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Abstract. Consider a class of uniformly elliptic diffusion procesge&}i~o on Euclidean
spaceR’. We give an estimate &™ [exp(T®(1/T _]"OT O dt))|Xr =y] asT — e up to the order
1+0(1), whered means the delta measure, atds a function on the set of measures Rf.
This is a generalization of the works by Bolthausen-Deuschel-Tarlaafl Kusuoka-Liang]0],
which studied the same problems for processes on compact state spaces.

1. Introduction.

Let Y(t,x) = (Yi(t,x),---,Yq(t,x)) be the solution of the following stochastic differential
equation:

d¥(t,x) = i aij (Y(t,x)dB;j(t) +bi(Y(t,x)dt, i=1,---,d,
=1

Y (0,X) = X,

where(By(t),--- ,By(t)) is ad-dimensional Brownian motion dR?, and letP be the distribution

of {Y(t,x)}t=0 on Q = C(|0,»),RY). Note that{Px}, gd is the solution of the o-martingale

problem withLo := 3%, _; &;(9%/(9%9x;)) +b- V, wherea = 3, oy oj ando= (by,--- , by).

Let X (w) = w(t),we Q,t >0, and letl; = (1/t) fé Ox.ds whered. means the delta measure.
Under some conditions, there exists a unique invariant probability measofréPx}, _gd,

and the ergodic theorem induces the convergentetofrrin law ast — o underPx(- |X¢ = y) for

anyx,y € RY. Hence for any closed sétc [J(RY) (the set of all probabilities oRY) that does

not contains, we haveP(L; € A) — 0 ast — . Large deviation principle (LDP) studies the

order of this convergence in terms of the so-called entropy function determined by the generator

Lo. Under some conditions, we have tHat }~o underPX(-]Xt = y) satisfies the LDR,e.,

. 1
—inf I(v) < Ilp_[gf TIogPX(LT € A’XT :y)

veAl

< Iimsup% IogPX<LT € A‘XT = y) < —infl(v) (1.1)
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for anyA € #(00(RY)), wherel : [ (RY) — RU{w} is the entropy function given by
= sup{ / —dv ueC”(RY),u>0, % is bounde%, v ed(RY). 1.2)

HereZ(-) means the Borap-field, andA® andA mean the interior and the closureAfrespec-
tively.

LetV : RY x RY — R be a symmetric bounded continuous function, andviet be the
probability onQ with mean field potentia¥/ given by

VY (dw) = (ZY)1et/T I ./JV(N,Xs)dtdSPX(dw]xT =y), weQ,T>0,

WhereZ$’y is the normalizing constant. One wants to know the asymptotic behavigr ofider
vr¥ asT — . The LDP described above implies

Flogzy — sup { [ [ vixywieviey -1 .

vel(RY)

Unfortunately, this is not enough to tell us the asymptotic behavidrTOtﬁnderv?y. Indeed,
it even does not give us whether underv?y weakly converges or not. To study whethar
undervy” weakly converges or not, we need to study more precise estimaf&¥.of

In this paper, we study the problem cited above in a general frame work? ket a func-
tion on.# (RY) that is “good” enough, @ (R) = Jrd Jre V (X, Y)R(dX)R(dy) in the example just
mentioned), where# (RY) means the set of signed measuredRInwith finite total variations,
and letzy” = EX [eT®L1)|Xr =y]. Then as before, by the LDP,

1 Xy
TI|an?logz =A,

whereA = max; ga) {® —I}. We study thel + o(1) order estimate oZy” asT — o. To be

more precise, we show that under some conditieﬂéTZ?y converges to a constant s— oo,
See Section 2 for the details.

The 1+ o(1)-order precise estimating problem for the case of the sums of Banach space-
valuedi.i.d. random variables has been discussed by many autkays, Bolthausen 1],
Kusuoka-Liang §] and Liang [L3], etc. As for the continuous time case, Bolthausen-Deuschel-
Tamura B] considered the same problem for Markov processes on compact state spaces under
some conditions that derive the “Central Limit Theorem Assumption” as a result, Kusuoka-Liang
[10] for diffusion processes without the “Central Limit Theorem Assumption”, but on torus, still
a compact space. The same problem for diffusion processes on non-compact state spaces is very
less studied. One of the obvious and most vital difficulity is that, since the state space is not
compact, many properties such as bounded, which were trivial for continuous functions in the
compact case, become very difficult.

In this paper, we succeeded in dealing with diffusion process&’pa non-compact state
space. The main idea of this paper is as follows. First, by udifig\ve have (See Section 4 and
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Lemma 6.3) thatVG f(x)| can be dominated bl + |x|2)¢/2|| f||., whereG means some Green
operator and is some constant depending on the drift term of the generator not too large. The
main point is that, although the state space is not compact, when the drift term is “good” enough,
the probability that the process goes to infinity convergeddgponentially fastiniformly with
respect to the starting point. This absorbs the extra fadter|x|?)¢/2 above (See Lemma 3.2).

Let us explain shortly the outline of the proof: By using the measure changes discussed in
Section 4, the considered quantity* T Z1¥ is approximately equal t&2«[e!/T I J'OTV(XSM"S‘W
Xt =Y], whereV -, *) is the symmetric translation @2 (vo;-,+), andQy is the new diffusion
measure which has invariant measuge So in order to get our assertion, we only need to show
that this expectation converges®s- o, i.e., we want to show the!-convergence. This will be
done if we can show the convergence in law andtfpounded property with respectTo— o
for somep > 1. The convergence in law is not difficult by using the central limit for Hilbert
space-valued random variables (see “Proof of Lemma 8.2” of Section 8 for the details).

The proof of theLP-bounded property for somp > 1 is the most difficult part of this
study. By large deviation principle, there is no problem for the part of the integral on the set
dist(Lt,vp) > € for any € > 0, wheredist means the Prohorov metric. For the part on the set
dist(Lt,vp) < €, we deal in the following way: We first prove (see Section 5) the Ito’s formula
with respect to the Green operator (this is easy if everything is smooth, but not so trivial in our
case since the related quantities are not necessarily smooth). we apply this to the given diffusion
process, and then to the time-inversed diffusion (see Section 7). In the way of doing so, we are
faced to some estimates with respec?ts, whereG stands for the Green operator. This uses the
“main idea” we just explained,e., we observe that, althoudiG f(x)| is not bounded, it can be
dominated by(1+ |x|2)¢/2||f||. for some constanf > 0 not too large (see Sections 4, 6), then
this extra factof1+ [x|?)¢/2 can be absorbed by the uniform estimate given in Section 3.

The rest of the paper is organized as follows: We state in Section 2 the setting of the problem
and the result. In Section 3 we give some uniform bounded property. In Section 4 we define
measure changes and discuss their basic properties. In Section 5 we prove a generalization of
Ito’s formula for the Green operator. The proof of Theorem 2.1 is given in Sections 6, 7 and 8.
Finally, in Section 9, we give some examples that satisfy our conditions.

ACKNOWLEDGMENTS. The author would like to express her deepest gratitude to Pro-
fessor S. Kusuoka of the University of Tokyo for his helpful suggestions and supporting. The
author also thanks Professor H. Osada of Kyushu University for his encouragement and useful
comments.

2. Setup and Main results.

Let.# (RY) be the set of all signed measuresRfhwith total variation norrj| - ||. We also
think of the weak*-topology in# (RY). Let .#,(RY) = {u € .#(R%); u(RY) = 0}. Let7(RY)
be the set of all probabilities dRY, and let dist:, -) denote the Prohorov metric ah(RY). Note
that the topology induced by the Prohorov metric and the weak*-topology coincide. The path
spaceR = C(|0,»); RY) is the set of continuous functions: [0,») — RY. LetX (w) = w(t),t >
0, % = o{w(s);s<t} and.# = Vi.%; as before.

Let Lo = (1/2)3{;_1a;ViVj + b- V, where V; = (9/dx), i = 1,---.d, and V =
(Vy,---,Vq). Also, denotes = a%/2. Before stating the assumptions, we prepare some nota-
tions.
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Let {R}t>0 be any diffusion semi-group with the associated generator writtelas
y8_1aR ViV, + bR V. We define several conditions.
(C1): &= ()¢, € CP(RY; RY) and is uniformly elliptic,i.e., there existcy,c; > 0 such
that

d d d
Cl_ZEiZ < Y aj(x)&g < cz_ZEiz, for all x, & € R (2.1)

i,]=1

For k1, k2 > 0, we define the following conditions:
(C2,): bR € C(RY%;RY) and there exists, ¢4 > 0 such that

x-bR(x) < cz3—cyxtt,  xeRY (2.2)

(C3k,): bR € C*(RY;RY) and there exists, cs > 0 such that

d d
> Eifjviij(X)SCS_ZlEizv

IL1=1

%(x)] +|VbR(X)| < co(1+[x[*2),  x,& R
We use these conditions to define two sets:

Hi(k1) = {diffusion semi-groug R }+>o satisfying(C1) and(C2, )},
Ha(k1, k2) = {diffusion semi-groug R }+>o satisfying(C1), (C2y,) and(C3y,)}.

Now, we are ready to give our first assumption:
Al. Thereexisy; > 1landyz € [y1,y1+(1/2)(y1—1)) such that{R }t>0 € Ha(y1,Y2).

Let {P},.re e the family of probabilities o2 which is the solution of the martingale
problemLy, i.e,,

(1) f(w)— f(an) — JoLof (ws)dsis a({#}, F)-martingale for anyf € C?(RY;R),
(2) Plw=x) = L.
We denote by{R }i>0 the corresponding semi-group.

