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Abstract. In this paper, we investigate a certain fusion scheme % (A4,) of the group
association scheme %'(A4,) of the alternating group of arbitrary degree n. In particular,
under some extra assumption on ‘geometry of maximal cliques’, we characterize &' (4,) by
parameters.

1. Introduction.

Let X be a finite set, and let R; (i=0,1,...,d) be relations on X, i.e., subsets of
X xX. Then Z = (X,{Ri}o<;<y4) 1s an association scheme of d classes if the following
conditions hold.

(1) Ro={(x,x)|xeX}.

2) XxX=RyURU---URy, and R,NR; = ¢ if i # J.
(3) 'R; =Ry for some i’ € {0,1,...,d}, where 'R; = {(x,y)|(y,x) € R;}.
(4) For i,j,ke{0,1,...,d}, the number of ze X such that (x,z) e R; and

(z,y) € R; is a constant, pffj, whenever (x, y) € Ry.
(The relation Ry mentioned in (1) above is called the diagonal relation.)

An association scheme % is called commutative if the condition

() pfj = p}f,- for all i,j,ke{0,1,...,d}
holds, and symmetric if the condition

(6) 'R, =R, for all ie{0,1,...,d}
holds. Note that a symmetric association scheme is also commutative, but that the
converse does not necessarily hold.

The non-negative integers {p};}o<; <4 are called the intersection numbers or
parameters of X.

The reader is referred to and for the general theory of association schemes
and related terminologies.

Let G be a finite group. Let Cyp(= {id}), Ci,...,C,; be the conjugacy classes
of G. Define relations R; (i=0,1,...,d) on G by R, ={(x,y)|yx'eC;}. Then
Z(G) = (G, {Ri}y<;j<q) 1s a commutative association scheme of d classes called the
group association scheme of G. (See Example 11.2.1(2) of [2])

By S, and A4,, we denote the symmetric group and the alternating group of degree
n, respectively.

Among various problems around an association scheme, it seems one of the most
important problems is to classify association schemes having the same set of parameters.
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In particular, when it is the group association scheme 2 (G) of some group G, the
problem can be regarded as “‘the combinatorial version’ of the classification problem of
groups having a given character table. There are several works for the latter problem
in the field of group theory. The list contains characterizations of S, and 4,. On the
other hand, the former problem is in the field of algebraic combinatorics (association
schemes), and in order to try this, we need delicate ‘structure analysis’ of association
schemes, which is the subject of this paper. (We cannot use group theory!)

For example, it is shown in [4] that when the set of parameters of Z'(S4) is given,
there exist exactly two association schemes (except Z'(S4)) having it, and each of them is
not the group association scheme of any group.

In case of Z(S,) with n > 5, it is shown in [5] and [6] that it is the unique one for
given parameters. Also, for (4s), uniqueness is shown in [4].

In this paper, we attempt to solve this problem for A4, with n > 6. However,
particularly in this paper, we focus on one fusion scheme of Z(4,), which is mentioned
in the following.

It is well known that the conjugacy classes of S, depend on its cycle-shapes. Let
A(n) be the set of all partitions of n, or, equivalently, the set of all unordered m-tuples
(i1,02,...,5y) such that 1 <m < n, 2;11 ij = n, and j; is a positive integer for 1 < j < m.
(For example, we identify (1,2,1,3,2) e A4(9) with (1,1,2,2,3).) For A=(1,...,1,
iyooyim) € A(n) (iy =2 for 1 < s <m), we sometimes write A = (ij,...,i,) and (1) =
(1,...,1). (For example, (3) =(1,...,1,3)e A(n).) For Ae A(n), let C, ={x€eS,|
x has the cycle-shape i}. Then we see that {C;},_,(, are the family of all conju-
gacy classes of S,, and Z'(Sy) = (Sy, {R}},c 4(s)) 18 @ symmetric association scheme of
|A(n)| — 1 classes, where for A€ A(n),

Ry ={(x,y) € Sy x Sy yx"" e G}

(Note that Ry is the diagonal relation.)
For 2= (i1,...,im) € A(n), let (1) =3 ", (iy—1). Let A°(n) denote the subset of
A(n) as follows;

A¢(n) = {Ae A(n)|p(2): even integer}.

We write 4°(n) = A(n)\A¢(n).
Let us consider A4, as the subset of vertex set of Z(S,). Then it is easy to see;

4,= | G

deA®(n)
The leading object of this paper is the following configuration;
g(An) = (An, {R; N (4, x An)heA"(n))-
It is easy to see the following:

PROPOSITION 1.1. % (A,) is a symmetric association scheme of |A¢(n)| — 1 classes.
Moreover, Z(Ay) is a fusion scheme of the symmetrization of Z(Ay).

In this paper, we approach the characterization problem of %(4,). The author
regards this problem as the first step of the characterization problem of Z(4,). Indeed,



Group association scheme of A, 651

by general theory of fusion schemes, which is seen in, for example, [I], we have the
following:

ProrosITION 1.2.  Let & be an association scheme having the same set of parameters
as of X (A,). Then there exists a fusion scheme X of X having the same set of pa-
rameters as of X (An).

The main assertion of this paper is that % (A4,) is characterized by parameters
under certain assumptions on ‘“‘geometry of maximal cliques”. In order to describe such
geometry, let us prepare some notation on a graph.

In the following, we sometimes regard a notation I” as the vertex set of a graph
I'. For example, if x is a vertex in /', then we write xe I.

For two vertices x and y in I", we write x ~ y or x ~ y if x is connected to y with
an edge.

By a triangle xyz, we mean the set of three vertices x, y and z with x ~ y ~ z ~ x.

For a graph I', let 0 = 0r denote the distance function in 7.

Let d = dr be the diameter of I.

For x € I' and for an integer i with 0 <i < d, let [;(x) ={ye'|d(x,y) =i}. Let
I (x) =1 1 (x)

For Y = {yi,...,yi} = I, write (), _,_, I'(y;) by I'(Y) or I'(y1,..., i)

For a subset Y and Z of I', we denote by e(Y,Z) the number of edges crossing
between Y and Z. If Y ={y} for yeI', we denote e(y,Z) =e(Y,Z).

We call a clique for a subgraph which forms a complete graph.

In the rest of this paper, we denote by I'* the relation graph (A,,,R(*3)) of Z(4,).
Note that I'* is just the same as Ca}’c<3) (A4,), the Cayley graph of A, based on Ci).

The following is a more precise description of “geometry of maximal cliques”.

OBSERVATION 1.3.  Let I' be a graph. If I' is isomorphic to I'*, then I' satisfies the
conditions (M1)—(M4) as follows:

(M1) The size of any maximal clique is 3 or n— 1.

(M2) For any triangle xyz in I, there exists a unique maximal clique containing
Xyz.

(M3) For any pair of vertices (x,y) with x ~p y, there exists a unique element
M € M\ containing xy, where 1 is the set of all maximal cliques of size 3 in I.

(M4) Let M e M = MU My, where M5 is the set of all maximal cliques of size
n—1, and let y e I' with MﬂREz,z)O’) # &, where;

Ry (y) ={zel'[0(y,2) =2,|I'(y,2)| = 8}.
Then e(y, M) # 1.

Remark that if a graph I" satisfies both (M2) and (M4), then it also holds that;
(M5) Let M e ./, and let y e I' with MR}, 5 (y) # . Then e(y, M) € {0,2}.
The following is the main theorem of this paper:

TueoreM 1.4. Let X' = (X,{Ri},c 4e(n)) be an association scheme having the same
set of parameters as of X(A,), and let I' be the relation graph (X,R)). In addition,
assume that I' satisfies conditions (M1)—(M4) as in Observation 1.3.

Then X' is isomorphic to X (A,).
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In the next section, we prepare two important preliminary propositions, Propo-
sitions 2.5 and 2.6. The former claims that characterizing problem of %(A4,) can be
reduced to the characterization of one relation graph, which corresponds to the con-
jugacy class of 3-cycles in A,. The latter is on spherical representation, which is a key
tool in many places of this paper.

In Sections 3 and 4, we determine local structure of the relation graph corre-
sponding to 3-cycles in A4, by information of parameters and the geometry of maximal
cliques as seen in Observation 1.3. There, we can observe that the geometry ‘controls’
many important properties on local structure used for the determination of global
structure.

In Section 5, we analyze local structure of the image of spherical representation.

In Section 6, we complete the proof of by using properties of local
structure obtained in Sections 3 and 4 and very simple properties of the image of
spherical representation obtained in Section 5.

2. Notation and preliminaries.

In the rest of the paper, for an integer i < n, let N; denote the family of ordered
sets of i distinct integers with 1 <i <n. Let N; denote the family of unordered sets
{ni,...,n;} with (n,...,n;) € N;. Write the set {1,2,...,n} by N. Note that;

Cay={(j k)eA,|(i,j k)e N3}

Note that for (i,j,k)e N3, (i j k)= (j k i)=(k i))# (i k J).

An induced subgraph I'’ of a graph I' is called geodetically closed if for any pair of
vertices (x, y) in I"’, all shortest paths in I" from x to y is also contained in I’. For a
subset Y of I', let @(Y) be the smallest geodetically closed subgraph whose vertex set
contains Y. It is clear that @(Y) is unique for any given subset Y.

Let Z = (X,{R;},.,) be an association scheme with index set 4. Then for A€ 4
and for xe X, let R)(x) ={ye X |(x,y) e R;}. For A,..., Ay € A, write U;il R;,(x)
by Ri],...,/lm(x)-

In the rest of this paper, we denote by I the relation graph (X,R(3)) of % =
(X, {Ri},c 4¢(n)), Where Z'is an association scheme having the same set of parameters as
of Z(4,).

In [5, Lemma 3.4], we have observed that every relation of Z'(S,) can be char-
acterized by ‘some characteristics’ of the relation graph (S, R(;)) corresponding to
transpositions. In fact, a general proposition is used there, which is as follows:

..........

association schemes with the same set of parameters. Let I'' (i =1,2) be the relation
graph (X', R}), and assume that 'l is connected. Let §:{0,1,...,d} — Z~q be a func-
tion such that for a pair (x,y) € R}, 0r1(x,y) = 6(i).

Suppose that I’ and I'? are isomorphic as graphs, and, in addition, for any pair (i, j)
in {0,1,2,...,d} with 6(i) =6()), either of the following holds:

i) Cl) # (), |

(i) C(i) = C()), and pi, # p{, for some I e C(i),
where C(i) = {k€{0,1,2,...,d}| pi, #0 with 6(k) = 6(i) — 1}.

Then X' and X% are isomorphic as association schemes.
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In the following, let us observe that the similar situation holds between 2 and I
For A= (A,..., %), = (py,..., 1) €, A(r) with i+ j<n, we denote (Z,u)
for the partition (41,...,4;,0,...,4) € L, 4(). We sometimes write (4,u) =

(il,... i,,,u)
Now we deﬁne a function w U t , A(t) — Z= satisfying the following:

(@) For AV eA¢(i) and A® e A°(j) with i+ j<n, y((,22) =yV)+
(2.
(b)) Y((2i+1))=iwith 1 <2i+1<n.
() ¥((2i,2))) =i+ j for i,j>1 with 2i 4+ 2j < n.
Note that (2i) ¢ (), 4°(¢) and (2i +1),(2,2)) e |J_, A°(t
For Ze€ A¢(n) and g € R;(id) (= C;), set
T)(9) :=={ueA(n)|g-heR,(id) for he Cpu}.

In addition, let T) = {ue A°(n) | pé)_ﬂ #0}. Then we easily have
T,(g) =T, for any ge R;(id).

It is clear that 7(;) = {(3)}. Next, let us determine T3). Letg= (1 2 3) (e C(3))
and he (i j k) (e C( )). Then we easily see that;

(9,h) € Ry if h=y,

(9,h) € R, if h=g7!

(9.h) € R3) 0, 1 {1,2,3}0{i,j,k} =2,
(9,h) € R(s it {1,2,3}0{i,j,k}[ =1,

(9.h) € R if [{1,2,3}N{i, j.k}| = 0.

