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Abstract. We study essential norms of differences of composition operators on
the Banach algebra H∞ of bounded analytic functions on the unit disk.

1. Introduction.

The algebra H∞(= H∞(D)) of the bounded analytic functions on the open unit
disk D forms a Banach algebra under the supremum norm ‖f‖∞ = supz∈D |f(z)|. An
analytic self map ϕ on D induces through composition the bounded linear operator Cϕ

on H∞ defined by

Cϕ(f) = f ◦ ϕ (f ∈ H∞),

and the set of the analytic self maps on D will be denoted by S (D). Each ϕ in the closed
unit ball B(H∞) of H∞ (except constant functions of modulus one) can be viewed as an
analytic self map on D and hence determines Cϕ. Let C (H∞) denote the set of all such
composition operators equipped with the relative topology as a subset in the algebra of
the bounded linear operators on H∞ with the operator norm.

An important problem in the subject is to determine the topological structure (such
as connected components and so on) of the set of all composition operators on the
Hardy space H2 [1], [9], [12]. An H∞-version equally deserves investigation, and in [10]
MacCluer, Ohno, and Zhao showed that Cϕ and Cψ sit in the same connected component
of C (H∞) if and only if ‖Cϕ − Cψ‖ < 2. Indeed, they proved

‖Cϕ − Cψ‖ = λ(σ(ϕ,ψ)),

where λ(t) = 2(1−√1−t2)
t , 0 < t ≤ 1, and σ(ϕ,ψ) is given by

σ(ϕ,ψ) = sup
z∈D

ρ(ϕ(z), ψ(z))

with the pseudo-hyperbolic distance

ρ(z, w) = |z − w|/|1− zw| (z, w ∈ D).
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One of the questions in [10] was if isolated points in C (H∞) are essentially isolated in
the sence that they are so under the topology induced by the essential (semi-)norm

‖Cϕ‖e = inf {‖Cϕ −K‖;K is compact on H∞}.

Zheng and the authors gave an affirmative answer in [8], by showing that ‖Cϕ−Cψ‖e ≥ 1
unless Cϕ, Cψ sit in the same connected component in C (H∞).

A next natural step is to find a handy expression for ‖Cϕ − Cψ‖e. It is known that
if ‖ϕ‖∞ < 1 then Cϕ is compact, and by [13], if ‖ϕ‖∞ = 1 then ‖Cϕ‖e = 1. So we are
interesting in the case ‖ϕ‖∞ = ‖ψ‖∞ = 1. In this paper, as partial results towards this
goal, we will characterize a pair (ϕ,ψ) satisfying ‖Cϕ −Cψ‖e = 2, and for Cϕ, Cψ in the
same connected component we will show

‖Cϕ − Cψ‖e = λ(σ∞(ϕ,ψ))

with

σ∞(ϕ,ψ) = lim sup
|ϕ(z)ψ(z)|→1

ρ(ϕ(z), ψ(z))

under the additional assumption that

EL∞(|ϕ|) = {m ∈ M(L∞); |ϕ(m)| = 1}

is a peak set for H∞. The present work was motivated by the MacCluer-Ohno-Zhao
theorem starting that Cϕ − Cψ is a compact operator on H∞ if and only if

lim sup
|ϕ(z)|→1

ρ(ϕ(z), ψ(z)) = lim sup
|ψ(z)|→1

ρ(ϕ(z), ψ(z)) = 0,

and the following estimate due to Gorkin, Mortini, and Suárez ([6]);

max
{

lim sup
|ϕ(z)|→1

ρ(ϕ(z), ψ(z)), lim sup
|ψ(z)|→1

ρ(ϕ(z), ψ(z))
}

≤ ‖Cϕ − Cψ‖e ≤ 4max
{

lim sup
|ϕ(z)|→1

ρ(ϕ(z), ψ(z)), lim sup
|ψ(z)|→1

ρ(ϕ(z), ψ(z))
}

,

provided max{‖ϕ‖∞, ‖ψ‖∞} = 1.
In Section 2, we will introduce the notion of σ-asymptotic interpolating sequences

(σ ∈ (0, 1]), which is motivated by that of asymptotic interpolating sequences in [6], [8].
Let {(wn, w′n)}n be a sequence in D×D with |wn| → 1 and |w′n| → 1. If ρ(wn, w′n) → σ,
then the sequence is shown to admit a subsequence {(zk, z′k)}k such that {zk}k∪{z′k}k is
λ(σ)/2-asymptotic interpolating. This technique will enable us to obtain lower bounds
for ‖Cϕ − Cψ‖e. Namely, in Section 3 we show
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λ(σ∞(ϕ,ψ)) ≤ ‖Cϕ − Cψ‖e

under the assumption ‖ϕψ‖∞ = 1. Hence, we conclude ‖Cϕ − Cψ‖e = 2 as long as
‖ϕψ‖∞ = 1 and σ∞(ϕ,ψ) = 1, and we have to deal with the two remaining cases: (i)
‖ϕψ‖∞ < 1, (ii) ‖ϕψ‖∞ = 1 and σ∞(ϕ,ψ) < 1. In Section 4, we study upper bounds for
‖Cϕ −Cψ‖e. In case (i) we show ‖Cϕ −Cψ‖e < 2. Moreover, if EL∞(|ϕ|) and EL∞(|ψ|)
are peak sets for H∞ and not so close, then we have ‖Cϕ − Cψ‖e = 1. In case (ii) we
prove ‖Cϕ − Cψ‖e < 2. Moreover, if EL∞(|ϕ|) = EL∞(|ψ|) and it is a peak set for H∞,
then we have ‖Cϕ−Cψ‖e ≤ λ(σ∞(ϕ,ψ)). It is known that the condition ‖Cϕ−Cψ‖ < 2
gives rise to an equivalence relation in S (D) ([10]). We show that it is no longer true
for the essential norm ‖ · ‖e. Our analysis indicates that the essential norm ‖Cϕ − Cψ‖e

is closely related to the quantity

lim
n→∞

‖(Cϕ − Cψ)|znH∞‖,

and these values are calculated in Section 5.

2. Asymptotic interpolating sequences.

First, we give some definitions and notations used in this paper. Let σ be a positive
number with σ ≤ 1. A sequence {zk}k in D is called σ-asymptotic interpolating if
for every sequence of complex numbers {ak}k with |ak| ≤ σ for every k, there exists
h ∈ B(H∞) satisfying |h(zk)− ak| → 0 as k →∞, see [6], [8].