By [11], {R},re has an invariant probabilityr, R(x,dy) = B(X € dy) has density
p(x,y) € C°(RY x RY;R™) with respect tort, and SURcRd iy < Pt(X,Y) < o for anyr,t > 0.
Therefore, we can define the pinned probabifity- |X =y) for all x,y € R? andt > 0.

LetL; = (1/t)j3 Ox,ds whered. denotes the delta measure. We have b fhat PX(Lt €
~]X( =y) satisfies the LDR.e., (1.1) holds for anyA € 2(0(RY)) with | given by (1.2). Let
@ :.#(RY) — Rbe a bounded function such tha(D(Rd) is continuous with respect to dist-)
and let

ZrY = EX[exp(T@(L1)) [Xr =Y].
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Then(1/T)logZyY — A for everyx,y € RY, whereA = sup{®(v) —1(v);v € [ (R%)}.

The purpose of this paper is to give a precise estimatéxT'ESfasT — oo, Up to the order
1+0(1). We need some more assumptions.

ForanyT > 0, {X7_t(w) }tc[o,1] UnderP(dw) is a diffusion associated with the semi-group
{P*™}>0, whereR*™ denotes the dual operator @fin Lo(dm).

We need to prepare some notations first. Defiiig) = v/1+x2,x > 0. Also, forx € RY,
let ¢(x) = Y(|x|). For anya € R, defineB as

80 = {1 € CIRYC) gy = supw(x /(] < o).

xeRd

For any{R: }i>0 € H1(y) with y> 1 and any¢ € B with 6 € [0,y — 1), we can define a
new semi-group of operatofg)( ) >0 in the foIIowmg way (see Section 4 for the details):
Define

RY £ (x) = ERx {exp(/ot q)(XS)ds) f(X{)} . xeRY, 2.3)

where{R«}, gd is the family of diffusion measures associated vs{lﬂa}t>o For anya > 0, R{”

is a continuous linear operator &} andAR? := lim; . (1/t) Iog||R llgg g9 is well-defined,
finite and not depending am > 0, (a could bea = 0if ¢ = 0), and there exists a unique (up to
constant multiplicationg)?* € BS such thaR? hR¢ — eA**thR¢ for anyt > 0. Let {Q(R) }=0
be the Markovian semi-group given by

QR 1= e N *{(RO) IR (MR ), (2.4)

and let{Q( ) }xerd denote the corresponding diffusion measures.

REMARK 1. If {R}t>0 € Ha(Yy1,Y2) with y1 > 1andy; € [y1,y1+ (1/2)(y1—1)), then
hR¢ is differentiable and the generator f®(R){ 1o is LR+ aR(VhR? /hR¢). 7, whereLR is
the generator of R }t>0 andaR is the coefficient of the diffusion term &R. Also,hR¢ € C*(RY)
if p € C*(RY), andhR? € Cp(RY) if ¢ € Cy(RY).

Now, we are ready to give our second assumption.

A2. ThereexistdS}i>o0€ Hz(yl, y5) with y1 >landy, € [yy,yi+(1/2)(y;—1)), and
agocC(RHN Bgo with 6p € [0, ((y; —1)/2) — (y5 —y})) such that{ R }~0 = {Q(S )¢°}t20.

Note that, by Remark 1, the diffusion term{& }1>0 in A2 is a:= (ajj )ﬂj:l.
LetK = {v e O(RY): ®(v) —1(v) = A}. ThenK is not empty and is compact ifi(R%).
We assume the following as ia(]:

A3. There exists only one elementdnsayvy, i.e.,K = {vp}.

A4. @:.#(RY) — Ris three times continuously &het differentiable and satisfies the
following: there exist?® e C(J(RY) x (RY)¥;R) (k= 1,2,3) such that
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Dkw(v)(R]-) T 7Rk) = Ad e Rd (D(k>(V;X13 te 7Xk)R1(dX1) e Rk(ka),

foranyv € J(RY) and anyR;,Ry,Rs € . (RY), k=1,2,3.

We construct, as in?] and [10], a family of diffusion probabilitie Q«},.gs Whose invari-
ant measure igo. Let 9" € C,(RY) be given by

@"(x) = D®(vo)(&— Vo) + @(vo),  x€ R

ThenA = AP9" and{Qy}, g is given by{Qy}, _pa = {Q(P)?° }erd- Note that by Remark 1,
hP9" e Cy(RY) NCH(RY) and the generator diQy}, ge is L = Lo +a(VhPe"™ /hP9"0). 7. Let
G denote the Green operator corresponding@@}, g« and letG = G+ G*, whereG* means
the dual operator oB in L?(dvp) (See Section 6 for the details).

As in [3] and [LQ], we also assume the following:

A5. | —D?®(vp) is non-degenerate.

i.e, we assume thdt— D2¢(VO)|H><H is strictly positive-definite. Herél is the Hilbert
space whose norm is essentially the secorgtifet differential of the entropy functidnH can
be regarded as a dense subsefRY). As| is not smooth, this description is not mathemati-
cally precise. See Section 6 for the precise definitioH @hd statement of (A5).

Finally, we assume the following as it

A6. Foranyd > 0, there exist ares > 0 and a symmetriks € Co(R? x R%;R) such
that the functiorK given byKs(Ry,Re) := [ra Jra Ks (X, Y)R1(dX)Rx(dy), R1,Ry € .#0(R?),
satisfies|Ks|,, ., |ln.s < & and

D3®(R)(v — Vo, v — Vo,V — Vo) < K(V — Vo,V — Vo)

for anyR v € [1(RY) with dist(R, vp) < & anddist(v, vo) < &.
THEOREM2.1. Assume\l~ A6. Then
Lo h(x) 1/~
TAoxy WY = @ (ys. .
lim =" 277 = h) exp{z/(G®I)dJ (Vo; -, )|<u,u>vo(du)}
x deb(ly —D?®(vp)) Y2, foranyx,yeRY.

REMARK 2. It is not difficult to see, by checking the proofs in Sectighand7 care-
fully, that the conditions with respect tp1,y2,y}.y5 and 6y in the assumptions Al and A2
can be relaxed as followy1 > 1, y; > 1, ya <y1+((y1Vyy) —1)/2, yo <yi+[(Yi—DA
((yaVvyy)—1)/2]andéo € [0y} —1—(v5— V1))
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3. Some bounded property.

Lety > 1, and let{R }t>0 € Hy(y). Write the generator ofR }t>0 asLR = zﬁjzl aiFJ-* Vivi+
bR. V. Thena® = (af})?,_; is uniformly elliptic, and by (2.2) with; = y, there exist constants
C3,C4 > 0 such that

x-bR < c3— gV L. (3.1)

Let {R«},.ga denote the associated family of probabilities.
We first have the following by Ito’s formula and a simple calculation:

LEMMA 3.1. Foranya >2andxe RY,t > 0, we have that

d
GERIXI P/ < (2034 cad + (o — 2)c2) — 2e (ER|% |17 ) V2

PROOF. Let {X }i>0 be the diffusion corresponding IR ie.,
dX = o%(X)dB +b7(X)dt, (3.2)

whereaR is thed x d-matrix given byoR = (aR)¥/2. Then by Ito’s formula,

d
d|Xe[? = 2% - o7(X)dB +2% - bR (X )dt + ,Zaﬂ?(mdt.

So by Ito’s formula again, we get

X% = d(x )
d
= (i 2 b0+ 12 5 i)

_|_

N Q

(a — 2)[%|* % -aR(Xt)X{>dt+martingaIe (3.3)

By our condition with respect taR, we have thag?_; aR(X) < cod andX; - aR (%)% < co|%|%.
Also, by (3.1),

X -bR(X) < c3— calX [,

Therefore, (3.3) gives us that

d

Rx a
GERIXI <

(20 + 020 + (@ — 2)e2) X% — acsE™ (||

N Q N R

< - (2c3+cod + (0 = 2)c2) ERX[|X|7)(@ 72/ — areaER | |7) @Y/,
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where in the last inequality we used the fact that 2 andy > 1.
This gives us our asserion sin¢e/dt)ER[|X|%]%* = (2/a)ER[|%|?]%91 (d/dt)ER
[1%17]. O

Also, we have by Stirling’s formula

00 Cn
ZO—(an)“”/(V“) < o, foranya € [0,y+1),C > 0. (3.4)
& n!
Now, we are ready to show the following
LEMMA 3.2. SUR_ga .1 E® [ec‘xt‘p} <wforanyB €[0,y+1), T >0andC > 0.
PROOF. Letne N be such thanB > 2 and fix it for a while. Letuy(t) = ERx[|X|"#]%/("B)

andKj = 2c3 + cd + (nf3 — 2)cp. Then by Lemma 3.1,

< () < Ky~ 20092 (3.5)

Let T, = inf{t > 0;Ky — 2c4ux(t)¥+1/2 > 0}. Then (3.5) implies

" ds >t te (0 3.6
o VD) /2 _ K. 3 € (U, Ty|. )
/ux(t) 2csVHD/2 Ky T (0, 1] (3.6)

On the other hand, lé€; = (K1 /c2)% Y andty = 1/(ca(y— 1)K, " P/2. Then sincey > 1,
we have that for any € (0,t1], there exists aa(t) > 0 such that

® ds
/a(t) 20,8V+D/2 ZK =t (3.7)

(3.6) and (3.7) imply thati(t) < a(t) for anyt € (0,1x Aty]. Also, it is trivial that ux(t) <

(1/2)% VDK, if t > 1y. Note thaia(t) < KoV (2/(ca(y — 1)) V-Dt=2/(v-1 Combining these,
we get that

/(y ) 2/(V*1)
u t < t b} t E O’t .

