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One-parametric selfinjective algebras

By RafałBOCIAN and AndrzejSKOWROŃSKI

(Received May 6, 2004)

Abstract. In continuation of our papers [5], [6] we complete the classification of all one-
parametric selfinjective algebras over algebraically closed fields which admit simply connected
Galois coverings.

0. Introduction.

Throughout the paperK will denote a fixed algebraically closed field. By an algebra we
mean a finite dimensionalK-algebra with an identity, which we shall assume (without loss of
generality) to be basic and connected. For an algebraA, we denote bymodA the category of finite
dimensional rightA-modules and byD the standard dualityHomK(−,K) on modA. An algebra
A is calledselfinjectiveif A∼= D(A) in modA, that is, the projectiveA-modules are injective.

From Drozd’s remarkable Tame and Wild theorem [10] the class of algebras may be divided
into two disjoint classes. One class consists of the tame algebras for which the indecomposable
modules occur, in each dimensiond, in a finite number of discrete and a finite number of one-
parametric families. The second class is formed by the wild algebras whose representation theory
comprises the representation theories of all finite dimensionalK-algebras. Accordingly we may
realistically hope to classify the indecomposable finite dimensional modules only for the tame
algebras. A special class of tame algebras is formed by the algebras of finite representation type
having only finitely many isomorphism classes of indecomposable finite dimensional modules.
The representation theory of algebras of finite representation type is presently well understood,
and in particular all selfinjective algebras of finite representation type are classified [8], [18],
[19]. The representation theory of arbitrary tame algebras is still only emerging.

We are concerned with the problem of classification of all one-parametric selfinjective al-
gebras. Recall that an algebraA of infinite representation type is calledone-parametricif there
exists aK[x]-A-bimoduleM which is finitely generated and free as leftK[x]-module and, for any
dimensiond, all but a finite number of isomorphism classes of indecomposable (right)A-modules
of dimensionald are of the formK[x]/(x−λ )m⊗M for someλ ∈ K and somem> 1. We also
mention that the class of one-parametric algebras coincides with the class of algebras having
exactly one generic module [9]. By general theory, the class of one-parametric selfinjective al-
gebras splits into two classes: thestandard algebras, having simply connected Galois coverings,
and the remainingnonstandard algebras. It is expected that the nonstandard one-parametric
(even the representation-infinite domestic) selfinjective algebras occur only in characteristic2
and are geometric deformations of standard one-parametric selfinjective algebras. In [5], [6] we
classified all weakly symmetric standard (selfinjective) algebras, by algebras arising from Brauer
graphs. In particular, we proved that the class of all weakly symmetric standard one-parametric
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algebras coincides with the class of all weakly symmetric algebras of Euclidean type with non-
singular Cartan matrix. Recall that a selfinjective algebraA is called aselfinjective algebra of
Euclidean typeif A is isomorphic to an orbit algebrâB/G, whereB̂ is the repetitive algebra of
a tilted algebraB of Euclidean type∆ ∈ {ÃAAm, D̃DDn, ẼEE6, ẼEE7, ẼEE8} andG is an admissible infinite
cyclic group ofK-automorphisms of̂B. Moreover, a selfinjective algebraA is calledweakly sym-
metric if the soclesocP of any indecomposable projectiveA-moduleP is isomorphic to its top
P/radP. Here, we associate to a Brauer graphT with exactly one cycle, a nontrivial rotation
σs and λ ∈ K · {o} (respectively, a Brauer treeT with two distinguished vertices31, 32) a
one-parametric selfinjective algebraΩ (1)(T,σs,λ ) of Euclidean typẽAAAm (respectively, a one-
parametric selfinjective algebraΩ (2)(T,31,32) of Euclidean typẽDDDn).

The aim of this paper is to prove the following theorem.

THEOREM 1. Let A be a basic connected selfinjective algebra having a simply connected
Galois covering. Then A is one-parametric but not weakly symmetric if and only if A is isomor-
phic to an algebra of one of the formsΩ (1)(T,σs,λ ) or Ω (2)(T,31,32).

For basic background on the representation theory of algebras we refer to [4], [20], and on
selfinjective algebras to [11], [25].

1. One-parametric selfinjective algebras of Euclidean typẽAAAmmm.

It is known (see [12], [22]) that the class of one-parametric selfinjective algebras of Eu-
clidean typẽAAAm coincides with the class of one-parametric special biserial selfinjective algebras.
Recall that following [23] an algebraA is calledspecial biserialif it is isomorphic to a bound
quiver algebraKQ/I , where the bound quiver(Q, I) satisfies the following conditions:

(SP1) The number of arrows inQ with a prescribed source or sink is at most two,
(SP2) For any arrowα of Q, there is at most one arrowβ and at most one arrowγ such that

αβ andγα are not inI .

A Brauer graph Tis a finite connected undirected graph, where for each vertex there is
a fixed circular order on the edges adjacent to it (see [1], [15], [17], [21]). In our context we
assume thatT has at most one cycle (which may be or may not be a loop). We drawT in a plane
and agree that the edges adjacent to a given vertex are clockwise ordered. Given a Brauer graph
T, this defines aBrauer quiver QT as follows. The vertices ofQT are the edges ofT and there is
an arrowi −→ j in QT if and only if in T j is the direct successor ofi in the order around some
vertex (to whichi and j are both adjacent). We require that every vertex ofQT belongs to exactly
two cycles. Note that this implicitly means that, for every end vertex ofT, there is a loop inQT .

Let T be a Brauer graph with exactly one cycleRk, havingk > 2 of edges. We drawT
in the plane and agree that the vertices and edges of the cycleRk are clockwise ordered. Let
31,32, . . . ,3k be the vertices ofRk andei = {3i ,3i+1}, i = 1,2, . . . ,k, where3k+1 = 31, the edges
of Rk. If 3 is a vertex of the Brauer graphT which is not a vertex of the cycleRk then byn(3)
we denote the edge incidence to3 on the unique walk inT from 3 to the cycleRk. Moreover,
for i = 1,2, . . . ,k, we denote byn(3i) the edgeei . For a vertex3 of the graphT, we denote by
l(Rk,3) the distance of3 to the cycleRk. Hencel(Rk,3) = 0 if and only if 3 belongs toRk. By an
automorphism of the Brauer graph Twe mean an automorphism of the graphT which preserves
the fixed circular order on the edges adjacent to any vertex.A rotationof the Brauer graphT is
an automorphismσ of the Brauer graphT such that, for some integers with 1 6 s6 k−1, we
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haveσ(3i) = 3i+s for all i = 1,2, . . .k (wherek+ r = r for r > 1), and then we setσ = σs. For
k = 2, we setσ1(e1) = e2 andσ1(e2) = e1.

Assume thats is a positive integer such that1 6 s6 k−1 andgcd(s+2,k) = 1. We shall
define a generalized Brauer quiverQT,σs, obtained from the usual Brauer quiverQT of the Brauer
graphT by shifting some arrows ofQT using the rotationσs of T. By a σs-orbit of a vertex3
of T we mean the orbit of3 with respect to the action of the cyclic group(σs) generated byσs

on the vertices ofT. We note that if two vertices3 andw of T belong to the sameσs-orbit then
l(Rk,3) = l(Rk,w). Moreover, allσs-orbits of vertices ofT have the same number of elements,
namelyk/d, whered = gcd(s,k). For m > 0, denote byVm the set of all vertices ofT with
l(Rk,3) = m. Observe thatVm is a disjoint union ofd|Vm|/k σs-orbits.

In order to define the generalized Brauer quiverQT,σs, we introduce an orderp(T,σs) of
the edges of the Brauer graphT, as the union of∑∞

m=0(d|Vm|/k) cyclic ordersp(T,σs,3) defined
for the representatives3 of all pairwise differentσs-orbits of vertices ofT. Let 3 be a vertex of
T. We define the cyclic orderp(T,σs,3) invoking the cyclic orders of edges around the vertices

3,σs(3), . . . ,σ
k/d−1
s (3) in the Brauer graphT. Let r ∈ {0,1, . . . ,k/d−1} andi be an edge ofT ad-

jacent to the vertexσ r
s(3), and j be the direct successor ofi in the cyclic order inT aroundσ r

s(3).
If j 6= n(σ r

s(3)), then j is defined to be the direct successor ofi in the cyclic orderp(T,σs,3). For
j = n(σ r

s(3)), n(σ r+1
s (3)) = σs(n(σ r

s(3))) is said to be the direct successor ofi in the cyclic order
p(T,σs,3). Therefore, we replaced the cyclic orders around the verticesσ r

s(3), 0 6 r 6 k/d−1,
by one (bigger) cyclic orderp(T,σs,3). Observe also that ife= {3,w} is an edge ofT which
is not on the cycleRk, or e is on the cycleRk andd > 1, thene belongs to exactly two cyclic
orders, namelyp(T,σs,3) andp(T,σs,w). On the other hand, ife= {3,w} is an edge of the cycle
Rk andd = 1, theneoccurs twice in the cyclic orderp(T,σs,3) = p(T,σs,w).