We denote by M (H∞) the maximal ideal space of H∞, which is the set of nonzero
multiplicative linear functionals on H∞. With the weak*-topology, M (H∞) is a compact
Hausdorff space. For a subset E in M (H∞), we denote by E the closure of E in M (H∞).
We identify a function f in H∞ with its Gelfand transform; f̂(ζ) = ζ(f), ζ ∈ M (H∞).
For each point z in D, the evaluation of functions f in H∞: f → f(z) is a nonzero
multiplicative linear functional, so that we think of D as an open subset in M (H∞). The
well known corona theorem says that D is dense in M (H∞), see [2]. We also identify a
function in H∞ and its boundary function, and we think of H∞ as a supremum norm
closed subalgebra of L∞, where L∞ is the usual Lebesgue space on the unit circle ∂D.
We may think of M (L∞) as a closed subset in M (H∞). It is known that M (L∞) is the
Shilov boundary of H∞, see [7].

We denote by C(M (H∞)) the algebra of continuous functions on M (H∞). For a
function f in C(M (H∞)), we define

EH∞(f) = {m ∈ M (H∞); f(m) = 1}.

For a function f in C(M (L∞)), we define

EL∞(f) = {m ∈ M (L∞); f(m) = 1}.

A nonempty closed subset E of M (L∞) is called a peak set for H∞ if there exists ϕ ∈ H∞

such that ϕ = 1 on E and |ϕ| < 1 on M (L∞) \ E. In this case, ϕ is called a peaking
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function for E.
For a point z0 in D and a positive number r with r < 1, we write ∆(z0, r) for the

pseudo-hyperbolic disk with center z0 and radius r,

∆(z0, r) = {w ∈ D; ρ(z0, w) ≤ r}.

The pseudo-hyperbolic disk ∆(z0, r) is a Euclidean disk with center c and radius R,
where

c =
1− r2

1− r2|z0|2 z0, R = r
1− |z0|2

1− r2|z0|2 .

By Schwarz and Pick’s lemma, f(∆(z0, r)) ⊂ ∆(f(z0), r) for every f in B(H∞), see [4,
pp. 2–3].

For distinct two points z, w in D, it is known that

sup {|f(z)− f(w)|; f ∈ B(H∞)} =
2
(
1−

√
1− ρ(z, w)2

)

ρ(z, w)
.

In this paper, this equation plays an important role, so we introduce a function λ(t)
defined by

λ(t) =
2
(
1−√1− t2

)

t
, 0 < t ≤ 1.

It is not difficult to see that λ is an increasing function on (0, 1], and limt→0+ λ(t) = 0,
so we define λ(0) = 0. Thus we get

|f(z)− f(w)| ≤ λ(ρ(z, w)) (2.1)

for every f ∈ B(H∞), and there exists a function g ∈ B(H∞) satisfying |g(z)− g(w)| =
λ(ρ(z, w)), see [4, p. 42]. By the definition of the function λ, for every complex numbers
a, b with max{|a|, |b|} ≤ λ(ρ(z, w))/2, there is h ∈ B(H∞) with h(z) = a and h(w) = b.
This fact leads to the following lemma.

Lemma 2.1. Let σ be a positive number with σ ≤ 1, and {zn}n, {z′n}n be sequences
in D with ρ(zn, z′n) → σ. For two sequences of complex numbers {an}n, {a′n}n with
supn{|an|, |a′n|} ≤ λ(σ)/2, there is a sequence of functions {hn}n in B(H∞) satisfying
|hn(zn)− an| → 0 and |hn(z′n)− a′n| → 0 as n →∞.

Proof. Take a sequence of numbers {rj}j with 0 < rj < 1 and rj → 1.
By the assumption, for each j there is a positive integer Nj such that rjλ(σ)/2 <

λ(ρ(zn, z′n))/2 for every n ≥ Nj . We may assume that Nj < Nj+1 for every j. We have
max {|rjan|, |rja

′
n|} < λ(ρ(zn, z′n))/2 for every n ≥ Nj . For each n with Nj ≤ n < Nj+1,

there is hn ∈ B(H∞) satisfying hn(zn) = rjan and hn(z′n) = rja
′
n. Since j → ∞ as

n →∞, we get the assertion. ¤
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We denote by A the disk algebra, that is, A is the space of analytic functions on
D which can be extended continuously on the closed unit disk D. The main result in
this section is the following. The idea for the proof is essentially the same as the one of
Theorem 3.1 in [8].

Theorem 2.2. Let σ be a positive number with σ ≤ 1 and {(wn, w′n)}n be a
sequence in D×D with |wn| → 1 and |w′n| → 1. If ρ(wn, w′n) → σ as n →∞, then there
is a subsequence {(zk, z′k)}k of {(wn, w′n)}n such that {zk}k ∪{z′k}k is λ(σ)/2-asymptotic
interpolating.

Proof. Assume that wn → α and w′n → α′ as n →∞ for some α, α′ ∈ ∂D. Then
there are two functions f, g in A satisfying

f(α) = f(α′) = 1, 0 < |f | < 1 on D \ {α, α′} (2.2)

and

g(α) = g(α′) = 0, 0 < |g| ≤ 1 on D \ {α, α′}.

Write gn = g1/n for every positive integer n. Then gn ∈ A , ‖gn‖∞ ≤ 1, gn(α) = gn(α′) =
0, and

lim
n→ı

|gn(z)| = 1 for each z ∈ D. (2.3)

Write

ck = 1− (1/2)k (2.4)

for k ≥ 1. By induction, we shall find two sequences of increasing positive integers
{mk}k, {nk}k, and a subsequence {(zk, z′k)}k in {(wn, w′n)}n satisfying the following four
conditions; for every N ≥ 1,

sup
z∈D

N∑

k=1

|(ckfmkgnk
)(z)| < 1, (2.5)

max
{N−1∑

k=1

|(ckfmkgnk
)(zN )|,

N−1∑

k=1

|(ckfmkgnk
)(z′N )|

}
< 1− cN , (2.6)

min
{|(fmN gnN

)(zN )|, |(fmN gnN
)(z′N )|} > cN , (2.7)

and

max
{|fmN (zj)|, |fmN (z′j)|

}
< 1− cN for 1 ≤ j < N . (2.8)

First, take m1 = 1. By (2.2), there is a point (z1, z
′
1) in {(wn, w′n)}n with
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min {|f(z1)|, |f(z′1)|} > c1. By (2.3), there is a positive integer n1 satisfying

min
{|(fm1gn1)(z1)|, |(fm1gn1)(z

′
1)|

}
> c1.

Then we have (2.5) and (2.7) for N = 1.
Next, assume that {mk}N

k=1, {nk}N
k=1, and {(zk, z′k)}N

k=1 are chosen to satisfy the
conditions. Put

FN =
N∑

k=1

|ckfmkgnk
| on D.