So by the semi-group property,

2/(y—1) 2 2/y-1) -2/(y-1) d
Ux()_llax{ 2, (04(V ])) }, >07X6R

This combined with Taylor expansid® [€X1"] = s (C"/n)ER[|%|"] and (3.4) com-
pletes the proof. d
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LEMMA 3.3.

.
Iimsup_l_—illog supER {exp(c/l |Xt|25dtﬂ <o

T—o xeRd

foranyé < [0, (y+1)/2) andC > 0.

PROOF. Leté& € (1,(y+1/2)) and letKs = Sup_gd - ; ER<[exp(2C|X;|?*)], which is finite
by Lemma 3.2. Then by Schwartz’s inequality and the Markovian property,

supER eC-f'f””‘Xt'ZEd‘} < sup(ERX [eZCle.flewadt})l/ 2 (ERX [eZCle./?kk“wadtDl/ 2

xeRd xeRd

n
< (supERX [ezcmxﬂfdt}) < (K3)", for anyn e N.

xeRd
Our assertion is now easy. O

Let ¢(x) = (1+ [x[2)*/2 as before. Also, foA > 0and¢ € BY with 6 € [0,y — 1), let

92,600 = AW + SOV + (e cax1) 4 S cad + Za(a ~ 290 26 ax)x

LEMMA 3.4. Letg € Bg with 6 € [0,y—1). Then for anyx >0, there exists & (a,¢) >0
such that

ER[eld 00605y ()] < M@y(?,  xeR%t>0 (3.8)

MoreoverA (a, ¢) > 0 can be chosen to be continuous and monotone nondecreasing with respect
to ||¢||Bg and converges t0 as||¢||Bg — 0.

PROOF. By assumptiony > 1and¢ € Bg with 8 < y—1. So for anya > 0, there exists
aconstanf = A(a,¢) > 0such thay, 4(x) <0,xe RY. Let

Yt)\ _ —)\tﬂ‘éd)(xs)dsw(xt)a.

Then by (3.2), we have by Ito’s formula

A = e AtHEO0G)dsyy (a2 (—)\ YX)?+ () WX)?

d
Fax B0+ 5 3 X0 + (@~ 2004) 2 0% ot

+ martingale

Therefore, as in the proof of Lemma 3.1, by (3.1) and the assumption with respB¢tite have
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that

d

aERx[Yt/\} < ER [ AtHB 0069y )02 (%) ]. (3.9)

So by the choice of, we have(d/dt)ER[Y] < 0. Therefore, ER (Y] < ER Y} = @(x)°.
This gives us our first assertion. The others are now easy. O

We also have the following:

LEMMA 3.5. Let¢ be asin Lemm&.4. Then for anya, € > 0, there exists a constant
A(g,a,¢) > 0such that

ER«[eld#0005] < a1 ey(9T),  xeR%LE>0

PROOF. By assumptiony > 1 and¢ < Bg with 8 < y—1. So for anya, € > 0, there
exists ad = A(g,a,¢) > 0such that

A+ () +eP(X) g, 4 () <O.
Let
Y = e ARSI 1 gg(x)?).
Then
YA = (A + (X)) AHB0Odsgt | ey

Therefore, by (3.9), we have
d Y _ _ t
GrET DT < BB (A4 000) + e(X) 25 5(X) )& T E006I,

So by our choice oh now, we get(d/dt)ER [ﬁ] < 0. Therefore,

ERx [ef(l)d)(xs)ds} < e/\tERx[;t\X] < eAtERX[;;)X} _ e“(l—i—ew(x)"). ]

4. Measure Changes.

As in Section 3, lety > 1, {R }t>0 € Hi(y), and¢ € B with 6 € [0,y —1). {R}i>0 has
an invariant probabilitys which has all moments finite, ari®l(x, dy) has a continuous density
r.(x,y) with respect tqu. The following is easy by15, Lemma 4.3]:

LEMMA 4.1. Foranya > 0there exists £, > 0 such that for any3 > 0, R, : Bg — Bg
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is a compact operator satisfying

||Ru|\Bg_,Bg < Cqu @R/, for anyu e (0,1].
Let R{p be asin (2.3). Then itis easy to see that

R =R +./0't ROR’ ds  t>0. 4.1)

We use (4.1) and Lemma 4.1 to give the following:

LEMMA 4.2. Let a, be any positive constants satisfying— 3 < y—1—6. Then
R:BY — B% is a compact operator for arty> 0.

PROOF. By (3.8),R¢: BY — BY is bounded for anyr,t > 0, so by semi-group property,
we only need to show the lemma foe (0,1]. Also, it is trivial that we only need to show the
lemma for anyor > 8 > O satisfyinga — 8 <y—1—6.

Fix any sucha, 3 > 0. By (4.1) and Lemma 4.1, itis sufficientjg Rs¢ Rt"),sdsis compact.
We show this now. By Lemma 3.4, the definition ¢fand Lemma 4.1, we have that for any
O<s<t<], RS¢Rt¢,S: BY — Bg is a compact operator with norm

IRORE ollag g < €@ ¥'Carrg 9 lggs (@ FHO Y.

Since(a — B+ 6)/(y— 1) < 1 by assumption, this completes the proof. O

Let a > 0 and fix it for a while. By Lemma 3.4{Rt¢}t20 is a semi-group of continuous
linear operators oY, so the logarithmic spectral radide?? := Iimt_‘oo(l/t)Iog||Rt¢||BgHBg
of R? : BY — BY is well-defined.

The generator of R }t>o is LR, so theO-order term of the generator of the semi-group
{e‘AR‘¢tw‘“R¢ Y=o onCyo(RY) is Y LRY + ¢ — ARS which goes to-w as|x| — « by
assumption. Also, it is easy to see tluat"R? Yo f € Cu(RY) for f € Cp(RY) anda > 0. Here
Cw(RY) denotes the set of continuous functionsRfhthat converges t6 at co.

With the preparations above, we are now ready to give the following:

LEMMA 4.3.

1. AR® = lim_eo(1/t)l0g |RY || go _go is well-defined.

2. For anyt > 0, e*/‘MtRf’ : BY — BY is compact, the spectral raditisis a simple eigen-
value of it, and is the only eigenvalue with a positive eigenfunction. Also, the absolute
value of any other eigenvalue is smaller than

3. There exists a uniquéup to constant multiplicationh®?® € BS such thatR?hR¢ —
"*thR? for anyt > 0. Moreover,(hR¢)~1 ¢ B.

4. There exists a set of probabilitie{Q(R)f}XeRd on (Q,.#) such that

_AROt

QRI(A) = g g & e[| 00138) 17 %)
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for anyx € RY, t > 0 and A € .%. The corresponding semi-group of continuous linear
operators orB? is {Q(R) }=0 given by(2.4).

5. There exists a uniqueQ(R)? }-invariant probabilityu? . (Now, we can determine thé:#
above uniquely by requirinth??)~1u? to be a probability)

6. For anyt > 0 andx € RY, Q(R){P (x,dy) is absolutely continuous with respectjd with
densityqR? (x,y) € C(RY x RY).

7. 1lis a simple eigenvalue @(R)? with eigenfunctiord, is the only eigenvalue of it with a
positive eigenfunction, and the absolute value of any other eigenvalue is smallet. than
Therefore, there exist constaig, £y > 0 such that

HQ(R)thf—/Rd fdu‘i’H ; <Cype *'|f|gy,  foranyt>IlandfeBf.
. BY

PROOF. By applying the same argument as 14| Section 3] te A"t L,LF”R{” W9, we get
all of our assertions except the f4of#)~ € BY. We show this in the following. As a corollary
of Lemma 3.2suR gd Rc(|X1| > r) — 0 asr — o, so there exists an> 0 such that

inf R(Xa| <1) > 2. (4.2)
xeRd 2
Also, note that
. 2
ERx [efo1 ¢<Xs>d51A] > Rxl(—A), xeRIAc.Z. (4.3)
ER« [efo \¢<xs>\ds}
By Lemma 3.4
ER [e/'élq’(xs)\ds} < @Dt y(x)9, for anyt > 0,x € RY. (4.4)
Combining (4.2), (4.3) and (4.4) implies
RELRO vy — ER [elad(X)dspRO (% )| > LA (@d]) (inf pRo —a
S hRO (x) = E [eo h (xl)} > Je (lgrfh )L,U(x) .
This gives us thath?¢)~1 € BY. O

REMARK 3. It is easy to see hy Perron-Frobnius argument tha,=f 0, then the same
result of Lemma 4.3 holds wittr = 0.

REMARK 4. The uniqueness of the positive eigenfunctiorR$fon BY for anya > 0
gives us thanR?¢ andh?¢ do not depend oor > 0.

For anyd > 0, we say that a semi-grou; }i>o satisfies By) if for any a > 0andf > 0,
there exisC, g > 0 anddg € (0,1) such that
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C
VU] < px)° PR Fllgg,  xeRte (0.1 B, (4.5)
We have the following by15, Theorem 1.1]:

LEMMA 4.4, Assume that there exidt > 1 and &, € [d1,01 + (1/2)(8 — 1)) such that
{R}t>0 € H2(d1, %2). Then{R: }>0 satisfiesBs) withd := % — & + 1.

LEMMA 4.5. Assume thafR; }+>0 satisfiegBs). Then{Rf’ }i>0 satisfiegBsg).

