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Abstract. The simplest quartic fields are the real cyclic quartic number fields defined
by the irreducible quartic polynomials x* — mx? — 6x> + mx + 1, where m runs over the
positive rational integers such that the odd part of m? + 16 is squarefree. We give an
explicit lower bound for their class numbers which is much better than the previous
known ones obtained by A. Lazarus. Then, using it, we determine the simplest quartic
fields with ideal class groups of exponents < 2.

1. Introduction.

For any positive rational integer m such that the odd part of m? + 16 is square-free,
the quartic polynomial x* —mx3 — 6x% 4+ mx + 1 defines a real cyclic quartic number
field K, (see section 3). These fields K, are called the simplest quartic fields. By using
Stark’s effective versions of the Brauer-Siegel theorem (see [Sta]), A. Lazarus obtained
lower bounds for the class numbers /g, of these simplest quartic fields K, and deter-
mined all these K,,’s with g, <2 for m even. However, in the case that m is odd he
could only prove that m < 10'* if hx = 1, which is of no practical use for the deter-
mination of all these K,,’s with hg, = 1. First, we will obtain in a much
better lower bound for the relative class numbers hy, = hg, [h, of the simplest quartic
fields K, than his, where /A, is the class number of the quadratic subfield k,, of K,.
By our lower bound, we obtain m < 381 if hx, =1 and m < 649 if hg, < 2, and there-
fore we can easily complete the determination of all these K,,,’s with hg, < 2. Next, we
will explain why our lower bound for /4 proves that there are only finitely many sim-
plest quartic fields K,, whose ideal class groups have exponents < 2 and we will deter-
mine all such K, (see for the solution to the same problem for the imaginary
cyclic quartic fields):

THEOREM 1. There exist exactly 22 simplest quartic fields K,, whose ideal class
groups are of exponents <?2. This is the case if and only if me {1,2,4,5,6,8,9,10,
11,15,24}, in which cases hx, =1, me {7,12,13,16,20}, in which cases hg, =2, or
me {17,19,23,27,39,45}, in which cases hg, = 4.

For preliminaries, in the next section 2, we will prove some facts on general real
cyclic quartic fields. We will obtain a lower bound for the products of their relative
class numbers and relative regulators (see [Theorem 4)), and we will give a necessary
condition for their ideal class groups to have exponents < 2 (see [Lemma J). In section

2000 Mathematics Subject Classification. Primary: 11R16, 11R29, 11R42, 11Y40.
Key Words and Phrases. quartic field, simplest quartic field, class number, class group, zeta function.



718 S. R. LouBOUTIN

3, we then apply these facts to the simplest quartic fields to prove [Theorem 1. Our
methods would work also for other families of real cyclic quartic fields, like the one
treated in [Wal.

To conclude this introduction, we would like to thank the referee for her/his careful
reading of the preliminary versions of this paper.

2. Real cyclic quartic fields.

Let K be a real cyclic quartic field and k& be its real quadratic subfield. Let dk,
fx, Clk, hg, Uk, Regg and Res,_;((x) (resp. di, fk, Cli, hi, Uk, Reg, =loge, and
Res,—1({x)) be the discriminant, conductor, ideal class group, class number, unit group,
regulator and residue at s =1 of the Dedekind zeta function (g of K (resp. k), where
gr > 1 1s the fundamental unit of k. Let ¢ be a generator of the Galois group of K.
Finally, let Ug = {¢ € Ug; Ngi(e) € {£1}} denote the so-called group of relative units of
K. If +1 #ee Ug, then ¢° € U and

Reg(ex, e, ¢”) = 2 Reg, Reg;,
where
Reg” := log?|e| 4 log?|e?| > 0.

It i1s known that there exists some so-called generating relative unit ¢, € U such that
{—1,¢,,¢7} generate U} (see and [Has, Satz 22]), and we set

Reg} := Reg. = log’|e.| + log?|e?] > 0.
By the following Lemma, this does not depend on the choice of the generating relative

unit &,:

Lemma 2 (See [Has, Satz 16]). It holds that Reg(ek,e.,e’) = 2Reg, Regy =
Ok Regy for some Qk € {1,2} such that Qg =2 if and only if {—1,Nk;(Uk)> = Uk.