Note that, for example, if 7= (1 2 4) (resp., h=(2 1 4)), then (g,h) € R(y (resp.,
(9.h) € R}, ). Thus we have T(5) = {(1), (3), (2, ) (5),(3,3)}. Moreover, we also see
that for any pair (x,y) in I'",

Or+(x,y) =0 if and only if (x,y) € R()),
Or(x,y) =1 if and only if (x,y)e R,
Or-(x,y) =2 if and only if (x,y) € R (5).3,3)

Note that (¥ (1)), w((3)), ¥ (2, 2)), b((5), ¥((3,3))) = (0,1,2,2,2).
By such argument, by induction on (1) (1€ A4°(n)), we have the following:

LemMma 2.2, For s, the following hold.

(1) Let A, e A°(n) with pém #0. Then y(A) e {Y(u) — 1,¢ (), ¥(u) + 1}.

(2) Let Aue A¢(n) with Y(1) =y (u) + 1. Then pé)# # 0 if and only if one of
the following holds:

) A=+ j+kA) and p= (i, j,k,2"), where i, j and k are odd positive integers,
and where \'e A°(n—i— j—k).
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(i) A=(+j+kA") and u=(i,j,k,2\'), where i and j are odd positive integers, k
is an even positive integer, and where ' € A°(n—i— j— k).

(i) A= (i,j,A") and u= (i+k,j—k,A"), where i and j are even positive integers,
k is an odd positive integer with 1 <k < j, and where )" € A°(n —i— j).

(3) Let x,yel with (x,y)e R, (Le A°(n)). Then 0(x,y) = Y(4).

REMARKS. (1) The author recommends the readers to see [S, Lemma 3.1].

(2) For A and u in (2) (i) or [ii}, if at most one of {i, j,k} is odd, then
W) = ().

(3) For A and g in [Lemma 2.2 (2) (iii), if all of {i, j,k} are odd or all are even,
then y(2) = (p).

Let us prepare some notation for A€ A¢(n).

Let |4| be the length of A, that is, the number of entries of 4. For example, if
2=(1,1,2,2,3) (e 4°(9)), then |1] = 5.

We sometimes reorder entries so that 2 = (1", A7), where any entry of 1™ (resp. A7)
is even (resp. odd). For example, if 1= (1,1,2,2,3) (e 4°(9)), then A" = (2,2) and
A~ =(1,1,3). Note that |A7] is even, ie., AT e (), 4°().

If A=(1,1,3) and u = (2,2), for example, then we write A" = u~ = 0.

If ue A¢(t) for some ¢ with 1 <t <n, we write > u=1t For example, for 1€
A¢(n), AT +> 0 =n.

By max(4), we denote the maximum of entries of A.

Let W(A) ={ueA°n) |y(u) =y(1) — l,pé)’ﬂ #0}. Note that ¥((3)) = {(1)} and
Y(4) ={3)} for Ae{(2,2),(5),(3,3)}. Note also that if (u) # (1) for ue A°(n),
then Y (1) N¥(u) = .

By (2), we easily have the following.

LemMmA 2.3. For A€ A%(n), the following hold.

1) For any ue ¥(2), |u | =1|A"|+2.

) For we W(h), lut] € {12°],14*] - 2},

Y If |AT| =2, then there exists ue ¥Y(1) such that |u*|=|i"|—2.
Y Let pe W(A) with ut =" Then Sy =>_1".

5) If max(A7) = 3, then there exists pe W(L) such that ut = i".

) If max(i") >4, then there exists pe W(A) such that |u*| =|A"|.

) Assume |17 = s> 2, and write J7 = (Ay,..., ) with Ay > Jo > -+ > A, Pick
any pe W) with |ut|=s, and let u™ = (py,..., 1) with p; >y > - > p,. Then
A= for 1 <i<s.

() Let A=24" =(At,...,As) With Ay =y == A, and let u= (p,...,1») €

V(A) with iy = o = -+ > py». Then p=p and 4; > p; (1 <i<s).

Proor. Straightforward. L]

LEmMMA 2.4, Let A,me A°(n) with L #n and y(1) = y(n) > 3. Assume {i,n} ¢
{{(7),3,5}1,{09),3,7)}}. Then ¥(2) # ¥(n).

PrROOF. At first, we only assume that A # 7 and (1) = y(n) > 3 for A, m e A°(n).
Then it suffices to consider only 8 cases as follows:
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Case (I): |AT|>|nF] = 2.

Case (II): |A7|> |zt =0 with |A7] > 4.
Case (IL): |A"|> |n*| =0 with max(i') > 4.
Case (IL): |A7|> |zt =0 with 1T = (2,2).
Case (III): |AT|=|nt| >4 with 17 #=".
Case (IIL): |AT| = |n*| =2 with A" # .
Case (IV): 2" =nt #0.

Case (V): AT =zt =0.

Let us consider Case (7). Then by (3), we can find € ¥(n) such that
lut| = |n"| — 2. However, by (2), it cannot occur that e ¥(1). Thus we
have;

(2.4.1): In Case (1), P(1) # ¥ (n).

Next, consider Case (/;). Then by (3), there exists u € ¥(4) such that
lut| =|AT| =2 > |n*|. Thus by (2), we have;

(2.4.2): In Case (1)), V(1) # ¥ (n).

Consider Case (I). Then by (6), there exists p e ¥(A) such that
lut| = |A"| > |n*|. Thus by (2),

(2.4.3): In Case (IL), ¥ (1) # ¥(n).

Consider Case (/;). Then by the assumption (1) =y(n) >3, max(4 ) > 3.
Hence by (5), there exists u € ¥(4) such that |u*| =|A"| > |z*|. Thus by
(2),

(2.4.4): In Case (IL), Y(1) # ¥(n).

Consider Case (I1I;}) and (III;) together. In both cases, we may assume that

=0, AN A

t+10°

:(AT,.. 2,+ ;:»1,...,%:_)’

LA,

where s>t+1>1, i >---> 1 and /1+1>n;r+1> ->m. Note that 17, >4.
At first, assume max (4~ ) 3. Then by [Lemma 2.3 (5), there exists € ¥(1) such that
u = 2". However, by (7), it is impossible that ue ¥(n). Next, assume
that max(4~)=1or A~ =0. If 7#0 and 2 > 4, then there exists xe ¥ (1) such

that

>
=

wh= A A =2k

S AD)
with 1 —2>7},. However, by (7), w¢ ¥(n). Suppose t# 0 with

A= /I;Zrl Then there exists u € ¥(rn) such that

=], AL A =2, R,
However, we also see that u¢ ¥(4). (Why? For example, observe that ¥((4,4,1))%
(2,2,3,11) e ¥((4,2,3)).) Suppose t=0. In the case (III}), it immediately follows
that s >4, and we easily find x4 with Y(1) s u¢ ¥(n). (Indeed, for example, if A=
(6,2,2,2) and n™ = (4,4,2,2), then by (7), ¥(A) > (6,2,3,1) ¢ ¥(r).) Thus
we have;
(2.4.5): In Case (III,), ¥ (1) # ¥(n).
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It remains to consider the case (/II;). As seen above, we may assume A=
(A1,242,1,...,1) and nt = (n],ny) with 4} >4 and A, > 7 > 7] >2. Assume J, = 2.
Then we easily find u = (41,4, —2,1,...,1) € ¥(4), and moreover, by (7),
wé¢ ¥(n). Next, assume A, =2. If Ay —m >4, then by (7), ¥(A)>
(A —2,2,1,...,1) ¢ ¥(n), so that we assume that 7; = A; —2. Moreover, since (1) =
Y(n), t= (A4 —2,4,1,...,1) with ; >6 or 7= (4; —2,2,3,1,...,1) with 1; >4. In
the former case, we have ¥(4)>(2,2,4; —3,1,...,1) ¢ ¥(n), and in the latter case,
P(A)sAh+1,1,...,1) ¢ ¥(n). Thus we have;

(2.4.6): In Case (IIL), ¥ (1) # ¥(n).

Consider Case (IV). Note that A~ # . At first, assume max(A") = max(n*) =
a>4. Let A" =xnt = (y,i,j) with y € A°(J]A"| —a). Then there exists u e ¥ (1) such
that u* = (¢ —2,5) and = = (1,1,47). However, since 7~ # A, it must hold that u ¢
¥(r). Next, assume max(4") = max(nt) =2. Then we may assume that A" =zt =
(2,2,n) with € A°(|27| — 4), and moreover, we have ¥ (1) 3 (,3,1,A7) ¢ ¥(x). Thus
we have;

(2.4.7): In Case (IV), ¥(1) # ¥(n).

Finally, consider Case (V7). Here, we shall show;

(2.4.8): In Case (V), {4z} e {{(7),(3,5},{09),(3,7)}}.

In this case, we may assume that
l:l_:(lla~"715715‘-‘,-17-'-7154—[717"'71)7
TL'ITL'i:(/11,...,/ls,ns+1,...,is+t/,1,...,1),

where s>0, t>1, ¢/'>2, i >4 >->4, >3 and where Ay > 7o >---
g > 3. Note that A, > 5.
At first, assume ¢ > 2. Then there exists u € ¥(4) such that

= = (j'l?"'ais+tfla/1s+t_2717"'71)'

However, it follows from (8) that u¢ ¥(n).
Next, assume that z=1. If s> 1, then there exists x4 € ¥(n) such that

U :,u_ = (/11, ce ,/ls,l,/ls - 2,7‘[S+1, RPN ,isﬂl, 1, sy 1)
However, we also see u ¢ ¥(4). (Why? For example, observe ¥((5,5,1))%(3,3,3,1,1)
e ¥((5,3,3)).) Suppose s =0, i.e., A= (a,1,...,1) for some odd integer a. (Note that
a > 7 by the assumption (1) > 3.) If ¢/ > 3, then we see that ¥ (1) > (a —2,1,...,1) ¢
Y (7).

It remains to consider the case A = (a,1,...,1) and 7= = (b,c,1,...,1) with a > 7
and a>b>c>3. If a—b>4, then by (8), we have ¥(1)> (a-—2,
l,...,1)¢ ¥ (n). Assume b=a—2 (=5). Then by the assumption (1) =(x), b = 3.
Suppose a > 11. Then there exist odd integers aj,a, > 5 such that ¢y +a +1 =a.
Hence we see that ¥(4) o (a1,az,1,...,1) ¢ ¥(n). Thus we have the assertion of (2.4.8).

By (2.4.1)-(2.4.8), we complete the proof. O

Remarks. (1) (7)) = #((5,3)) = {(5), (3,3)}.
2) P(9)=%((7,3)=1(),(5,3),(3,3,3)}.

By the previous lemma, we have the following.

\Y
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ProposITION 2.5. If I' is isomorphic to I'* as a graph, then Z is isomorphic to
Z(An) as an association scheme.

ProOOF. We easily have that;

) ) _
(p(3)7(5)’1’(3),(5)) =(7,1),

3
(P), 0 P3).n) = O D)

Thus by [Proposition 2.1 and [Lemma 2.4, we have the assertion. (Correspond ¢
and C(i) in |Proposition 2.1 to ¢ and ¥(4), respectively.) ]

As seen in [5], theory of spherical representation of an commutative association
scheme acts an impotant role also in this paper. In particular, we use the following.

PROPOSITION 2.6.  Let n be an arbitrary positive integer, and let 2’ = (X ,{R;}, ¢ 4¢())
be an association scheme which has the same set of intersection numbers as of % (A,).
Let V be the Euclidean space of dimention (n — 1)2 with the standard inner product { Y.

Then there exists an injection [ : X — V satisfying the following;

(i) f(X) spans V,

(i) for any pair (x,y) in R;, (A€ A°(n)), it holds that

S, S )ow = x(4),

where for 2= (iy,...,in) € A°(n) (i1,... 0 = 2),

() =n-1 —zmzis.
s=1

In this paper, we write, for example, x(3) and x(2,2) for x(1) (A €{(3),(2,2)}).

We write \v\f/ for <v,v)p.

For a subset 4 of V, we denote by Span(A4) the subspace of V spanned by elements
of A.

We can easily observe the following.

LemMA 2.7. Let X and f be as in Proposition 2.6. Then for x, y € X, the following
hold.

(1) <fx), /)y =n—11if and only if x = y.

