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Abstract. We consider the Dirichlet and the Neumann eigenvalue problem
for the Laplace operator on a variable nonsmooth domain, and we prove that the
elementary symmetric functions of the eigenvalues splitting from a given eigenvalue
upon domain deformation have a critical point at a domain with the shape of a ball.
Correspondingly, we formulate overdetermined boundary value problems of the type
of the Schiffer conjecture.

1. Introduction.

By the celebrated Rayleigh-Krahn-Faber Theorem, a ball in Rn minimizes the
first eigenvalue of the Laplace operator under Dirichlet boundary conditions among the
bounded connected subsets of Rn with a prescribed volume. Thus in a sense, the ball is
a critical point for the functional which takes a bounded connected domain to the first
eigenvalue of the Dirichlet Laplacian, under the constraint of constancy of the volume.

Instead, less known seem to be corresponding properties for higher order eigenvalues,
and for the eigenvalues of the Neumann Laplacian (see Ashbaugh [1]). This paper con-
cerns eigenvalues of all orders and multiplicity, both for the Dirichlet and the Neumann
problem for the Laplace operator.

We first illustrate our work for the Dirichlet problem. We consider an open connected
subset Ω of Rn of finite measure satisfying the condition

W 1,2
0 (Ω) is compactly imbedded in L2(Ω), (1.1)

and we deform Ω by a Lipschitz continuous homeomorphism φ of a class AΩ which we
introduce in (2.3) below, and we consider the weak formulation of the Dirichlet eigenvalue
problem for the operator −∆ in the deformed domain φ(Ω). Namely, we consider the
problem

∫

φ(Ω)

DvDwt dy = λ

∫

φ(Ω)

vw dy ∀w ∈ W 1,2
0 (φ(Ω)) (1.2)

in the unknowns v ∈ W 1,2
0 (φ(Ω)) (the Dirichlet eigenfunctions), λ ∈ R (the Dirichlet

eigenvalues). Under our assumptions on Ω and φ, such problem is well known to have a
sequence of eigenvalues
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0 < λ1[φ] < λ2[φ] ≤ . . . , (1.3)

which we write as many times as their multiplicity. For each φ ∈ AΩ , the volume of the
deformed domain φ(Ω) is given by the functional

V [φ] ≡
∫

Ω

|detDφ|dx. (1.4)

Now we fix φ̃ ∈ AΩ . As is well known, simple eigenvalues can be shown to depend real
analytically on φ ∈ AΩ (cf. e.g., Prodi [13]). Now, if both Ω and φ̃ were regular enough,
the condition that a simple eigenvalue λj [·] be critical at φ̃ on a level set of the functional
V [·] can be rewritten, by exploiting the Hadamard variational formulas for λj [·], as the
following well known overdetermined problem for the first eigenvalue of −∆





−∆v = λj [φ̃]v in φ̃(Ω),

v = 0 on ∂φ̃(Ω),
(

∂v
∂ν

)2 is constant on ∂φ̃(Ω),

(1.5)

where ν denotes the exterior unit normal to ∂φ̃(Ω) (cf. e.g. Chatelain [2], Henry [5]).
Now problem (1.5) is satisfied for some j if φ̃(Ω) is a ball. Not only, it is also known
that if φ̃(Ω) is bounded problem (1.5) can have a solution for j = 1 if and only if φ̃(Ω)
is a ball (see Henry [5]).

For eigenvalues of higher multiplicity, the situation is more complicated. To begin
with, higher order eigenvalues are not differentiable functions of φ ∈ AΩ . However, one
can prove that if we consider a finite nonempty subset F of N \ {0} of indices, and if
we consider the set of φ’s for which λj [φ] for j ∈ F does not equal any of the λl[φ] for
l ∈ N \ (F ∪ {0}), then the elementary symmetric functionals

ΛF,s[φ] ≡
∑

j1,...,js∈F j1<···<js

λj1 [φ] · · ·λjs [φ], (1.6)

depend real analytically on φ, for all s = 1, . . . , |F |. Here |F | denotes the number of
elements of F . Now let φ̃ ∈ AΩ be such that φ̃(Ω) is regular enough. Also, assume that
the eigenvalues λj [φ̃] have a common value λF [φ̃] for all j ∈ F . By imposing the condition
that ΛF,s[·] has a critical point at φ̃ ∈ AΩ at a level set for the volume functional V , one
obtains the following problem