Proor. Noting that Nk (n) = n*> for n e Uy, we obtain that the kernel of

N,
Uk —5 Uy — U /<~1,U%>

is equal to U,Ug. Hence, the index Qg := (Uk : U Uf) divides 2. O

Since fi > 1 divides fx and dx = fi f# (by the conductor-discriminant formula), we
cannot have dx = d? (= f?). Hence, K/k is ramified and % divides /ix (by class field
theory). Hence, hj := hg/hi is a positive integer that divides hg, which we call the
relative class number of K. According to the analytic class number formula, we have

_ Ok

hi = L(1 2 1
K 8R€g[*<| ( 7%1{)' 9 ( )

where yy 1s any one of the two conjugate quartic Dirichlet characters associated with K
(note that dg/di = f2). Our first aim is to obtain an explicit lower bound for A} Regj
(see Mheorem 4 below). Then, using an upper bound for Regy (see
below), we will obtain a lower bound for /i (see below).



Simplest quartic fields 719

LEmMMA 3. Set k =2+ y —log(4n) = 0.046 - - -, where y = 0.577--- denotes Euler’s
constant.
1. Let K be a totally real quartic number field of discriminant dx > 6 -10'>.  Then,
(x(l = (2/logdk)) <0 implies

2
elogdy’
and 1 — (2/logdg) < p <1 and L{x(p) =0 imply

1—-p
4e (3)

Res;—1({x) = (2)

Res;— ({x) >
2. (See [Lou3, Corollaire 5A(a)]). Let k be a real quadratic number field. Then,

Res,—1({i) < = (logd) + k). (4)

N —

Moreover (see [Lou3, Corollaire 7B]), 1/2 < p <1 and {,(f) =0 imply

Res;_1({y) < p log? d. (5)

Proor. We need only to prove (2) and (3). According to [Lou5, proof of Lemma
3], 1/2<p <1 and {g(f) <0 imply

(1-5)/8
Res,—i(Cx) = (1= Add™(1+ 24(1 = ) (1 - %) ©)
K

where A4 = 2(y + log(4n)) — 1 =5.216---.
To obtain (2), we choose f=1— (2/logdk) in (6) and note that

214 861/4
mwr(HW%JO_xW)

satisfies g(x) > 1 for x > 61012,
To obtain (3), we use (6) to obtain

Res,-1(0n) = L h(dy),

where h(x):= 1 — 8e!/4*x~1/% satisfies h(x) > 1/4 for x >2-10°. ]

THEOREM 4. Let K be a real cyclic quartic field and let k be its real quadratic
subfield. If dg > 6-10'2, then we have

h;;Regl*(Z QK\/ dK/dk > fK -
2e(logdx)(logdy + k) — 6e(log fx + 1/2)
where k is as in [Lemma 3.

(7)

Proor. First, assume that (,(1 — (2/logdk)) < 0. Since (x(s)/Ce(s) = |L(s, xx)|*
for s real, we have (g(1 — (2/logdk)) <0 and using (2) and (4) we obtain
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_ Res,—1({k) - 4
Res;—1({) — e(logdg)(logdy + x)

Second, assume that (. (1 —(2/logdk)) > 0. Then, there exists f in the range
1 — (2/logdk) < B < 1 such that {;(ff) =0. Therefore, {x(f) =0 < 0 and using (3), (5)
and dg > d?, we obtain

IL(1, 2 (&)

_Resei(Cx) 2 4

L(Lyx)|* = > = '
IL(1, 2k )] Res,_1 () elog?d, — e(logdy)(logdy)

©)

Since the right hand side of (9) is greater than the right hand side of (8), we conclude
that (8) is always valid and, using (1), we obtain the desired result. O

The following Lemma will be used in [Proposition 11 to prove that there are only
finitely many simplest quartic fields (to be defined below) with ideal class groups of
exponent < 2.

LEMMA 5. Let K be a real cyclic quartic field. Let k denote its real quadratic
subfield. If the exponent exp(Clg) of the ideal class group Clg of K is <2, then
exp(Cly) <2, hy <2772 and t < 2, where T (resp. t) is the number of prime ideals of k
ramified in K/k (resp. in k/Q).