(2) ) Sy =n—4if and only if (x,y) € R3).

3) f(x),f(¥)>y =n—=5if and only if (x,y) € Rp,)

@4 S(x), Sy =n—06if and only if (x,y) € Rs).

(5) Sf(x),f(¥)>y=n—=Tif and only if (x,y) € R3 3),(2,4)-

Moreover if there exists z € X such that {f(x), f(z)>y =<{f(»), f(2)>y =n—4, then

(x,7) € R@3,3).
PrOOF. Straightforward. O]
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3. Determination of local structure (1).

In the rest of the paper, let n be an arbitrary positive integer with at least 5.

In this and the next sections, we particularly focus on the local structure of the
relation graph I'*.

Information of parameters of & (A,) implies the following, immediately:

LEMMA 3.1. Let &' = (X, {Ri},c 4¢(n)) be an association scheme having the same set
of parameters as of % (A,), and let I' be the relation graph (X,R3)). Then for any
vertex x in I, the following hold.

(1) [1(x)] = nln— 1)(n - 2)/3.

(2) T(x) = Rp,2),(5),3,3)(x). Moreover, for ie{(2,2),(5),(3,3)}, it holds that
R, = R), where

R ={(x,y) e ' x I'|d(x,y) = 2,|T'(x,y)| = 8},
Risy={(x,y) e I'x I'|d(x, y) = 2,|I'(x, y)| = 5},
R(,3,3) = {(X,y) el x Fla(x7y) :2,“—'()6,)/)‘ :2}

(3) For any ye I'(x),
(@) 11(x )| =ps. =3
(b) V(szﬂﬁ! i) 2y = 31— 3).
(© [F(x)N <n:4?@—3< =3)(n—4).
w>meleswn—(g@@:<—AXn—am—SV&

(4) There exists no pair of vertices (y,z) such that y € R (x), z € R 3)(x) and

Y~z
(5) [R@2(x)|=3(), [Rs(x)| =24(5) and |R( 3(x)| = 40(g).

Proor. Straightforward. ]

\_/v

The main purpose in this section is to show the following:

ProPoSITION 3.2, Let &' = (X, {R;},c 4e(n)) be an association scheme having the
same set of parameters as of ¥ (A,), and let I' be the relation graph (X,R3)). In
addition, assume that I satisfies conditions (M1)—(M4) as in Observation 1.3.

Then for any x € I, the induced subgraph of I" with respect to I'(x) is isomorphic to
the induced subgraph of I'* with respect to I'*(g) for any ge I'*.

In the rest of this section, assume that /" is a graph as in the previous proposition.
Let x, y be vertices in I with x ~ y. Then by ¥y, we mean the vertex such that
{x,y,*y} e M. (By (M3), such a vertex is unique.)

LemmA 3.3. For all x,ye I’ with d(x,y) =2, I'(x,y) contains no triangle.
ProOF. Immediate from (M?2). O

LemMA 3.4.  For any pair of vertices (x,y) in I' with x ~ y, the following hold.
(1) WM e iy |{x,y} = M}| =1
2) KM e dr|{x,y} = M}|=3.
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Proor. (1) Immediate from (M3).
(2) By (1), (M1) and (M2), there exist maximal cliques M,,..., M€ .4, such
that;

(34.1) I(x,y) = (U (M\{x, y})) U {2},

and,
(3.4.2) M;NM;={x,y} if i # .
By [Lemma 3.1 (3a), it follows that s = 3, which is desired. O

LemMA 3.5. Pick any vertex xe I', and let A = Ay be the induced subgraph of I’
whose vertex set is I'(x). Then the following hold.

(1) 4 contains no subgraph which is isomorphic to K i 1.

(2) For any vertex ye A, A(y) forms the disjoint union of one point and three
cliques of size n — 3.  Moreover, for z € A(y), z is not contained in any of three cliques of
size n—3 if and only if {x,y,z} € ..

PrOOF. Immediate from Lemmas 3.3 and 3.4, ]

LemMma 3.6. Let {x,y,z} € #,. Then

I(x, y)\{z} = I'(x) N Ra2)(z) = T'(y) N R2,2)(2).

Proor. By (M5), we easily have:

(3.6.1) I'(x)N R (z) = I'(x, »)\{z}, T'(») NV Rp,2)(2) = I'(x, y)\{z}-
By [Lemma 3.1 (3a),(3b), we have:

(3.6.2) [I'(x)NR@22)(2)] = [I'(») N R2,2)(2)] = 3(n = 3),

and;
(3.6.3)  |[I"(x, p)\{z}| = 3(n = 3).
By [3.6.1)+3.6.3), we have the assertion. O

Lemma 3.7. Let M = {x, y,z} be an element of M, and let u be a vertex in I'(x)
with u¢ M. Then y ~u if and only if (z,u) € R(2 7).

Proor. Immediate from [Cemma 3.6. ]

LemMma 3.8. Pick any xe I', and pick y,ze I'(x) with y #z and y + z.
Then |I'(x,y,z)| < 4.

PrOOF. Suppose |I'(x,y,z)| >5. Then by (2), there exist u,ve
I'(x, y,z) such that u ~ v, which contradicts (1). Thus we have the as-
sertion. ]

For a clique M € .#,, and for a vertex x € M, assume

"M ={x}U{"y|ye M\{x}}

LemMma 39. Let M e #», and xe M.

Then the following hold.

(1) *M e #r,. Moreover, MN*M = {x} and ~(*M) = M.

(2) Let ye*M\{x}. Then e(y,M)=2 and M < R3) 22)(»).
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Proor. (1) By (M3) and [Lemma 3.7, we can easily see that M forms a clique of
size¢ n — 1. The latter two claims are clear.
(2) Immediate from (M5) and Lemma 3.7. O

Lemma 3.10. Let x,y el with 0(x,y) =2. Then the following are equivalent.

(D) (x,») € R,

(i) |I'(x,y,z)| =4 for any vertex z€ I'(x,y).

Proor. At first we assume (i), and pick any ze I'(x,y). Consider the graph
A=A, as in [Lemma 3.3. Note that x,ye 4. Write A(x)={*x}UM;UM,U M;,
where My, M, M5 are cliques of size n— 3. (See (2).) Note that M;U
{z,x} e, forie{1,2,3}. Hence by (M5), e(y, My)=e(y, M) =e(y, M3)=1. More-
over, by Lemma 3.7, y ~ “x. Thus we have (i) = (ii). It follows from Lemmas 3.1 (2)
and 3.3 that (ii) = (i). (Clearly it cannot hold that (x, y) € Rz 3. If (x,y) € R(s), then
I'(x,y) becomes a clique of size 5.) Now we complete the proof. ]

LemMA 3.11.  Let x and y be vertices with (x,y) in Ry 2, then the following hold.
(1) The induced subgraph whose vertex set is I'(x,y) forms Ky 4.

(2) If u,vel'(x,y) with u + v, then (u,v) € R,2).

(3) I'(x,y)U{x} contains exactly 4 cliques in M.

ProorF. By Lemmas B.1 (2) and 3.7, we may assume that;
F(x7 y) = {Zlv227Z3>Z47leax227xz3>xz4}7

which implies (3). By Lemmas and B.10, we may assume that z; ~ 'z;, z; + z; and
that *z; + ¥z, for i, j,1 € {1,2,3,4} with i # [, which imply (1). (2) follows from [Lemmal
3.7. Now we complete the proof. ]

Lemma 3.12. Let x,y,u and v be distinct vertices with X ~ y~u~v~X, X *u
and y & v. Then (x,u) € Rp ) if and only if (y,v) € Rp, ).

Proor. Immediate from [Lemma 3.11 (2). O

Lemma 3.13. For any pair (x,y) € Ry, P(x,y) is isomorphic to Ky g4.
Moreover, for any pair of distinct vertices (u,v) in @(x,y), (u,v) € Rp) 2,2)-

ProoF. Let I'(x,y) = {z1,22,23,24,"21,"22, 723,24} be as 1n the proof of [Lemmal
3.11. For i,je{l1,2,3,4} with i # j, let v&’ ) vg ) wg ), (1) be vertices satisfying

{Ugi’j)a Ug’j)} = I'(zj, z)\{x, y, 21,22, 23, " 24 },
{ng"j)7 Wg"j)} = I'("z;,"z)\{x, ¥, 21, 22, 23, 24}.

(Note that |F(Zl',Zj)| = |F(le',ij)| = 8)

Now we can _obser_ve that o o

(3.13.1)  {oi"7 ol = (0 WY for i, it j e {1,2,3,4} with i+ and
il £ . |

Indeed, by [Cemma 3.10 (1), we have v\ ~ *z ~ o'/ for k e {1,2,3,4}, so that

F(XZ,'/, ij/) E) 1)517]), 1)517]).
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This easily implies that;

(3.132) {0\ 5 = () WY for i, j, i € {1,2,3,4) with i+, and
il £ .

(3.13.3) {wgi’j),wg’j)} = {W%i/’j/),wgi/’j/)} for i,j,i',j'€{1,2,3,4} with i# j and
il £ .

Moreover, by [Lemma 3.11 (2);

(3.13.4) (1", o8y, (W Wiy € Ry o) for iy je{1,2,3,4} with i # j.

By (3.13.1)—(3.13.4), we see that there exist two vertices vy, v, such that

X, X, X X
{X, Y,01,02,21,22,23,24, 21, Z2, Z3, Z4}

forms the minimal geodetically closed subgraph containing x, y which is isomorphic to
Ky 44. O

Lemma 3.14.  Pick any x,y € I’ with x ~ y. Let A = A be the induced subgraph in
I' whose vertex set is I'(x). Assume:

A =T(x, )\{"r},
B =I'(x"y)\{»},

C = M(y) N A("y).
Then the following hold.
(1) A)NACY) = @.
(2) A=T(x)NRe(y), B=T(x)NRp ().
(3) Each of A and B is the disjoint union of 3 cliques of size n — 3.
(4) For any vertex ue A (resp. € B), e(u, B) =3 (resp. e(u,A) =3). Moreover, if
{v1,v2,v3} = T'(u) N B (resp. = I'(u) N A), then (v1,v2), (v2,03), (v3,01) € Rp2,2).

(5) If ue A (resp. € B), then “ue B (resp. € A).

(6) Letue Aandve Bwithu~v. Let I'uyNB={v=uv,0,03} and I'(v)NA =
{u=uy,up,us}. Then for any i, je {1,2,3}, u; ~ v, that is, {u;,v;|i,je{1,2,3}} forms
Ki .

(7
(8
9
weB

(

Ay(y) = BUC and A4y(*y) = AUC, ie., A2(y) NA43(*y) = A5(y) N42(Yy) = .
For any vertex ue AUB, e(u,C) =2(n—4).
Let ue A (resp. u€ B) and ve C with u ~v. Then there exists a unique vertex
resp. we A) such that u~w ~ v.
10) Let ue C such that e(u,A) > 2 (resp. e(u,B) >2). Then (y,u)€ R (resp.
(*y,u) € R(s)). Moreover, for distinct vertices v,w e I'(u)NA, (v,w) € Rs).
(11) For ue C, e(u,A) = e(u, B) < 3.
(12) For ue ANRs)(y), e(u, A) = e(u,B) < 3.

)
)
)
(

Proor. (1) Since {x, y,*y} is a maximal clique, (1) holds.

(2) Immediate from [Lemma 3.6

(3) From (1) and (2), (3) holds.

(4) Assume ue€ A. Then by [Lemma 3.10, we see that |I'(x,*y,u)| =4. By (1)
and (2), it holds that I'(x,*y,u)\{y} < B, which is desired.

The latter claim follows from [Cemma 3.11 (2).

(5) Immediate from [Cemma 3.7.
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(6) Note that @(y,v1) = @(*y,u;) 3 x. It follows from that {y,*y,
up, Uy, u3, 01, 02,03} forms Ky 4, which implies the assertion of (6).

(7), (8) Assume ue€ A. By (2), assume A(u) = Dy UDyUD3U{*u},
where Dy, D, and Dj are cliques of size n — 3. Then by (1), (5) and (6), we may assume
that Dy < {y}UA4 and D,,D; c BUC, and, moreover, |D,NC|=|D:NC|=n—4.
Thus we have (7) and (8).