−∆ṽj = λF [φ̃]ṽj in φ̃(Ω),

ṽj = 0 on ∂φ̃(Ω),
∑|F |

j=1

(
∂ṽj

∂ν

)2

is constant on ∂φ̃(Ω),

(1.7)

for all orthonormal bases ṽ1, . . . , ṽ|F | of eigenfunctions corresponding to the eigenvalue
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λF [φ̃]. Actually, we can formulate problem (1.7) under very weak regularity assumptions,
even when there is no exterior normal at the boundary points (cf. Theorems 2.15, 2.25,
Proposition 2.21, Remark 2.28). Our formulation can be regarded as a weak formulation
of problem (1.7). Then we verify that (1.7) is satisfied if φ̃(Ω) is a ball (cf. Theorem
2.30), and we cast a new problem, which could be regarded as a variant of the Schiffer
conjecture for the Dirichlet problem.

In case of smooth domains, the problem consists in classifying all subsets Ω of Rn for
which there exists a Dirichlet eigenvalue λ̃ corresponding to a finite subset F of indices,
and an orthonormal basis ṽ1, . . . , ṽ|F | of eigenfunctions corresponding to the eigenvalue
λ̃, for which

∑|F |
j=1

(∂ṽj

∂ν

)2 is constant on the boundary. For the statement for nonsmooth
domains, we refer to Problem 2.33 below.

Then we develop the same approach for the Neumann problem, and by imposing the
condition that the elementary symmetric functions of the eigenvalues corresponding to
a finite set of indices F have a critical point with constant volume constraint, we obtain
the formulation of an overdetermined problem.

In case of smooth domains, the problem consists in classifying all subsets Ω of Rn

for which there exists a Neumann eigenvalue γ̃ corresponding to a finite subset F of
indices, and an orthonormal basis ṽ1, . . . , ṽ|F | of Neumann eigenfunctions corresponding
to the eigenvalue γ̃, for which

∑|F |
j=1 |Dṽj |2 − γ̃ṽ2

j is constant on the boundary. For the
statement for nonsmooth domains, we refer to Problem 3.17 below.

The paper is organized as follows. Section 2 is devoted to the Dirichlet problem,
and section 3 is devoted to the Neumann problem.

2. Critical deformations for the symmetric functions of the Dirichlet
eigenvalues.

We first introduce some notation. Let X , Y be real Banach spaces. We say that the
space X is continuously imbedded in the space Y provided that X is a linear subspace
of Y , and that the inclusion map is continuous. We denote by N the set of natural
numbers including 0. The inverse function of an invertible function f is denoted f (−1),
as opposed to the reciprocal of a complex-valued function g, or the inverse of a matrix
A, which are denoted g−1 and A−1, respectively. If A ≡ (ars)r,s=1,...,n is an n×n matrix
with real entries, we denote by At the transpose matrix of A. All elements of Rn are
thought of as row vectors.

Let Ω be an open subset of Rn. Throughout this paper, we shall consider only
case n ≥ 2. We denote by clΩ, and by ∂Ω, and by |Ω|, the closure, the boundary and
the measure of Ω, respectively. We denote by L2(Ω) the space of square summable real
valued measurable functions defined on Ω, and by W 1,2

0 (Ω) the Sobolev space obtained
by taking the closure of the space D(Ω) of the C∞ functions with compact support in
Ω in the Sobolev space W 1,2(Ω) of distributions in Ω which have weak derivatives up to
the first order in L2(Ω), endowed with the norm defined by

‖u‖W 1,2(Ω) ≡
{
‖u‖2L2(Ω) +

n∑

l=1

‖uxl
‖2L2(Ω)

}1/2

∀u ∈ W 1,2(Ω). (2.1)
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Now, we are interested in open connected subsets Ω of Rn such that condition (1.1)
holds. It is interesting to note that (1.1) certainly holds if Ω has finite measure (cf. e.g.,
Tartar [14, p. 45]). As is well known, if (1.1) holds, then the Poincaré inequality holds in
Ω (cf. e.g., Evans [3, Proof of Theorem 1, p. 275]). Then we find convenient to introduce
in W 1,2

0 (Ω) its usual ‘energy’ scalar product

〈u1, u2〉 ≡
∫

Ω

Du1Dut
2 dx ∀u1, u2 ∈ W 1,2

0 (Ω). (2.2)

We denote by w1,2
0 (Ω) the Hilbert space W 1,2

0 (Ω) endowed with the scalar product of
(2.2). Then we deform Ω by a Lipschitz continuous homeomorphism of the class AΩ

which we now introduce. We denote by Lip(Ω) the set of Lipschitz continuous functions
of Ω to R, and we set