Noting that gn(α) = gn(α′) = 0, we have that FN (α) = FN (α′) = 0. Take an open
subset UN of D containing {α, α′} such that

{zk, z′k; 1 ≤ k ≤ N} ∩ UN =∅ (2.9)

and

FN < 1− cN+1 on UN . (2.10)

By (2.4) and (2.5), there is a positive integer mN+1 such that mN < mN+1,

|fmN+1 | < 1− cN+1 on D \ UN , (2.11)

and

FN + |fmN+1 | < 1 on D \ UN . (2.12)

Combining (2.9) and (2.11), we have (2.8) for N + 1. By (2.2) again, there is a point
(zN+1, z

′
N+1) in {(wn, w′n)}n ∩ (UN × UN ) with

min
{|fmN+1(zN+1)|, |fmN+1(z′N+1)|

}
> cN+1.

By (2.10), we have (2.6) for N + 1. By (2.3), there is a positive integer nN+1 satisfying
nN < nN+1 and

min
{|(fmN+1gnN+1)(zN+1)|, |(fmN+1gnN+1)(z

′
N+1)|

}
> cN+1.

This leads (2.7) for N + 1. By (2.12), FN + |fmN+1gnN+1 | < 1 on D \ UN . Since
‖fmN+1gnN+1‖∞ < 1, by (2.10)

sup
z∈D

(
FN (z) + cN+1|(fmN+1gnN+1)(z)|) < 1.
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Thus we get (2.5) for N + 1. This completes the induction.
By (2.4) and (2.8), we have

∞∑

k=N+1

|(ckfmkgnk
)(zN )| <

∞∑

k=N+1

(1/2)k = 1/2N . (2.13)

Let {ak}k and {a′k}k be sequences of complex numbers with

sup
k
{|ak|, |a′k|} ≤ λ(σ)/2.

Set

Ak =
ak|(fmkgnk

)(zk)|
(fmkgnk

)(zk)
, A′k =

a′k|(fmkgnk
)(z′k)|

(fmkgnk
)(z′k)

. (2.14)

Then maxk {|Ak|, |A′k|} ≤ λ(σ)/2. Since ρ(zk, z′k) → σ, by Lemma 2.1 there is hk ∈
B(H∞) satisfying

lim
k→∞

|hk(zk)−Ak| = 0, lim
k→∞

|hk(z′k)−A′k| = 0. (2.15)

Here we define a function h(z) as

h(z) =
∞∑

k=1

ckhk(z)(fmkgnk
)(z)

for z ∈ D. Then by (2.5), h ∈ B(H∞). We have

lim
N→∞

|aN − cNhN (zN )(fmN gnN
)(zN )| = 0. (2.16)

For,

|aN − cNhN (zN )(fmN gnN
)(zN )|

= |aN − cN (hN (zN )−AN )(fmN gnN
)(zN )− cNAN (fmN gnN

)(zN )|
≤ |hN (zN )−AN |+ |aN |(1− cN |(fmN gnN

)(zN )|) by (2.14)

= |hN (zN )−AN |+ |aN |(1− cN ) + |aN |cN (1− |(fmN gnN
)(zN )|)

≤ |hN (zN )−AN |+ |aN |(1− cN ) + |aN |cN/2N by (2.4) and (2.7)

→ 0 as N →∞ by (2.15).

Therefore by (2.6) and (2.13),
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|h(zN )− aN | ≤ |aN − cNhN (zN )(fmN gnN
)(zN )|

+
N−1∑

k=1

|(ckfmkgnk
)(zN )|+

∞∑

k=N+1

|ck(fmkgnk
)(zN )|

< |aN − cNhN (zN )(fmN gnN
)(zN )|+ 2(1/2)N

→ 0 as N →∞ by (2.16).

Similarly, we can prove that |h(z′N )− a′N | → 0 as N →∞. ¤

3. Lower bounds.

In this section, we will obtain lower bounds for ‖Cϕ − Cψ‖e. The main idea in this
section comes from Lemma 4.2 of [8]. The following theorem is a key for lower bounds.

Theorem 3.1. Let T be a bounded linear operator on H∞ and σ be a positive
number. Suppose that there exist a sequence {hk}k in B(H∞) and a sequence {xn}n in
M (H∞) satisfying the following conditions;

(i) limn→∞(Thk)(xn) = σ for each fixed k,
(ii) limn→∞

(
limk→∞(Thk)(xn)

)
= −σ.

Then ‖T‖e ≥ σ.

Proof. Let {hk}k be a sequence in B(H∞) and {xn}n in M (H∞) satisfying
conditions (i) and (ii). Let K be an arbitrary compact operator on H∞. Then we have

|(Thk)(xn) + (Khk)(xn)| ≤ ‖T + K‖. (3.1)

Let x0 be a cluster point of {xn}n in M (H∞). By (i),

|σ + (Khk)(x0)| ≤ ‖T + K‖

for every k. Since K is compact, considering a subsequence of {hk}k we may assume
that ‖Khk − h‖∞ → 0 as k →∞ for some h ∈ H∞. Then

|σ + h(x0)| ≤ ‖T + K‖. (3.2)

On the other hand, letting k →∞ in (3.1), we have

∣∣∣ lim
k→∞

(Thk)(xn) + h(xn)
∣∣∣ ≤ ‖T + K‖

for each n, and by (ii), | − σ + h(x0)| ≤ ‖T + K‖. Combining with (3.2), we get

2σ ≤ |σ − h(x0)|+ |σ + h(x0)| ≤ 2‖T + K‖.
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This completes the proof. ¤

Theorem 3.2. Let ϕ,ψ be functions in S (D). If ‖ϕψ‖∞ = 1, then ‖Cϕ−Cψ‖e ≥
λ(σ∞(ϕ,ψ)).

Proof. By the definition of σ∞(ϕ,ψ), there is a sequence {zn}n in D satisfying
|zn| → 1, |ϕ(zn)| → 1, |ψ(zn)| → 1, and ρ(ϕ(zn), ψ(zn)) → σ∞(ϕ,ψ). By Theorem 2.2,
we may assume that {ϕ(zn)}n ∪ {ψ(zn)}n is λ(σ∞(ϕ,ψ))/2-asymptotic interpolating.
Write E = {zn}n and take a sequence of subsets {Ek}k in E such that Ek+1 ⊂ Ek and
Ek \ Ek+1 is an infinite set for every k. Then for each positive integer k, there exists
hk ∈ B(H∞) satisfying the following four conditions;

|hk(ϕ(zn))− λ(σ∞(ϕ,ψ))/2| → 0, (3.3)

|hk(ψ(zn)) + λ(σ∞(ϕ,ψ))/2| → 0 (3.4)

as |zn| → 1 and zn ∈ Ek, and

|hk(ϕ(zn)) + λ(σ∞(ϕ,ψ))/2| → 0, (3.5)

|hk(ψ(zn))− λ(σ∞(ϕ,ψ))/2| → 0 (3.6)

as |zn| → 1 and zn /∈ Ek. Take a point xk in Ek \ Ek+1 \ (Ek \ Ek+1). Since En ⊂ Ek

for n ≥ k, xn ∈ Ek \ Ek for every n ≥ k. By (3.3) and (3.4),

((Cϕ − Cψ)hk)(xn) = λ(σ∞(ϕ,ψ)) for every n ≥ k.