(9) Immediate from the proof of (7) and (8).

(10) Assume e(u, A) > 2. Then we see that [I'(y,u)| > 3, so that (y,u) € R(3,2),(5)-
Thus by (2), we have the former assertion. By (1), we also have the latter.

(11) By (9), we may assume e(u,A4) > 2. Pick distinct vertices v, w e I'(u) N 4.
By (9), we can find v'el'(u,v)NB and w’'elI'(u,w)NB. Note that by (10),
v+ w. Suppose v/ =w'. Then {u,v’,v,w} forms K5 1, which contradicts
(1). Hence we have v’ # w’. Thus we have e(u, 4) < e(u, B). Similarly, we also have
the invert inequality, and we have e(u,4) = e(u, B). It immediately follows from (3)
and (1) that e(u,A) <3. Thus we have the assertion.

(12) Immediate from (2), (4) and (11). O

Lemma 3.15.  Pick any vertices x,y and z such that y ~x ~z and (y,z) € Rs).
Then |I'(x,y,z)| < 2.

ProoOF. In this proof, let x, y, 4, B and C be as in [Lemma 3.14. Let Dy, D», D;,
D1, D), D} be cliques of size n —3 which are disjoint with each other such that 4 =
D,UD,UDs, B=D{UD)UDj, and that;

(3.15.1): {x,*y}UD!="*({x,y}UD,) for ie{l,2,3}.
(See Lemmas (1) and 3.14 (3).) Note that {x, y}UD;,{x,y}UD/ e .#, for ie
{1,2,3}. By [Lemma 3.14 (4), we also see that;

(3.15.2): For ue A (resp. ve B) and i€ {1,2,3}, e(u,D}) =1 (resp. e(v,D;) = 1).

Suppose that there exists z € I'(x) N R(s)(y) such that |I'(x, y,z)| > 3. Note that by
Lemma 3.14 (7), z € C, and by [Lemma 3.14 (11), e(z,4) = e(z,B) =3. Let I'(z)NA =
{uy,up,us} and I'(z) N B = {vy,vp,v3}. Then by (10), we may assume that
u; € D; and v; € D] (i€ {1,2,3}) with;

(3.15.3): (i, u;), (vi,vj) € Rsy for i, j e {1,2,3} with i # j.

Note that by (3.15.1),

(3.15.4): *u; e D! and *v; € D; for ie{l,2,3}.

Suppose u; ~v;. Then it follows from (3.15.2) and (3.15.4) that v} = *u.
However, since z € I'(x,u;,v;), this is a contradiction. Thus we have;

(3.15.5): w; + v; for ie{l,2,3}.

By the above argument, we also have;

(3.15.6):  u; # *v; and v; # *u; for ie{l1,2,3}.

It follows from [Cemma 3.7 that;

(3.15.7):  (ui,vi) € Rpp,py for ie{l,2,3}.

Thus by [Cemma 3.14 (9), we may assume that;

(3.15.8): vy ~uy #v3, v3 ~uy F vy, V] ~ Uz F ;.

By (3.15.2), there exists w e D} such that I'(uj,v3) > {x,z,w}, that is, [I"(uy,v3)]
> 3. Hence by Lemma 3.1 (2), we have (u,v3) ¢ R33. Thus by Lemma 3.7, we have;

(3.15.9)2 (u1,1)3), (uz, 1)1), (u3, 1)2) € R(5).
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From now on, by using the spherical representation f as in |Proposition 2.6, we
shall show that there cannot exists such a set

X
{X, Y, "V, Z, u17u27u37017027v3}'

Let a;,a,a and b be vectors in V as follows;

ar = f(x)+ /() +/(2) = fw) = [(u2) = [ (u3),
ay = f(x) + () + f(2) = f(o1) = f(02) = f(v3),

a—=a + ap,
b=f(x)—f(2).

At first, we shall observe;
(3.15.10): |ai|} = |as|} = 2.
Indeed, by Lemma 3.1 and (3.15.3), we can calculate as follows;

laily = 6-7(1) — 18- x(3) +4 - x(3) + 8 x(5)
=6(n—1)—14(n—4)+ 8(n—6)
=2,

50 is |as].
By the similar calculation, we have;
(31511) <a1,a2>V = —1,
(3.15.12): |b; =6,
and;
(3.15.13): Lay,byy =<az,byy =2.
It follows from (3.15.10) and (3.15.11) that;
(3.15.14): |a|} = 2.
It follows from (3.15.13) that;
(3.15.15): <a,b), =4.
On the other hand, by the Cauthy-Schwartz inequality, we have;

jaly - 1Bl = (a,b)y)’.
However, this contradicts (3.15.12), (3.15.14) and (3.15.15).

Thus we have the assertion. ]

COROLLARY 3.16. Let x,y € I' with 0(x,y) =2. Then the following are equivalent.

(i) (x,») € Rp.
(i) |[L(x,y,u)| =3 for some vertex ue I'(x,y).

Proor. In [Cemma 3.10, we have already shown that (i) = (ii). It immediately
follows from Lemmas B.1 (2) and 3.15 that (ii) = (i). Thus we have the assertion. []

LemMma 3.17. Let x,y,4,A, B, C be as in Lemma 3.14. Then the following hold.
(1) For any vertex ue C, e(u,A) = e(u, B) = 2.
(2) I'(x)NRes5(y) =T'(x)NRis)(Yy) = C.
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(3) Let u,v,wed with u~v~w and (u,w) € Risy. Then there exists a unique
vertex z € A(u,w) such that (v,z) € Rs).

(4) Let ue C. Then A(u) contains exactly two cligues My, My of size n — 3 such
that |M;NA|=|M;NB|=1 and |IM;NC|=n-5 (ie{l,2}).

Proor. (1),(2) By Lemmas B.1 (4) and 3.14 (2), we have;
and;
(3172) Cc F(x) ﬂR(5)(xy>.
It follows from [Lemma 3.1 (3c) that;
(3.17.3) |C|<3(n—3)(n—4).
By [Lemma 3.13, we have;
(3.17.4) For ueC, e(u,A) <2 and e(u,B) < 2.
(3.17.3) and (3.17.4) imply;
(3.17.5) e(A4,C) <6(n—3)(n—4),
and;
(3.17.6) e(B,C) <6(n—3)(n—4).
On the other hand, by Lemmas B.14 (2), (8) and 3.1 (3b), we have;
(3.17.7) e(A,C) =e(B,C) =6(n—3)(n—4).
Thus by (3.17.1)—(3.17.7), we have (1) and (2).
(3) Immediate from (1), (2) and [Cemma 3.14 (10).
(4) Immediate from (1) and (5),(8),(9). ]

Lemma 3.18. Let x,y be vertices with 0(x,y)=2. Then the following are
equivalent.

(D) (x,») € Rg,3).
(i) |I'(x,y,u)] =0 for some ueI'(x,y).

Proor. Immediate from [Lemma 3.1 (2), [Corollary 3.16, [Lemma 3.17 (1) and (2).
[

LemMA 3.19. Let x,y be vertices with (x,y) € Risy. Then I'(x,y) forms a pen-
tagon. Moreover, for u,ve I'(x,y), if u+ v, then (u,v) € Rs).

Proor. Immediate from [Lemma 3.17 (1) and (3). ]

LemMA 3.20. Let x,y,u and v be distinct vertices with x ~ y ~u~uv~Xx, X+ u
and y +v. Then for Ae{(2,2),(5),(3,3)}, (x,u) e R, if and only if (y,v) € R;.

Proor. Immediate from Lemmas and B.10. ]

LemMA 3.21. Let M = {x, y,z} be an element of M\, and let u be a vertex in I'(x)
with u¢ M.
Then for 1€ {(5),(3,3)},

(y,u) e R, if and only if (z,u) € R;.

Proor. By Lemmas B.7 and B.I7 (2), the assertion follows. (Note that, if
(y,u) € R(s), then there exists a pair (wy,ws) such that *w; =ws, y ~w; ~u and z ~
Wy ~ 0.) ]
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For se€{0,1,2,3} and (i, j,k) = N3, denote by Cé}s{z’,j, k} the subset of C3 as
follows:

Céjs{i,j,k} ={(l m n)e Cga|(l,m,n) e N3, |{i, j,k} N{l,m,n}| = s}.

Note that C¥, {7, j,k} = {(i j k),(j i k)}.
Let Cé)s{i,j,k} =Ur C(’3){i, J,k}. Note that Cpy = Céf{i,j, k} for any

(i,j,k) = Ns.
LemMA 3.22. Let x and y be vertices with x ~ y, and let A, B be as in Lemma 3.14.
Then there exists a bijection
v G5 {1,2,3} = {»"y}UAUB

satisfying;
1) (123" =y (1 32)"="y,
(1) {A1, A, A3} is a partition of A, where

A ={(12 )" |4<i<n},
A, ={(2 3 )" |4<i<n},
A;={(3 1 )" |4<i<n}.
(i) {Bi, By, B3} is a partition of B, where
Bi={21i)"4<i<n},
B,={(32i)"4<i<n},
By={(13)"]|4<i<n}

(iv) A4;U{x,y}, BiU{x,*y} e > for je{l,2,3}.
V) Q1 )"="(12d"), B2)"="(23D") and (13 )" =>(31i)")

for ie{4,... ,n}.
(vi) For g,he C(§)1{1,2,3} and 1€ {(1),(3),(2,2),(5)},

(9,h) e R; if and only if (¢",h") € R;.
Proor. By [Lemma 3.9 (1), Lemma 3.14 (3),(4),(5) and (6), there exists a bijection
vy satisfying (i)—(v), and satisfying: (3.22.1)—(3.22.4) as follows:
(3.22.1) For ie{4,...,n},
r@(2ogmnNne=r(23HHyNB=r(31iH")NB
={2 1 )", 32", (13"}

(3.22.2) For ie{4,...,n},
rei1iymna=r(@2yy)yNn4Aa=r((1 3 iH"n4
={12)",23H",31)"}
(3.22.3) For ie{4,....n}, (1 20)",230"), (23 H",3 1)), (31",
(129", (21H",32H"), (B2H",(13"), ((13)",210)")eRp.
(3.22.4) *(BjU{x,*y}) =4;U{x, y} for je{l,2,3}.
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In the following, we shall show that (vi) occurs.

Note that by the above assumption;

(3.22.5) For g,he C5{1,2,3}, (9,h) € Ry, if and only if (¢9",4") € Rp3

By (3.22.4) and m (2), we have; o

(3.22.6) Fori,je{4,...,n} withi##j, (1 2)",217H)"), (23 )",(32,)"),
(319", (13/)") eRp

Next we shall show;

(3.22.7) Fori,je{4,...,n} with i # j, ((1 2 )", (2 3 )"), (
(G101 2)", (@107,62)", (320,03 )", (
R(5).

For example, focus on the pair ((1 2 4)",(2 3 5)"). By (3.22.5), we see
that o((1 2 4)",(2 3 5)")=2. Since I'(x,(1 2 4)",(2 3 5)")>(1 2 3)", it follows
from that ((1 2 4)",(2 3 5)") € Ry, 5. Since (2 1 4)" £ (2 3 5)"
(by (3.22.5)), it follows from that ((1 2 4)",(2 3 5)") ¢ Rpp,2), so that we
have ((1 2 4)",(23 5" e R(5). By such argument, we have the assertion of (3.22.7).

By (v), (3.22.7) and we have;

(3.22.8) For i, je{4,.. n} w1th i#j, (120)",32)H"), (23", (1 3)"),
G U 1AM, (@103 )M, (G206 1", (13070277
Rps).

Thus by (3.22.5)—(3.22.8), we can show that (vi) is satisfied. O

239,06 1,)"),
13)",217)"e

Lemma 3.23. Let x,y,A,B and C be as in Lemma 3.14. Pick any vertex ue C,
and take ve I'(u)N A, we I'(u) N B with v w. Then (v,w)€ R ).