EXAMPLE 1.1. Let T be the following Brauer graph with rotationσ2 defined on the edges
as follows: σ2(1) = 3, σ2(2) = 1, σ2(3) = 2, σ2(4) = 6, σ2(5) = 4, σ2(6) = 5, σ2(7) = 11,
σ2(8) = 12, σ2(9) = 7, σ2(10) = 8, σ2(11) = 9, σ2(12) = 10, σ2(13) = 19, σ2(14) = 20,
σ2(15) = 21, σ2(16) = 13, σ2(17) = 14, σ2(18) = 15, σ2(19) = 16, σ2(20) = 17, σ2(21) = 18,
σ2(22) = 24, σ2(23) = 22, σ2(24) = 23,
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Then the orderp(T,σ2) is the union of the following eight cycles:

(1) 4,3,24,2,6,2,23,1,5,1,22,3, (2) 4,7,8,6,11,12,5,9,10,
(3) 7,13,11,19,9,16, (4) 8,14,15,12,20,21,10,17,18,
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(5) 13,19,16, (6) 14,20,17,
(7) 15,21,18, (8) 22,24,23.

We definethe generalized Brauer quiver QT,σs as follows. The vertices ofQT,σs are the
edges ofT and there is an arrowi −→ j in QT,σs if and only if j is the direct successor ofi in the
orderp(T,σs).

For λ ∈ K · {o}, we define the algebraΩ (1)(T,σs,λ ) as the bound quiver algebra

KQT,σs/I
(1)(T,σs,λ ), whereKQT,σs is the path algebra of the quiverQT,σs and I

(1)(T,σs,λ )
is the ideal inKQT,σs generated by the elements:

(1) αβ whereα = i1 −→ i2, β = i2 −→ i3 andi1, i2, i3 are not consecutive elements in the
cyclic orderp(T,σs).

(2) C(i, p(T,σs,3))−C(i, p(T,σs,w)), for i 6= e1 andC(e1, p(T,σs,3))− λC(e1, p(T,σs,

w)), for i = e1, where i = {3,w} is an edge ofT, C(i, p(T,σs,3)) and C(i, p(T,σs,w))
are the paths fromi to σs(i) in the quiverQT,σs, corresponding to the consecutive elements
i, . . . ,σs(i) of the cyclic ordersp(T,σs,3) andp(T,σs,w), respectively.

EXAMPLE 1.2. For the Brauer graph from Example 1.1, the generalized Brauer quiver
QT,σ2 is of the form
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and Ω (1)(T,σ2,λ ), for λ ∈ K · {o}, is given by the above quiver and the idealI
(1)(T,σ2,λ )

in KQT,σ2 generated by the elements:α1β22, α2β23, α3β24, β22α24, β23α22, β24α23, γ1β5,
β12γ5, γ3β4, β10γ4, γ2β6, β8γ6, β5α9, α19β9, β9α10, α21β10, β4α7, α16β7, β7α8, α18β8,
β6α11, α13β11, β11α12, α9β16, α7β13, β16α13, α11β19, β13α19, α10β17, β20α17, α17β18, β21α18,
α8β14, β17α14, α14β15, β18α15, α12β20, β14α20, α20β21, β15α21, α15β12, β19α16, α23α1,
α22α3, α24α2, γ6γ2, γ4γ3, γ5γ1, α1α22γ3γ4−λγ1γ5α1α22, α2α23γ1γ5− γ2γ6α2α23, α3α24γ2γ6−
γ3γ4α3α24, γ4α3α24γ2−β4β7β8, γ5α1α22γ3−β5β9β10, γ6α2α23γ1−β6β11β12, β7β8β6−α7α13,
β8β6β11−α8α14α15, β9β10β4−α9α16, β10β4β7−α10α17α18, β11β12β5−α11α19, β12β5β9−
α12α20α21, α13α11− β13, α14α15α12− β14, α15α12α20− β15, α16α7− β16, α17α18α8− β17,
α18α8α14−β18, α19α9−β19, α20α21α10−β20, α21α10α17−β21, α22γ3γ4α3−β22, α23γ1γ5α1−
β23, α24γ2γ6α2−β24.

PROPOSITION1.3. Let T be a Brauer graph,σs be a rotation of T andλ ∈ K · {o}
such that the algebraΩ (1)(T,σs,λ ) is defined. ThenΩ (1)(T,σs,λ ) is a special biserial one-
parametric selfinjective algebra of Euclidean typeÃAAm, and is not weakly symmetric.

PROOF. It follows from definition that the algebraΩ (1)(T,σs,λ ) is special biserial. Fur-

ther, the bound quiver(QT,σs, I
(1)(T,σs,λ )) of Ω (1)(T,σs,λ ) contains a primitive walk (in the

sense of [24]) of the form

1
+ //

+

²²

s+2 s+3
+oo + // 2(s+2) 2(s+2)+1

+oo

+
²²
...

+

²²
k(s+2) · · ·+oo + // (r +1)(s+2) r(s+2)+1

+oo + // r(s+2),

where
+ // is a path of length at least one and the vertexi of the generalized Brauer quiver

QT,σs corresponds to the edgeei of the cycleRk. In fact, this primitive walk is the unique prim-

itive walk of the bound quiver
(
QT,σs, I

(1)(T,σs,λ )
)
, becausegcd(s+ 2,k) = 1. Consequently

Ω (1)(T,σs,λ ) is a one-parametric selfinjective algebra of Euclidean typeÃAAm (see [12], [22]).
Moreover, for each vertexi of the quiverQT,σs, we havetop(P(i))∼= soc(P(σs(i)))� soc(P(i)),
and hence the algebraΩ (1)(T,σs,λ ) is not weakly symmetric. ¤

2. One-parametric selfinjective algebras of Euclidean typẽDDDnnn.

Let T be a Brauer tree. Then the simple cycles of the Brauer quiverQT may be divided
into two camps,α-camps andβ -camps, in such a way that any two cycles which intersect non-
trivially belong to different camps. We denote byαi (respectively,βi) the arrow of theα-camp
(respectively,β -camp) ofQT starting at a vertexi, and byα(i) (respectively,β (i)) the end vertex
of αi (respectively,βi). We also denote byAi (respectively,Bi) the cycle fromi to i going once
around theα-cycle (respectively,β -cycle) throughi.
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Let T be a Brauer tree with two (different) distinguished vertices31 and32 such that31 is
the end of exactly one edgea. Let the edgeb be the direct successor of the edgea andc be the
direct predecessor of the edgea in the cyclic order of edges at the end vertexu of a different
from 31. The vertices31, 32 and edgesb, c determine a subtree
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of the Brauer treeT, where possiblyu = 32, 32 = 33, b = e, c = e, b = c = e, but every time
a 6= b anda 6= c. We assume that the Brauer quiverQT has exactly one exceptional cycle (with
multiplicity two) given by the edges ofT converging at the exceptional vertex32. Moreover, we
assume that the cycle inQT corresponding to the vertexu is anα-cycle.

We define the algebraΩ (2)(T,31,32) as the bound quiver algebraKQ
(2)
T /I

(2)(T,31,32),
whereKQ

(2)
T is the path algebra of the quiver

Q
(2)
T = ((QT)0∪{w},(QT)1∪{γ1 : c−→ w,γ2 : w−→ b}\{βa : a−→ a})

andI
(2)(T,31,32) is the ideal inKQ

(2)
T generated by the elements:

(1) αiβα(i), for all verticesi of QT different fromc,
(2) βiαβ (i), for all verticesi of QT different froma,
(3) A j −B j , if the bothα-cycle andβ -cycle through the vertexj are not exceptional,
(4) A2

j −B j , if the α-cycle through the vertexj is exceptional but theβ -cycle throughj is
not exceptional,

(5) A j −B2
j , if the α-cycle through the vertexj is not exceptional but theβ -cycle through

the vertexj is exceptional,
(6) γ2βb, ββ−1(c)γ1,
(7) γ2αb . . .αα−1(c)γ1, Aa (γ2γ1, Aa, if b = c = e), if the α-cycle through the vertexa is not

exceptional,
(8) γ2Abαb . . .αα−1(c)γ1, A2

a (γ2Abγ1, A2
a, if b= c = e), if the α-cycle through the vertexa is

exceptional,
(9) αcαa− γ1γ2.

In order to prove the main proposition of this section we recall the description of excep-
tional tilted algebras of Euclidean typẽDDDn presented in [6]. Let B be a representation-infinite
tilted algebra of Euclidean typẽDDDn and{e1,e2, . . . ,em} (m= n+1) a complete set of primitive
orthogonal idempotents ofB such that1B = e1 +e2 + . . .+em. Recall that therepetitive algebra
B̂ of B is the locally finite dimensional algebra without identity [14]

B̂ =
⊕

k∈ZZZ

(Bk⊕Qk),
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whereBk = B andQk = D(B) for all k∈ ZZZ, and the multiplication in̂B is defined by

(ak, fk)k · (bk,1k)k = (akbk,ak1k + fkbk−1)k

for ak,bk ∈ Bk, fk,1k ∈ Qk. Then we have the canonical setE = {ek,i |1 6 i 6 m,k ∈ ZZZ} of
primitive orthogonal idempotents of the repetitive algebraB̂ such thatek,1 + ek,2 + . . .+ ek,m is
the identity of the diagonal algebraBk = B of B̂. By an automorphismof B̂ we mean aK-
algebra automorphism of̂B which fixes the setE . A groupG of automorphisms of̂B is called
admissibleif G acts freely on the setE and has finitely many orbits. Then the orbit algebra
B̂/G is defined (see [13] for details) and is a (finite dimensional) selfinjective algebra. The
action of the Nakayama automorphismνB̂ of B̂ on the setE is given byνB̂(ek,i) = ek+1,i for
(k, i) ∈ ZZZ×{1,2, . . . ,m}, the infinite cyclic group(νB̂) is admissible, and̂B/(νB̂) is isomorphic
to the trivial extensionT(B) = BnD(B). An automorphismη of B̂ is said to berigid (see [22]) if
for any(k, i) ∈ ZZZ×{1,2, . . . ,m} there existsj ∈ {1,2, . . . ,m} such thatη(ek,i) = ek, j . Moreover,
an automorphismρ of B̂ is said to benontrivial if ρ(ek,i) 6= ek,i for some(k, i)∈ZZZ×{1,2, . . . ,m}.