AΩ ≡
{

φ ∈ (Lip(Ω))n : lΩ [φ] ≡ inf
{ |φ(x)− φ(y)|

|x− y| : x, y ∈ Ω, x 6= y

}
> 0

}
. (2.3)

We note that

lΩ [φ] ≤ | det Dφ(x)|1/n, (2.4)

for almost all x ∈ Ω (cf. [12, Lemma 4.22]). Now it can be verified that if Ω satisfies (1.1)
and if φ ∈ AΩ , then φ(Ω) also satisfies (1.1) (cf. [6, Proposition 3.7 (vii)]). Accordingly,
the Dirichlet eigenvalue problem (1.2) has a sequence of eigenvalues as in (1.3). As usual,
we introduce the seminorm

|f |1 ≡ sup
{ |f(x)− f(y)|

|x− y| : x, y ∈ Ω, x 6= y

}
∀f ∈ Lip(Ω),

on Lip(Ω). It is easily seen that AΩ is open in (Lip(Ω))n (cf. [12, Proposition 4.29],
[9, Theorem 3.11]). As is well known, (Lip(Ω), | · |1) is a complete seminormed space.
However, we prefer to deal with a normed space, rather than with a seminormed space.
Then we will state our results for an arbitrary normed space XΩ , continuously imbedded
in (Lip(Ω), | · |1). Alternatively, one could also endow Lip(Ω) with a norm which renders
Lip(Ω) a Banach space continuously imbedded in (Lip(Ω), | · |1), and take XΩ equal to
such Banach space.

We now find convenient to introduce the following notation. We set

Υ[φ, v1, v2, λ, ψ] ≡
∫

φ(Ω)

[
Dv1Dvt

2 − λF [φ]v1v2

]
div(ψ ◦ φ(−1)) dy

−
∫

φ(Ω)

Dv1

[
D(ψ ◦ φ(−1)) + D(ψ ◦ φ(−1))t

]
Dvt

2 dy, (2.5)

for all φ ∈ AΩ , v1, v2 ∈ W 1,2(φ(Ω)), λ ∈ R, ψ ∈ (Lip(Ω))n. Then we introduce
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the following result of [9, Theorems 3.21, 3.38] concerning the real analyticity of the
symmetric functions of the eigenvalues of the Dirichlet Laplacian on φ(Ω) upon variation
of φ and the corresponding Hadamard formulas.

Theorem 2.6. Let Ω be a connected open subset of Rn such that (1.1) holds. Let
XΩ be a Banach space continuously imbedded in Lip(Ω). Let F be a finite nonempty
subset of N \ {0}. Let

A D
Ω [F ] ≡ {

φ ∈ AΩ ∩X n
Ω : λl[φ] /∈ {λj [φ] : j ∈ F}∀l ∈ N \ (F ∪ {0})}.

Then the following statements hold.

(i) The set A D
Ω [F ] is open in X n

Ω .
(ii) Let s ∈ {1, . . . , |F |}. The function ΛF,s of A D

Ω [F ] to R defined by

ΛF,s[φ] ≡
∑

j1,...,js∈F j1<···<js

λj1 [φ] · · ·λjs
[φ] ∀φ ∈ A D

Ω [F ] (2.7)

is real analytic.
(iii) Let φ̃ ∈ A D

Ω [F ] be such that the eigenvalues λj [φ̃] assume a common value λF [φ̃]
for all j ∈ F . Let ṽ1,. . . ,ṽ|F | be an orthonormal basis of the eigenspace associated
to the eigenvalue λF [φ̃] of −∆ in W 1,2

0 (φ̃(Ω)), where the orthonormality is taken
with respect to the scalar product of w1,2

0 (φ̃(Ω)) (cf. (2.2)). Then we have

d|φ=φ̃(ΛF,s)[ψ] = λs
F [φ̃]

(|F | − 1
s− 1

) |F |∑

l=1

Υ[φ, ṽl, ṽl, λF [φ̃], ψ], (2.8)

for all ψ ∈ X n
Ω . If we further assume that ṽl ∈ W 2,2(φ̃(Ω)) for l = 1, . . . , |F |,

then

Υ[φ, ṽl, ṽl, λF [φ̃], ψ] = −
∫

φ̃(Ω)

div
[(

ψ ◦ φ̃(−1)
)|Dṽl|2

]
dy, (2.9)

for all ψ ∈ (Lip(Ω) ∩ L∞(Ω))n, l = 1, . . . , |F |.
As we have said in the introduction, we are interested in the critical points of the

symmetric functions (2.7) on the level sets of the volume functional defined in (1.4). In
order to give a precise definition and a characterization of such points (cf. Definition 2.12
and Theorem 2.15), we introduce the following proposition.