PrOOF. Since we can take two vertices v’ € I'(v,w)NA and w' e I'(v,w)NB,
Corollary 3.1¢ and Lemma 3.1 imply that (v,w) ¢ Rs) 3,3). Thus we have the as-
sertion. ]

LemMmA 3.24. Let x,y,A, B and C be as in Lemma 3.14, and let vi be a mapping as
in Lemma 3.22. Then there exists a unique bijection

C57{1,2,3} = {»,y}U4UBUC

satisfying,

(1) V2’c<l{1 23y = Vb

(i) C= (C2 {1,2,3})",

(iii) For ke{l 2,3} and ie{4,...,n}, {x}U{(k i )|l e N\{k,i}} e i,

(iv) For ke{l1,2,3} and i,je{4,...,n} with i # j, (k j i)” ="((k i j)"),

(V) For ghe CEH1,2.3} and 2e{(1).(3),2.2).,(5)}, i (9.h)cR;, then
(g”2,hV2) ER).

Proor. At first, for (i j k)e C5/{1,2,3}, we write the vertex (i k)" e
{»,*y}UAUB by (i j k). By @Eﬂ (3), we have;
(3241) For (k7 ll) € {(172)7 (27 3)7 (37 1)}7 (k7 l2) € {(17 3)7 (27 1)7 (372)}7 and i,J €
N\{1,2,3} with i # j, there exists a unique vertex u(lk i j in C such that
Flup  ))N0A={(k L j)* (kih)"},
and;
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(3.24.2): For (k,l}) e {(1,2),(2,3),(3,1)}, (k,)e{(1,3),(2,1),(3,2)}, and i, j €
N\{1,2,3} with i # j, there exists a unique vertex u(zk i j in C such that

ra ; )NB={(k b ) (k i 1)"}.

We want to show that;

(3.24.3): For ke{1,2,3} and i,je{4,...,n} with i # j,

(@) g s ) =i

(b) (g ; ) = e -

If (3.24.3a) holds, we shall write (k i /) =u}, , , =uj ;€ C. Then by
3.17 (1), vz\cz {1,2,3 can be regarded as a bijection to C.

Now we' assume

(3.24.4): A'=T(x, (1 2 4)™\{(1 4 2)?}, B =T(x,(1 4 2)")\{(1 2 4)"}.

Note that;

(3.24.5): (123)2(125",243),413)"ed (132)"(152)"
(423)7(143)"”eB.

By Lemmas (1) and 3.14 (3), we may assume;

(3.24.6): {A4y,4), A5} is a partition of A’ such that, for je{l,2,3}, A}U{x,
(12 4" e,

(3.24.7): {B{,By, By} is a partition of B’ such that, for je{l,2,3}, BjU{x,
(1 4 2)"} e s,

(3.24.8): (A U{x,(1 2 4)"}) =B/ U{x,(1 4 2)"}.

Moreover, since (1 2 3)?~ (125", (132)"~(152)7 (152)°=
(1 25)"7),(423)7="(243)"),( 4 3)»=%((4 1 3)"), and since both {(1 2 5)",
(243741 3)?}and {(1 52)%,(4 2 3)?,(1 4 3)?} are cocliques, we may assume
that;

(3.249): (1 23)",(125"€ed], (243)2ed;, 413)7ed], (132)"
(152)2eB, (423)2eB), (1423)>ecB.

By (5),(6), (3.24.8) and (3.24.9), we see that;

(3.24.10): there exists a unique pair (uj,up) with u; € A5 and wu, € A} such that;

(a) *ui € BS, *uy € B,

) r((125NB =Iw)NB =Tu)NB ={(152)2 u, u},

€ I'((152)")NA"=TCu)NA" =T(Cup)NA" ={(1 25" u,up}.

Since (24 3)2 £ (1 52)2 44 13) and (4 23)2 £ (125" 4(143)" we
see that;

(3.24.11): i # (2 4 3)2, wp # (4 1 3)2, Yuy # (4 2 3)2, “up # (1 4 3)™,
so that by (3.24.6), (3.24.7) and (3.24.9),

(3.24.12): up ~(243), upa~@413)% “up~ (4237 “up~(1 43"~

Since uy, up, *uy, uy € Ay((1 2 3)?,(1 3 2)™), we have;

(32413) ul,uz,xul,xuz e C.

Hence by (3.24.10), (3.24.12) and (3.24.13), we have;

(3.24.14): uy = u(zz 45 U2 = u(zl 5 4y YU = u(l2 5 4y Yuy = u(ll 4 5)
and;

(3.24.15): (22 45~ (12 4)"° ~ “1 5 4) (12 sq~ (14 2)" ~ (1 45):

Next, for example for the vertex Uy 4 5 We shall observe;

[\S)
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(2416} w4 o~ (235",
which implies by (3.24.1) and (3.24.15);

(B2417): uly, 5 =1, .

Review that (1 2 4)? e I'(u? Up 4 s ))ﬂA {215",324)7}= ( 54 s
and (1 2 4 ~(3 2 4)”2. Since I'((2 1 5)™)NA={(1 2 5)™,(2 3 5)7,(1 53)
follows from [Lemma 3.14 (9) that;

I (ufy 4 5)N{(1 2 57,23 5)%,(153)%}=1

By [Lemma 3.7, it holds that u(2 45 % (1 25)% Hence, since ((2 3 5)%,(324)%)¢
R and ((1 5 3)”,(3 2 4)”) € R(s5), (3.24.16) follows from [Lemma 3.23. Thus we
have the assertion of (3.24.3a), so in the following, we shall use the notation (k i j)"
for k€ {1,2,3} and i, j e {4,...,n} with i # j. Note that by (3.24.14), we see that, for
example, *((2 4 5)?)=(2 5 4)”. Thus we also have (3.24.3b). Now we have just
defined the bijection v, satisfying (i), [i1) and (iv) in the statement of the lemma.

Consider the set (C(§)1{1,2,4})V2. Note that 4/, Bj = (Céf{l,2,4})v2 for je
{1,2,3}, where A/, B satisty (3.24.6)-(3.24.10). Then we see that;

(3.24.18):

{12 0)"?)ie{l,...,n}\{1,2,4}},
{24 )”*]ie{l,...,n}\{1,2,4}},

Ay ={(4 1 )" |ie{l,...,n}\{1,2,4}},
{21 )™]ie{l,...,n}\{1,2,4}},

{(4 2 D)*]ie{l,...,n}\{1,2,4}},

)

B,={(1 4% |ie{l,...,n\{1,2,4}}.

Hence, by the same argument as in the proof of [Lemma 3.22, we have;

(3.24.19) (k4 D)* ~(k 4 )2, (kid)?~(k4i)” for ke{l,2} and i je
{1,...,n}\{1,2,4} with i # j,

(3.24.20) (k 4 D)* ~ (1 4 i)* for {k,I} ={1,2} and ie{1,...,n}\{1,2,4},

(3.24.21) ((k i 9", (k 4 )?), (k1 )", 4)"), (k1" ,(k i 4", ((k 410)",
(Ii4)°)eRpy for {k,1} ={1,2} and i,je{1,...,n}\{1,2,4} with i # j,
and;

(:2622) (& 10 (04 )%), (06 10 (6 ), (& 1™ & 47), (@ 10
(Lj4)7), ((ki 4)”7(11 4)2), ((ki4)2,(14)))eRes for {k,I}={1,2} and ie
(1,...,n\{1,2,4) with i # j.

By such argument, we have (iii) and (v) of the lemma, and we complete the
proof. ]

Lemma 3.25. Let x,y and C be as in Lemma 3.14, and let D = A3(y) N A5(*y).
Then the following hold.

(1) D=TI(x)NRa3(y) =T(x)NRea35()

(2) Pick any ue C, and take v,we DN I (u) with v#w. Then v~ w.

ProOF. (1) Immediate from Lemmas B.14 (2) and 3.17.
(2) Immediate from Lemmas (2) and 3.24 (iii), (iv). O
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LEmMmA 3.26. Let v, be as in Lemma 3.24. Then for g,h e C(§)2{1,2,3} and A e
{(1),(3),(2,2),(5),(3,3)}, (9,h) € R} if and only if (9", h™) € R,.

Proor. By (v) of [Lemma 3.24] it suffices to show;

(3.26.1): For ge C57{1,2,3} and he C3{1,2,3}, if (g,h) € R
R(3,3).

By Lemmas B.17 (1) and (v), we easily see that;

(3.26.2): For ge C}{1,2,3} and he C{1,2,3}, if (g9,h) € R 5, then (¢",h") ¢
Rg).

Next, we shall show;

(3.26.3): For g,he Cj{1,2,3}, if (g,h) € R(s 3, then (9", 1") ¢ R,

For example, suppose that ((1 4 5)”,(2 6 7)) € Ry, ie, (1 4 5)” ~ (26 7)".
Let C'=4>((1 2 4)”,(1 4 2)"), and consider sets 4’ and B’ as in the proof
of [Lemma 3.24. Then we see that (2 6 7)? e C’ and I'((2 6 7)?)NB' > (1 4 5)2,
(2 6 4)™,(217)", which contradicts [Lemma 3.17 (1). Thus by such argument, we
have (3.26.3).

Suppose ((1 2 4)”,(3 5 6)”) € Rp,2. Then by [Lemma 3.7, it must hold that
((1 42)”,(356)”)€eRpz, which contradicts that A4((3 52)”)NB={(326)",
(1 3 5)7}. (Note that ¥((1 2 4)") = (1 4 2)™”.) Next, suppose ((1 4 5)?,(2 6 7))
€ Rp,2). Then by [Lemma 3.7, it must hold that ((1 6 5)",(2 7 8)"”) e R(3), which
contradicts (3.26.3). Thus, combined with (3.26.2) and (3.26.3), we have;

(3.26.4): For g,he C<2{1 2,3}, if (g,h) € R 5, then (g",h") ¢ R(3),(2,2)-

Suppose ((1 2 4)™, (3 5 6)”) e Rs). Then, since I'((3 5 6)”)NA4={(352)",
316)%}, I'(356)")NB={(326)",351)?}, and since (3 52)?,(316)",
(326)2,35 1)2¢I'((1 24)"), we see that I'(x,(1 2 4)”,(3 56)?) <= C. How-
ever, by (3.26.3), this is also impossible. Hence by (3.26.4), it must hold that
((1 2 4)\)2’(3 5 6)V2) ER(373).

Thus we have;

(3.26.5): Forge C(13){1,2,3} and h e Cé){l,2, 3}, if (9,h) € R3 ), then (¢9",7") €
R 3,3)-

| )Suppose ((1 45)7%,(26 7)")eRs). Then by Lemma 3.17, there exist exactly two

vertices u; and up in I'(x) such that uj,u e I'((1 4 5)*,(2 6 7)"). Note that by
Lemma 3.14 (10), u; + up. On the other hand, by (v) and (3.26.3), it
must hold that u;,u; € D = 43(y) N 43(z). However, it follows from that
u; ~ up, which is a contradiction. Hence by (3.26.4), we have ((1 4 5)”,(2 6 7)) ¢
R(3,3).

Thus we have;

(3.26.6): For g,he Cé){1,2,3}, if (g,h) € R(y 3, then (9",1") € R 3).

Therefore by (3.26.5) and (3.26.6), we have the assertion of (3.26.1). Now we
complete the proof. ]

We define two families %, %, of 3-element-subset of (Cé){l, 2,3})"” in Lemma 3.24
as follows:

U = {{<1 ij>vz>(2 ij)vz7(3 ij)v2}|i,jEN\{l,2,3},i 75]}7
={(ipH= k"= ki) 1e{l,2,3} (i j.k) e N3, {i, j,k} N{1,2,3} = &}.

(*373), then (¢'2,h") €
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Lemma 3.27. Let x,y,4,A,B and C be as in Lemma 3.14, D as in Lemma 3.25,
and v, as in Lemma 3.24. Then the following hold.

(1) For any ue C, there exists a unique element U in %, containing u.

(2) For any U € U, there exists a unique maximal clique M of size n — 3 in A such
that M > U, MNA=MNB=C, IMNC|=3 and |IMND|=n-3.

(3) For any ue C and ve D with u ~ v, it holds that A(v) > U, where U is the
element of %, containing u.

In particular, if n =75, then D = (.

(4) For any ve D, e(v,C) €{3,6,9}.

PrOOF. Straightforward. In particular, see Lemmas (2) and 3.24. O
Next, we want to show the following.