Noting that En \ En+1 ⊂ E \ Ek for n < k, we have that xn ∈ E \ Ek \ (E \ Ek) for
n < k. Thus (3.5) and (3.6) give

((Cϕ − Cψ)hk)(xn) = −λ(σ∞(ϕ,ψ)) for every n < k.

By Theorem 3.1, we get the assertion. ¤

Corollary 3.3. Let ϕ,ψ be functions in S (D) with ‖ϕψ‖∞ = 1. If ϕ 6= ψ on
EH∞(|ϕψ|), then ‖Cϕ − Cψ‖e = 2.

Proof. Let x be a point in M (H∞) satisfying |(ϕψ)(x)| = 1 and ϕ(x) 6= ψ(x).
By the corona theorem, there exists a net {zα}α in D with zα → x. Then ϕ(zα) → ϕ(x)
and ψ(zα) → ψ(x). Since |ϕ(x)| = |ψ(x)| = 1 and ϕ(x) 6= ψ(x), ρ(ϕ(zα), ψ(zα)) → 1.
Hence by Theorem 3.2, we have the assertion. ¤

Corollary 3.4. Let E be a measurable subset in ∂D with dθ(E) > 0. Let ϕ,ψ be
functions in S (D) satisfying ϕ 6= ψ and |ϕ| = |ψ| = 1 for almost all points in E. Then
‖Cϕ − Cψ‖e = 2.

Corollary 3.5. Let ϕ,ψ be functions in S (D) with ‖ϕψ‖∞ = 1. If EH∞(|ϕψ|) 6=
EH∞(|ϕ|), and EH∞(|ϕψ|) is not an open and closed subset of EH∞(|ϕ|), then
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σ∞(ϕ,ψ) = 1 and ‖Cϕ − Cψ‖e = 2.

Proof. By the assumption, there exists a sequence {xn}n in M (H∞) \ D such
that |ϕ(xn)| = 1, |ψ(xn)| < 1 for every n, and |ψ(xn)| → 1. By the corona theo-
rem, for each fixed n there exists a net {zn,α}α in D satisfying limα→∞ |ϕ(zzn,α)| = 1
and limα→∞ |ψ(zzn,α)| = |ψ(xn)| < 1. Then ρ(ϕ(zzn,α), ψ(zzn,α)) → 1 as α → ∞, so
that there exists αn such that |ϕ(zn,αn

)| > 1 − 1/n, |ψ(zn,αn
)| > |ψ(xn)| − 1/n, and

ρ(ϕ(zn,αn
), ψ(zn,αn

)) > 1 − 1/n. Hence |ψ(zn,αn
)| → 1 as n → ∞, and by Theorem 3.2

we get the assertion. ¤

The following corollary is one of the main results in [13].

Corollary 3.6. Let ϕ be a function in S (D). If Cϕ is not a compact operator
on H∞, then ‖Cϕ‖e = 1.

Proof. We have ‖Cϕ‖ = 1 and ‖Cϕ‖e ≤ 1. Since Cϕ is not compact, ‖ϕ‖∞ = 1.
Put ψ = −ϕ. Then ϕ and ψ satisfy the assumption of Corollary 3.3, so that 2 =
‖Cϕ − Cψ‖e ≤ ‖Cϕ‖e + ‖Cψ‖e ≤ 2. Thus we get ‖Cϕ‖e = 1. ¤

4. Upper bounds.

In this section we will obtain upper bounds for the essential norm of Cϕ − Cψ. For
each g ∈ H∞, define the multiplication operator Mg on H∞ by Mgf = gf for every
f ∈ H∞. Clearly, Mg is a bounded linear operator on H∞. For a function f in H∞ and
a subset E of D, write

‖f‖E = sup
z∈E

|f(z)|.

The following lemma characterizes the compactness of MgCϕ.

Lemma 4.1. Let ϕ be a function in S (D) with ‖ϕ‖∞ = 1 and g ∈ H∞. Then
MgCϕ is a compact operator on H∞ if and only if lim|ϕ(z)|→1 g(z) = 0, that is, g = 0 on
EH∞(|ϕ|).

Proof. Write K = MgCϕ. Suppose that lim|ϕ(z)|→1 g(z) = 0. We will show
that K is compact. Let {fj}j be a sequence of functions in B(H∞) satisfying fj → 0
uniformly on each compact subset in D. It is sufficient to show that ‖Kfj‖∞ → 0 as
j → ∞, see [3, Proposition 3.11]. For every ε > 0, there exists a positive number r

with r < 1 satisfying |g| < ε on Ur, where Ur = {z ∈ D; |ϕ(z)| > r}. Then we have
‖Kfj‖Ur

≤ ε for every j. Since ‖ϕ‖D\Ur
≤ r < 1,

lim
j→∞

‖Kfj‖D\Ur
= lim

j→∞
‖g(fj ◦ ϕ)‖D\Ur

= 0.

Thus we obtain ‖Kfj‖∞ → 0 as j →∞.
Next, suppose that lim|ϕ(z)|→1 g(z) 6= 0. Then there is a sequence {zk}k in D

satisfying |ϕ(zk)| → 1 and |g(zk)| → c for some c > 0. We may assume that ϕ(zk) →
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a ∈ ∂D. Write fn = (z + a)n/(2a)n. Then ‖fn‖∞ = 1, fn(a) = 1, and fn → 0 uniformly
on every compact subset in D. We have

‖Kfn‖∞ ≥ lim
k→∞

|g(zk)| |(fn ◦ ϕ)(zk)| = c > 0.

Therefore K is not compact. ¤

Let f be a continuous function on M (L∞). Recall that

EL∞(f) = {m ∈ M (L∞); f(m) = 1}

and for ϕ,ψ ∈ S (D),

σ∞(ϕ,ψ) = lim sup
|(ϕψ)(z)|→1

ρ(ϕ(z), ψ(z)).