Proposition 2.10. Let Ω be a connected open nonempty subset of Rn of finite
measure. Let XΩ be a Banach space continuously imbedded in Lip(Ω). Then the following
statements hold

(i) The map V of AΩ ∩X n
Ω to R defined by (1.4) is real analytic. If φ̃ ∈ AΩ ∩X n

Ω ,
then the differential of V at φ̃ is delivered by the formula
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dV [φ̃](ψ) =
∫

φ̃(Ω)

div
(
ψ ◦ φ̃(−1)

)
dy ∀ψ ∈ X n

Ω . (2.11)

(ii) If V0 ∈]0,+∞[,

V [V0] ≡
{
φ ∈ AΩ ∩X n

Ω : V [φ] = V0

}
,

and if V [V0] 6=∅, then V [V0] is a real analytic manifold of X n
Ω of codimension 1.

Proof. Statement (i) follows by standard calculus in Banach space, and by in-
equality (2.4) (see also [9, Proof of Lemma 3.26]). For statement (ii), it suffices to note
that if φ̃ ∈ V [V0] and ψ = φ̃, then dV [φ̃](ψ) = n|φ̃(Ω)|, and that accordingly dV [φ̃] is
surjective. ¤

Then we have the following well known Definition.

Definition 2.12. Let Ω be a connected open nonempty subset of Rn of finite
measure. Let XΩ be a Banach space continuously imbedded in Lip(Ω). Let V0 ∈]0,+∞[.
Let φ̃ be an element of V [V0]. Let F be a differentiable function of a neighborhood of φ̃

in X n
Ω to R. Then φ̃ is said to be critical for F on V [V0] provided that

Ker dV [φ̃] ≤ Ker dF [φ̃]. (2.13)

It is also well known that (2.13) holds if and only if there exists c ∈ R (a Lagrange
multiplier) such that

dF [φ̃] + cdV [φ̃] = 0. (2.14)

Then we have the following characterization.

Theorem 2.15. Let Ω be a connected open nonempty subset of Rn of finite mea-
sure. Let XΩ be a Banach space continuously imbedded in Lip(Ω). Let F be a finite
nonempty subset of N \{0}. Let V0 ∈]0,+∞[. Let φ̃ ∈ V [V0] be such that λj [φ̃] assume a
common value λF [φ̃] for all j ∈ F and such that λl[φ̃] 6= λF [φ̃] for all l ∈ N \ (F ∪ {0}).
Let s = 1, . . . , |F |. The function φ̃ is a critical point for ΛF,s on V [V0] if and only if there
exists an orthonormal basis ṽ1, . . . , ṽ|F | of the eigenspace corresponding to the eigenvalue
λF [φ̃] of −∆ in W 1,2

0 (φ̃(Ω)), where the orthonormality is taken with respect to the scalar
product of w1,2

0 (φ̃(Ω)) (cf. (2.2)), and a constant c ∈ R such that

|F |∑

l=1

Υ[φ̃, ṽl, ṽl, λF [φ̃], ψ] + c

∫

φ̃(Ω)

div
(
ψ ◦ φ̃(−1)

)
dy = 0 (2.16)

for all ψ ∈ X n
Ω .

Now our goal is to express condition (2.16) in a convenient way. To do so we need
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some preliminaries. We set

DΩ ≡ {
η ∈ RΩ : there exists ϕ ∈ D(Rn) such that ϕ|Ω = η

}
.

If u is a function of Ω to R, we denote by uΩ the function of Rn to R defined by

uΩ(x) ≡ u(x) if x ∈ Ω, uΩ(x) ≡ 0 if x ∈ Rn \Ω.

We note that the symbol uΩ should not be confused with the symbol u|Ω , which denotes
the restriction of u to Ω.

As is well known, the space L∞(Ω) is canonically isometric to the strong dual of
L1(Ω). Accordingly, if {fl}l∈N is a sequence in L∞(Ω), we shall say that {fl}l∈N has a
weak∗ limit f in L∞(Ω), if

lim
l→∞

∫

Ω

flg dx =
∫

Ω

fg dx ∀g ∈ L1(Ω).