PROOF.  First note that by (4.1),

t
VR! — VR +V /0 ROR? ds (4.6)
Also, by assumption,
I7Rlss s <IVRlg < OB te(0)
BGHBB+B+0+8 — Ba+9HBé+B+a+6 = tdﬁ ) s

Next, we estimate the second term on the right hand side of (4.6). By Lemma 3.4, the definition of
¢ and (4.5), we havgRl |y _gg <€), [|9]lgg_go < [19]lap and|| VRullgo

Cayo,pU % forue (0,1). Therefore,

0 <
0B5:B1ra+6

t 't
|7 [ Rt s < [ @®plggCarops s

0_,go0
Ba—B3,p a6

:Ca+9,BeA(a7¢)H¢||Bg tlidﬂa te (071]

1—dg

These complete the proof. O
LEMMA 4.6. Assume thafR; }i>o satisfiegBs). Then{Q(R)t‘p >0 satisfiegBs.g)-

PROOF. By the definition on(R)f’,

¢ (R R¢
_ARot VR (h™9 1) _Ar¢; Vh
QR f(x) e g e M e, RO D), f ey,

Note thathR? = e/’ RIhRS andhR? e B, for any ap > 0 by the definition ofh?¢. So

VhR9 ¢ B3, p.a.0 fOr anyp > 0by Lemma 4.5. Also(hR?)~1 ¢ B) by Lemma 4.3. These
combined with Lemma 4.5 complete the proof. O

By Lemma 4.3, for anyr > 0, we can define the Green operaGTﬂ’ onBY given by

GRO f :/OW (Q(R)td’f—/Rd fdu¢)dt. 4.7)
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GR? mapsBY into BY, and it is a continuous linear operator. Now, we are ready to give the
following:

LEMMA 4.7. Assume tha{R }1>o satisfies(Bs). ThenGRéf e CY(RY) for any f €
Cb(Rd). Moreover, for any > 0, there exists &; > 0 (which may depend o8, {R}i>0 and ¢)
such that

IVGR® £ (x)| < crp(x)5HO+B|f|l,  foranyf e Cy(RY),xe RY.
PROOF. Let f = f — fra fdu?. Then||f|lw < 2| f|» andGR® f = GROT. Therefore,

without loss of generality, we may and do assume fgatf du® =0.
Since

— 1 —
GRé :/ QR fdt+ QR GROf,
0

we get from Lemma 4.6 for anyc R
N 1 N
PR (9] < | |VQRI F([dt+ | PQRI{GR4  (x)
0

1 —
< W09%10°8 (Cop [T B+ Cppal g, e, )l
Takingc; = Co g ot~ %dt+Cp 5 /2] GR ”B?;/fB?;/z completes the proof. O

5. Ito's formula.

Let {R }+>0 € Hi(y) with y > 1, and assume that it satisfieBs) with > 1. Denote the
generator of R =0 asLR = 3%, _; af Vi V; + bR 7, leta® = (af})¥,_; ando® = (aF)V/2. Also,
let¢ € BY with 6 € [0,y—1).

Our main results of this section are the following two lemmas.

PROPOSITION5.1. hR?® € CL(RY) and the generator ofQ(R)! }i~o is

vhR¢
R R
LR? = R+4d HRe

V.

By Proposition 5.1, we see that the diffusion correspondir{g}t@?)?} is a semimartingale
with respect to the canonical filtration.

PROPOSITIONS.2. Forany f € Cy(RY) with Jre fdu® =0, letg = —GROf (whereéRvd’
is as deflned i1f4.7)). Theng € C1(RY). Also, let{X} be the diffusion process corresponding to
{Q( ) }, and let

B = / xsdxs/ )<bR thff>(><s)ds
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Then{B; };>0 is a Brownian motion and
t t
90%) = 9(%0) + | 79(%)- 0% (X)dBs+ | F(X)ds
0 0

We make some preparation before giving the proofs of them. Forpamjag, the operator
GR? given by

Roe_ [“(anRotppe R [ F 6 0
G f_/o <e ROf—h /Rth’(pdu)dL feBo,

is well-defined by Lemma 4.3. Note that by the same way as in the proof of Lemma 4.7, we get
by Lemma 4.5 thaGR¢ f € C1(RY). We will give a kind of Ito’s formula foiGR¢ first. Before
doing so, we need to show some continuity. Bgt= {x € R%;|x| < n}, ne N.
Let us define two conditions.
(1) ¢.{¢n}nen C BY are bounded andl, — ¢ in Cy(By) asn — o for anyme N,
() f,{fn}nen C BY are bounded andél, — ¢ in Cp(By,) asn — oo for anyme N.

LEMMA 5.3. Assumdl). Then||R§"n — R{‘pHBgﬁBg — 0asn— o foranyt,a > 0.

PrROOF. First note that by Lemmas 3.2 and 3.4, there exigis>a 0 such that

IR (x) — R £(x)]

< BR[| ehitn-#100s 1’2} Y2 ER et eres] YIER ()] Y4

|fHBg

1/2
< catp(x)?/? (ERX {ezfé“p“*d"(XS)ds} - l) / Ifllgg, foranyfeB) xeR?.

Therefore,

IR Ry g < cof suput o (B[ #0] )} s

xeRd

We estimate the right hand side of (5.1) from now on. Ket= max{||¢n|\Bg;n eN}v
o HBg < . Then by Lemma 3.5 andatder’s inequality

sup@(x)~@ (ERx [gfémnfm(xs)} _ 1)

xeRY
< (8¥2REa B0 supER [e“ftto\d’n*m(xs)} 2 _ 1)

xeRd

+ ge(l/Z))\(E,a,SKz(Ila)to SUpERX [e“flto |¢n*¢\(xs)] 1/2’ for anye,to > 0. (5.2)
xeRd

For anytp > 0, we have by Lemma 3.2
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sup (R gt 010185 _ )

xeRd

< (e4(t—to)H¢n—¢||cb<Bm> _ 1)

+ sup ER[explaKy®(X)]"? sup Re(|Xs| >m)Y2
s>tg,xeR4 s>tg,xeR4
— 0, asm — oo,

Here we used the fadimm SUR.(, xeRY Rx(|Xs| > m) = 0 which comes easily from Lemma
3.2. This combined with (5.2) implies

supy(x)~@ (ERX [e2f5|¢”*¢‘(x8)} - 1) -0, asn — o,

xeRd

which combined with (5.1) completes the proof. O

LEMMA 5.4. Assumél). Then for anyor > 0 we have the following
(1) liMp_wARN = ARS
(2) limpy . h®% = hR? in BY, andlimp, ., u% = p? in 0(RY),
(3) limp_ GR¥n = GR? as operators orB?.

PrRooOF. (1) follows from Lemma 5.3, Lemma 4.3 ang, Lemma VII.6.3].

As for (2), we havee\*"R andeA"*'R? are compact operators @f, and1is a
simple eigenvalue of both of them. We hdive,,_...e """ Rf" = eA"*'R? as operators oB?.
Hence by b, Lemma VII.6.5] with respect to the convergence of projection operators, we have
limp_eh®9n (. (hROn)~1dyn) = KRS (. (hR®)~1du?) as operators oBY. Solimy, .. h?% =
hR¢ in BY and hencdéimp .. u® = u? in 0 (RY).

(3) follows easily from Lemma 4.35] Lemma VII.6.5] and the dominated convergence
theorem. O

LEMMA 5.5. Fix any a > 0. Assumg(l) and (Il). ThenGR% f, — GR¢f in B} and
VGR¥ f, — VGR? f in Cy(Bpy) for anyme N.

PROOF. The first assertion easily follows from Lemma 5.4 and the decomposition

1GR9 — GR g
Ra¢ﬂ_ R,¢ . R.¢ a
< /G4~ G o g - Supl g + | G™ Lo g (Supl g + e

+1GR4 ((fa— F)1a,) g

In the same waﬁ"’” fn— R{” f in BY asn — o. We show the second one.

CLAM 1. Foranya’>0andg,,g € Bg, bounded withy,, — g in Cp(By) foranyme N,
we havdimp_. VRg, = VRg in Cp(Bp) for anyt > 0andme N.

PROOF OFCLAIM 1. Since{R }+>o satisfies Bs), we have for anyr’ > 0andp,e >0
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|VRign(X) — VRg(X)|

< P(x)TPHaHEC, % (supl|galleo, + Ilgllgo )W (m) ¢
neN a a
+ (x)OtBa Ca/+£’,3tfdg||(gn—g)1Bm||Bg,, me N.

The first term on the right hand side above converge® a8 m — o uniformly inn e N and
x € By for anyr > 0, and the second term convergetasn — o uniformly in x € B, for any
meée N andr > 0. This gives us Claim 1. (Proof of Claim L)

CLAIM 2. For anyg,,g € BS bounded withy,, — ¢ in Cp(By) for anym < N, we have
VR{””gn — VR{”g in Cp(Bm) asn — oo for anyt € (0,1] andme N.

PROOF OFCLAIM 2. Recall (4.6). Sinceg, — g and ¢nRt¢fsgn — ¢Rt¢,sg in Cp(Bm) as
n— oo for anyse (0,t) andme N, we get by Claim 1 tha?R,g,, — VRg and VRs¢nRt¢_”sgn —
VRS¢Rt¢_Sg in Cp(Bm) asn — o for anys € (0,t) andm € N. This combined with B5) and
dominated convergence theorem gives us Claim 2. (Proof of Claim 2)

Claim 2 combined with Lemma 5.4 and the definitiorhBf gives usVh?%» — VhR¢ and
VRI"GRI f, — VRIGRY f in Cy(Brm) ash — oo for anym e N. Also,
1
VGRen f, — yGR? f‘ < / e A MyRn, — e A TR § ’dt
0

1

*

0

+|e A TREGRA g, — e N TREGRY 1.

f - f
VhR¢n / —hRﬂpndu‘P“—VhR"” / Wdu"”dt

These combined with Lemma 5.4 complete the proof. O

LEMMA 5.6. Letn € BY and {X}i>o the diffusion corresponding tbR +n - V. Let
Bt = Jo(0R)1(Xs)dXs — J3(aR)~1(Xs) (bR + n) (Xs)ds Then{B}t>0 is a Brownian motion and

GR 1) =GR (X0 + [ VGR106)- R0,
f/ot <f 4 (¢ —AR)GRIF _nUGRIf _hR¢ /Rd rﬁ]:pdu"’) (Xs)ds

ProoF.  The fact that{B; };>o is a Brownian motion is easyc{. lkeda-Watanabe7]
Chapter 2]).