Denote byQB the (Gabriel) quiver ofB with the set of vertices{1,2, . . . ,m}. For each
vertex i of QB, denote byPB(i) the indecomposable projectiveB-moduleeiB and byIB(i) the
indecomposable injectiveB-moduleD(Bei). Then, for a sinki of QB, thereflection S+i B of B at
i is the quotient of the one-point extensionB[IB(i)] by the two-sided ideal generated byei . The
quiverσ+

i QB of S+
i B is called thereflection of QB at i. Observe that the sinki of QB is replaced in

σ+
i QB by a sourcei′. Moreover, we havêB∼= Ŝ+

i B. A reflection sequence of sinksis a sequence
i1, i2, . . . , it of vertices ofQB such thatis is a sink ofσ+

is−1
. . .σ+

i1
QB for 1 6 s6 t (see [14, (2.8)]).

Following [22] the tilted algebraB is said to beexceptionalif there exists a reflection sequence
i1, i2, . . . , it of sinks such thatt < m andB∼= S+

it
. . .S+

i1
B. Recall from [22, Proposition 2.13] that

the tilted algebraB is exceptional if and only if there exists an automorphismϕ of the repetitive
algebraB̂ such thatϕ2 = ρνB̂, for some rigid automorphismρ of B̂.

The following known fact (see [4, Section4] and [22, Section 2]) explains our interest in the
exceptional tilted algebras of typẽDDDn.

PROPOSITION2.1. Let A be a selfinjective algebra of Euclidean typeD̃DDn. Then A is
one-parametric if and only if A∼= B̂/(ϕ) for an exceptional tilted algebra B of typẽDDDn and an
automorphismϕ of B̂ such thatϕ2 = ρνB̂, for a rigid automorphismρ of B̂. Moreover, A∼= B̂/(ϕ)
is weakly symmetric if and only ifϕ2 = νB̂ (ρ is trivial).

Recall from [20, (4.9)] that an algebraB is a representation-infinite tilted algebra of an
Euclidean typẽDDDn if and only if B is a tubular extension or a tubular coextension of tubular type
(2,2,n−2) of a tame concealed algebra of typeÃAAp or D̃DDq, for some1 6 p < n and4 6 q 6 n.
Moreover, we know from [2, Propositions 2.6 and 3.5] that the class of repetitive algebrasB̂ of
tilted algebrasB of Euclidean types̃DDDn, n > 4, coincides with the class of repetitive algebrasB̂
of tubular extensions (equivalently, tubular coextensions)B of tubular types(2,2,n−2) of tame
concealed algebras of typesÃAAp andD̃DDq, p > 1, q > 4. A tubular extensionB of a tame concealed

algebraC of type ÃAAp or D̃DDq, p > 1, q > 4, by a finite sequence of pairwise nonisomorphic
simple regular, but not simple,C-modules and a finite family of branches is called aspecial
tubular extension of C. We describe first all exceptional special tubular extensions of tubular type

(2,2,n−2), n > 4, of tame concealed algebras of typesÃAAp or D̃DDq. We abbreviate by ¾s t(m,αi)
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the quiver of the form

s (s,1)
αi,s,1 (s,2)

αi,s,2 (s,m−1) t
αi,s,m¾ ¾ ¾ qqq ¾ ,

where form = 1 ¾s t(m,αi) is the arrow ¾s t
αi,s,1

, and form = 0 ¾s t(m,αi) is the point
s= t.

Consider the following families of algebrasΘ (i)(l ,m), 0 6 i 6 8:
(0) Θ (0)(l ,m) = KQ(0)(l ,m)/I (0)(l ,m), wherel = 1, m> 2 andl -tuplem= (m), Q(0)(l ,m)

is of the form
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and the idealI (0)(l ,m) is generated byβ3,1α1,m, ηδγ−ηα1,mα1,m−1 . . .α1,2α1,1.

(1) Θ (1)(l ,m) = KQ(1)(l ,m)/I (1)(l ,m), wherel > 2 is even,m= (m1,m2, . . . ,ml+1) is an
(l +1)-tuple of positive integers,Q(1)(l ,m) is of the form

A
A
A
AAU

¢
¢

¢
¢¢®

¢
¢

¢
¢¢®

¢
¢

¢
¢¢®

A
A
A
AAU

C
C
C
C
C
C
C
C
CCW

p p p
¢

¢
¢

¢¢®

C
C
C
C
C
C
C
C
CCW

¢
¢

¢
¢¢®

A
A
A
AAU

¤
¤
¤
¤¤²

¤
¤
¤
¤¤²

A
A
A
AAU

A
A
A
AAU

¢
¢

¢
¢¢®

-

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²?

¢
¢

¢
¢¢®

¢
¢

¢
¢¢®

l +1 l +2 2l −3 2l −22l −1 2l 2l +1

(
ml+1−1

α2l−1

) (
ml−2−1

αl+1

) (
ml−1−1

αl+2

) (
m2−1
α2l−3

) (
m3−1
α2l−2

) (
ml −1

α2l

) (
m1−1
α2l+1

)

1

2

3

l −2

l −1

l

x1

x3

x2

y1

y3

y2

z1 z2

(
m1
α1

)

(
m2
α2

) (
ml−2
αl−2

) (
ml−1
αl−1

)

β1

β2

γ1

(
ml
γ2

)

δ1

δ2

ξ1

(
ml+1

ξ2

)

η1

η2

and the idealI (1)(l ,m) is generated byγ1γ2,x3,ml γ2,x3,ml−1 . . .γ2,x3,1 − β1β2, αl+1,2,1α1,1,m1,
αl+2,2,1α2,3,m2, . . ., α2l−3,l−2,1αl−3,l−3,ml−3, α2l−2,l−2,1αl−2,l−1,ml−2, η1γ1, η2αl−1,l−1,ml−1,
α2l+1,y1,1ξ1, δ1δ2−ξ1ξ2,y3,ml+1ξ2,y3,ml+1−1 . . .ξ2,y3,1;
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(2) Θ (2)(l ,m) = KQ(2)(l ,m)/I (2)(l ,m), wherel > 2 is even,m = (m1,m2, . . . ,ml ) is an
l -tuple of positive integers,Q(2)(l ,m) is of the form

A
A
A
AAU

¢
¢

¢
¢¢®

¢
¢

¢
¢¢®

¢
¢

¢
¢¢®

A
A
A
AAU

C
C
C
C
C
C
C
C
CCW

p p p
¢

¢
¢

¢¢®

C
C
C
C
C
C
C
C
CCW

¢
¢

¢
¢¢®

A
A
A
AAU

¤
¤
¤
¤¤²

¤
¤
¤
¤¤²

A
A
A
AAU

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²

¢
¢

¢
¢¢®

¢
¢

¢
¢¢®

l +1 l +2 2l −3 2l −2 2l −1 2l

(
ml−2−1

αl+1

) (
ml−1−1

αl+2

) (
m2−1
α2l−3

) (
m3−1
α2l−2

) (
ml −1
α2l−1

) (
m1−1

α2l

)

1

2

3

l −2

l −1

l

x1

x3

x2

y1

y3

z2

(
m1
α1

)

(
m2
α2

) (
ml−2
αl−2

) (
ml−1
αl−1

)

β1

β2

γ1

(
ml
γ2

)

δ1

δ2

η2

and the idealI (2)(l ,m) is generated byη2αl−1,l−1,ml−1, γ1γ2,x3,ml γ2,x3,ml−1 . . .γ2,x3,1 − β1β2,
αl+1,2,1α1,1,m1, αl+2,2,1α2,3,m2, · · · , α2l−3,l−2,1αl−3,l−3,ml−3, α2l−2,l−2,1αl−2,l−1,ml−2, α2l ,y1,1δ1δ2;

(3) Θ (3)(l ,m) = KQ(3)(l ,m)/I (3)(l ,m), wherel > 2 is even,m = (m1,m2, . . . ,ml ) is an
l -tuple of positive integers,Q(3)(l ,m) is of the form

A
A
A
AAU

¢
¢

¢
¢¢®

¢
¢

¢
¢¢®

C
C
C
C
C
C
C
C
CCW

p p p
¢

¢
¢

¢¢®

C
C
C
C
C
C
C
C
CCW

¢
¢

¢
¢¢®

A
A
A
AAU

¤
¤
¤
¤¤²

¤
¤
¤
¤¤²

A
A
A
AAU

¢
¢

¢
¢¢®

-

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²? ?