For each m ∈ M (H∞), there is a representing measure µm on M (L∞), that is, f(m) =∫
M (L∞)

f dµm for every f ∈ H∞. We denote by suppµm the closed support set of µm.

Theorem 4.2. Let ϕ,ψ be functions in S (D) with ‖ϕψ‖∞ = 1. Suppose that the
following conditions hold;

(i) EL∞(|ϕ|) = EL∞(|ψ|),
(ii) EL∞(|ϕ|) is a peak set for H∞.

Then ‖Cϕ − Cψ‖e ≤ λ(σ∞(ϕ,ψ)).

Proof. We may assume that ϕ 6= ψ. If σ∞(ϕ,ψ) = 0, by [10, Theorem 3] Cϕ−Cψ

is compact. Hence ‖Cϕ − Cψ‖e = 0 = λ(0).
If σ∞(ϕ,ψ) = 1, then λ(σ∞(ϕ,ψ)) = 2. Since ‖Cϕ‖e ≤ ‖Cϕ‖ ≤ 1,

‖Cϕ − Cψ‖e ≤ ‖Cϕ‖e + ‖Cψ‖e ≤ 2.

Thus ‖Cϕ − Cψ‖e ≤ 2 = λ(σ∞(ϕ,ψ)).
So, we assume that 0 < σ∞(ϕ,ψ) < 1. Then we have that ϕ = ψ on EH∞(|ϕ|),

especially

ϕ = ψ on EL∞(|ϕ|). (4.1)

Since ϕ 6= ψ, EL∞(|ϕ|) 6= M (L∞). Let F be a peaking function in H∞ for EL∞(|ϕ|).
For each positive integer k, define

Uk = {z ∈ D; |F (z)− 1| < 1/k}

and

σk = sup
z∈Uk

ρ(ϕ(z), ψ(z)). (4.2)
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We shall prove that

lim
k→∞

σk = σ∞(ϕ,ψ). (4.3)

Let {zn}n be a sequence in D with |(ϕψ)(zn)| → 1. Let m be a cluster point of {zn}n

in M (H∞). Then |ϕ(m)| = |ψ(m)| = 1, so that suppµm ⊂ EL∞(|ϕ|). Since F is a
peaking function for EL∞(|ϕ|), F = 1 on suppµm, so that F (m) = 1. This implies that
F (zn) → 1 as n →∞. Therefore by (4.2), we get σ∞(ϕ,ψ) ≤ σk for every k. It is clear
that {σk}k is decreasing. To prove (4.3) by contradiction, we assume that there exists
δ > 0 such that σ∞(ϕ,ψ) + δ < σk for every k. Then for each k, there exists wk ∈ Uk

satisfying

σ∞(ϕ,ψ) + δ < ρ(ϕ(wk), ψ(wk)). (4.4)

Let ζ be a cluster point of {wk}k in M (H∞). Then F (ζ) = 1, so that suppµζ ⊂
EL∞(|ϕ|). By (4.1), we have ϕ(ζ) = ψ(ζ). Let {wkα

}α be a net in {wk}k with wkα
→ ζ.

If |ϕ(ζ)| = 1, then |(ϕψ)(wkα)| → 1. Hence

lim sup
α→∞

ρ(ϕ(wkα
), ψ(wkα

)) ≤ σ∞(ϕ,ψ).

But this contradicts (4.4). So, we have |ϕ(ζ)| < 1. In this case, since ϕ(ζ) = ψ(ζ), we
have

lim
α→∞

ρ(ϕ(wkα
), ψ(wkα

)) = 0.

This also contradicts (4.4). Thus we get (4.3).
For each positive integer n, define

τn(z) = 1− Fn(z), z ∈ D (4.5)

and

Kn = Mτn
(Cϕ − Cψ) on H∞. (4.6)

By the above argument, we note that EH∞(|ϕ|)∪EH∞(|ψ|) ⊂ EH∞(F ). By the assump-
tion and Lemma 4.1, (4.5) gives that Kn is a compact operator on H∞.

We need to prove that

lim inf
n→∞

‖Cϕ − Cψ −Kn‖ ≤ λ(σ∞(ϕ,ψ)). (4.7)

Let ε be a positive number and f ∈ B(H∞). Combining (4.5) with (4.6), we have

(Cϕ − Cψ −Kn)f = Fn(f ◦ ϕ− f ◦ ψ). (4.8)
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By (4.3), there exists a positive integer k1 with λ(σk1) < λ(σ∞(ϕ,ψ)) + ε. Thus (2.1)
and (4.2) yield

|f ◦ ϕ− f ◦ ψ| ≤ λ(σk1) < λ(σ∞(ϕ,ψ)) + ε on Uk1 .

Hence by (4.8),

‖(Cϕ − Cψ −Kn)f‖Uk1
< λ(σ∞(ϕ,ψ)) + ε

for every n. Since ‖F‖D\Uk1
< 1, there exists a positive integer n0 with ‖Fn0‖D\Uk1

<

ε/2. Then by (4.8) again,

‖(Cϕ − Cψ −Kn0)f‖D\Uk1
< ε.

Therefore

‖Cϕ − Cψ −Kn0‖ < λ(σ∞(ϕ,ψ)) + ε.

Thus we get (4.7). This completes the proof. ¤

Using the same idea as in the proof of Theorem 4.2, we have the following.

Theorem 4.3. Let ϕ,ψ be functions in S (D) satisfying ‖ϕ‖∞ = ‖ψ‖∞ = 1 and
‖ϕψ‖∞ < 1. If there exist peak sets E1 and E2 for H∞ such that EL∞(|ϕ|) ⊂ E1,
EL∞(|ψ|) ⊂ E2, and E1 ∩ E2 =∅, then ‖Cϕ − Cψ‖e = 1.

Proof. By the assumption, supz∈D ρ(ϕ(z), ψ(z)) = 1. Then by [8, Lemma 4.2]
and [10, Theorem 1], ‖Cϕ − Cψ‖e ≥ 1. Let F1 and F2 be peaking functions in H∞ for
the peak sets E1 and E2, respectively. For each positive number r with r < 1, we write

U = {z ∈ D; |F1(z)| > r}, V = {z ∈ D; |F2(z)| > r}.

Since E1∩E2 =∅, we may assume that U ∩V =∅. Take a positive number ε arbitrary.
Then there exists a positive integer n satisfying |Fn

1 | < ε on D\U and |Fn
2 | < ε on D\V .

Define an operator K by

K = M(1−F n
1 )Cϕ −M(1−F n

2 )Cψ.