LemMmA 3.28. Let x,y,4,4,B and C be as in Lemma 3.14, D as in Lemma 3.25,
and v, as in Lemma 3.24. Then the following hold.

(1) For any element U in U, there exists a unique vertex v € D such that A(v) > U.

(2) Let U= {uj,uz,u3} and U’ = {uj,ub,ui} be elements in U such that u, = *u;
(ie{l1,2,3}), and let v,v" € D with A(v) > U and A(v') = U'. Then v’ =*v.

In order to prove this, we prepare two lemmas as follows.

LemMmA 3.29.  Pick any x € I', and pick u,v,w € I'(x) with (u,v), (v,w), (w,u) € R 7).
Then there exists a unique vertex z € I'(x,u,v,w) such that z ¢ {*u, v, w}.

Proor. Immediate from observing the structure of (C(§)2{1,2,3})v2. O

LemMA 3.30. Let x,u,v,w and z be vertices as in Lemma 3.29. Then the following
hold.

(1) Cu,*v), (Yv,*w), (*w,*u) € Rz 2).

(2) Let z' € I'(x,u, v,*w) with z' ¢ {*u,*v,*w} (as in Lemma 3.29).

Then z' = *z.

Proor. (1) Immediate from [Cemma 3.7.
(2) Immediate from observing the structure of (C(§)2{1,2,3})V2. [

ProorF oF LEmMmA 3.28. (1) By [Lemma 3.29 for any U = {u;,us,u3} € %>, there
exists a unique vertex v € 4 such that A(v) o U and v ¢ {*uy, up,*u3}. Moreover, by
Lemma 3.24 (v), it is impossible that v € (C(§)2{1,2, 3})". Hence we have v e D, which
is desired.

(2) Immediate from [Cemma 3.30. N

Lemma 3.31. Let x,y,A,B and C be as in Lemma 3.14, D as in Lemma 3.25, and
let v, be a mapping as in Lemma 3.24.
Then there exists a unique bijection

v:Ca) = C(§)3{1,2,3} — 4

satisfying;
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1) V|C(<)2{1 2 3} — Vz,
i) D'=(Ch{1,2,3})",

(
(
(iii) For i ]e {4,...,n} with i # j, {x}U{(k i))" |keN\{i,j}} e >,
(v) For {i.jk}e Cpy (i k )" = (i j k)",
(V) For ge C2 and he C3 , if (9,h) € Rjy), then (9", h") € R3).

PrOOF. At ﬁrst, for {z,],k}eC(§)2{1,2, 3}, we rewrite the vertex (i j k)" by
(ij k)"

For {i,j,k}eC(33){1,2,3}, we denote by Uy ;i) the 9-element-subset of C as
follows:

Uijoy={( b B) eClhef{l,2,3}, (L b)e{(i,)),(j.k), (k)}}.

Then by Lemmas B.27 (3) and 3.28 (1), there exists a unique vertex in DN I (U ; ).
We write this vertex by (i j k)". Now let us regard v as a mapping from C) to 4.
Then we easily see that v satisfies (i) and (v) of this lemma. By Lemmas .24 and
3.28 (2), v also satisfies (iv). Moreover by _ 1 (4), we also see that V|c(3 (1,2,3}

is bijective, so is v. Since |4]| = |, (11) follows immediately. (iii) follows' from
Lemmas (2) and 3.27 (2).
Thus we have the assertion. O]

LemMA 3.32. Let v be a bijection as in Lemma 3.31.
Then for g,he Cg) and pe{(3),(2,2),(5),(3,3)},

(9,h) e R, if and only if (g9",h") € Ry.

PrOOF. By (iii), (iv) and 3.5 (2), we easily have;

(3.32.1):  For g,he Cp), (9,h) € R(3, if and only if (9", 1) € R3)

This means that the structure of edges in 4 is completely determined. Hence we
have the assertion by analysing the relation between the graph structure of A4 and
relations {R; N (4 X A)};c43).(2,2).(5). (3.3} O

PROOF OF PROPOSITION 3.2. Immediate from Lemmas B.31 and B.32. ]

4. Determination of local structure (2).

In this section, let I” be a graph as in [Proposition 3.2|
We define the following families of sets in I'(x) for any x e I™:

=

(
9;:{{X1,...X8}CFX |F<X1,..., 3 ﬂRzz( )|21},
(
(X1

): )
): )
) |T(x1,.. ., x5) N Rsy (x)] = 13,
)1 ) (1 Rs)(x)| = 1}

Pick any Y € &,. Then by (1) and (2), the induced subgraph on Y is
isomorphic to Ky 4, and for y,ze Y, d(y,z) =2 if and only if (y,z) € R2,2).

By 2!, we denote the family of the minimal geodetically closed subgraphs of 4
containing y,z € I'(x) for all pairs (y,z)’s in R(y,), where 4 = 4, means the induced

(

(
Ex ={{x1,...x5} =« I'(x

(x

& ={{x1,...xs} =T ey X5
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subgraph of I' with vertex set I'(x) (xe I'). Note that by (1) and (2),
9,9 ca.

We denote by & the family of 5-points subsets in I'(x) consisting of xi, ..., xs such
that x; ~xy ~x3 ~ x4 ~xs5 ~x; and (x1,x3), (X2, X4), (x3,X5), (X3, x1), (X5, X2) € R(5).
Note that by Lemma 3.19, & < &, < &

LemMmA 4.1. For any x € I', the following hold.

() 2.= @)’C = ‘@!'

(2) &=60=46/

(3) Let y,zel'(x) such that (y,z)€ R(s). Then there exist exactly 2 elements
Y,Y' €& containing y and z. Moreover, if we pick ueI'(x) with y ~u~ z, then
Ysug¢Y or YPveY'.

Proof. (1) Immediate from Lemmas B.1 (5) and 3.13.

(2), (3) At first, let us observe the structure of (C(3))" as in [Lemma 3.31. Focus
on (1 2 3)" and (3 4 5)". Note that ((1 2 3)",(3 4 5)") € R(s5), and that A((1 2 3),
345")={(234)"(315)"}. Then we see that;

Y={123"234"345",451",512)",
Y={123)"=312"531),345"=0453),(245)"(124)7"

are unique sets in &, containing {(1 2 3)",(23 4)",(34 5"} and {(312)",(531)"
(4 5 3)"}, respectively. Thus we have (3), and, moreover, we also obtain that |&/|

24(%). Therefore by [Lemma 3.1 (5), we have the assertion.

Lo

For any xe I and any Y €&, we denote by [Y] the minimal subset of I'(x)
containing Y such that the following hold:

(i) for any w,ve[Y] with u + v, A(u,v) = Y,

for any u,v e [Y] with (u,v) € R(s), and for any Y’ e & containing u and v,
Y < [Y].

Let % ={[Y]| Y ed&!'}.

Fix any vertex x € I', and let v: C(3y — I'(x) be any bijection as in Lemma 3.31.

For se {4,5} and I € N, let C,(I) denote the subset of C3) consisting of (i j k)
with (i,/,k) € N3 and {i, j,k} = I. Let %, denote the family of all Cs(I)’s with I € N;
(se {4,5}). Note that the following hold.

(1) For I e N4, |Cs(I)| =38,

(2) For I e Ns, |Cs(I)| = 20,

(3) 16| =IN| = (1) for se {4,5).

Denote

(CS(I»V = {<l J k)v | (lvjak) EN37{i7j7k} < I}
for Ie N, (se{4,5}), and
(%:)" ={(CI))" | T € N}

LemMA 4.2, Pick any x e I', and let v : C3y — I'(x) be any bijection as in Lemma
3.32. Then the following hold.
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(1) 2, = (%4)".

2) L =(%s)".

(3) For any L e %, there exist exactly 5 elements of %, which are subsets of L.
(4) For any D€ Z,, there exist exactly (n—4) elements of &% containing D.
Proor. Straightforward. ]

Pick any vertex x € I', and pick any Y = {y1, y2, ¥3, V4, V1, V2, v3, V4 } € & such
that y; ~*y;, (yi, ¥&), Cvi, Vi) € Ry (6, ),k € {1,2,3,4},i # k). Then by
(1), there exist three vertices zj,z2,z3 € I'(Y)\{x}. Note that (zy,22),(z2,23),(z3,21) €
R2,2). By[Lemma 3.11 (3), for k € {1,2,3}, there exists a permutation o} on {1,2,3,4}
such that “y; = "y, ;. By the condition (M3) as in Observation 1.3, we have;

(a) for k e {1,2,3}, ox does not fix any element, that is, g; (€ S4) is of type (4) or
(2,2).

(b) ox(i) # or (i) for ie{1,2,3,4} and k, k" € {1,2,3} with k # k'.

Assume that there exists an element of (4)-type in {o;,02,03}. Suppose that g; =
(1 2 3 4). Then by (a) and (b), it must hold that

{o2,03} = {(1 3)(2 4),(1 4 3 2)},

that is, {o1,02,03) ~ C4. On the other hand, if there exists no element of (4)-type, then
we see that

{o1,02,033 = {(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)},

that is, {(o1,02,03) ~ D4. (Note that in each case there exists an element of (2,2)-type.)
Thus, without loss of generality, we may assume;

0'1(1) 0'1(2) 0'1(3) 0'1(4) 2 1 4 3
(I): | o2(1) 02(2) 0333) o4(4) | =13 4 1 ,
0'3(1) 0'3(2) 0'3(3) 0'4(4) 4 3 2 1
or;
0'1(1) 0'1(2) 01(3) 0'1(4) 2 1 4 3
(II): | o2(1) 02(2) 03(3) oa(4) | =3 4 2 1
0'3(1) 0'3(2) 03(3) 0'4(4) 4 3 1 2

We need to show the following:

LemMma 4.3. Let x,Y and {z,z5,2z3} be as above. Then the condition (II) cannot
occur.

In order to prove this, we prepare one lemma as follows.

LEmMMA 4.4. Let x1,x2,x3,x4 and xs be 5 vertices in I satisfying the following;
(1) x2,x3€(x)),

(ll) X4,X5 € R(272) (X]),

(iii)  {x2,x3,Xx4,Xs5} forms a clique of size 4.

Then x5 € Rp 2)(x1).
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PrOOF. Let u; = x4, up = x4, v7 = x5 and v, = “xs5. Then since x, # x3 and
X4 # X5, we see that;

(441) Uy # U, Ujp #* U1, U #* U2, Up # V).

Note that by [Lemma 3.7, we have

(442) Uup,Ur € F(xl,X4),

(4.4.3): wvy,v3 € I'(x1,x5).

Since xp,x3,u1,uy € I'(x1,x4) With x5 ~ x3, x; ~u; and x3 ~ up, it follows from
Lemma 3.11 that;

(4.4.4)2 up ~ Uy,

(445) (X3, ul), (Xz, uz) € R(2,2)-

Similarly, we have

(4.4.6)2 v ~ Uy,

(447) (X3, Ul>, <X2, Uz) € R(272).

Since x» ~ x5 ~ x4 and x3 ~ x4 ~ x5, it follows from [Cemma 3.7 that;

(448) (ul,X5), (Ul,X4> € R(2,2)-

Similarly, we have

(4.4.9)2 (uz,X5), (Uz,X4) € R(z,z).

Note that by (4.4.2), (4.4.3) and (4.4.8), we have u; # v, and u, # v;, so that by
(4.4.1),

(4.4.10):  wuy,up,v; and v, are distinct with each other.

Since v; ~ x2 and (v1,X4) € R(,2), it follows from that;

(4411) uy ~ 0q.

Similarly, we have;

(4412) Uy ~ 0y.

[Lemma 3.7 also implies;

(4.4.13):  uy,up, vy, 03 € I'(x7,¥x5).

Note that by the assumption (i) and [Lemma 3.7, we have d(x;,™xs) > 2, so that by
(4.4.13), (x1,™x5) € R2,2),(5),3,3)- Clearly by (4.4.10), we have (x1,"xs) ¢ R33). Also,
by (4.4.4), (4.4.6), (4.4.11) and (4.4.12), it follows from and (4.4.13) that
(x1,%xs) ¢ R(s). Thus we have the assertion. OJ

Proor OF LemmA 4.3. Let v: C3y — I'(x) be the bijection as above. Then with-
out loss of generality, we may assume that y; = (1 2 3)", y, =(1 4 2)", y3=(1 3 4)"
and ys;=(2 4 3)". Note that “y; = (1 3 2)", Yy, =(1 2 4)", Yy3=(1 4 3)", Yy, =
(2 3 4)", so that Y = (C4({1,2,3,4}))".