l +1 l +2 2l −3 2l −22l −1 2l

(
ml −1
α2l−1

) (
ml−2−1

αl+1

) (
ml−1−1

αl+2

) (
m2−1
α2l−3

) (
m3−1
α2l−2

) (
m1−1

α2l

)

1

2

3

l −2

l −1

l

x1

x3

y1

y3

y2

z1

(
m1
α1

)

(
m2
α2

) (
ml−2
αl−2

) (
ml−1
αl−1

)

β1

β2

δ1

δ2

ξ1

(
ml
ξ2

)

η1

and the idealI (3)(l ,m) is generated byη1β1β2, δ1δ2− ξ1ξ2,y3,ml ξ2,y3,ml−1 . . .ξ2,y3,1, α2l ,y1,1ξ1,
αl+1,2,1α1,1,m1, αl+2,2,1α2,3,m2, · · · , α2l−3,l−2,1αl−3,l−3,ml−3, α2l−2,l−2,1αl−2,l−1,ml−2;
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(4) Θ (4)(l ,m) = KQ(4)(l ,m)/I (4)(l ,m), wherel > 2 is even,m= (m1,m2, . . . ,ml−1) is an
(l −1)-tuple of positive integers,Q(4)(l ,m) is of the form

A
A
A
AAU

¢
¢

¢
¢¢®

¢
¢

¢
¢¢®

C
C
C
C
C
C
C
C
CCW

p p p
¢

¢
¢

¢¢®

C
C
C
C
C
C
C
C
CCW

¢
¢

¢
¢¢®

A
A
A
AAU

¤
¤
¤
¤¤²

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤² ?

l +1 l +2 2l −3 2l −2 2l −1

(
ml−2−1

αl+1

) (
ml−1−1

αl+2

) (
m2−1
α2l−3

) (
m3−1
α2l−2

) (
m1−1
α2l−1

)

1

2

3

l −2

l −1

l

x1

x3

y1

y3

(
m1
α1

)

(
m2
α2

) (
ml−2
αl−2

) (
ml−1
αl−1

)

β1

β2

δ1

δ2

and the idealI (4)(l ,m) is generated byα2l−1,y1,1δ1δ2, αl+1,2,1α1,1,m1, αl+2,2,1α2,3,m2, · · · ,
α2l−3,l−2,1αl−3,l−3,ml−3, α2l−2,l−2,1αl−2,l−1,ml−2;

(5) Θ (5)(l ,m) = KQ(5)(l ,m)/I (5)(l ,m), wherel > 2 is even,m= (m1,m2, . . . ,ml−1) is an
(l −1)-tuple of positive integers,Q(5)(l ,m) is of the form

A
A
A
AAU

¢
¢
¢
¢¢̧

¢
¢

¢
¢¢®

C
C
C
C
C
C
C
C
CCW

p p p
¢

¢
¢

¢¢®

C
C
C
C
C
C
C
C
CCW

¢
¢
¢
¢¢̧

A
A
A
AAU

¤
¤
¤
¤¤²

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²

?

l +1 l +2 2l −3 2l −2

2l −1

(
ml−2−1

αl+1

) (
ml−1−1

αl+2

) (
m2−1
α2l−3

) (
m3−1
α2l−2

)

(
m1−1
α2l−1

)

1

2

3

l −2

l −1

l

x1

x3

y1

y3

(
m1
α1

)

(
m2
α2

) (
ml−2
αl−2

) (
ml−1
αl−1

)

β1

β2

δ1

δ2

and the idealI (5)(l ,m) is generated byα2l−1,l ,1δ1, α2l−1,l ,1δ2, αl+1,2,1α1,1,m1, αl+2,2,1α2,3,m2, · · · ,
α2l−3,l−2,1αl−3,l−3,ml−3, α2l−2,l−2,1αl−2,l−1,ml−2;
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(6) Θ (6)(l ,m) = KQ(6)(l ,m)/I (6)(l ,m), wherel > 2 is even,m= (m1,m2, . . . ,ml+1) is an
(l + 1)-tuple of integers withm1 > 1, m2 > 1, . . ., ml−1 > 1, ml > 0, ml+1 > 0, Q(6)(l ,m) is of
the form

A
A

A
AAK

¢
¢

¢
¢¢®

¢
¢

¢
¢¢®

C
C
C
C
C
C
C
C
CCW

p p p
¢

¢
¢

¢¢®

C
C
C
C
C
C
C
C
CCW

¢
¢

¢
¢¢®

A
A

A
AAK¤

¤
¤
¤¤²

¤
¤
¤
¤¤² A

A
A

AAK

¢
¢

¢
¢¢®

¤
¤
¤
¤¤²

C
C
C
CCW?

C
C
C
CCW

¤
¤
¤
¤¤²

XXXXXXXz ? ?

C
C
C
CCW

- z1l +2 2l −3 2l −2

2l −1

2l 2l +1

2l +2

2l +3

(
ml+1
α2l−1

)

(
ml−2−1

αl+1

)

(
ml−1−1

αl+2

)

(
m2−1
α2l−3

) (
m3−1
α2l−2

)

(
ml
α2l

) (
m1−1
α2l+1

)

(
ml+1
α2l+2

)

(
ml

α2l+3

)

1

2

3

l −2

l −1

l

x1

x3

y1

y3

z2

l +1

(
m1
α1

)

(
m2
α2

) (
ml−2
αl−2

) (
ml−1
αl−1

)

β1

β2

δ1

δ2

ξ1

ξ2

η1

and the idealI (6)(l ,m) is generated byη1α2,3,m2 (if l > 4), αl+1,2,1α1,1,m1, αl+3,4,1α3,3,m3,
αl+4,4,1α4,5,m4, · · · , α2l−3,l−2,1αl−3,l−3,ml−3, α2l−2,l−2,1αl−2,l−1,ml−2, α2l+1,z2,1α2l+2,2l+2,ml+1,
α2l−1,1,1β1, α2l−1,1,1β2, ξ1δ1−ξ2δ2;

(7) Θ (7)(l ,m) = KQ(7)(l ,m)/I (7)(l ,m), wherel > 1 is odd,m= (m1,m2, . . . ,ml ) is an l -
tuple of integers withm1 > 1, m2 > 1, . . ., ml−1 > 1, ml > 0, Q(7)(l ,m) is of the form

A
A
A
AAU

¢
¢
¢
¢¢̧

¢
¢

¢
¢¢®¢

¢
¢
¢¢̧

A
A
A
AAU

C
C
C
C
C
C
C
C
CCW

p p p

¤
¤
¤
¤
¤
¤
¤
¤
¤¤²

¢
¢
¢
¢¢̧

A
A
A
AAU

¤
¤
¤
¤¤²

C
C
C
CCW

A
A
A
AAU

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

C
C
C
CCW ?

¤
¤
¤
¤¤²

l +1 l +2 2l −3
2l −2

2l −1

2l

(
ml−1−1

α2l−1

)

(
ml−3−1

αl+1

) (
ml−2−1

αl+2

) (
m1−1
α2l−3

)
(

ml
α2l−2

)

(
ml
α2l

)

1

2

3 l −2

l

x1

x3

z1

y1

y3

l −1
(

m1
α1

)

(
m2
α2

)

(
ml−2
αl−2

)
(

ml−1
αl−1

)

β1

β2

γ1

γ2

δ1

δ2

and the ideal I (7)(l ,m) is generated byα2l−1,z1,1α2l ,2l ,m2l , γ1β1 − γ2β2, αl+1,2,1α1,1,m1,
αl+2,2,1α2,3,m2, · · · , α2l−5,l−3,1αl−4,l−4,ml−4, α2l−4,l−3,1αl−3,l−2,ml−3, α2l−3,l−1,1αl−1,l ,ml−1,
α2l−2,l ,1δ1, α2l−2,l ,1δ2;
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(8) Θ (8)(l ,m) = KQ(8)(l ,m)/I (8)(l ,m), wherel > 3 is odd,m= (m1,m2, . . . ,ml ) is an l -
tuple of integers withm1 > 1, m2 > 1, . . ., ml−1 > 1, ml > 0, Q(8)(l ,m) is of the form

A
A

A
AAK

¢
¢

¢
¢¢®

A
A
A
AAU

¤
¤
¤
¤
¤
¤
¤
¤
¤¤²

p p p
¢

¢
¢

¢¢®

C
C
C
C
C
C
C
C
CCW

¢
¢

¢
¢¢®

A
A

A
AAK

C
C
C
CCW

¤
¤
¤
¤¤²

¢
¢

¢
¢¢®

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²

?
XXXXXXXXz

HHHHHHHHHj?

l +1 l +2 2l −4 2l −3

2l −2

2l

2l −1

2l +1

(
ml−4−1

αl+1

) (
ml−3−1

αl+2

) (
m1−1
α2l−4

) (
m2−1
α2l−3

)

(
ml

α2l−2

)

(
ml−2−1

α2l

)

(
ml−1−1

α2l−1

)

(
ml

α2l+1

)

1

2

3 l −2

l −1

l

x1

x3

y1

y3

z1

(
m1
α1

)

(
m2
α2

)
(

ml−2
αl−2

) (
ml−1
αl−1

)

β1

β2

δ1

δ2

η1

and the ideal I (8)(l ,m) is generated byα2l ,1,1β1, α2l ,1,1β2, η1α1,2,m1, αl+1,3,1α2,2,m2,
αl+2,3,1α3,4,m3, · · · , α2l−4,l−2,1αl−3,l−3,ml−3, α2l−3,l−2,1αl−2,l−1,ml−2, α2l−2,l ,1αl−1,l−1,ml−1.