Then by Lemma 4.1, K is compact. For a function f in B(H∞), we have

‖(Cϕ − Cψ −K)f‖D\V = ‖(MF n
1
Cϕ −MF n

2
Cψ)f‖D\V ≤ 1 + ε

and ‖(Cϕ−Cψ−K)f‖D\U ≤ 1+ε. Since U ∩V =∅, we get ‖(Cϕ−Cψ−K)f‖∞ ≤ 1+ε

for every f ∈ B(H∞). Thus ‖Cϕ − Cψ −K‖ ≤ 1 + ε, so that ‖Cϕ − Cψ‖e ≤ 1. ¤

A typical example satisfying conditions of Theorem 4.3 is ϕ(z) = (z + 1)/2 and
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ψ(z) = (z − 1)/2.

Theorem 4.4. Let ϕ,ψ be functions in S (D) with ‖ϕ‖∞ = ‖ψ‖∞ = 1. Let δ

be a positive number with δ < 1, and U, V be open subsets in D satisfying the following
conditions;

(i) |ψ(z)| ≤ δ for z ∈ U ,
(ii) |ϕ(z)| ≤ δ for z ∈ V ,
(iii) supz∈D\(U∪V ) ρ(ϕ(z), ψ(z)) < 1,

Then ‖Cϕ − Cψ‖e < 2.

Proof. Let a be a small positive number with a < 1. Define the operator Ka by

(Kah)(z) = ah(0) for h ∈ H∞. (4.9)

Then Ka is a compact operator on H∞ and ‖Ka‖ = a. We shall prove that ‖Cϕ −Cψ +
Ka‖ < 2 for a sufficiently small a > 0.

Write

A = sup
z∈D\(U∪V )

ρ(ϕ(z), ψ(z)).

Then by (iii), A < 1. Hence by (2.1),

sup
h∈B(H∞)

‖(Cϕ − Cψ)h‖D\(U∪V ) ≤ λ(A) < 2. (4.10)

Since (1 + 3δ)/(2 + δ + δ2) < 1, we may further assume that a satisfies

0 < a < min
{

1− 1 + 3δ

2 + δ + δ2
,

1
2 + δ

,
2− λ(A)

2

}
. (4.11)

Then by (4.9)–(4.11),

sup
h∈B(H∞)

‖(Cϕ − Cψ + Ka)h‖D\(U∪V ) ≤
2 + λ(A)

2
< 2. (4.12)

Next, we study the estimate on U . Let h be a function in B(H∞) and z ∈ U . By
(i), |ψ(z)| ≤ δ. Then by Schwarz and Pick’s lemma,

h(ψ(z)) ∈ ∆(h(0), δ). (4.13)

By [4, p. 3],

|h(0)| − δ

1− δ|h(0)| ≤ |w| ≤ |h(0)|+ δ

1 + δ|h(0)| for w ∈ ∆(h(0), δ). (4.14)



Differences of composition operators 683

First we assume that |h(0)| ≤ (1 + δ)/2. Then by (4.13) and (4.14),

|h(ψ(z))| ≤ 1 + 3δ

2 + δ + δ2
,

so that

|h(ϕ(z))− h(ψ(z)) + ah(0)| ≤ 1 +
1 + 3δ

2 + δ + δ2
+ a.

Hence by (4.11),

sup
{h∈B(H∞);|h(0)|≤(1+δ)/2}

‖(Cϕ − Cψ + Ka)h‖U < 2. (4.15)

Now, we assume that

(1 + δ)/2 < |h(0)| < 1. (4.16)

By (4.14),

|w| ≥ 1/(2 + δ) for w ∈ ∆(h(0), δ). (4.17)

By (4.11), ah(0) /∈ ∆(h(0), δ). Hence by (4.13),

|h(ψ(z))− ah(0)| ≤ 1− a|h(0)| < 1− a(1 + δ)
2

.

Therefore

sup
{h∈B(H∞);(1+δ)/2<|h(0)|<1}

‖(Cϕ − Cψ + Ka)h‖U < 2. (4.18)

If |h(0)| = 1, then h is constant. Hence

sup
{h∈B(H∞);|h(0)|=1}

‖(Cϕ − Cψ + Ka)h‖U = a < 2.

Combined with (4.15) and (4.18), we get

sup
h∈B(H∞)

‖(Cϕ − Cψ + Ka)h‖U < 2. (4.19)

Similarly, we get

sup
h∈B(H∞)

‖(Cϕ − Cψ + Ka)h‖V < 2
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for a sufficiently small a > 0. Combined with (4.12) and (4.19), we obtain ‖Cϕ − Cψ +
Ka‖ < 2. This completes the proof. ¤

Corollary 4.5. Let ϕ,ψ be functions in S (D) with ‖ϕ‖∞ = ‖ψ‖∞ = 1. If
‖ϕψ‖∞ < 1, then ‖Cϕ − Cψ‖e < 2.

Proof. For each positive number δ with δ < 1, we write

U = {z ∈ D; |ϕ(z)| > δ}, V = {z ∈ D; |ψ(z)| > δ}.

Since ‖ϕψ‖∞ < 1, we may assume that U ∩ V = ∅. Hence |ψ(z)| ≤ δ for z ∈ U and
|ϕ(z)| ≤ δ for z ∈ V . Let w be a complex number in D \ (U ∪ V ). Then |ψ(w)| ≤ δ and
|ϕ(w)| ≤ δ. Hence

sup
w∈D\(U∪V )

ρ(ϕ(w), ψ(w)) < 1.

As an application of Theorem 4.4, we get the assertion. ¤

Theorem 4.6. Let ϕ,ψ be functions in S (D). Then ‖Cϕ −Cψ‖e = 2 if and only
if ‖ϕψ‖∞ = 1 and σ∞(ϕ,ψ) = 1.

Proof. If either ‖ϕ‖∞ < 1 or ‖ψ‖∞ < 1, then by Corollary 3.6 ‖Cϕ − Cψ‖e = 0
or 1, because either Cϕ or Cψ is compact. So we may assume that ‖ϕ‖∞ = ‖ψ‖∞ = 1.
If ‖ϕψ‖∞ < 1, then by Corollary 4.5 ‖Cϕ−Cψ‖e < 2. So moreover we may assume that
‖ϕψ‖∞ = 1. By Theorem 3.2, if σ∞(ϕ,ψ) = 1, then ‖Cϕ − Cψ‖e = 2.

