ r

s

dt

∫
D(t)

f̃∗Ci
ωCi ≤ µ′

i

(∫ r

s

dt

∫
D(t)

f∗CωC +

∫ r

s

dt

∫
D(t)

(ϖBi ◦ fB)∗ωB/Bi

)
.

This shows (10.1). Here we set ρi1 = µiµ
′
i(γi1 + 1), ρi2 = µiγi2, ρi3 = µiγi3 +

µiγi2((logµi)/2).

We set ρ1 = max1≤i≤n{ρi1}, ρ2 = max1≤i≤n{ρi2}, ρ3 = max1≤i≤n{ρi3}. Then by

(10.1), we get∫ r

s

dt

∫
D(t)

f∗BωB ≤ ρ1

(∫ r

s

dt

∫
D(t)

f∗CωC + min
1≤i≤n

∫ r

s

dt

∫
D(t)

(ϖBi ◦ fB)∗ωB/Bi

)

+ ρ2 log
+ 1

|f ′(0)|ωB×C

+ ρ3 (10.2)

for all r ∈ (s, 1) outside E′, where E′ =
∪

1≤i≤nEi. Then |E′| < δ/3.

Now we take ε > 0 so that ερ1 < 1/2. By p−1(T ) ⊂ Sp(Y ) and f(D(s)) ̸⊂ U , we

have fC(D) ̸⊂ T . Hence there exists a unique lifting f̂ ∈ Hol(D, Ŷ ) of f ∈ Hol(D, Y ).

By Proposition 2.3, there exist positive constants c′1, c
′
2 and c′3, which are independent

of the choice of f ∈ Hol(D, Y ), such that

min
1≤i≤n

{∫ r

s

dt

∫
D(t)

(ϖBi ◦ fB)∗ωB/Bi

}

≤ ε

∫ r

s

dt

∫
D(t)

f∗BωB + c′1

∫ r

s

dt

∫
D(t)

(f̂BlT C)
∗ωBlT C

+ c′2 max

{
0,

∫ 2π

0

log
1

|f̂ ′(seiθ)|ωB×BlT C

dθ

2π

}
+ c′3

for all r ∈ (s, 1) outside some exceptional set E′′ with |E′′| < δ/3. We take a positive

constant µ′′ > 1 such that α∗ωB×C ≤ µ′′ωB×BlT C where α : B × BlT C → B × C is the

induced map. Then we have∫ 2π

0

log
1

|f̂ ′(seiθ)|ωB×BlT C

dθ

2π
≤
∫ 2π

0

log
1

|f ′(seiθ)|ωB×C

dθ

2π
+

logµ′′

2
.

Since log |f ′|ωB×C
is subharmonic on D (cf. (2.1)), we have
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0

log
1

|f ′(seiθ)|ωB×C

dθ

2π
≤ log

1

|f ′(0)|ωB×C

≤ log+
1

|f ′(0)|ωB×C

.

Hence we get

min
1≤i≤n

{∫ r

s

dt

∫
D(t)

(ϖBi ◦ fB)∗ωB/Bi

}

≤ ε

∫ r

s

dt

∫
D(t)

f∗BωB + c′1

∫ r

s

dt

∫
D(t)

(f̂BlT C)
∗ωBlT C + c′2 log

+ 1

|f ′(0)|ωB×C

+ c′′3

for all r ∈ (s, 1) outside E′′, where we set c′′3 = c′2((logµ
′′)/2) + c′3. We combine this

estimate with (10.2) to get∫ r

s

dt

∫
D(t)

f∗BωB ≤ 2ρ1

∫ r

s

dt

∫
D(t)

f∗CωC + 2c′1ρ1

∫ r

s

dt

∫
D(t)

(f̂BlT C)
∗ωBlT C

+ 2(c′2ρ1 + ρ2) log
+ 1

|f ′(0)|ωB×C

+ 2(c′′3ρ1 + ρ3) (10.3)

for all r ∈ (s, 1) outside E′ ∪ E′′, where |E′ ∪ E′′| < 2δ/3.

Now we apply Lemma 9.1 to estimate the right hand side. We have p−1(T ) ⊂ Sp(Y ),

and hence p−1(T ) ⊂ U . Thus there exists an open neighborhood W ⊂ C of T such that

p−1(W ) ⊂ U . Then by f(D(s)) ̸⊂ U , we have fC(D(s)) ̸⊂ W . Hence, by Lemma

9.1, there exist positive constants β1 and β2, which are independent of the choice of

f ∈ Hol(D, Y ), such that∫ r

s

dt

∫
D(t)

(f̂BlT C)
∗ωBlT C ≤ β1

∫ r

s

dt

∫
D(t)

f∗CωC + β2

for r ∈ (s, 1) outside (s, s+ δ/3). Combining this estimate with (10.3), we get∫ r

s

dt

∫
D(t)

f∗BωB

≤ 2ρ1(1+ c
′
1β1)

∫ r

s

dt

∫
D(t)

f∗CωC +2(c′2ρ1+ρ2) log
+ 1

|f ′(0)|ωB×C

+2(c′′3ρ1+ρ3+ c
′
1ρ1β2)

for r ∈ (s, 1) outside E, where E = E′∪E′′∪ (s, s+ δ/3). Then |E| < δ. This establishes

the estimate of Lemma 10.1 for B, where

γ1 = 2ρ1(1 + c′1β1), γ2 = 2(c′2ρ1 + ρ2), γ3 = 2(c′′3ρ1 + ρ3 + c′1ρ1β2).