Proor. Let N :Clg — Cl; and let j: Cly — Clg denote the norm and canonical
map, and let Cl,‘g’/’;j denote the subgroup of the ambiguous classes of K (the ideal classes
% € Clg which satisfy 7 = %). Recall that #Cl,“(";i divides 27~ A, (see [Lang, Chapter
13, Lemma 4.1, page 307]). Since at least one finite place of k is ramified in K/k (the
rational primes which are ramified in k/Q are totally ramified in K/Q), the norm map
N is onto, which proves the first assertion, and #ker N = hg /hy = hg. 1If exp(Clk) < 2,
then exp(Cl;) < 2, which implies that /; divides 2/~!, ker jo N = Cl;”;ﬁ (for jo N(%) =
¢%° = ¢°"!) and hg = #ker N divides #ker jo N = #Cl,"{%ﬁ, hence divides 27!/, hence
divides 27+2,

Finally, let G} denote the maximal real subfield of the genus field Gx of K. Then,
G¥/K is an unramified abelian extension and the 4-rank of the ideal class group of K is
greater than or equal to the 4-rank of the Galois group Gal(G}/K), by class field theory.
Since the 4-rank of Gal(Gk/K) is equal to t — 1 and since the degree of the extension
Gk /Gy is equal to 1 if Gk is real and to 2 is Gk is imaginary, the 4-rank of Gal(G}/K)
is >t — 2, and the proof is complete. ]

3. Simplest quartic fields.
For any rational integer m, we consider the quartic polynomial
Po(x) = x* —mx® — 6x2 + mx + 1
of discriminant d,, = 4A31, where
A = m* + 16.

Since P, (—x) = P_,,(x), we may and we will assume that m > 0. The reader will
easily check that P, (x) has no rational root (for P,(+1) = —4 # 0), and that P,,(x) is
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Q-irreducible, except for m e {0,3} (in which cases we have Py(x) =x*—6x2+1=
(x> =2x—1)(x*+2x—1) and P3(x)=x*—-3x> —6x2+3x+1= (x> —dx—1)(x*+x—1)).
Hence, from now on, we assume that m > 1 and m # 3. Since (1 —x)*P,((1+ x)/
(1 —x)) = —4P,(x), if 0 is any complex root of P,(x) then a(0):=(0—1)/(0+ 1),
a?(0) = —1/0 and ¢*(0) = —(0+1)/(0 — 1) are the other complex roots of P, (x).
Since P, (+1)=—-4 <0 and P,(0) =1 >0, all the roots of P,(x) are real and if we
denote by a,, the largest one, then we have

Uy > 1> 0(0) > 0> (o) > —1 > (o).

Hence, P,,(x) defines a real cyclic quartic number field K,,, := Q(«,,) and o gives a gener-
ator of the Galois group Gal( n/ Q). Setf, =o,—o,!>0. Then ﬁ; —mp, —4=0
(use o, 2Py (o) = o2, — moy, — 6+ mo, ! + o2 = 0) and B, = (m+ +/4,)/2. In partic-

m

ular, k,, = Q(\/4,,) is the quadratic subfield of the real cyclic quartic field K,, = Q(a;,)
and

NKm/km(O"/n) = _1 (10)
Since a,, > 1 and o2, — B0, — 1 =0, we obtain

ocmZ%((m—i—\/Zr;)/Z—l—\/(Am—l-m\/Z,;)ﬂ). (11)

In the same way, o(f,,) = (m —+/4,)/2 and

o(om) = 5 ((m = /B 24\ (4~ m/ 2 2). (12)

Note also that

K = Q) = O (A + m\/A) [2).

We will say that K,,, is a simplest quartic field if m > 1 is such that the odd part of 4,, is
square-free, which implies m # 3. We have:

PROPOSITION 6.  Assume that m > 1 and that the odd part of A,, = m? + 16 is square-
free. Let fx, and fi, denote the conductors of the simplest quartic field K,, and of its real
quadratic subfield k,,. Then,

(4, 4m) if m=1 ( )

(A, A /4) if m=2( )

Ukar Jd =\ (4,12, 40/8) i m =4 (mods8)

(4n/2,4,,/16) if m=0 ( )

In particular, different values of m define different simplest quartic fields, fx, is odd if and
only if m is odd, and fy, is even if and only if m =4 (mod8).