Next, suppose that

σ∞(ϕ,ψ) < 1. (4.20)

We shall prove that ‖Cϕ − Cψ‖e < 2. By (4.20), we have ϕ = ψ on EH∞(|ϕψ|). If
EH∞(|ϕ|) = EH∞(|ψ|), by [10, Theorem 1], Cϕ and Cψ are contained in the same
connected component of C (H∞) and ‖Cϕ −Cψ‖e ≤ ‖Cϕ −Cψ‖ < 2. So we may assume
that EH∞(|ϕ|) 6= EH∞(|ψ|). If EH∞(|ϕψ|) is not an open and closed subset in EH∞(|ϕ|)
(or EH∞(|ψ|)), then by Corollary 3.5, σ∞(ϕ,ψ) = 1. This contradicts (4.20). Hence
EH∞(|ϕψ|) is an open and closed subset in both sets EH∞(|ϕ|) and EH∞(|ψ|). We may
take open subsets W1,W2,W3 in M (H∞) such that

W1 ⊃ EH∞(|ϕ|) \ EH∞(|ϕψ|),
W2 ⊃ EH∞(|ψ|) \ EH∞(|ϕψ|), (4.21)

W3 ⊃ EH∞(|ϕψ|), (4.22)

and

W1 ∩W2 =∅, W1 ∩W3 =∅, W2 ∩W3 =∅. (4.23)
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Then there exists δ, 0 < δ < 1, satisfying |ϕ| < δ on W2 and |ψ| < δ on W1. Write
U = W1 ∩D and V = W2 ∩D. Then

|ψ(z)| < δ for z ∈ U, |ϕ(z)| < δ for z ∈ V .

We shall prove that

sup
z∈D\(U∪V )

ρ(ϕ(z), ψ(z)) < 1. (4.24)

Assume that (4.24) does not hold. Then there exists a sequence {zn}n in D satisfying

lim
n→∞

ρ(ϕ(zn), ψ(zn)) = 1 (4.25)

and

zn /∈ U ∪ V (4.26)

for every n. By (4.25), max {|ϕ(zn)|, |ψ(zn)|} → 1. We may assume that δ < |ϕ(zn)| → 1.
By (4.20) and (4.25), we have

lim sup
n→∞

|ψ(zn)| < 1.

Hence by (4.21)–(4.23), zn ∈ W1 for large n. This contradicts (4.26). Hence (4.24) holds.
By Theorem 4.4, we get the assertion. ¤

For ϕ,ψ ∈ S (D), we write ϕ ∼ ψ if ‖Cϕ − Cψ‖ < 2. Then by [10], the relation ∼
in S (D) is an equivalence one. But we note that ‖Cϕ − Cψ‖e < 2 does not induce an
equivalence relation in S (D).

Example 4.7. Let ϕ,ψ be peaking functions in the disk algebra A for a point
z = 1. Moreover we may assume that ϕ is an extreme point in B(H∞) but ψ is not. By
[8], [10], σ∞(ϕ,ψ) = 1. Then by Theorem 4.6, ‖Cϕ − Cψ‖e = 2. Let q be a peaking
function in A for z = −1. Then by Theorem 4.3, ‖Cϕ − Cq‖e = ‖Cψ − Cq‖e = 1. Thus
‖Cϕ − Cψ‖e < 2 does not induce an equivalence relation in S (D).

We show that ‖Cϕ−Cψ‖e < 2 induces an equivalence relation in some part of S (D).

Proposition 4.8. Let ϕ be a function in S (D) such that EL∞(|ϕ|) is a peak
set for H∞. Let Ωϕ = {ψ ∈ S (D);EL∞(|ψ|) = EL∞(|ϕ|)}. Then ‖Cψ1 − Cψ2‖e =
λ(σ∞(ψ1, ψ2)), and ‖Cψ1 − Cψ2‖e < 2 induces an equivalence relation in Ωϕ.

Proof. Let ψ1, ψ2 be functions in Ωϕ with ψ1 6= ψ2. By Theorems 3.2 and 4.2,
‖Cψ1 − Cψ2‖e = λ(σ∞(ψ1, ψ2)). It is not difficult to see that σ∞(ψ1, ψ2) < 1 induces an
equivalence relation in Ωϕ, see [10]. Thus we get the assertion. ¤

By [8], [10], it is known that Cϕ and Cψ are in the same connected component in
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C (H∞) with the operator norm (which is the same as the essential semi-norm) if and
only if supz∈D ρ(ϕ(z), ψ(z)) < 1. If ‖ϕ‖∞ = 1 and supz∈D ρ(ϕ(z), ψ(z)) < 1, it is not
difficult to see that EL∞(|ϕ|) = EL∞(|ψ|). So under the assumption that ‖ϕ‖∞ = 1 and
EL∞(|ϕ|) is a peak set for H∞, if Cϕ and Cψ are in the same connected component in
C (H∞), then ‖Cϕ − Cψ‖e = λ(σ∞(ϕ,ψ)).

5. Limits on znH∞.

In this section, we prove the following. An idea for the proof is the same as the one
of Theorem 4.4.

Theorem 5.1. Let ϕ,ψ be functions in S (D). Then we have the following.

(i) If ‖ϕ‖∞ < 1 and ‖ψ‖∞ < 1, then limn→∞ ‖(Cϕ − Cψ)|znH∞‖ = 0.
(ii) If ‖ϕ‖∞ = 1 and ‖ϕψ‖∞ < 1, then limn→∞ ‖(Cϕ − Cψ)|znH∞‖ = 1.

Moreover suppose that ‖ϕψ‖∞ = 1. Then we have the following.

(iii) If λ(σ∞(ϕ,ψ)) > 1, then limn→∞ ‖(Cϕ − Cψ)|znH∞‖ = λ(σ∞(ϕ,ψ)).
(iv) If λ(σ∞(ϕ,ψ)) ≤ 1 and EH∞(|ϕ|) = EH∞(|ψ|), then limn→∞ ‖(Cϕ−Cψ)|znH∞‖ =

λ(σ∞(ϕ,ψ)).
(v) If λ(σ∞(ϕ,ψ)) ≤ 1 and EH∞(|ϕ|) 6= EH∞(|ψ|), then limn→∞ ‖(Cϕ−Cψ)|znH∞‖ =

1.

Proof. (i) is clear.
(ii) If ‖ψ‖∞ < 1, then the assertion is also clear. So, we assume that ‖ψ‖∞ = 1.

For each positive number δ with δ < 1, we write

Uϕ = {z ∈ D; |ϕ(z)| > δ}, Uψ = {z ∈ D; |ψ(z)| > δ}.

Since ‖ϕψ‖∞ < 1 we may assume that Uϕ ∩Uψ =∅. Then |ψ| ≤ δ on Uϕ. Let {ζj}j be
a sequence in Uϕ with ϕ(ζj) → α for some |α| = 1. We have

‖(Cϕ − Cψ)|znH∞‖ ≥ ‖(Cϕ − Cψ)zn(z + α)/2‖∞
≥ |(ϕn(ϕ + α)/2− ψn(ψ + α)/2)(zj)|
≥ |ϕn(zj)(ϕ(zj) + α)/2| − δn

→ 1− δn as j →∞.