The algebrasΘ (0)(l ,m) are tubular extensions of tubular type(2,2,n−2) of hereditary al-
gebras of types̃AAAp, while the algebrasΘ (i)(l ,m), 16 i 6 8, are tubular extensions of tubular type
(2,2,n−2) of tame concealed algebras of typesD̃DDq. Then we have the following consequences
of [6, Proposition 2.3, 2.7 and Corollary 2.9].

PROPOSITION2.2. An algebra B is an exceptional special tubular extension of tubular
type (2,2,n− 2), n > 4, of a tame concealed algebra C of typeÃAAp or D̃DDq if and only if B∼=
Θ (i)(l ,m) for some i with0 6 i 6 8, l > 1, and a tuple msuch that the algebraΘ (i)(l ,m) is
defined.

PROPOSITION2.3. Let B be an exceptional algebra which is a special tubular extension
of tubular type(2,2,n−2), n> 4, of a tame concealed algebra C of typeÃAAp or D̃DDq. Then there
exists an automorphismϕ of B̂ such thatϕ2 = νB̂.

Let Θ (i)(l ,m), with 0 6 i 6 8, be an exceptional special tubular extension of tubular type
(2,2,n−2) of a tame concealed algebraC of typeÃAAp or D̃DDq. Take a familyS of one-dimensional
simple regularC-modules lying in the stable tube ofΓC, used in the special tubular extension
Θ (i)(l ,m) of C, and a familyB of branches (in the sense of [20, (4.4)]) indexed byS . We

denote byΘ (i)(l ,m,B) the tubular extension ofΘ (i)(l ,m) using the modules fromS and the

associated branches fromB. Observe thatΘ (i)(l ,m,B) is a tubular extension ofC of tubular

type (2,2, r − 2), for somer > n. Clearly,Θ (i)(l ,m,B) = Θ (i)(l ,m) if S andB are empty.

We also note thatΘ (i)(l ,m,B) is not exceptional ifS andB are nonempty. But we have the
following fact proved in [6, Proposition 2.11].

PROPOSITION2.4. There is a unique exceptional tubular extensionΘ (i)(l ,m,B), 0 6
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i 6 8, of C of tubular type(2,2,s−2), s> n, containingΘ (i)(l ,m,B) as a convex subalgebra.

Moreover, there exists an automorphismϕ of ̂Θ (i)(l ,m,B) such thatϕ2 = ν ̂Θ (i)(l ,m,B)
.

We recall the construction of the algebrasΘ (i)(l ,m,B) presented in the proof of [6, Proposi-

tion 2.11]. LetΘ (i)(l ,m,B)∼= KQ
(i)(l ,m,B)/I

(i)(l ,m,B), C∼= KQC/IC, whereQC is a convex

subquiver ofQ
(i)(l ,m,B) andIC = I

(i)(l ,m,B)∩KQC. We set

k
(
Θ (i)(l ,m,B),C

)
=

∣∣(Q
(i)(l ,m,B)

)
0

∣∣−|(QC)0|.

We will construct the exceptional algebrasΘ (i)(l ,m,B) by induction on the num-

ber k
(
Θ (i)(l ,m,B),C

)
. If k

(
Θ (i)(l ,m,B),C

)
= 0, then there exists an exceptional algebra

Θ (i)(l ,m,B), containingΘ (i)(l ,m,B) as a convex subalgebra. Moreover, it follows from Propo-

sition 2.3 that there exists an automorphismϕ of the repetitive algebra ̂Θ (i)(l ,m,B) such that
ϕ2 = ν ̂Θ (i)(l ,m,B)

.

Let Θ (i)(l ,m,B) be an algebra withk
(
Θ (i)(l ,m,B),C

)
> 1. Assume that, for

all algebrasΘ (i)(l ,m,B∗) such that Q
(i)(l ,m,B∗) is a subquiver ofQ

(i)(l ,m,B) and

0 6 k
(
Θ (i)(l ,m,B∗),C

)
< k

(
Θ (i)(l ,m,B),C

)
, there exist an exceptional algebraΘ (i)(l ,m,B∗),

containingΘ (i)(l ,m,B∗) as a convex subalgebra, and an automorphismϕ1 of the algebra
̂Θ (i)(l ,m,B∗) such thatϕ2

1 = ν ̂Θ (i)(l ,m,B∗)
. Sincek

(
Θ (i)(l ,m,B),C

)
> 1 there exists a vertexw1

of the quiverQ
(i)(l ,m,B), but not ofQC, such that eitherw1 is the source of exactly one arrowξ

or w1 is the target of exactly one arrowξ . Observe that the vertexw1 (respectively, arrowξ ) is the

vertex (respectively, arrow) of some branch from the familyB. Let Q
(i)(l ,m,B∗) be the quiver

obtained fromQ
(i)(l ,m,B) by deletingw1 andξ . Then, by our inductive assumption, there exist

an exceptional algebraΘ (i)(l ,m,B∗) = KQ(i)(l ,m,B∗)/I (i)(l ,m,B∗), containingΘ (i)(l ,m,B∗)
as a convex subalgebra, and an automorphismϕ1 of the repetitive algebra ̂Θ (i)(l ,m,B∗) such
that ϕ2

1 = ν ̂Θ (i)(l ,m,B∗)
. For an arrowα of the bound quiver algebraΘ (i)(l ,m,B∗) andk ∈ ZZZ,

we denote by(k,α) the arrow of thek-partΘ (i)(l ,m,B∗)k of the repetitive bound quiver algebra
̂Θ (i)(l ,m,B∗) corresponding to the arrowα. We have two cases to consider.
(1) Assume thatw1 is the source of the arrowξ . Let w2 be the target of the arrowξ , and

η1 . . .ηt be the unique nonzero path of maximal length with the first arrowη1 = ξ in the bound

quiver
(
Q

(i)(l ,m,B), I (i)(l ,m,B)
)
. Denote byw3 the end vertex of the arrowηt .

(a) Assume thatw2 = w3. Let w4 be such thate0,w4 = ϕ1(e0,w2). We add the new vertices
w1 andw6, and new arrowsξ : w1 −→ w2 andδ : w4 −→ w6, to the quiverQ(i)(l ,m,B∗). Then
we define an algebra

Θ (i)(l ,m,B) = KQ(i)(l ,m,B)/I (i)(l ,m,B),

where

(
Q(i)(l ,m,B)

)
0 =

(
Q(i)(l ,m,B∗)

)
0∪{w1,w6}



504 R. BOCIAN and A. SKOWROŃSKI

and

(
Q(i)(l ,m,B)

)
1 =

(
Q(i)(l ,m,B∗)

)
1∪{ξ ,δ}.

The idealI (i)(l ,m,B) in KQ(i)(l ,m,B) is generated by the following elements:

• all generators of the idealI (i)(l ,m,B∗),
• γδ , if there exists the arrowγ such thatt(γ) = w4,
• ξ β , if there exists the arrowβ such thats(β ) = w2.

The required automorphismϕ of the algebra ̂Θ (i)(l ,m,B) is determined by the following equali-
ties:ϕ(ek,w1) = ek+1,w6, ϕ(ek,w6) = ek,w1 andϕ(ek,r) = ϕ1(ek,r) for all remaining indicesr andk.

Let (k,ξ ′) and(k,δ ′) be the arrows of the quiver of the repetitive algebrâΘ (i)(l ,m,B) such that
s((k,ξ ′)) = (k+1,w2), t((k,ξ ′)) = (k,w1), s((k,δ ′)) = (k+1,w6) andt((k,δ ′)) = (k,w4). Then
we haveϕ((k,ξ )) = (k,δ ′), ϕ((k,δ )) = (k,ξ ′), ϕ((k,ξ ′)) = (k+1,δ ), ϕ((k,δ ′)) = (k+1,ξ ).

(b) Assume thatw2 6= w3. Let w4 and w5 be such thate0,w2 = ϕ1(e0,w4) and e0,w5 =
ϕ1(e0,w3), andδ ∈ (Q(i)(l ,m,B∗))1 such thatϕ1((0,δ )) = (0,η ′t ) for the arrow(0,η ′t ) of the

quiver of the repetitive algebra ̂Θ (i)(l ,m,B∗) such thats((0,η ′t )) = (1,w3) and t((0,η ′t )) =
(0,w2). We add the new verticesw1 and w6, new arrowξ : w1 −→ w2, and replace the ar-
row δ : w5−→w4 by new arrowsδ1 : w6−→w4 andδ2 : w5−→w6, in the quiverQ(i)(l ,m,B∗).
Then we define an algebra

Θ (i)(l ,m,B) = KQ(i)(l ,m,B)/I (i)(l ,m,B),

where

(
Q(i)(l ,m,B)

)
0 =

(
Q(i)(l ,m,B∗)

)
0∪{w1,w6}

and

(
Q(i)(l ,m,B)

)
1 =

((
Q(i)(l ,m,B∗)

)
1\{δ})∪{ξ ,δ1,δ2}.