Note that these are positive constants which are independent of the choice of f ∈
Hol(D, Y ). This completes the proof of Lemma 10.1. □
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11. Complex subspaces of complex tori.

So far, we treat the case of subvarieties of abelian varieties. However, our results can

be generalized to the case of complex subspaces of complex tori by the following lemma.

Lemma 11.1. Let X be a closed complex subspace of a complex torus T . Assume

that X is of general type. Then there exists a complex subtorus A ⊂ T which is an

abelian variety such that X is contained in some translate of A. In particular, X is a

closed subvariety of an abelian variety.

Proof. This lemma follows from [32, Lemma 10.8]. We give a proof for com-

pleteness. Since X is of general type, X is a Moishezon space. Hence by a theorem of

Moishezon, there exists a bimeromorphic modification X̂ → X such that X̂ is smooth

and projective (cf. [32, Theorem 3.6]). We consider the Albanese map α : X̂ → Alb(X̂).

Then Alb(X̂) is an abelian variety. Let ι̂ : X̂ → T be the composite of X̂ → X and

the immersion ι : X ↪→ T . By the universal property of the Albanese map, there exists

a holomorphic map h : Alb(X̂) → T such that h ◦ α = ι̂. The image h(Alb(X̂)) is a

translate of a complex subtorus A ⊂ T . Then A is an abelian variety, for A is a quotient

of the abelian variety Alb(X̂). We have X = ι̂(X̂) ⊂ h(Alb(X̂)). □

Combining Lemma 11.1 with Corollary 1.1, we immediately obtain the following

Corollary 11.2. Let X be a closed complex subspace of a complex torus. Assume

that X is of general type. Then X is pseudo Kobayashi hyperbolic.

Let X be a closed complex subspace of a complex torus T . Then we may define the

special set Sp(X) by

Sp(X) = {x ∈ X; ∃T ′ ⊂ T, a complex subtorus s.t. dim(T ′) > 0 and x+ T ′ ⊂ X}.

If X is not of general type, then by [32, Theorem 10.9], we have Sp(X) = X. If X is of

general type, then by Lemma 11.1, there exists an abelian variety A such that X ⊂ A.

The special set of X which is defined as a subvariety of the abelian variety A is equal to

our special set Sp(X). Hence by Theorem 1.4, we obtain the following

Corollary 11.3. Let X be a closed complex subspace of a complex torus T . Then

X is taut modulo Sp(X). In particular, X is Kobayashi hyperbolic modulo Sp(X).

Next we prove the following

Corollary 11.4. Let X be a closed complex subspace of a complex torus T . As-

sume that there exists a subset E ⊂ X such that

• dX(x, y) = 0 for all x, y ∈ E, and

• E is not contained in any proper analytic subset of X.

Then X is a translate of a complex subtorus of T .
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Proof. Let T0 ⊂ T be the maximal complex subtorus which stabilizes X. Let

W ⊂ T/T0 be the image of X under the quotient T → T/T0. We show dimW = 0.

Assume contrary that dimW > 0. By [32, Theorem 10.9] or [19, Corollary 3.8.28], W is

of general type. Hence by Corollary 11.2, W is pseudo Kobayashi hyperbolic, i.e., there

exists a proper Zariski closed set Z ⫋ W such that W is Kobayashi hyperbolic modulo

Z. Let φ : X →W be the induced morphism. Since φ is surjective, φ(E) is Zariski dense

in W . By the distance decreasing property of Kobayashi pseudo distances, dW (p, q) = 0

for all p, q ∈ φ(E). By dimW > 0, we may take distinct points p, q ∈ φ(E) \Z. This is a
contradiction. Thus dimW = 0. Hence X is a translate of a complex subtorus of T . □

Finally, we prove the following corollary from which Corollary 1.5 immediately fol-

lows.

Corollary 11.5. Let X be a compact complex manifold. Assume that there exists

a subset E ⊂ X such that

• dX(x, y) = 0 for all x, y ∈ E, and

• E is not contained in any proper analytic subset of X.

Then the Albanese map α : X → Alb(X) is surjective. If moreover X is Kähler, then we

have q(X) ≤ dim(X).

As a consequence, if X is a compact complex manifold such that dX ≡ 0, then the

Albanese map α : X → Alb(X) is surjective. For a related discussion of this state-

ment in the context of Campana’s theory of special varieties, we refer the readers to [4,

Section 9.3].

Proof of Corollary 11.5. Set Y = α(X). Then Y is a closed complex sub-

space of Alb(X). The image α(E) ⊂ Y is not contained in any proper analytic sub-

set of Y . By the distance decreasing property of Kobayashi pseudo distances, we

have dY (p, q) = 0 for all p, q ∈ α(E). Thus by Corollary 11.4, Y is a translate of

a complex subtorus of Alb(X). By the universal property of the Albanese map, we

have Y = Alb(X). Hence the Albanese map α : X → Alb(X) is surjective (cf. [32,

Corollary 10.6]). If moreover X is Kähler, then we have dim(Alb(X)) = q(X). Thus

q(X) ≤ dim(X). This shows Corollary 11.5. □
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