Since 0 < δ < 1, we get

lim
n→∞

‖(Cϕ − Cψ)|znH∞‖ ≥ 1.

Let h be a function in H∞ with ‖h‖∞ ≤ 1. Then

|ϕn(h ◦ ϕ)− ψn(h ◦ ψ)| ≤ 1 + δn on Uϕ ∪ Uψ
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and

|ϕn(h ◦ ϕ)− ψn(h ◦ ψ)| ≤ 2δn on D \ (Uϕ ∪ Uψ).

Hence ‖(Cϕ − Cψ)znh‖∞ ≤ max {1 + δn, 2δn}, so that

‖(Cϕ − Cψ)|znH∞‖ ≤ max {1 + δn, 2δn}.

Since 0 < δ < 1, we get

lim
n→∞

‖(Cϕ − Cψ)|znH∞‖ ≤ 1.

Thus we obtain (ii).
Hereafter, we assume that ‖ϕψ‖∞ = 1.

Claim 1. limn→∞ ‖(Cϕ − Cψ)|znH∞‖ ≥ λ(σ∞(ϕ,ψ)).

Let {ζj}j be a sequence in D with |(ϕψ)(ζj)| → 1 and ρ(ϕ(ζj), ψ(ζj)) → σ∞(ϕ,ψ).
We may assume that limj→∞ ϕ(ζj) = α, limj→∞ ψ(ζj) = β, and |α| = |β| = 1. By
Theorem 2.2, we may further assume that {ϕ(ζj), ψ(ζj)}j is λ(σ∞(ϕ,ψ))/2-asymptotic
interpolating. Then there exists hn ∈ B(H∞) satisfying

lim
j→∞

hn(ϕ(ζj)) = αnλ(σ∞(ϕ,ψ))/2

and

lim
j→∞

hn(ψ(ζj)) = −β
n
λ(σ∞(ϕ,ψ))/2.

Hence

lim
j→∞

|[(Cϕ − Cψ)znhn](ζj)| = λ(σ∞(ϕ,ψ)).

This shows Claim 1.

Claim 2. If EH∞(|ϕ|) 6= EH∞(|ψ|), then limn→∞ ‖(Cϕ − Cψ)|znH∞‖ ≥ 1.

We may assume that EH∞(|ϕ|) 6⊂ EH∞(|ψ|). Then there is a sequence {ζj}j in D

satisfying ϕ(ζj) → α for some |α| = 1 and supj |ψ(ζj)| < 1. In the same way as in the
first paragraph of the proof of (ii), we get Claim 2.

Claim 3. If σ∞(ϕ,ψ) < 1 and EH∞(|ϕ|) 6= EH∞(|ψ|), then limn→∞ ‖(Cϕ −
Cψ)|znH∞‖ ≤ max {λ(σ∞(ϕ,ψ)), 1}.

Since σ∞(ϕ,ψ) < 1, we have

lim
|(ϕψ)(z)|→1

|ϕ(z)− ψ(z)| = 0, (5.1)
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and by Corollary 3.5, EH∞(|ϕψ|) is an open and closed subset in the both sets EH∞(|ϕ|)
and EH∞(|ψ|). For each positive number δ with δ < 1, we write

Uδ = {z ∈ D; |(ϕψ)(z)| > δ}. (5.2)

Let ε be a positive number with ε < 1 and n be a positive integer. By (5.1), we may
assume that |ϕn(z)− ψn(z)| < ε for every z ∈ Uδ.

Let h be a function in B(H∞) and ζ be a point in Uδ. Then

|ϕn(ζ)h(ϕ(ζ))− ψn(ζ)h(ψ(ζ))| ≤ |ψn(ζ)||h(ϕ(ζ))− h(ψ(ζ))|+ ε

≤ λ(ρ(ϕ(ζ), ψ(ζ))) + ε.

Hence

‖(Cϕ − Cψ)znh‖Uδ
≤ λ

(
sup
ζ∈Uδ

ρ(ϕ(ζ), ψ(ζ))
)

+ ε

for every h ∈ B(H∞).
Let ξ be a point in D \ Uδ. Then by (5.2), either |ϕ(ξ)| ≤ δ1/2 or |ψ(ξ)| ≤ δ1/2.

Then similarly as above we get

‖(Cϕ − Cψ)znh‖D\Uδ
≤ 1 + δn/2 (5.3)

for every h ∈ B(H∞). As a consequence, we obtain

‖(Cϕ − Cψ)|znH∞‖ ≤ max
{

λ

(
sup
ζ∈Uδ

ρ(ϕ(ζ), ψ(ζ))
)

+ ε, 1 + δn/2

}
.

Letting n →∞, we have

lim
n→∞

‖(Cϕ − Cψ)|znH∞‖ ≤ max
{

λ

(
sup
ζ∈Uδ

ρ(ϕ(ζ), ψ(ζ))
)

+ ε, 1
}

.

Letting ε → 0, we have

lim
n→∞

‖(Cϕ − Cψ)|znH∞‖ ≤ max
{

λ

(
sup
ζ∈Uδ

ρ(ϕ(ζ), ψ(ζ))
)

, 1
}

. (5.4)

Here we note that by (5.2),

σ∞(ϕ,ψ) = lim
δ→1

sup
ζ∈Uδ

ρ(ϕ(ζ), ψ(ζ)).

So, letting δ → 1 in (5.4) we obtain Claim 3.
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Claim 4. If σ∞(ϕ,ψ) ≤ 1 and EH∞(|ϕ|) = EH∞(|ψ|), then limn→∞ ‖(Cϕ −
Cψ)|znH∞‖ ≤ λ(σ∞(ϕ,ψ)).

To show this, we follow the proof of Claim 3. In this case we may assume that

sup
z∈D\Uδ

max {|ϕ(z)|, |ψ(z)|} = δ1 < 1.

Then instead of (5.3), we get

‖(Cϕ − Cψ)znh‖D\Uδ
≤ 2δn

1

for every h ∈ B(H∞). The rest is the same.
Now, we prove (iii). If σ∞(ϕ,ψ) = 1, by Claim 1 we get

lim
n→∞

‖(Cϕ − Cψ)|znH∞‖ = 2 = λ(σ∞(ϕ,ψ)).

If 1 < λ(σ∞(ϕ,ψ)) < 2, by Claims 1, 3, and 4 we get the assertion.
(iv) follows from Claims 1 and 4.
(v) follows from Claims 2 and 3. ¤
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