Proor. Let us content ourselves with a simple proof of the first case (see [Gras,

Proposition §] for a proof of the remaining cases). Since k,, = Q(v/4,,) of discrim-
inant 4,, =1 (mod4) is the quadratic subfield of the cyclic quartic field K,,, we obtain
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that 42 divides dk, (use the conductor-discriminant formula). Since (o, +1)/2 is a
root  of  X*—((mP+15m+4)/2)X3 + (3m> — 12m? + 45m — 192) /4) X?* — ((m>—
12m? + 15m — 196) /4) X — ((3m* +49)/4) € Z[X], it is an algebraic integer of K,, and
dy, divides d(1, 0,02, (3 +1)/2) =d(1, 0, 02,03) /4 =d, /4= 4. O

PROPOSITION 7. Set ¢ =[],_| (moaa)(1 =207%) =0.89%4---. Then, #{1 <m < x;
the odd part of A, is square-free} is asymptotic to cx, and #{1 <m < x; m is odd and 4,,
is square-free} is asymptotic to (1/2)cx.

3.1. Lower bounds for class numbers.

PROPOSITION 8.  Assume that m > 1 and that the odd part of A,, = m*> + 16 is square-
free. Then, a,, is a generating relative unit and

|
Regy = log? o, + log? a(a,) < 3 log? A,,.. (13)

Proor. For the proof of the first assertion, see [Gras, Proposition 8], or adapt the
method in the proof of [Wa, Section 2]. To prove (13), we note that it holds true for
m=1,2 (use (11) and (12)). Thus, we assume that m > 3, which implies P, (4) =

—60m+ 161 < 0 and oy >4 Now, 27 = (2 4+ /7 m+\/(2+\/ 7)2 — 4)/2, by (11)

and (12). Hence, o} <2+ 4y, | < o\ 7VA4, < 2+ /Ay)/ 4, < (1 +V4,) and
1 <o, /Ay <1+ (2/V/4y). Using (1/0(sy)) =1+ (2/(em — 1)), we obtain

1
1 log2 A

= (log(e, v/ Am)) (log (ﬁ)) ~ 2(logan) (1°g %)

F(1 ++/4y) — F(o)), where F(x):= (logx)(log<1—|—xil)>, x> 1.

Now, x(x?—1)F'(x)=(x*—=1)log(1+2/(x—1))—2xlogx < G(x) :=2(x+ 1 —xlog x)
where G'(x) = —2logx <0 for x> 1. Hence, G(x) < G(4) <0 and F'(x) <0 for
x >4, and F(1+4+/4,,) — F(a,) <0, for o, < /4, by (11). ]

THEOREM 9. Assume that m > 1 and that the odd part of A,, = m*> + 16 is square-
free. Let fx, denote the conductor of the simplest quartic field K,. Then,

2
hi > /x, .
" = 3e(log fx, +0.35)

In particular, hy >1 for fg, > 73000 (hence for m>382) and hy >2 for
Sk, = 210000 (hence for m > 649).

log® o + log® a(a) —

(14)

Proor. The right hand side of (14) being less than one for fx < 7-10% we

m

may assume that fx, >7-10% which implies dx, = fi, /2 >fK /8 >4-10" (for

m

Jr,, = fx, /8, by [Proposition €). Hence, using (7), (13) and the bounds Am < 2fk, (by
and (log2 +x/2)/2 <0.35, we obtain (14). O
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3.2. Computation of the unit index Ok, .

PROPOSITION 10. Assume that m > 1 and that the odd part of A, =m?+ 16 is
square-free. Let 1 < e, = (X + ymv/Am)/2 € O(\/4y) denote the fundamental unit of
the real quadratic subfield k,, = Q(\/4,,) of the simplest quartic field K,,.

I. Ikam/Q<8km) =1, then Qg, = 1.

2. If N, jo(exr,) = —1, then Qk, =2 if and only if at least one of the two rational

integers 4x,, + A, ym £ 2m is a perfect square.