Since¢ € B and f € BY, there exist sequencé®n}nen € C°(RY) NBY and { fn}nen €
C°°(Rd) NBY that satisfy the conditions (1) and (Il) previous to Lemma 5.3. So by Lemma 5.5,
GRenf, — GR?f in BY andVGR f, — VGR? f in Cy(By,) asn — o for anyme N,

Since ¢y, f, are smooth, we have by Gilbarg-Trudingér Theorem 8.13] thaGR% f, e
C*(RY). Let Ty, = inf{t > 0;% ¢ Bn}. By lto's formula,
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R R tATm R R
GR(1n) (erry) =GR () (%) + [ VGR11(6) - 0 () By
tATm
+/0 (LR+nV) (GR%f,) (X)ds mneN, (5.3)
GRn f, — GR?f in Cl(Bm) asn — o, and

f
LRGR®n fo=—fn— (¢n 7/\R,¢n)GR’¢n(fn) + hR,¢n/d hR,r:Pn dud’n
(9 —ARO)GRI( hR¢/th¢du¢

in Cy(Bm). Take firstn — co thenm — 0. Sincety, — c asm — o almost surely, this completes
the proof. O

PROOF OFPROPOSITION5.1. By definition, lim¢_o (Rh?? —hR®) /t = (AR® — $)hRe.
So

I/F;d(zth-r‘P ~ARSRR®)dp =0 (5.4)
and
hRY _ _/Rd hROdp = GRO(hRY — ARPHRY). (5.5)
Let {X }t>0 be the diffusion corresponding t&. Then by Lemma 5.6,
4 06) = IR0 + [ T 06) - 0 06)dB + [ (AR — gre) ()

So by Ito’s formula

R, Ré 't
e A ER,d, ((;(‘0)) eXp( /O ¢(Xs)ds>

:exp( :hR¢( 5) " 1VhR? (Xo) - oR(Xs)dBs

L[ R0 (x) 2VhR-r¢<xs>-aR<xs>VhR’¢<xs>ds).
2Jo

The left hand side above is nothing hidQ(R)ﬁo/d%%)(w) \((]t This gives us our assertion]

PROOF OFPROPOSITION5S.2. The fact that{B; }(>o is a Brownian motion is easc{.
Ikeda-Watanabe7| Chapter 2]). By Lemma 5.6, Proposition 5.1 and the assumpﬁ,g@hdud’ =
01
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t
GRO(R? 1) (%) = GR (MO 1) (Xo) + / VGR® (hR9 £)(Xs) - oR(Xs)dBs
0

t
- [ (ROt 4@ -ARNGROMRe )
0
(R 1T TR (R 1) (s

Also, (5.4), (5.5) and Proposition 5.1 give us that

hR2 (%) = hR? (Xo) + /0 {URRY (X0 oR () dBs

_ /: (¢ —AR®)R? — (hRP)"LURRS . aRTNR?) (X5)ds

SinceGR$ = (hR¢)-1GR?hR$ the above and Ito’s formula give us Proposition 5.2. [

As an immediate result of Lemma 4.3, Lemma 4.6 and Proposition 5.1, we have the follow-
ing:

REMARK 5. Suppose thafR: }1>0 € Hi(y) and satisfiegBs) withy > 1andd > 1. Let
¢ € BY with 6 € [0,y— ). Then{Q(R){ }1=0 € Hi(y) and satisfiegBs_ o).

6. Preparations and basic estimates.

Let us go back to the situation described in Section 2. From now on, we will omit the
superscripRwhenR = P, if there is not risk of confusiori,e., we writeAP? asA? hP¢ ash?,
etc

Recall that{Q }t>0 = {Q(P)?° }i=0 and {R*}>0 = {Q(S){PO}QO. Let G be the Green

operator corresponding @ }t>0, i.e., G = GP?°. Then it is easy to see that the dual operator
Q: of Q (resp.,.G* of G) in L2(dvp) is Qf = QP = Q(S? **, (resp. G* = GP™0"0 —
GS/K;;(_):!PO)_

We first have the following:

LEMMA 6.1. v is the(uniqug invariant probability measure ofQx}, gd-

PROOF. Let1%" be the rate function corresponding{® }i>o, i.€.,

v : 1 v
1#°(v) =sup{ [ #av—Jim 10g]|(Q(P)**)¢ u--1;9 ecb<Rd>}, veD(RY).
Then it is easy that

I“’vo(v):l(v)—/Rd @"dv +A?", for anyv e J(RY).
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v minimize 19" if and only if v is the invariant probability measure 00« }ycre-
Sincevy maximize® — | andl is convex, we have for antye (0,1) andv € (1(RY)

®(vo) —I(vo) > ®P(tv+ (1 —t)vg) — 1 (tv + (1 —t)vp)
P(tv+ (1—t)vg) —tl(v) — (1 —1t)I(vp).

Y

Hence

P(tv+(1-t)vg) — P(vp)
t

<I(v)—1(vp).
The left hand side above converge€X®(vo)(V — Vo) = [ga ¢°dV — [pa @"°dvp ast — 0. So
I(vo) — /d @"dvo < 1(v) —/d @%dv,  foranyv e 0(RY).
R R

Therefore vo minimize 19", which implies thaty is the (unique) invariant probability measure
Of {QX}XGRd . D

LEMMA 6.2. ForanyB < (y1Vy})+1landC >0,

/I;d eC\X\B VO(dX) < o, (61)
i 1 Qu T B
I||;nsupf logE™~" |exp C/O [X/|Pdt )| < oo. (6.2)

PROOF. By Remark 5, we havgQ}i=0 = {Q(P){ *}iz0 € Hi(y1) and {Q }z0 =
{Q(S){pvowo}tzo € Hy(y}). Sincevg is {Q }t=o-invariant, by Lemma 3.2, we have (6.2) holds
foranyB < (y1Vvy})+1andC > 0. The second one is now easy by Schwartz inequality and
Markovian property, as in the proof of Lemma 3.3. 0

Also, we have the following two Lemmas by Lemma 4.7 and Proposition 5.2:

LEMMA 6.3. For anyf > 0, there exists & > 0 (depending orB) such that

[VGF(x)| < cop ()2 V1P £ |,
VG ()] < cop(x)Y2 V1R I, xeRY f e Cy(RY).
LEMMA 6.4. (1) Forany f € Co(RY) with [qa fdvg =0, letg; = ~Gf andg, = —G*f.
Theng,,g, € CY(RY).

(2) Let {X; }1>0 be the diffusion corresponding {& }t>0. Then there exists a Brownian motion
{Bt }t>0 such that

t t
9106) = 91(%0) + | V1o (X)dBs+ [ 10)ds
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and for anyT > O, there exists a Brownian motion (with respect to the canonical backward
filtraction) {B{ };c[o.r such that

t ~ t
02X 0) = 920%) + | VgpXr_9)o (s o8] + [ (xr_s)as

We remark thaf Xt _t }c[o,7] is a diffusion with respect to the canonical backward filtraction
associated with semi-groue; }c (o7 for anyT > 0.
LetG=G+G* andletl (f,g) = [ga fGgdvy, f,g € Cy(RY). Then we have the following:

LEMMA 6.5. I (f,f)= [ga VGT-aVGfdvp forany f € Cp(RY). In particular, I (f, f) >
0, andl (f,f) =0if and only if f is constant.

PROOF. Let{X} be the diffusion corresponding {8}, _gs- Then for anyf € Co(RY)
with fpa fdvo =0,

r(.f)= [, Gidw= im EQvoK/ £(X) dsﬂ

By Proposition 5.2,
T T
/0 f(Xo)ds= GF(Xo) — Gf(Xr) +/O VGH(Xs) - 0/(Xs)dB, 6.3)

where{B; }>0 is a Brownian motion. LeM; = fé VGf.-0(Xs)dBs, t > 0. Then{M;}i>p is a
continuous local martingale. Sing&} }io is Vo-invariant andfgs Y9dvg < o for anya > 0,
we have by Lemma 4.7 and AL tha®" {(M,M)1} =T [a VGf-aVGfdv < e for all T > 0.
S0 {M}t>0 is @ martingale. Therefor¢l/T)E®0{M2} = (1/T)E®0{(M,M)7} = [a VG-
avVGfdvp. Also, Gf is bounded, so it is easy to see by (6.3) that

T 2 .
1EQVoK/ f(Xs)ds)}e/ VG aVGfdyy  asT — .
T Jo JRY

These give us thal (f,f) = [oa VGf-aVGfdvy, for any f € Co(RY). Now, the facts that
r(f,f)>0andthat” (f,f)=0ifand only if f is constant are easy since the ma#is strictly
positive definite. O

Let ~ be the equivalent relation iB,(RY) given by f ~ g if and only if f — g is equal to con-

—_— —~— /—\/7’—
stant. LetCy(RY) = Cy(RY)/ ~. Thenl is an inner product o8,(RY). LetH = (Cb(Rd) )

ThenH is a Hilbert space, and can be regarded as a dense subspdf@él%‘?).
Sincevy maximize® —1 = ® — 19 4 (@*0,.) — AP9"_and is the invariant measure of
{Qth=0={Q(P)¢ O}IEO, we have the following by the same method aslif, [Section 2]:
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LEMMA 6.6.