The idealI (i)(l ,m,B) in KQ(i)(l ,m,B) is generated by the following elements:

• all generators of the idealI (i)(l ,m,B∗),
• γδ1, if there exists the arrowγ such thatγδ ∈ I (i)(l ,m,B∗),
• ξ β , if there exists the arrowβ such thatξ β ∈ I

(i)(l ,m,B).

The required automorphismϕ of the algebra ̂Θ (i)(l ,m,B) is determined by the following equal-
ities: ϕ(ek,w1) = ek+1,w6, ϕ(ek,w6) = ek,w1 and ϕ(ek,r) = ϕ1(ek,r) for all remaining indices

r and k. Let (k,ξ ′) be the arrow of the quiver of the repetitive algebrâΘ (i)(l ,m,B) such
that s((k,ξ ′)) = (k + 1,w3) and t((k,ξ ′)) = (k,w1). Then we haveϕ((k,ξ )) = (k + 1,δ1),
ϕ((k,δ1)) = (k,ξ ), ϕ((k,δ2)) = (k,ξ ′), ϕ((k,ξ ′)) = (k+1,δ2).

(2) Assume thatw1 is the target of the arrowξ . Let w2 be the source ofξ andη1 . . .ηt

be the unique nonzero path of maximal length with the last arrowηt = ξ in the bound quiver
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(Q(i)(l ,m,B), I (i)(l ,m,B)). Denote byw3 the source of the arrowη1.
(a) Assume thatw2 = w3. Let w4 be such thate0,w2 = ϕ1(e0,w4). We add the new vertices

w1 andw6, and new arrowsξ : w2 −→ w1 andδ : w6 −→ w4, to the quiverQ(i)(l ,m,B∗). Then
we define an algebra

Θ (i)(l ,m,B) = KQ(i)(l ,m,B)/I (i)(l ,m,B),

where

(
Q(i)(l ,m,B)

)
0 =

(
Q(i)(l ,m,B∗)

)
0∪{w1,w6}

and

(
Q(i)(l ,m,B)

)
1 =

(
Q(i)(l ,m,B∗)

)
1∪{ξ ,δ}.

The idealI (i)(l ,m,B) in KQ(i)(l ,m,B) is generated by the following elements:

• all generators of the idealI (i)(l ,m,B∗),
• δγ , if there exists the arrowγ such thats(γ) = w4,
• βξ , if there exists the arrowβ such thatt(β ) = w2.

The required automorphismϕ of the algebra ̂Θ (i)(l ,m,B) is determined by the following equali-
ties:ϕ(ek,w1) = ek,w6, ϕ(ek,w6) = ek+1,w1 andϕ(ek,r) = ϕ1(ek,r) for all remaining indicesr andk.

Let (k,ξ ′) and(k,δ ′) be the arrows of the quiver of the repetitive algebrâΘ (i)(l ,m,B) such that
s((k,ξ ′)) = (k+1,w1), t((k,ξ ′)) = (k,w2), s((k,δ ′)) = (k+1,w4) andt((k,δ ′)) = (k,w6). Then
we haveϕ((k,ξ )) = (k,δ ′), ϕ((k,δ )) = (k,ξ ′), ϕ((k,ξ ′)) = (k+1,δ ), ϕ((k,δ ′)) = (k+1,ξ ).

(b) Assume thatw2 6= w3. Let w4 and w5 be such thate0,w4 = ϕ1(e0,w2) and e0,w3 =
ϕ1(e0,w5), andδ ∈ (

Q(i)(l ,m,B∗)
)

1 such thatϕ1((0,δ )) = (0,η ′t−1) for the arrow(0,η ′t−1) of the

quiver of the repetitive algebra ̂Θ (i)(l ,m,B∗) such thats((0,η ′t−1)) = (1,w2) andt((0,η ′t−1)) =
(0,w3). We add the new verticesw1 andw6, new arrowξ : w2 −→ w1, and replace the arrow
δ : w4 −→ w5 by new arrowsδ1 : w6 −→ w5 andδ2 : w4 −→ w6, in the quiverQ(i)(l ,m,B∗).
Then we define an algebra

Θ (i)(l ,m,B) = KQ(i)(l ,m,B)/I (i)(l ,m,B),

where

(
Q(i)(l ,m,B)

)
0 =

(
Q(i)(l ,m,B∗)

)
0∪{w1,w6}

and

(
Q(i)(l ,m,B)

)
1 =

((
Q(i)(l ,m,B∗)

)
1\{δ})∪{ξ ,δ1,δ2}.

The idealI (i)(l ,m,B) in KQ(i)(l ,m,B) is generated by the following elements:
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• all generators of the idealI (i)(l ,m,B∗),
• δ1γ, if there exists the arrowγ such thatδγ ∈ I (i)(l ,m,B∗),
• βξ , if there exists the arrowβ such thatβξ ∈ I

(i)(l ,m,B).

The required automorphismϕ of the algebra ̂Θ (i)(l ,m,B) is determined by the following
equalities: ϕ(ek,w1) = ek,w6, ϕ(ek,w6) = ek+1,w1 and ϕ(ek,r) = ϕ1(ek,r) for all remaining in-

dices r and k. Let (k,ξ ′) be the arrow of the quiver of the repetitive algebrâΘ (i)(l ,m,B)
such thats((k,ξ ′)) = (k+ 1,w1) and t((k,ξ ′)) = (k,w3). Then we haveϕ((k,ξ )) = (k,δ2),
ϕ((k,δ1)) = (k,ξ ′), ϕ((k,δ2)) = (k+1,ξ ), ϕ((k,ξ ′)) = (k+1,δ1).

Further, the following fact proved in [6, Theorem 3] gives a complete description of the
repetitive algebras of exceptional tilted algebras of typesD̃DDn.

PROPOSITION2.5. Let B be a tilted algebra of Euclidean type. Then B is exceptional

if and only if B̂ is isomorphic to a repetitive algebra ̂Θ (i)(l ,m,B) for some i with0 6 i 6 8, a
positive integer l, a tuple m, and a familyB of branches.

PROPOSITION2.6. Let B be an exceptional special tubular extension of tubular type
(2,2,n− 2), n > 4, of a tame concealed algebra C of typeÃAAp or D̃DDq. Then there exists an
automorphismϕ of the repetitive algebrâB such thatϕ2 = ρνB̂, for some nontrivial rigid auto-

morphismρ of B̂, if and only if B∼= Θ (i)(l ,m) for some i with5 6 i 6 8, a positive integer l, and
a tuple m.

PROOF. Assume thatB∼= Θ (i)(l ,m) for somei with 5 6 i 6 8. Then there exist exactly
two automorphismsϕ of the repetitive algebrâB such thatϕ2 = ρνB̂, for some nontrivial rigid
automorphismρ of B̂, and are determined by the following equalities (see [6, Lemma 2.8 and
Corollary 2.9]):

(1) If B∼= Θ (5)(l ,m), thenϕ(ek,x1) = ek+1,y3, ϕ(ek,x3) = ek+1,y1, ϕ(ek,y1) = ek,x1, ϕ(ek,y3) =
ek,x3, (respectively,ϕ(ek,x1) = ek+1,y1, ϕ(ek,x3) = ek+1,y3, ϕ(ek,y1) = ek,x3, ϕ(ek,y3) = ek,x1),
ϕ(ek,2i−1) = ek,l−2i , ϕ(ek,2i) = ek+1,l+1−2i for i = 1,2, . . . , l/2, k∈ ZZZ.

(2) If B∼= Θ (6)(l ,m), thenϕ(ek,x1) = ek,y1, ϕ(ek,x3) = ek,y3, ϕ(ek,y1) = ek+1,x3, ϕ(ek,y3) =
ek+1,x1, (respectively,ϕ(ek,x1) = ek,y3, ϕ(ek,x3) = ek,y1, ϕ(ek,y1) = ek+1,x1, ϕ(ek,y3) = ek+1,x3),
ϕ(ek,z1) = ek+1,l , ϕ(ek,z2) = ek+1,1, ϕ(ek,1) = ek,z2, ϕ(ek,l ) = ek,z1, ϕ(ek,2i+1) = ek,l−2i , ϕ(ek,2i) =
ek+1,l+1−2i for i = 1,2, . . . ,(l/2)−1, k∈ ZZZ.

(3) If B ∼= Θ (7)(l ,m), then ϕ(ek,x1) = ek+1,y3, ϕ(ek,x3) = ek+1,y1, ϕ(ek,y1) = ek,x1,
ϕ(ek,y3) = ek,x3, (respectively,ϕ(ek,x1) = ek+1,y1, ϕ(ek,x3) = ek+1,y3, ϕ(ek,y1) = ek,x3, ϕ(ek,y3) =
ek,x1), ϕ(ek,z1) = ek+1,l , ϕ(ek,l ) = ek,z1, ϕ(ek,2i−1) = ek,l+1−2i , ϕ(ek,2i) = ek+1,l−2i for i =
1,2, . . . ,(l −1)/2, k∈ ZZZ.

(4) If B ∼= Θ (8)(l ,m), then ϕ(ek,x1) = ek,y1, ϕ(ek,x3) = ek,y3, ϕ(ek,y1) = ek+1,x3,
ϕ(ek,y3) = ek+1,x1, (respectively,ϕ(ek,x1) = ek,y3, ϕ(ek,x3) = ek,y1, ϕ(ek,y1) = ek+1,x1, ϕ(ek,y3) =
ek+1,x3), ϕ(ek,z1) = ek+1,l , ϕ(ek,l ) = ek,z1, ϕ(ek,2i−1) = ek+1,l+1−2i , ϕ(ek,2i) = ek,l−2i for i =
1,2, . . . ,(l −1)/2, k∈ ZZZ.