Suppose that the condition (II) is satisfied for {x,z1,z2,z3} U Y. Note that;

@3.1): {z2,(1 2 3)",(1 4 3)"},{z2,(1 3 2)",(2 4 3)"} e .4\,

Focus on the vertex (1 5 3)". Since (1 2 3)" ~ (1 5 3)" ~ (1 4 3)", it follows
from [Cemma 3.7 and (4.3.1) that;

(432) ((1 5 3)V,Zz) ER(272).

Next, focus on (5 1 3)". Since (1 3 2)" ~ (51 3)" and ((2 4 3)",(5 1 3)") € R(s),
it follows from and (4.3.1) that;

(433) ((5 1 3)V,Zz)ER(5).

Now rename z»,(1 2 3)",(1 4 3)",x and (1 5 3)" by x,x2,x3,x4 and x5, respec-
tively. Then by (4.3.1) and (4.3.2), we see that the 5-tuple (x1,x2, x3, x4, x5) satisfies (i),
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and (iii) of [Cemma 4.4. However, since x5 = (5 1 3)", (4.3.3) contradicts

4.4. Thus we have the assertion. ]

What does mean? To answer it, let us observe local structure of the
graph I'* = Cayc,, (4n).
Clearly we see that

I (Ca({1,2,3,4})\{id} = {(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}.
Moreover, we can observe the following:

OBSERVATION 4.5.  Let 4\ be the set of all maximal cliques of size 3 in I'*. Then
the following hold.

(1) {(12)3 4),(1 23),(1 24)5,{(1 2)(3 4),(1 42),(1 32)},{(1 2)3 4),
(134), 234)},{(12)(34),(2423),(143)}e.4.

(2) {(13)2 4),(123),(1 43)}{(1 3)(24),(142),(23H},{(1 3)(2 4),
(134),(132)}{(13)(24),243),(124)}e.u.

(3) {1 4)(2 3),(123),(23 4} {(1 4)(23),(142),(143)}{(1 42 3)
(134),(124)}{(14)(23),(243),(132)}e.4.

The following lemma, which follows from [Lemma 4.3, says that the above ob-
servation is the property which does not depend on ‘how to label elements of ™ (or I')’.

LemMma 4.6. Pick any xe I and Y € .. Then the following hold.
(1) There exists a bijection vy : C4({1,2,3,4}) — Y satisfying;
(1) fOl” g,he C4<{1727374}) and ) € {(1)7 (3)7 (272)},

(", h"") e R, if and only if (g,h) € R},
(ii) for g,he Cs4({1,2,3,4}),
{x,9"" "} e if and only if {id,g,h} e 4.
(2) For vy as above, there exists a unique bijection
vy T:{(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} = I'(Y)\{x}

such that for ge {(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} and h,h’ € I'*(id),
i) g ~h" if and only if he C4({1,2,3,4}),
(ii) {gVYT,hVY,( V'Y ey if and only if {g,h,h'} € M.

Proor. (1) Immediate from [Proposition 3.2,
(2) Immediate from Lemma 4.3. [

The following is also the property which does not depend on how to label vertices
of I'(x) (xeI).

Lemma 4.7. Pick any xel, Le % and Y e%. with L>Y. Let vy:
C4({1,2,3,4}) — Y be a bijection as in Lemma 4.6.
Then there exists a unique bijection vy yy: Cs5({1,2,3,4,5}) — L satisfying;

(1) v, v |c4 ({1,2,3,4}) = VY>
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(ii) for g,he Cs({1,2,3,4,5}) and %e{(1),(3),(2,2),(5)},
("= h'enye R, if and only if (g,h) € R},
(iii) for g,he Cs5({1,2,3,4,5}),
{x,g"-" h""} ety if and only if {id,g,h} € MY

Proor. We have the assertion by analyzing the relation between C4({1,2,3,4})
and Cs({1,2,3,4,5})\C4({1,2,3,4}). For example, (1 2 5) can be characterized as
a unique element /4 in Cs({1,2,3,4,5})\Cs({1,2,3,4}) such that (1 2 3) ~ph ~p-
(1 2 4). [

Next, let us observe the relation between (1 2)(3 4) and Cs({1,2,3,4,5}).

OBSERVATION 4.8. For g= (1 2)(3 4) e A, and I = C4({1,2,3,4}), the following
hold.

(1) (9.1 j k) e Ry for (i j k) e Cull).

() (9:(i ] 5) e Ry, for {ij} e {{1,2},{3,4}}.

(3) (9, ) 5) e R for {i,j}e{{1,3},{1,4},{2,3},{2,4}}.

Pick any xe I" and L € %,.. The following lemma claims that we can uniquely
determine all relations between 20 vertices in L and 3 vertices in I'(Y)\{x} for any
Ye%, with Y < L.

Lemma 4.9. Pick any xeI', Le % and Y € &, with L o Y. For vy as in Lemma
4.6, let v be a bijection from Cs({1,2,3,4,5})U{(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} to
LUI(Y)\{x}) such that V] 55 4).0 32 4.0 9@ 3y = Vr T and Vegna3.45) = Vi),
where vy | and v y) are unique bijections as in Lemmas 4.6 and 4.7, respectively.

Then for g€ {(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}, he C5({1,2,3,4,5}) and 7 € {(1),
(3),(2,2),(5)},

(g‘j7h1_}) €R) lf‘ and only lf‘ (gv h) € R/T

PrOOF. Lemmas and B22 are keys for proof. For example, for g=
(1 2)(3 4), we have (¢", (1 2 5)") € R2,5) since {g",(1 2 3)",(1 2 4)"} ey, ((1 2 3)",
(1 2 S)V) ER(3) and ((1 2 4)\/’(1 2 S)V) 6R(3). ]

By Lemmas 4.6, 4.7 and 4.9, we have the following, which is one goal of this
section.

ProposITION 4.10.  Pick any ge I'* and xeI'. Let Y* € 9 (resp., Y € Zy) and
L*e % (resp., Le %) with L* > Y* (resp., L>Y). Let v:L*— L be a bijection

satisfying;
1) v(Y") =7,
(i) for hy,h, e L* and 1€ {(1),(3),(2,2)},

(M), (h)") e Ry if and only if (hi,hy) € R},
(i) for h,he L,
{x,(m)", (h)"} € My if and only if {g,hi,h} e M.
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Then there exists a unique bijection
v L"U I (Y")\{g}) — LU (Y)\{x})

such that;
(IV) ‘_)|L* =7,
(v) for hi,hye L* and he I'*(Y*)\{g},

(K", ()", (h)"} € Ay if and only if {h hy,hy} € My  with hi,hye Y.
(vi) for hheL*, he I'"(Y*)\{g} and A€{(1),(3),(2,2),(5)},
(W', (h)") e R; if and only if (h,h) € R;.
Next, focus on the element (1 2 3 4 5) € R(;/(id). Note that
I*(id,(12345)={(123),234),345,451),512)}=7Y"€éq,

and that [Y*] = Cs5({1,2,3,4,5}).
We easily see the following:

OBSERVATION 4.11. For g=(1 2 3 4 5) and Y* as above, the following hold.
(1) (9.h%) e R, for he Y™

Q) (g.h) e Ry for he{(124),235),(341),(452),(513)}

(3) (g,h*) € R[5, for h as in (2).

The following is another goal in this section:

PrOPOSITION 4.12. Pick any geI'* and xeI'. Let Y* €& (resp., Y € 6x) and
L*=[Y*] (resp., L=[Y]). Let hel" (resp., ze ') with {h} =T (Y*)\{g} (resp.,
{z} = (Y)\{x}). Let v:L*— L be a bijection satisfying;

1) v(Y") =7,

(i) for hi,hy e L* and 1€ {(1),(3),(2,2),(5)},

(M)",(h)") e R, if and only if (h,h2) € R;.
Then for h' € L* and 1€ {(1),(3),(2,2),(5)},
(z,(W")")e R, if and only if (h,h') € R;.
Before observing it, we prepare the following lemma.

LemMA 4.13.  Let {x1,x2,x3,X4} be a clique of size 4 in I'.  Let y be a vertex in I’
such that (y,x1) € Rz, (¥,X2) € Ry, (y,x3) € R(sy and (y,x4) € Rp,2), and let z be a
vertex in I' such that (z,x1) € R), (z,x2) € Rs), (2,x3) € R3y and (y,z) € R3).

Then (z,x4) € R2,2).

Proor. Let x=ux, and let v: C3 — I'(x) be a bijection as in [Cemma 3.32
Then without loss of generality, we may assume that x, = (1 2 3)", x3=(1 2 5)",
x4=(124) and y=(2 3 4)". Then by the assumption on z, it must hold that
z=(254)". Hence it must also hold that ((2 5 4)",(1 2 4)") € R22, which is
desired. [
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Now we shall observe [Proposition 4.12. Note that the existense of v is guaranteed
in the previous section. Moreover, by definition of /4 and z, it holds that for 4’ € L*,

(z,(h')") € Rz if and only if A’ e Y™
Assume that

Y*={(123),0234),345),451),51 2

Then we see that h= (123 45) (€ Rj(id)), and we can identify (1 2 3)", x,
(51271242 34)" and z with x1,x3,x3,X4,y and z in [Lemma 4.13, respec-
tively. Hence by [Lemma 4.13, we have ((1 2 4)",z) € Rp). (Note that ((1 2 4),h) €
R(, ;) by Observation 4.11 (2).)

We also see that z,(2 1 4)"eI'((4 5 1)",(2 3 4)") with ((4 51)",(2 3 4)") eRs
and z + (2 1 4)". Hence by [Lemma 3.20, we have ((2 1 4)",z) € R5). (See Observa-
tion 4.11 (3).)

Thus we have the assertion of [Proposition 4.12|

5. Analysis of f*({C3NA4s)).

In this section, we only consider Z(4,) (n>5) and f*, where f* is an injection
from A, to V as in |Proposition 2.6,

In this section, we write E = Cs5({1,2,3,4,5}). Note that |E| =20, and that
(ED ~ As.

The main claim in this section is as follows:

ProposITION 5.1.  Span(f*({(E))) = Span(f*(E U {id})).
At first, we shall observe the following:

Lemma 5.2. (1) If n > 6, then dim(Span(f*(<E))))=17.
(2) If n=15, then dim(Span(f*(<E>))) = 16.

ProOOF. Let R be the Gram matrix with respect to f*((E)). Then we easily
see that R is contained in the Bose-Mesner algebra of the group association scheme
Z(As) = (A5, {R}},c 1), where 4 ={(1),(3),(2,2),(5);,(5),}. (The relations R(’S)1 and
R(/S)2 correspond to the conjugacy classes of 4s containing (1 2 3 4 5)and (1 2 3 5 4),
respectively.) More precisely, R can be represented as follows:

R=(n—1)La+ (n—4)Li) + (n— 5Lz + (n—6)(Ls), + Ls),),

where L; (A€ A) is the adjacency matrix of R). We easily see that the Bose-Mesner
algebra of Z(A4s) is symmetric, and that the first eigenmatrix of 2'(4s) is as follows:

20 15 12 12
5 0 -3 -3
-4 3 0 0

0 -5 2425 2-2V3
0 -5 2-2V5 2+2V5

~
I
—_ = = =
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(For how to calculate P, see [2]) Note that each row of P corresponds to the common
eigenspace of L;’s with multiplicity 1,16,25,9 and 9, respectively. Thus we can easily
calculate the spectrum of R as follows;

Spec(R) = (6()(” -5 15 0 )

1 16 43

Hence we have rank(R) = 17 (resp. 16) for n > 6 (resp. n = 5), which is desired.
[

ReEMARK. The above caluculation on Spec(R) is related to the fact that;

Ll = (=5 + 21,

where y; is the irreducible character of A4, with y,(id) =n — 1, y{ is the identity char-
acter of As, and where y{ is the irreducible character of 45 with y{(id) =4. Note that

Kperm = Xo +x1 and x,,.,., = xo + x1, where x,,,, and x,,,, are the permutation characters
of degree n and 5, respectively.