D?®(vo)(Gfdvo,Gfdvo) < (f,Gf)2(qy,,  foranyf eCy(RY).

By Lemma 6.6, all of the eigenvalues Bf & (vp) |HxH are not greater thah Now, we are
ready to give a precise formulation of the assumption A5:

A5’ All of the eigenvalues (IDZCD(VO)|HxH are less thari, i.e,

D2 (vp) (G fdvg, Gfdvg) < (f,G)i2(auy)s forany f € Cy(RY).

Let Gx andGy be the continuous linear extensions® | andl ® G onCy(R?) x Cp(RY),
respectively.G;, Gy, etq are defined in the same way. Also, for any symmeétrie Cb(Rd X
RY;R), defineA : .#o(R?) x .#0(R%) — Rby Ay (Ry,Re) = [ga Jra V (X, Y)Re(dX)Rx(dy). Then
Ay is symmetric, bilinear and continuous. The following is easy, and the proof is omitted.

LEMMA 6.7. For any symmetrit/ € Co(R? x R%R), VxVyG,G;V (x,y) is well-defined
and is inC(RY x RY). MoreoverAy is a Hilbert-Schmidt function and

|

. . d
= o o, 3 DTGV (<) (4130 (9, GGV (k) (b Vol

|H><H

‘:S - /Rd /RdV(X’y)éxéyv(xay)vo(dx)vo(dy)

HxH

7. Estimate for LP-bounded.
Our main result of this section is the following:

PROPOSITION7.1. LetV € Cp(R? x RY) be symmetric and satisfigigs V (X, y) vo(dy) = 0
for anyx € RY. Also, suppose that all of the eigenvaluesAo(HxH are smaller tharl. Then
there exists amp > 0 such that

SUPE {e(l/ZT)./'oT gV (% Xs)dtds A ’ X = y] <o (7.1)
T>0 '

for anyx,y € R ande < g. HereAr ¢ = {dist(Lt, vo) < £}.

We first prepare several notations. Poc t <T, letLy 1 = (1/(T —t)) ftT dx.dsand
A‘{,T,E = {diSt(Lt,T7 VO) < 8}7
f_ @K _ @k
Are= {‘/(Rd)k fdlir /(Rd)k fdvgy

< s}
for f € C((RY)), k=1,2. We writeA] ; = A 1.
We have the following Harnack inequality by Krylov-Safon@y: [
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LEMMA 7.2, Let {R}t>0 € Ha(K1,K2) with k1 > 1 and k2 € [K1,K1 + (1/2)(k1 — 1)).
Then for any € RY, there exists &, > 0 such that

Ry f(X) < cx/d fdu,  foranyf € By(RY,RY).
R
Note that for any bounded{Xs; 1 < s< T — 1}-measurable functiofi, we have
/Rd /Rd Ev {f )Xl =X, X7_1= y} vo(dx)vp(dy) = ERw[f],

and that(1,-,y) is bounded orRY. So we have by applying Lemma 7.24Qx} g
LEMMA 7.3. Foranyx,y € RY, there exists @y > 0 such that

EQ {f ’xT - y} < CeyEo]f]

foranyT > 2ando{Xs;1 <s< T — 1}-measurable positive bounded functibn

Foranye > 0andT > 2V 8/¢, we haveAr ¢, C A1 716 C At (3/2)¢- SO by Lemma 7.2
EQx[gl/(2T) [0 J3 Ve Xo)dtds | /2‘XT - y}

< e4HV||mC EQVO [el/ 2T) fg J3 V(% Xs)dtds At o }
Therefore, to show Proposition 7.1, it only remains to prove that there exists-ahsuch that

SUPE0 [el/(ZT)foT J§ V(% Xs)dtds Am} < w. (7.2)
T>1 '

We divide the proof of (7.2) into several steps. Let

Ul(X?y) = _(GXV)(Xa y)a
U (X7 y) = _(G;Ul) (X7 y)a

d
W(X7 y) = N g ka VyiU <X7 y)ak| (X)alj (y) VX| Vij (X7 y)7 X,y e Rd'
L],Kl=
Then we have the following by the continuity Gfand Lemma 6.3:
LEMMA 7.4. Foranyf > 0, there exists &;0 > 0 (depending orB) such that

73U (x,Y)] < CrollV [l ()2 V1HHP,

VXYV (x,Y)] < C10%[[V [|ootp()Y2 V1P )2 Vit HH8HB -y y e RY,
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Note that by Lemma 6.2, for ang < (y1V y})+ 1, there exists &, € R such that
EQu [eflT Yx)%dt] < gKa(T=1) for anyT > 1 andx € RY. Therefore,

;
Que <T11/ W(X)%dt > r) <e'T-Veka(T-D " foranyr > 0. (7.3)
- 1

Combining this withlx ~ry < Y(X)?/W(R)?, R> 0, implies

T a
Qvo(Tll/ Lx>R)dt > r) <eWRIT- DT recR (7.4)
—1)/; =

LEMMA 7.5. Assumexr < (y1Vy})+ 1. Then forany,C > 0, there exists aR > 0 such
that

.
Qu, (Tll/ P(%) Ly >Ry At > s) <2e CT-1), foranyT > 1.
1/, >

PROOF. By assumption there existspasuch thatl < p < {(y1Vy})+1}/a. Letq>1
be the Hblder conjugate op. Then by Hlder inequality,

1 T
ﬁ/l Y L zrydt

1 T 1/p 1 T 1/q
= pa N
< <T_1/1 W(X) dt) (T_l/l 1{>qu}dt> :

Therefore, by (7.4) witle substituted bypa, we have
1 T o
Que ﬁfl PX)" Lx=rydt > €

1 T a 1 T & a
SQVO<T_1/1 Y(x)dt > r) +QvO<T_1/l Lix|=ridt = <rl/p) )

S efr(Tfl)eru(Tfl) + e7<5r71/p)qw(R)pa<T71)eror(T*1)’ for anyr > 0.

This completes the proof. O

LEMMA 7.6. Foranya < (y1Vy;)+1lande,C> 0, there exists & > 0 such that

Q"0<(/Rd L[J(X)GLLT(dX)) : </B% L[J(y)"LLT(dy)) > e) <3 TV foranyT > 1,

whereBr = {x € R%; |x| <R}, R> 0, as before.

PROOF. Just notice that by (7.3),
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Qu <(/R w(x>“L1,T(dx)) - ( . w(y)"Ll,T<dy>) > e)

< e (T Ka(T-1) +Qu, </ YLy T(dX) > ‘:)7 for anyr > 0.
BR '

This combined with Lemma 7.5 completes the proof. O

LEMMA 7.7. Letf e Gyo(RY x RY). Also, assume one of the following
(1) g € C(RY) and there exis€, > 0anda < (y1Vy;)+ 1such thatg(x)| < C,(x)? for any
xeRY,
(2) g € C(RY x RY) and there existC, > 0 and a < (y1V y}) + 1 such that|g(x,y)| <
C,W(X)W(y)? for anyx,y € RY.
Then for anye > 0 andC > 0, there exists a@y > 0 such that for any; < &,

lim % logE@ [e(l/T)foT I3 f0xdsdt o (A2 )] < —C. (7.5)

PROOF. We only give the proof of (2) because the proof of (1) is similar. By (6.2) we have
Jre WBdvg < o for anyB > 0. So for anye > 0, there exists aR; > 0 such that

&
[ latxylvo(@xvolay) < 5.
(Bry ¥Bry )°

By Lemma 7.6, for an{ > 0 there exists aRR, > 0 such that

Wy £ (CH o) (T-1)
QVO (//(BRZXBRZ)C W(X) L/J(y) Ll,T(dX)Ll,’T(dy) > e > < 6e

9

foranyT > 0. LetR=R; VR, > 0. Theng is bounded orBr x Br. So there exists agy > 0
such that, ifw € Ay 7, , then

/BR /BR|g(x,y)|L1,T(dx)L1,T(dY) */BR /BRIg(x,y)|vo(dx)v0(dy)‘ < %
Therefore,

Qultara A < Q[ W70 Lar(@Lar(@y > o)

(4

< e (CHIfl=)T-1)

This implies (7.5) easily. O

By condition, there exists & > 0 such thaty, —y1+ 1+ < ((y1Vy})+1)/2 andy’, —
yi+1+60+B < ((y1vy})+1)/2. So by Lemma 7.4 and Al, we get the following as a
corollary of Lemma 7.7:
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COROLLARY 7.8. LetV be as in Propositior7.1. Then for anye > 0, there exists an
& > Osuch that

T C
SUPE0 [el/(ZT”OT Jg V/ (%,Xs)dtds At g N (Ayr\(a) } <o, foranye < &.
T>0 )

Corollary 7.8 completes the estimate about the integraldon N (A‘{‘{S)C. Therefore, in
order to prove (7.2), we only need to deal with the integralé\%’g
We first have the following result about multiple integral Bp[Lemma 3.1]:

LEMMA 7.9. Let {E;}tzo be a Brownian motion. Then for arly > 0 and symmetric
h(-,-) : [0,T] x [0, T] — Rsatisfyingfy f, h(s,t)2dsdt< 1/4, we have

E [l 3 hstidBsdBr | — ofd Jg hist)?dsdt

SinceV|HxH is a Hilbert-Schmidt function by Lemma 6.7, it can be written as the sum-
mation of a finite sum of bilinear terms and a term with Hilbert-Schmidt norm small enough.
Lemma 7.10 and Lemma 7.11 deal with the term with Hilbert-Schmidt norm small enough, and
Lemma 7.12 deals with the bilinear terms.