Thenϕ2(ek,x1) = ek+1,x3, ϕ2(ek,x3) = ek+1,x1, ϕ2(ek,y1) = ek+1,y3, ϕ2(ek,x3) = ek+1,y1 for k ∈ ZZZ,
andϕ2(ek,r) = ek+1,r for all remaining indicesr andk. The rigid automorphismρ is determined
by the following equalities:ρ(ek,x1) = ek,x3, ρ(ek,x3) = ek,x1, ρ(ek,y1) = ek,y3, ρ(ek,y3) = ek,y1 for
k∈ ZZZ, andρ(ek,r) = ek,r for all remaining indicesr andk.
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Now, assume thatB∼= Θ (i)(l ,m) for somei with 0 6 i 6 4. Then there exists exactly one
automorphismϕ of the repetitive algebrâB such thatϕ2 = ρνB̂, for some rigid automorphismρ
of B̂, and it is determined by the following equalities (see [6, Lemma 2.8 and Corollary 2.9]):

(1) If B∼= Θ (0)(l ,m), thenϕ(ek,1) = ek,3, ϕ(ek,2) = ek,4, ϕ(ek,3) = ek+1,1, ϕ(ek,4) = ek+1,2,
ϕ(ek,5) = ek+1,(1,m−1), ϕ(ek,(1, j)) = ek,(3, j), ϕ(ek,(3, j)) = ek+1,(1, j), for j = 1,2, . . . ,m−2.

(2) If B∼= Θ (1)(l ,m), thenϕ(ek,x1) = ek+1,y3, ϕ(ek,x2) = ek,z2, ϕ(ek,x3) = ek,l , ϕ(ek,y1) =
ek+1,1, ϕ(ek,y2) = ek,z1, ϕ(ek,y3) = ek,x1, ϕ(ek,z1) = ek+1,y2, ϕ(ek,z2) = ek+1,x2, ϕ(ek,1) = ek,y1,
ϕ(ek,l ) = ek+1,x3, ϕ(ek,2i+1) = ek,l−2i , ϕ(ek,2i) = ek+1,l+1−2i for i = 1,2, . . . ,(l/2)−1, k∈ ZZZ.

(3) If B∼= Θ (2)(l ,m), thenϕ(ek,x1) = ek+1,y3, ϕ(ek,x2) = ek,z2, ϕ(ek,x3) = ek,l , ϕ(ek,y1) =
ek+1,1, ϕ(ek,y3) = ek,x1, ϕ(ek,z2) = ek+1,x2, ϕ(ek,1) = ek,y1, ϕ(ek,l ) = ek+1,x3, ϕ(ek,2i+1) = ek,l−2i ,
ϕ(ek,2i) = ek+1,l+1−2i for i = 1,2, . . . ,(l/2)−1, k∈ ZZZ.

(4) If B∼= Θ (3)(l ,m), thenϕ(ek,x1) = ek+1,y3, ϕ(ek,x3) = ek,l , ϕ(ek,y1) = ek+1,1, ϕ(ek,y2) =
ek,z1, ϕ(ek,y3) = ek,x1, ϕ(ek,z1) = ek+1,y2, ϕ(ek,1) = ek,y1, ϕ(ek,l ) = ek+1,x3, ϕ(ek,2i+1) = ek,l−2i ,
ϕ(ek,2i) = ek+1,l+1−2i for i = 1,2, . . . ,(l/2)−1, k∈ ZZZ.

(5) If B∼= Θ (4)(l ,m), thenϕ(ek,x1) = ek+1,y3, ϕ(ek,x3) = ek,l , ϕ(ek,y1) = ek+1,1, ϕ(ek,y3) =
ek,x1, ϕ(ek,1) = ek,y1, ϕ(ek,l ) = ek+1,x3, ϕ(ek,2i+1) = ek,l−2i , ϕ(ek,2i) = ek+1,l+1−2i for i =
1,2, . . . ,(l/2)−1, k∈ ZZZ.

An easy checking shows that in this case we haveϕ2 = νB̂ (ρ is trivial). ¤

PROPOSITION2.7. Let B be a representation-infinite exceptional tilted algebra of Eu-
clidean typeD̃DDn which is a tubular extension of a tame concealed algebra C. Then there exists
an automorphismϕ of the repetitive algebrâB such thatϕ2 = ρνB̂, for some nontrivial rigid

automorphismρ of B̂, if and only if B∼= Θ (i)(l ,m,B) for some i with56 i 6 8, a positive integer
l, a tuple m, and a familyB of branches.

PROOF. Assume that there exists an automorphismϕ of the repetitive algebrâB such
that ϕ2 = ρνB̂, for some nontrivial rigid automorphismρ of B̂. It follows from [6, Lemma
2.10], that there exists a subsetD of {e1,e2, . . . ,em} such thateDBeD is an exceptional convex
subalgebra ofB and a special tubular extension of tubular type(2,2,n1−2), for somen1 6 n, of
the tame concealed algebraC. Denote byϕ1 the restriction ofϕ to eDBeD . Sinceϕ2 = ρνB̂,
for some nontrivial rigid automorphismρ of B̂, thenϕ2

1 = ρ1νêD BeD
, for some nontrivial rigid

automorphismρ1 of êDBeD . Thus from Proposition 2.6 follows thateDBeD
∼= Θ (i)(l ,m) for

somei with 5 6 i 6 8, a positive integerl , and a tuplem. Then Proposition 2.4 implies that
B∼= Θ (i)(l ,m,B) for somei with 5 6 i 6 8, a positive integerl , a tuplem, and a familyB of
branches.

Assume thatB∼= Θ (i)(l ,m,B) for somei with 5 6 i 6 8, a positive integerl , a tuplem, and
a family B of branches. It follows from Proposition 2.4 that there exists an automorphismϕ of
B̂ such thatϕ2 = νB̂. We define an automorphismϕ of the algebra automorphism̂B as follows:

(1) If B ∼= Θ (5)(l ,m,B), then ϕ(ek,x1) = ek+1,y3, ϕ(ek,x3) = ek+1,y1, ϕ(ek,y1) = ek,x1,
ϕ(ek,y3) = ek,x3 for k∈ ZZZ, andϕ(ek,r) = ϕ(ek,r) for all remaining indicesr andk.

(2) If B∼=Θ (6)(l ,m,B), thenϕ(ek,x1) = ek,y1, ϕ(ek,x3) = ek,y3, ϕ(ek,y1) = ek+1,x3, ϕ(ek,y3) =
ek+1,x1 for k∈ ZZZ, andϕ(ek,r) = ϕ(ek,r) for all remaining indicesr andk.

(3) If B ∼= Θ (7)(l ,m,B), then ϕ(ek,x1) = ek+1,y3, ϕ(ek,x3) = ek+1,y1, ϕ(ek,y1) = ek,x1,
ϕ(ek,y3) = ek,x3 for k∈ ZZZ, andϕ(ek,r) = ϕ(ek,r) for all remaining indicesr andk.
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(4) If B∼=Θ (8)(l ,m,B), thenϕ(ek,x1) = ek,y1, ϕ(ek,x3) = ek,y3, ϕ(ek,y1) = ek+1,x3, ϕ(ek,y3) =
ek+1,x1 for k∈ ZZZ, andϕ(ek,r) = ϕ(ek,r) for all remaining indicesr andk.

Thenϕ2(ek,x1) = ek+1,x3, ϕ2(ek,x3) = ek+1,x1, ϕ2(ek,y1) = ek+1,y3, ϕ2(ek,x3) = ek+1,y1 for k ∈ ZZZ,
andϕ2(ek,r) = ek+1,r for all remaining indicesr andk. A direct checking shows thatϕ2 = ρνB̂,
for the nontrivial rigid automorphismρ of B̂ determined by the following equalities:ρ(ek,x1) =
ek,x3, ρ(ek,x3) = ek,x1, ρ(ek,y1) = ek,y3, ρ(ek,y3) = ek,y1 for k∈ ZZZ, andρ(ek,r) = ek,r for all remain-
ing indicesr andk. ¤

PROPOSITION2.8. Let B be a representation-infinite exceptional tilted algebra of Eu-
clidean typẽDDDn which is a tubular extension of a tame concealed algebra C such that there exists
an automorphismϕ of the repetitive algebrâB with ϕ2 = ρνB̂, for some nontrivial rigid auto-

morphismρ of B̂. ThenB̂/(ϕ)∼= Ω (2)(T,31,32), for some Brauer graph T and its vertices3, 31,
32.

PROOF. Let ϕ be an automorphism of the repetitive algebraB̂ such thatϕ2 = ρνB̂, for
some nontrivial rigid automorphismρ of B̂. It follows from Proposition 2.7 thatB∼=Θ (i)(l ,m,B)
for somei with 5 6 i 6 8, a positive integerl , a tuplem, and a familyB of branches. We define
the automorphismϕ of B̂ as follows:

(1) If B ∼= Θ (5)(l ,m,B), then ϕ(ek,x1) = ek+1,y1, ϕ(ek,x3) = ek+1,y3, ϕ(ek,y1) = ek,x1,
ϕ(ek,y3) = ek,x3 for k∈ ZZZ, andϕ(ek,r) = ϕ(ek,r) for all remaining indicesr andk.