3. If m>2is even, then, Qx, =1 if m#4, and Qk, =2 if m=4.

Proor. To begin with, we note that Qg = 2 if and only if +8k,,, 0 18 a square

in K, (see [Gras, Proposition 1]), hence if and only if #,, := &, 21~ is a square in K,
(for &, > 1 and ocm > 1> 0a(wy,) >0). Assume that Ny o(e,) =-+1. Then, 5. =
Nkm/Q(ekm)oc}n‘ o2,/ Nk, k., (om) = —a2, (use (10)) is not a square in K,,. Hence, 7,
is not a square in K,,, and Qg, =1, whlch proves the first assertion. Let us now prove

the second assertion. To begin with, using o + 1 = a,,(mo?, + 60, —m), we obtain:

m

l—0 —(1-a) _ O(Wl<am + 1) Om — 1
O O U — 1 +<xm(ocm—|—l)
o+ 20, + 2002, — 200, + 1
N ocm(oczm —1)

_ (m+2)a2, + 8oy — (m+2)
B a2 —1

—m+2+(8/B,) =2+ \/Dm.

2

Now, Nk, /k, () = & (use (10)) is a square in k,,. Hence, by [Loud, Proposition 3.1],

1, is a square in K, 1f and only if Trg, /i, (1) + 20/ N, s, () = &1 (0177 + 02" ) +
2er, = ek, (al- 0 4 g7 +2) =¢,(4+4,) is a square in k,, (for Ter/km(;ym) —

24/ Nk, /i, () = €k, /A cannnot be a square in k,,, since N, o(ék,V/Am) = A is not
a square in Q). Finally, by [Loud, Corollary 3.3], &, (4 + \/4,,) (of absolute norm m? a
square in Q) is a square in k,, if and only if 7,, + 2m or T,, —2m is a square in Q,
where T, = 4x,, + 4,,y,, is the trace of ¢, (4+ +/4,). Let us finally prove the last
assertion. Assume that m # 4,8 is even. In that case, ¢, = ((m/2) + (v/4n/2))/2 is of
norm —1 and Qg, =1, for neither 4x,, + 4,,y,, + 2m = (m + 4)2/2 nor 4x,, + 4,y —
2m = (m? +16)/2 is a perfect square (if 4,,/2 = (m>+16)/2 is a perfect square then
A, =m? 4+ 16 must be a perfect 2-power, which implies m =0 or m =4). Now, if
m =38, then &, = (1++/5)/2= 1+ (/4,/4))/2 is of norm —1 and Qk,k =1, for
neither 4x,, + 4,, v, + 2m = 40 nor 4x,, + 4,,y, — 2m = 8 is a perfect square. Finally,
if m=4then &g, =14+v2= (24 (V/4,/2))/2 is of norm —1 and Qk, = 2, for 4x,, +
Apym —2m =16 1s a perfect square. O

3.3. Computation of class numbers.
Let yg, be any one of the two conjugate primitive quartic Dirichlet characters
modulo fg, associated with a simplest quartic field K,,, of conductor fx,. According to
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(1), [Proposition § and to the explicit formula for L(1,y) for even primitive Dirichlet

characters, we have
2

Ok '
. e 1k, (1) logsin(In/4,,)
£ 2(log? oy + log? o (am)) 131;‘;@, /2

(where Qg, is computed by using [Proposition 10), which provides us with a simple
technique for computing efficiently Ak, for m not too large. Let us now explain how
one can efficiently determine such a y; (see also [Lou5]). To begin with, we note that
if 4 =T][/, p: is the product of > 1 pairwise distinct odd primes p; =1 (mod4) then
we can enumerate all the 2’ primitive quartic characters v, 4, 0 <n <2'—1 whose
components modulo each p; are primitive quartic characters. Indeed, for a given prime
p =1 (mod4), set g, = min{g > 1;¢»"V/2 = —1 (mod p)}, G, = 95" ""* mod p and let
¢, be the quartic character mod p defined by

,(x) = ™ where n(x) = min{n > 0; x(?"V/4 = G, (mod p)} €{0,1,2,3}

(for ged(x, p) =1). To each ne {0,1,...,2! — 1} of 2-adic expansion n =, a;2""!
a; € {0,1}, we associate the primitive mod 4 quartic character