LEMMA 7.10. LetV be as in PropositiorY.1. Also, suppose that satisfies

i 2
/R d /R NVOYBEN ) dgw(dy) < 52 (7.6)

Then there exists agy > 0 such that

SUPEQ0 [el/(ZT)foT fJV(N-,Xs)dtdS,A‘{‘{g} < o, foranye < &.
T>1 '

ProOOF. From the definition otJ; and Lemma 6.4,
T T
Ua0Xr, %) = Us(%.X) + [ VUs(¥e.X) - 00G)dB+ [ V(X6 X)ds
for anyT,t > Owith T > t. Therefore, by the symmetry ¥f,
T T T
[ voxodsdi—2( [ a0 - sk X))t
T T
—2/0 dt(/t VUp (Xe, X) - a(xs)dBS).

We have by Remark 3 thfit)1||.. < c. As for the second term on the right hand side above, itis
equal to
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Mr = _2./(;T ('/(;svxul(xs,x{) - G(Xs)dt)st

by stochastic Fubini’s theorent.{. Ikeda-Watanabe7] Lemma 3.4.1]). Also{M;}i>0 is a
local martingale withQ,,-intergable quadratic variation for aify> 0, hence a continuouS,,-
martingale. So

EQVO e(l/T)fOT foTV(X(.,Xs)dsdE A\_/I_VE:|

s 1/2
< exp(4]|U1w) - EQ0 [erJ |(2/T) J§7UL06 %) o (Xs)dtPds A\M .

By (2.1), it is sufficient to show there exists an- 0 such that

SUPE o [e(BCZ)/TZfOT diféVXul(XS’mdt‘z,A‘{‘fg} < o, (7.7)
T>0

Letg(s,t) = VyV,\U(Xy_s,X7_t). Then by Lemma 6.4

T A
VU (X5, X0) = VU (X5, Xr5) + [ g(s)- 0 (%) dET
S
T
+ / VUi(Xr_s Xr_odt,  foranyse (0,T)
S
where{Bf }teo,T) is @ Brownian motion. Note that by assumption, there exigs-a0 such that

y2—Yy1+1+B < (y1+1)/2 Also, vg is {Qx}, ge-invariant. So by Lemma 7.4 and Lemma
6.2,

SupEQVO {94/1-2]3— ‘VXU (XT—S7><O)_VXU (XT—SVXT—S)‘2d§:| < 00,
T>1

Therefore, by Blder’s inequality, it only remains to show there existssan 0 such that

SUPE@0 [9(3202)/T2foT |12 o(st)-0(xr )BT [2ds A\M < o,
T>0 ’

Let {B;}+>0 be ad-dimensional Brownian motion which is independentX@}ic(o.)- Then by a
simple calculation with the help ofdlder’s inequality, stochastic Fubini’s theorem and Al, we
have

EQv {8(32C2)/T2/g | KT 9(t.9)-0(Xr —5)dBT [Pdt AM

_ e — 1/2
< E% [EB {e(lza%)/rz.m_;o g(t,s)dBt\zdSi| ’A\%} ) (7.8)

Note that
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2
ds (7.9)

,/ (/ |gt52ds>dt+/ /( gts@g(us)ds)dBtdBu

For the first term on the right hand side of (7.9), we have by Lemma 6.7 and (7.6) there exists an
€ > 0such that

/R d /R W(xy)Lr (dXLr (dy) <

¢
onAY,.
256c2 T

For the second term on the right hand side of (7.9), we have

(12&:2 / / dtdu /vu (t,9) ®g(u,5)ds

12802 / dt/ du</ lg(ts |2ds> (/UT ||g(u,s)|2ds>
_ (128(:%)2{#2/OTclt(/tT ||g(t,s)||2ds> }2

P g(t,s>||2dtds}2
{2&:2 / / ||vxvyu<xy>ZLT<dx>LT<dy>}2
1

2

2 2
{22 [ [0 n)as Ay B eyt (@ @) |
1
283 ([ 3\ 1 w
2 -(25&9 =12 OnAT,. (7.10)

So by Lemma 7.9,
EQuo {EE [eaza:%)/ﬂf& Io <ft5ug(t,s>®g<u,s>ds>d§1ds’u] ’ Avag]
< E [e(128:%)2/T4 Ja fd dtdy flTvug(t,s)QEg(u,s)dsjz’ A\_{_VE}
< et/4,
This combined with (7.8) and (7.9) completes the proof. O

Now, we get the following as a direct result of Corollary 7.8 and Lemma 7.10:

LEMMA 7.11. LetV be as in Lemm&.10. Then there exists agy > 0 such that(7.2)
holds for anye < &.
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Similarly, we have the following:

LEMMA 7.12. For anye € Cp(RY) with Jre€dvo =0andrl (ee) =1, and anyc < 1,
there exists amg > 0 such that

SUpE o [e"/(ZT)(foT em)dt)z,AT,g} < oo, for anye < &. (7.11)
T>0

PROOF. Letv = Ge Theno e CYRY) by Lemma 6.3. Letu= Vv-aVv. Then
by Lemma 6.3, for any3 > O there exists &g > 0 (which may depend oif) such that
lu(x)| < caco?||el|2 w(x)2Y2—V1+1+E) for anyx € RY. So by Lemma 7.7, for any > 0, there
exists angg > 0 such that

C
supEQ"o [ (a/(2T)(Jg (Xt)dt)z,ATﬁ N (/.\%E) ] < oo, for anyg; < &.
T>1 '

Next, we show that there exists an> 0 such that

supEQVO{ el@/(@N)(J5 e)dt? pu g} <o, (7.12)
T>1 ’

By Lemma 6.3,

o(Xr) = v(Xo / Vo(% Xt)dB[+/OTeXt dt

v is bounded, so to prove (7.12), it is sufficient if there exists an0 such that

SupEQvo[ ele/2)-(1/T)(Ig vo(X)-0(X)dB)? H < o,
T>0 '

Choose and fix & € (0,(1/c) — 1). Since [gau(X)vo(dx) = ||€]|4. = 1, there exists a@y > 0
such that/za U(X)Lt (dx) < 1+ onAy , foranye < &. By Ikeda-Watanabe’[ Theorem 11.7.2],
there exists a Brownian motidhisuch that

</ Vo(% d&) —B</ Vo(% <><t>\7v<><t)dt)2

< sup |I§(t)\2 onAY .
0<t<(148)T ’

So by reflection principle,

SUPE0 [e(0/2)~(1/T)(./'oT Vo(X)-0(%)dB)? pu E}
T>0 l'

< SupE [e(c/z)'(l/T)SUR)StS(1+5)T \g(t)q < 2 — 1< oo,
>0 1-c(1+9)



586 S. LIANG

This completes the proof. O
Now, we can prove Proposition 7.1 in the same way ag@h [

PROOF OFPROPOSITION7.1. As mentioned before, it is sufficient to prove (7.2).

By Lemma 6.7 Ay [HxH is a Hilbert-Schmidt type function. So by condition, the maximum
eigenvalue@ is smaller tharl. Write the eigenvalues dXV]HxH as{antnen With |az| > |ay| >
lag| > -, and the corresponding eigenvectors{&mdvo}m_1 With [pd em(X)Gen(X)vo(dx) =
Omn Mm,n€ N. ThenAy (Gendvo, R) = am [z em(X)R(dX) for anyR e Mo(RY). Soforanyme N
with an, # 0, we may and do assume theat € évb(Rd).

Choose and fix @ > 1 such thatap < 1. Let g be the Hlder conjugate op > 1. Then
there exists alN € N such thaty” ., , g%a? < ¢3/256c3. By Holder’s inequality and applying
Lemma 7.11 to/1(x,y) :=q(V(x,y) — N ae(xe ¥),xye RY, it only remains to prove that
there exists ag > 0 such that

SUPE@0 [ez, 1(0/@0) ] I3 a8 008 0G)dsdt o e} < . (7.13)
T>0 ,

Without loss of generality, we may and do assume ¢hat - ,ay > 0. In general, we have

that for anyn > 0, there exist anc N and & = (&1,---,&N) e RN, i = 1,--- ) m, such that

|&illge =1i=1,---,m and

s

{xeR X&) < (1+n) 1/2}C{XGRN:HX||<1},

i=1

SO

X® < (1+n) max (x.&)?%  xeRY.

Apply this fact ton = 1— pa. Letg = Zszl Eijej, i=1---,m Then(éé,é)Lz(de) =1,
Jre&(X)vo(dx) =0,i=1,---,m, and

]Zl(/ dt)2 (1+n) _max (/ &% dt)

Therefore,

Q N (p/(2T)) fq Jg aiei(%)e (Xs)dsdt & EQup [ol(1-02)/2)-(1/T) (T &(x)dt)2
Exvo [ez'zl 7070 ° 7AT,£:| S_ZlE Yo [e 70 ATl

This combined with Lemma 7.12 yields (7.13), which completes the proof. a
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8. Proof of Theorem 2.1.

The proof is similar to that ofl[0], so we only give a sketch.

Let (v) = ®(v) — ®(vg) — DP(vp) (v — vp), v € .#(RY). Then
e ATER [ew«lm,/g & dt) A’ Xr = y]

= EEQEQX [eT‘f’((l/UfoT %dt),A‘XT = y} : for anyA € Fr. (8.1)

LetAr ¢ = {dist((1/T) fOT Ox dt,vp) < €}, T >0, € >0, as before. So the theorem will be shown
if we can show the following two lemmas.