(2) If B∼=Θ (6)(l ,m,B), thenϕ(ek,x1) = ek,y1, ϕ(ek,x3) = ek,y3, ϕ(ek,y1) = ek+1,x1, ϕ(ek,y3) =
ek+1,x3 for k∈ ZZZ, andϕ(ek,r) = ϕ(ek,r) for all remaining indicesr andk.

(3) If B ∼= Θ (7)(l ,m,B), then ϕ(ek,x1) = ek+1,y1, ϕ(ek,x3) = ek+1,y3, ϕ(ek,y1) = ek,x1,
ϕ(ek,y3) = ek,x3 for k∈ ZZZ, andϕ(ek,r) = ϕ(ek,r) for all remaining indicesr andk.

(4) If B∼=Θ (8)(l ,m,B), thenϕ(ek,x1) = ek,y1, ϕ(ek,x3) = ek,y3, ϕ(ek,y1) = ek+1,x1, ϕ(ek,y3) =
ek+1,x3 for k∈ ZZZ, andϕ(ek,r) = ϕ(ek,r) for all remaining indicesr andk.

A direct checking shows thatϕ2 = νB̂.

Let T be a Brauer tree and31, 32 its vertices such that the algebraΩ (2)(T,31,32) is defined.
We define the symmetric algebra (see [6, Proposition 1.4])Γ (2)(T,31,32) as the bound quiver

algebraKQ(2)
T /I (2)(T,31,32), whereKQ(2)

T is the path algebra of the quiver

Q(2)
T = ((QT)0∪{w},(QT)1∪{γ1 : c−→ w,γ2 : w−→ b,γ3 : w−→ w})

andI (2)(T,31,32) is the ideal inKQ(2)
T generated by the elements:

(1) αiβα(i), βiαβ (i), for all verticesi of QT ,
(2) A j −B j , if the bothα-cycle andβ -cycle through the vertexj are not exceptional,
(3) A2

j −B j , if the α-cycle through the vertexj is exceptional but theβ -cycle throughj is
not exceptional,

(4) A j −B2
j , if the α-cycle through the vertexj is not exceptional but theβ -cycle through

the vertexj is exceptional,
(5) γ2βb, ββ−1(c)γ1, γ1γ3, γ3γ2,
(6) γ2αb . . .αc, αaαb . . .αα−1(c)γ1 (γ2αb, αaγ1, if b = c = e), if the α-cycle through the

vertexa is not exceptional,
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(7) γ2αb . . .αα−1(c)γ1γ2αb . . .αc, αaαb . . .αα−1(c)αcαaαb . . .αα−1(c)γ1 (γ2γ1γ2αb, αaαbαaγ1,
if b = c = e), if the α-cycle through the vertexa is exceptional,

(8) αcαa− γ1γ2,
(9) γ2αbαα(b) . . .αα−1(c)γ1− γ3, if the α-cycle through the vertexa is not exceptional,

(10) (γ2αbαα(b) . . .αα−1(c)γ1)2− γ3, if the α-cycle through the vertexa is exceptional.

It follows from [6, Proposition 2.11] that there exists a Brauer treeT and its vertices31 and32
such that̂B/(ϕ)∼= Γ (2)(T,31,32). Then we havêB/(ϕ)∼= Ω (2)(T,31,32). ¤

PROPOSITION2.9. Let T be a Brauer tree such that the algebraΩ (2)(T,31,32) is defined.
ThenΩ (2)(T,31,32) is a one-parametric selfinjective algebra of Euclidean typeD̃DDn, and is not
weakly symmetric.

PROOF. It follows from Theorem 3.1 and Lemma 2.8 in [6] that Γ (2)(T,31,32) ∼=
̂Θ (i)(l ,m,B)/(ϕ), for somei with 5 6 i 6 8, l > 1, a tuplem, a family B of branches, and

a square rootϕ of the Nakayama automorphismν ̂Θ (i)(l ,m,B)
of ̂Θ (i)(l ,m,B). We define an

automorphismϕ of the algebra ̂Θ (i)(l ,m,B) in the same way as in proof of Proposition 2.7.
A direct checking shows thatϕ2 = ρν ̂Θ (i)(l ,m,B)

, for some nontrivial rigid automorphismρ of

̂Θ (i)(l ,m,B) of order2, and we haveΩ (2)(T,31,32)∼= ̂Θ (i)(l ,m,B)/(ϕ). HenceΩ (2)(T,31,32)
is a one-parametric selfinjective algebra of Euclidean typeD̃DDn.

Sincetop(P(w)) ∼= soc(P(a)) � soc(P(w)) andtop(P(a)) ∼= soc(P(w)) � soc(P(a)), the

algebraΩ (2)(T,31,32) is not weakly symmetric. We also note that, for all verticesi of Q(2)
T

different fromw anda, we havetop(P(i))∼= soc(P(i)). ¤

3. Proof of Theorem 1.

The aim of this section is to complete the proof of Theorem 1. LetA be a basic con-
nected selfinjective algebra having a simply connected Galois covering. Assume thatA is a
one-parametric but not weakly symmetric algebra. Then invoking [2], [16] and [22], we con-
clude thatA∼= B̂/(ϕ), whereB is a representation-infinite tilted algebra of Euclidean typeÃAAm or
D̃DDn having all indecomposable injective modules located in the unique preinjective component,
andϕ is an automorphism of̂B such thatϕ2 = ρνB̂ for a nontrivial rigid automorphismρ of
B̂. Then by [20], B is a tubular extension of a tame concealed algebraH. Assume first thatB
is a tilted algebra of Euclidean typẽAAAm. Then it follows from [3] that B̂ is special biserial, and
henceA is selfinjective and special biserial. Further, sinceϕ2 = ρνB̂, it follows from [12] and

[22] that the stable Auslander-Reiten quiverΓ s
A of A consists of one component of the formZZZÃAAm

and aPPP1(K)-family of stable tubes. Moreover, the one-parameter families of indecomposable
modules are given by the images of the one-parameter families of indecomposable modules over
the hereditary algebraH of typeÃAAp by the push-down functorFλ : modB̂−→modA associated
to the canonical Galois coveringF : B̂−→ B̂/(ϕ) = A. In fact, the bound quiver, say(Q, I), of A
admits a unique primitive walk (in the sense of [24]) being the image of the unique cycle (with
underlying graph̃AAAp) of the Gabriel quiver ofB. This primitive walk in(Q, I) is formed by the
corresponding paths of the bound quiver(Q∗, I∗), for a subquiverQ∗ of Q of the form
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and the idealI∗ = KQ∗∩ I generated by the elements:

(1) A jB j−1−λ jB jA j+t−1, for λ j ∈ K · {o}, j = 1,2, . . . ,k,
(2) αn j , jα1, j−1, βmj , jβmj+t−1,1, for j = 1,2, . . . ,k,
(3) αi, jαi+1, j . . .αn j , jB j−1α1, j+t−2 . . .αi−1, j+t−2αi, j+t−2, for i = 1,2, . . . ,n j , j = 1,2, . . . ,k,
(4) βi, jβi+1, j . . .βmj , jA j+t−1β1, j+t−2 . . .βi−1, j+t−2βi, j+t−2, for i = 1,2, . . . ,mj , j = 1,2, . . . ,k,

whereAi is the path fromi to i + 1 andBi is the path fromi to i + t − 1, n j is the number of
arrows on the pathA j , mj is the number of arrows on the pathB j , n j = n j+t−2, mj = mj+t−2, αi, j

is the arrow on the pathA j starting at the vertexi andβi, j is the arrow on the pathB j starting at
the vertexi. The above algebra is an algebra of the formΩ (1)(T0,σs,λ ), for someλ ∈ K · {o},
s= t−2, and the Brauer graphT0 of the form

d

d d

d d
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Moreover, if the unique cycle ofT0 hask edges, thenk > 2, 1 6 s6 k−1 andgcd(s+ 2,k) =
1, because(Q, I) admits exactly one primitive walk. SinceA = KQ/I is special biserial, and
(Q, I) contains exactly one primitive walk (described above), we deduce thatQ = QT,σs and

I = I
(1)(T,σs,λ ) for a Brauer graph T with exactly one cycle, containing the Brauer graphT0 as

a full convex subgraph, and the rotationσs is an extension of the automorphismσs.
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Now assume thatB is a tilted algebra of Euclidean typẽDDDn. Applying Propositions 2.5 and
2.7, we conclude thatB∼= Θ (i)(l ,m,B) for somei, 5 6 i 6 8, a positive integerl , a tuplem, and
a family B of branches. Therefore, it follows from Proposition 2.8 thatA∼= Ω (2)(T,31,32) for
some Brauer treeT and its vertices31,32.

Finally, if A is isomorphic to an algebra of one of the formsΩ (1)(T,σs,λ ) or Ω (2)(T,31,32),
then if follows from Propositions 1.3 and 2.9 thatA is a one-parametric but not weakly symmetric
algebra.

References

[ 1 ] J. L. Alperin, Local Representation Theory, Cambridge Stud. Adv. Math.,11, Cambridge Univ. Press, 1986.
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