1

Vs =105

1. First, assume that m is odd. Then, fx, = 4, = [[._; p: is a product of 7 > 1
pairwise distinct odd primes p; =1 (mod4) and there exists a unique odd n=mn,, €
{0,1,...,2"1 — 1} such that the primitive quartic character v, , is one of the two
conjugate primitive quartic characters yx —associated with K. The following algorithm
provides us with an efficient technique for determining this unique n = n,,:

1. E:={0,1,...,2°1 1}, p:=3.

2. RAmin = min(E), Amax := max(E).

3. If npin = nmax then go to step 6.

4. While p divides 4,,, or P,(x) has no root in Z/pZ, do p := next prime.
(Now, since P,(x) has at least one root in Z/pZ and since p does not divide the
discriminant d,, = 44> of P,(x), it holds that p splits in K, and 1k, (p) = +1.)

5. Exclude all n with ¥, 4 (p) #1 from E. Then, go to step 2.

6. Return(npi,).

2. Now, assume that m is even. Let y, denote the only primitive quadratic
Dirichlet character modulo 4 (hence, y; (—1) = —1), x4 be the only primitive even qua-
dratic Dirichlet character modulo 8 and x|, be any one of the two conjugate primitive
even quartic Dirichlet characters modulo 16.

1. If m=2 (mod4), then fx, =44’ where 4\ =(m/2)*+4=]]_,pi=5
(mod8) is a product of ¢ > 1 pairwise distinct odd primes p; =1 (mod4), and
there exists a unique 7 = n,, € {0,1,...,27! — 1} such that the primitive quartic
character y, , 4! is one of the two conjugate primitive quartic characters yx
associated with K,,.

2. If m=4 (mod8), then fx, = 164’ where A’ = ((m/4)* +1)/2=[]_, pi =1

(mod4) is a product of ¢ > 1 pairwise distinct odd primes p; =1 (mod4).
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(a) If m=+4 (mod32), then 4, =1 (mod8) and there exists a unique n =

nme{0,1,...,2" — 1} such that the primitive quartic character yj.\, n
is one of the two conjugate primitive quartic characters yx associated
with K,,.

(b) If m =412 (mod32), then 4/ =5 (mod8) and there exists a unique n =
ny €{0,1,...,2" — 1} such that the primitive quartic character x5y, 4
is one of the two conjugate primitive quartic characters yg associated
with K.

3. If m=8 (mod16), then fx, =84, where A' =4(m/8)* +1=]]_, pi=5
(mod8) is a product of ¢ > 1 pairwise distinct odd primes p; =1 (mod4), and
there exists a unique n = n,, € {0,1,...,2"1 — 1} such that the primitive quartic
character y, ;(;{lpnm 4 is one of the two conjugate primitive quartic characters
Xk, associated with K.

4. Finally, if m=0 (mod16), then fx, =84’ 6 where 4’ =16(m/16)* +1 =
[I_; pi=1 (mod8) is a product of > 1 pairwise distinct odd primes p; = 1
(mod4), and there exists a unique n =n,, € {0,1,...,2"1 — 1} such that the
primitive quartic character ngnm 4 is one of the two conjugate primitive
quartic characters yx = associated with K.

3.4. Bounds for the relative class numbers and conductors of the simplest quartic
fields with ideal class groups of exponents < 2.

PROPOSITION 11.  Assume that m > 1, that the odd part of A,, = m* + 16 is square-
free and that the exponent of the ideal class group of the simplest quartic field K, is <2.
1. If mis odd, then either (i) 4,, = p =1 (mod8) is prime or (ii) 4,, = p1pa is the
product of two distinct odd primes p; = p, =35 (mod8). Moreover, hy <4
and m < 750.
2. If m=>=2is even, then, hg <16 and m < 2300.