LEMMA 8.1.

. T
IimsupllogEQx {exp(TqJ(l/ <5><(dt>),A%E X7 :y] <0
Tow T T Jo :

foranye > 0andx,y € R.

LEMMA 8.2. Foranyx,y € RY, there exists a > 0 such that

~/1 /T
llﬂmOTlL}mmE {exp(TdJ(T /o 6)<(dt>),AT7,S

—exp{l/ chp<2>(vo;.,.)‘ vo(du)} x de(ly — D2 (vg)) Y2,
2 Jrd (u,u)

Xr = Y}

Lemma 8.1 is easy from large deviation principle. We prove Lemma 8.2. First, we have the
following by Proposition 7.1:

LEMMA 8.3. There exist constants> 1 and¢ > 0 such that

SUPE | PTOUI/TIIS 36, A X7 =y < e
T>0

PROOF.  LetR(vp,-) be the third remainder of the Taylor expansiond@froundvy, i.e.,
R(Vo,V) = ®(v) — (1/2)D2®(vp) (v — Vo,V — Vp). Also, define®@ onR? x RY by

®@(xy) = @@ (vo;x.y) _/d @@ (vo;x,2) vo(d2) _/d @ (v5;2,y)vo(d2)
R R
+/Rd o ®@ (vo;z1,2)vo(dz)vo(dz),  x,yeRY.

Then

D2®(vo) (Lt — Vo, LT — Vo) = /Rd /Rd @@ (.,.)dLrdLy.
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By A5, there existp,r > 1 such that all of the eigenvalues pf¢>
Therefore, by Proposition 7.1, there existsean- 0 such that

)|,y are smaller than.

$u§)EQX {exp(prchb(vo)(LT —Vo,Lt —W0)),Are
>

X = y} <oo, foranye < g.

Let sbe the Hilder conjugate of. Then by A6, we have by re-choosigg> 0 if necessary

SUPE® [exp(psF(vO, Lt)),Are
T>1

X = y} < oo, foranye < &.

These and Hlder’s inequality complete the proof. a

PROOF OFLEMMA 8.2. As in Kusuoka-Tamural2], Qx has the strong mixing property,
soXr andy/T (Lt — vp) are asymptotically independent und@rasT — oo for anyx € RY, also,

EQ« [0/ TV fa UX)((1/T) S @thfvo)(dx)} L e W2 e uBUNN@)  4eT

for anyu € L2(RY, dvy).

Take a separable Hilbert spakle such that the se{t@udvo| Jre uGudvg < «} is a dense
linear subspace dfl;, and the inclusion map is a Hilbert-Schmidt operator. Webe anH;-
valued random variable such that

€ [expty/~Tuw))] —exp( 3 [, uGu)w(ey

for anyu € Hi. (Write the distribution oW as{).

Then by the central limit theorem for Hilbert space valued random variables, the distribution
of (X1,v/T (Lt — Vo)) underQy converges weakly top® { asT — o.

As claimed beforeD?d(vo)(- |H y Is a Hilbert-Schmidt function. Write the eigenvalues
and the corresponding elgenvectorsaasandﬁeﬂdvo, me N. Then z,’}‘hlam((a“,W)z - 1)
converges inL?(d{) as N — c. Use: D?®(vp)(W,W) : to denote thelL?(d)-limit of
3 m=18m((em,W)?—1).

It is easy to see that

T/ / zamaﬂxs dsdt——/ ZamemeGem(XsdsHZam (em,W)?2 -1

underQy in distribution for anyN € N, and

su EQxH <1/T/T ®@ (vp; % x)dsdt—i/Té @ (v; ) ds>
T>g T 0 0 0, s /NS T 0 X 0y (XS,XS)

< / / Z amem(Xs)em(X )dsdt— —/ Z amem(Xs) an(xs)ds> }2}

—0
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asN — o, Therefore,

T//CD voXthdsdt——/ G vo,,)(

in distribution asT — 0. Also,

172
= @ (vy:
T /0 Gx®'“ (vp; -, -

Qg-almost surely a§ — o, and

ds—: D?®(vp)(W,W) :

Sa

dS*)/ Gy® vo, , )‘( u)vo(du)

1 /7
TR Vo,?/ S¢dt) —0
JO

underQy in distribution asT — «. Therefore,

T&S(_Il_/oTéxtdQ —:D2®(vo)(W,W) : +/Rd6x¢(2)(vo;-,~) (U’U)Vo(du)

in distribution asT — . This together with Lemma 8.3 give us Lemma 8.2. (|

9. Examples.

In this section, we will give some examples{d }+>o that satisfy our assumptions Al and
A2 in Section 2.
LetU andb be any pair of functions satisfying the following:

EO U € C*(R%R) with [rae"Y™dx < e, andb € C*(R%RY),

E1 There exist constanig > 1 andy; € [y1,y1+ (1/2)(y1— 1)) such that1/2)A + (b—
VU)-V e Ha(ys,y2),

E2 There exist constanyg > 1andy5 € [y7,y;+(1/2)(y; —1)) suchtha(1/2)A —b-V ¢
Ha(y1.v2),

E3 There exists & < [0,(y; —1)/2— (Y, — y})) such thatgo := VU - (b— (1/2)VU) —
div(b—(1/2)VU) € Bgo

Let {R }t>0 be the semi-group of continuous linear operator€giRY) corresponding to

LO:%A—VU~V+b-V.

Let u be the invariant measure ¢R }i~o, Which exists uniquely with all moments finite. Let
R** denote the dual operator Bfin L2(dp).

Let {S }t~0 be the semi-group of continuous linear operator£gfRY) corresponding to
generatof1/2)A —b- V. We show the following:

LEMMA 9.1. R* = Q(R){° for anyt > 0.
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Lemma 9.1 means thdR }+~o satisfies Al and A2 of Section 2. Let us prove it from now
on.
First, let i be the finite measure dR® given by

po(dx) = e Y ™dx

Without loss of generality, we may and do assume tlyas a probability measure. Before giving
the proof of Lemma 9.1, we first show the following:

LEMMA 9.2. Foranyt >0, the dual operatoR ™ of R in L2(dpo) is given by 0 = g

PROOF.  The generator of "}~ is the dual operatdzy of Lo in L2(d o). Note that

/r.zd Lofog(x) f (X) to(dX) = /Rd g(X)Lof (x)e™V¥dx

_ L bve(tau-Ywur b vu _di U
_'Rdf(x)(zA bV+(2AU 2|VU| +b-VU d|vb>>g(x)e dx

forany f,g € C3(RY). So

Lok — %Afb-VJr (;AU —%|VU\2+b~VU —div b>.

This gives us our assertion. O

LEMMA 9.3. /\S:‘fJO = 0. Therefore, for anyr > 0, there exists a uniqugup to constant
multiplicatior) positiveh € BS such thath = F**°h and Q(R)#° = hR**°h~1 for anyt > 0.

PrROOF. We have by Lemma 9.2, E2, E3 and Lemma 4.3 that forany0, there exists a
unique (up to constant multiplication) positiﬁe& BY such thah = e /3%t Pt*“oﬁ for anyt > O.

We show than\ S%0 = 0.

First, we show thah is pip-integrable. By E1 and Lemma 3.2, there exists an0 such
thatinf, _qa Px(|X%| <) > 1/2. Let f be a positive continuous function with compact support
satisfyinginfg, f > 0, whereB, means the ball with centd) and radiusr as before. Then
inf _ga B f(X) > infg, f xinf,_pa P(|X| <) > 0foranyt > 0. On the other hand,

/dﬁRfduoz /'dF}*“O'ﬁfduo:eﬂs""’t/d'ﬁfduo, ©.1)
R JR R

which is finite, sincef € Co(RY) andh is continuous. There[gr&,is Ho-integrable.
So the left hand side of (9.1) convergesfta fdu x [ga hdup ast — co. This gives us that
AS$o — Q. O

PROOF OFLEMMA 9.1. Let h = du/dpp, which is well-defined and positive since
suppu = suppio = RY, and both of them are absolutely continuous with respect to Lebesgue
measure with positive density. Theg™ fgdu = [ R (fh)gh~tdu for any f,g € BS. So
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RHf =h IR*Ho(hf), foranyt >0, f € BY. (9.2)

Therefore, by Lemma 9.3, it is sufficient to shéme constx h. We do this from now on.

SinceR™ 1 =1, (9.2) and Lemma 9.1 give us that

h= S°n. (9.3)

For anyA > 0, considerAhA h. It is trivial that AhA h e BY. Also, sinceSfJO is a monotone non-

decreasing operator, by (9.3) and Lemma 8\8)\ h = S{poah/\ S"’Oﬁ > S”O(ahAﬁ). Therefore,
there exists &, such that

AhAh = bah, for anyA > 0. (9.4)

For anyxo € RY, there exists & > 0 such thatAh(x) < h(xo). S0 (9.4) gives uhh(xo) =
bah(xo), henceb = (ah(xp)) /h(Xp) < 1. Sinceh # 0, this combined with (9.4) give ush= bah.
This completes the proof. O

Finally, let us give some concrete examples that satisfy EO, E1, E2 and E3. For example, let

d=11etA>0,6>0,n>0,¢&>0d/2Vv(n—0—2)be any constants, lgtx) € CJ’(R) such
thaty(x) = [x|~¢~?x for any |x| > 2 andy(x) = x for any|x| < 1, and let

VU (x) = [X|°X—Ay(x)[x|",

) = 2 (bPx— AV X ) +y(x).

Thenb andU satisfy the conditions of this section with =y, =y) =y, =1+ andfy =
-8 <8/2=(y1—1)/2=(y2— V1)
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