Next, we shall show;
Lemma 5.3. dim(Span(f™*(E))) = 16.

In order to show this, let us consider the structure of E. Define five relations on E
as follows:

{(

{(g
Ry ={((i j k),(i j 1) e ExE|k#I},

(@ k), il))eExE|k#I},

(G J k), (i 1 m)) e ExE[{j,kyN{l,m} = }.
Then we have the following.

LemMa 54. % = (E,{Ro, Ri, Ry, R3, Ry}) forms a symmetric association scheme
having the first eigenmatrix as follows;

1 1 6 6 6
11 1 1 -4
P=|1 1 —2 -2 2|,
1 -1 2 -2 0
1 -1 -3 3 0

where each row corresponds to the eigenspace with multiplicity 1,4,5,6,4, respectively.

Proor. We easily see that % is a group-case association scheme by the natural
transitive action of S5 on E. Let G = Ss, and let H be the stabilizer of (1 2 3) (e E).
Then we have H = {(1 2 3),(4 5)) ~ C3 x C,.
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Let 1% be the permutation character of the above. The following are character
values of 1% and y,..., ¥ irreducible characters of Ss:

H @ 6 @ 22 23 6
1 20 2 2 0 0 20

w 11 1 1 1 11
o 4 2 1 0 0 -1 -1
n 5 1 -1 -1 1 10
x5 6 0 0 0 -2 0 1
e 4 2 1 0 0 1 -1
s 5 -1 -1 1 1 -1 0
e 1 -1 1 -1 1 -1 1

By calculation of inner product of characters, we have

18 = g0+ + 202+ 13+ 2

On the other hand, we have the double coset decomposition of G by H as follows:
4
G=) HaH,
i—0

where ap =1id, a1 = (1 2), aa=(1 4), a3=(1 2 4) and as = (1 4)(2 5).
Thus we can calculate the above matrix P by the following formula, which is
written in Corollary 11.7 of Chapter II in [2],

Po(j)(= Pl-<j>>:ﬁ S 4

xe Ha;H
(1,7 €{0,1,2,3,4}).
By caluculating the second eigenmatrix Q = 20P~', we have multiplicity corre-
sponding to each row of P. (See [2]) O

PrOOF OF LEMMA 5.3.  Let S be the Gram matrix with respect to f*(E). Then we
easily have;
S = (l’l — I)LO + (l’l — 4)(L1 + Lz) + (n — 5>L3 —+ (n — 6)L4,

where L; (i€{0,1,2,3,4}) is the adjacency matrix of R; as in the above lemma.
Hence, similar to the proof of Lemma 5.2, we can calculate the spectrum of S as
follows;

201—95 10 1 5 0
Spec(S):( 1 4 5 6 4)‘

Now we have rank(S) = 16, as desired. O

We also need;
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LemMmA 5.5. If n#5, then f*(id) ¢ Span(f*(E)).

Proor. Here, we write g = f*(g) for g € EU {id}.
Suppose id = D gek g9 Write A=3" _p/l,. Since the group (E) acts on E by
conjugation, we easily see that for any h e <{E),
(5.5.1): id=3  pAgd = cpgd-
Hence we have;_
(5.5.2): [KED[-id = Zhe(E}(deE’lghg) = deE(Zhe(E) /lg”)j
On the other hand, for any g € E, we easily have;
(5.5.3): Zh€<E> igh — 31.
Therefore by (5.5.2) and (5.5.3), we have;
= A _
(5.5.4): id= %deE g.

Since (id,idyy =n—1 and <id,g)y =n—4 (g€ E), it follows from (5.5.4),

A
so that;

(5.55): i=""1

n—4’
Similarly, since <id, (1 2 3)), =n —4,

n—4:i(n—l-|-7(n—4)+6(n—5)+6(n—6)):i(20n—95),

20 20
wt%ZQ.i_mm—Q
PO AT =95

By (5.5.5) and (5.5.6), we have;
20(n —4)* = (n — 1)(20n — 95),

so that » = 5, a contradiction.
Thus we have the assertion. O

PrOOF OF PROPOSITION 5.1. Immediate from Lemmas 5.2, 5.3 and B.3. ]

Proposition 5.1 implies that f*(C 2 U C(s)) = Span(f*({id} UC3))). In fact, it
also holds that f*(Cg 3)) = Span(f*({id}UC))). Pick any ge C;3 3. Then there
exists a unique pair (4,/2) in C3) such that (h1,h) € R(*373) and g = hy - hy. Moreover,
by [Proposition 2.6, we have

f*(9) + £7(0d) = f* () = f*(h)[y = 4(n = 1) = 8(n — 4) +4(n = 7) = 0,

so that

S (g) = f"(h)+ f(h2) — f7(id) € Span(f ™ ({id} U C(3))).
Thus, by inductive argument, we have;

COROLLARY 5.6. ¥V = Span(f*({id} U C))).
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6. Determination of global structure.

From now on, we shall prove Theorem 1.4

Let us consider the structure of f(X) and f*(4,), where f and f* are bijections as
in [Proposition 2.6, By I'/ (resp. I'’"), we mean the graph whose vertex set is f(X)
(resp. f*(Ay)) such that for a,be f(X) (resp. € f*(A4,)), a and b are adjacent if and
only if <a,b)y =n—4.

LemMa 6.1. I/ (resp. T'/7) is isomorphic to I' (resp. I'*).
ProoF. Immediate from [Cemma 2.7 (2). ]

We can see that the local structure of f(X) is the same as of f*(A,) under the
assumption as in [Theorem 1.4, Indeed, we have the following.

LEMMA 6.2. Pick any xe I and ge I'*. Then the following hold.

(1) There exists a bijection 0 : f*({g}UI'*(g9)) — f({x}U'(x)) satisfying the fol-
lowing:

1) 0(f"(g)) = f(x),

(i) for a,be f*({g}UI"(g)),

a,byy = <0(a),0(b))y.

(2) Let 0 be as in (1). Then 0 can be extended into a unique element 0 of O(V),
the orthogonal group on V.
(3) Let 0 be as in (1). Then the mapping

we= T g U (g) — {3} UT(x)

forms a bijection such that;
(iif)  x(g) = x,
(IV) fOI" hlahZ € F*(g) and A € {(1)7 (3)7 (27 2)7 (5>7 (37 3)};

(k(h1),xc(h2)) € R, if and only if (hi,hy) € R,
(v) for hy,hy e I'(g),
{x,x(h1),k(hy)} € A\ if and only if {g,hi,h2} e M.
Proor. (1) and (3) are clear. (2) follows from [Corollary 5.6 O

By @f?x)’ we denote the family of the minimal geodetically closed subgraphs of Af];x)
containing a, b for all pairs (a,b)’s in I/ (f(x)) with {a,b)>y =n — 5, where Af(x) means
the induced subgraph of I/ with vertex set I'/(f(x)) (xeTI).

We denote by (p@f{x) the family of 5-point-subsets in I/ (f(x)) consisting of ai, ..., as
such that a; ~pray ~praz ~pras ~pras ~pray, and {ay,azyy = {az,as)y = <az,asyy
= as,a1yy =<as,ayy =n—6.

For any x e I" and any Y € (5}41()(), we denote by [Y] the minimal subset of I/ (f(x))

containing Y such that the following hold:
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(i) for any a,be[Y] with a +,/ b, A i (a.b) =
(1) for any a,b € [Y] with {a,b);, =n— 6, and for any Y’ e é”‘f containing a and
N/ v f(x )

b, Y' < [Y].

Let %/, ={[Y]| Y e&/,}.

LEMMA 6.3. For x eI, the following hold.
1) 9, =1(2).
() &y =S(&).
(3) %, = ().

ProOF. Immediate from Lemmas 2.7 and E.1. H
Our strategy for the proof of can be described as follows:

LEMMA 6.4. Let x,g and 0 be as in Lemma 6.2. Then f(X)=0(f*(4,)).
The following is the key lemma for the proof of the previous lemma.

LEmMmA 6.5. Let x,g and 0 be as in Lemma 6.2.

Then f(I>(x)) =0(f*(I5(g))).

PrOOF. Let x be a bijection as in (3). Note that;
(651) Dy =x(2)),
(6.5.2): & =x(&)),
(653) Z=x(2),
and,
(6.5.4): for hy,hy e I'*(g),

{x,x(h1),x(hy)} € A, if and only if {g,hi,ha} e M.

We know that I5(x) = R(z,z)’(S)’(3’3)(x) and I (g) = Raz)’(5),(3’3) (9). At first, we
shall show the following:
(6.5.5): f(R(zz( x)) = 0(f*(R},)(9)))-
Pick any Ye@ 7 (0)" Note that;
(6.5.6): Y- = (f*)_l(Y) €9,
and,
(6.5.7): Yr=x(f*)"(Y) € %
Then by (1), there exist 3 vertices /y,hy,hs in I'* such that;
(6.5.8): {hi,ha, b3} =T (Yr)\{g},
and there exist 3 vertices yp, y», 3 in I" such that
(6.5.9): {y1, 32,33} = F (Yr)\{x}.
Next, pick any L e 3 N0 containing Y. Note that;
(6.5.10): Ly =(f")" ( )e%"‘,
(6.5.11): Lp=x(f*)""(L) e &,
(6512) Lp* D Dr*,
and,
(6.5.13): Ly o Dy.
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Then by |Proposition 4.10] there exists a bijection

k' =wxly L U{l, by, by} — LrU{y1, 2, y3}
satisfying;
(6.5.14): K[, =kl .,
(6.5.15): (without loss of generality,) «'(h;) = y; (i€ {1,2,3}),
and,
(6.5.16): for ie{1,2,3}, he Ly~ and A€ {(3),(2,2),(5),(3,3)},

(k'(hi),x'(h)) € R, if and only if (4;,h) € R}.

(6.5.16) implies that;
(6.5.17): for ie{1,2,3} and he Ly,

' (), fr' () >y = (i), £ (h) Yy

By Proposition 5.1, there exists some linear equation such that;

(6.5.18): f*(hi) = X oner,.uggy 4t " (h),
so that by (6.5.14), (6.5.17) and (6.5.18),

0=|f"(h)— D f(h)

heLr+U{g}

V
2

= f(y) — Z - fre(h)

he Lr+U{g}

vV

=1 /)= D -0 (h)

he Lp-U{g}

= f(yi)ﬁ( > Mf*(h))

heLr* U{g}

= |/ (i) = OF* ()]}

Hence we have f(y;) = 0f*(h;). (Note that this claim itself does not depend on
‘the choice of L’.) Thus we have the assertion of (6.5.5).

By the same argument as above, it follows from [Proposition 4.12 that;

(6.5.19): f(R(5(x)) = 0(/"(R5(9)))-

Finally, we shall observe that;

(6.5.20): f(R3,3)(x) = é(f*(R(gJ)(g)))'
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Pick any /€ R(; 5 (9). Then there exists a pair (h,h) € R 5 in I'*(g). On the

other hand, there exists a vertex y € R(3 3)(x) such that {y} = I'(ic(h1), k(h2))\{x}. Thus
we have;

S () = f(m)) + [/ ((h2)) = f(x)
= 0f () + 0f *(h) = 0f *(9)
= 0(f" () + f*(h2) = *(9))

= 0(f"(h)).
Thus we have the assertion of (6.5.20).
Now by (6.5.5), (6.5.19) and (6.5.20), we complete the proof. O

ProoF OF LEMMA 6.4. Pick any vertex xe I', and let 6 be a bijection from
f*{id}urid)) to f({x}Ur'(x)) as in Lemma 6.2. Then by applying induction on
the distance (on I'*) from id, we can show that for any g € I'*, there exists a vertex
yel such that f(y)=0f*(g). (Of course, we apply here. Note that

the uniqueness of 6 mentioned in [Lemma 6.2 (2) is important.) Thus we have the
assertion. [

PrOOF OF THEOREM 1.4. Immediate from Lemmas 6.1, and 2.5. ]
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