Proor. By [Lemma 3, at most two primes are ramified in k,,. Moreover, if m > 1
is odd and di, = 4,, = p1p> is a product of two primes, then p; = p» =1 (mod4) and
p1 = p2 (mod8), for 4,, =m? +16 =1 (mod8). If we had p; = p =1 (mod8), then
the genus field Gk, of K, would be real, Gk, /K, would be an unramified cyclic
extension and the 4-rank of the ideal class group of K would be >1, a contradiction.
Hence, we are in case (i) or (ii). Now, with the notation of [Lemma 3 we have
t=T=11in case (i) and t=T =2 in case (ii). Hence T+¢—-2<2 and hxy <4 in
both cases. Finally, using (14) we obtain fx, < 560000, which implies m < 748 (for
m? +16 = 4,, = fx,, by [Proposition 6)). Let us now prove the second assertion. With
the notation of [Lemma 5, we must have t < 2. Since T < 2+ ¢ (since a prime ideal of
k,, which is ramified in K, /k, but unramified in k,/Q must lie above 2), we obtain
1+ T —2<2t<4 and h} <2%*=16. Finally, using (14) we obtain fx, < 3800000,

which implies m < 2756 (for m? + 16 = 4,, < 2fx,, by [Proposition 6). ]
3.5. The exponent 2 class group problem for the simplest quartic fields: proof of
Theorem 1.

To begin with, we note that if the exponent of the ideal class group of the simplest
quartic field K, is <2, then hg, is a perfect 2-power. First, let us deal with the case
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that m > 1 is odd. According to computations based on Section 3.3, only 18 out of
the simplest quartic fields K,,, m odd and 1 <m < 750, have class numbers of the
form hg, =2, e, >0: me {1,5,7,9,11,13,15,17,19,23,27,33,39,45,69, 87,255, 549}.
Moreover, only 11 out of these 18 values are such that hg, > 2, namely m e {17,19,
23,27,33,39,45,69,87,255,549}. Since 4,, is a product of three distint primes for
m e {33,87} whereas 4,, is a product of two distinct primes p; = p, =1 (mod8) for
m e {69,255,549}, by [Proposition 11|, it remains to compute the structure of the ideal
class groups of the 6 quartic fields K,,, me {17,19,23,27,39,45}. We obtain the
following Table 1, which completes the proof of in the case that m is
odd. Now, as explained in the introduction, the case that m is even is simpler to deal
with:

TABLE 1.
m 17 19 23 27 39 45
A 5-61 13-29 5-109 5-149 29-53 13-157
hy,, 2 2 2 2 2 2
Ok, 1 1 1 1 1 1
hi 2 2 2 2 2 2
hg, 4 4 4 4 4 4
Clg, [2,2] [2,2] [2,2] [2,2] [2,2] [2,2]

LeMMA 12 (See also [LMW]). Assume that m > 2 is even and that the odd part of
Ay = m? + 16 is square-free. If the exponent of the ideal class group of K, is <2 then
hy, = 2%n=1 where t. denotes the number of distinct prime divisors of the discriminant of
k. Moreover, the only such m < 1000 are m € {2,4,6,8,10,12, 14,16, 18, 20,24, 26, 32,
34,38,40, 44,46, 50,52, 56,62, 68,76, 82,86, 88,92,98,104, 106, 118, 124,136, 148, 184, 188,

202,232, 254,292,358, 392, 488, 568,968} (46 values).

Proor. The exponent of the ideal class group of k, must be <2 (by [Cemma J),
and since all the odd prime divisors p of dj,, satisfy p =1 (mod4), the 2-rank of the
ideal class group of k,, is equal to #, — 1. ]

m

Now, according to computations based on Section 3.3, only 11 out of these 46
values of m are such that the class numbers of the simplest quartic fields K, are of the
form hg, =2, e, > 0, namely m € {2,4,6,8,10,12,16,18,20,24,32}. Moreover, only
2 out of these 11 values are such that /g, > 2, namely m € {18,32}. Finally, using
the Pari software for algebraic number fields to compute the structure of the ideal
class groups of these 2 quartic fields, we obtain that neither Clk,, = [4] nor Clg,, =
[4,2] is elementary, which completes the proof of in the case that m is
even.

All our computations were carried out on a personal microcomputer by using Pr. Y.
Kida’s UBASIC language (for class number computations) and Pari GP (for the deter-
mination of the structures of the ideal class groups of Ky7, K9, K»3, Ky7, K39, K17, Kys,

Klg, and K32).
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