As is well known, all bounded sequences in L∞(Ω) have weakly∗ convergent subsequences.
Similarly, we shall speak about weakly∗ convergent subsequences of (L∞(Ω))n. Then we
have the following technical Lemma of [11, §5].

Lemma 2.17. Let Ω be a connected open subset of Rn. Let m ∈ N . Let φ̃ ∈ AΩ.
Let XΩ be a linear subspace of Lip(Ω) containing DΩ. Let Ξ be a linear map of (Lip(Ω))n

to Rm. Assume that liml→∞Ξ[ψl] = Ξ[ψ] in Rm whenever {ψl}l∈N is a sequence in
(Lip(Ω))n, ψ ∈ (Lip(Ω))n, and

lim
l→∞

D
(
ψl ◦ φ̃(−1)

)
= D

(
ψ ◦ φ̃(−1)

)
weakly∗ in

(
L∞(φ̃(Ω))

)n2

. (2.18)

Then the following equality holds

{
Ξ[ψ] : ψ ∈ X n

Ω

}
=

{
Ξ[ξ ◦ φ̃] : ξ ∈ (

Dφ̃(Ω)

)n}
. (2.19)

Then we have the following technical statement.

Proposition 2.20. Let the same assumptions of Theorem 2.15 hold. Let XΩ

contain DΩ. Then condition (2.16) holds for all ψ ∈ X n
Ω if and only if it holds for all

ψ = ξ ◦ φ̃ with ξ ∈ (
Dφ̃(Ω)

)n.

Proof. By the membership of ṽh in W 1,2(φ̃(Ω)), and by the Hölder inequality,
and by the definition (2.5) of Υ, and by Lemma 2.17 applied with Ξ equal to the operator
in the variable ψ defined by the left hand side of (2.16), we conclude that the image of
the left hand side of (2.16) for ψ ∈ X n

Ω coincides with the image of the left hand side of
(2.16) for ψ = ξ ◦ φ̃ with ξ ∈ (

Dφ̃(Ω)

)n. ¤

Since the functions ξ ◦ φ̃ for ξ ∈ (
Dφ̃(Ω)

)n are bounded, we can invoke equality (2.9),
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and obtain the following.

Proposition 2.21. Let the same assumptions of Theorem 2.15 hold. Let XΩ

contain DΩ. Let ṽl ∈ W 2,2(φ̃(Ω)) for l = 1, . . . , |F |. Then condition (2.16) holds for all
ψ ∈ X n

Ω if and only if

∫

φ̃(Ω)

div







|F |∑

l=1

|Dṽl|2 − c


 ξ



 dy = 0 ∀ξ ∈ (

Dφ̃(Ω)

)n
. (2.22)

In order to gain a better understanding of condition (2.22), we set

o

W
1,1

(Ω) ≡ {
u ∈ W 1,1(Ω) : uΩ ∈ W 1,1(Rn)

}
.

Clearly,

W 1,1
0 (Ω) ⊆ o

W
1,1

(Ω),

and equality holds if Ω is of class C1. Then we have the following variant of a known
technical statement (see [11, §5]).

Lemma 2.23. Let Ω be an open subset of Rn such that ∂Ω has zero n-dimensional
Lebesgue measure. Let r ∈ N \{0}. Let f1,. . . , fr ∈ W 1,1(Ω). Let q denote the canonical

projection of W 1,1(Ω) onto the quotient space W 1,1(Ω)/
o

W
1,1

(Ω). The dimension of

the space generated by {q(fl)}l=1,...,r in W 1,1(Ω)/
o

W
1,1

(Ω) equals the dimension of the
space

{( ∫

Ω

div(ξf1)dx, . . . ,

∫

Ω

div(ξfr)dx

)
: ξ ∈ (DΩ)n

}
.

Now, it can be easily verified that if φ ∈ AΩ , then φ can be extended uniquely to
a Lipschitz continuous homeomorphism of clΩ onto clφ(Ω), which we still denote by φ,
and

φ(∂Ω) = ∂φ(Ω), (2.24)

(see [11, §5]). Then we have the following.

Theorem 2.25. Let the same assumptions of Theorem 2.15 hold. Let ∂Ω have
zero n-dimensional Lebesgue measure. Let XΩ contain DΩ. Let ṽh ∈ W 2,2(φ̃(Ω)) for all
h = 1, . . . , |F |. Then condition (2.22), or equivalently condition (2.16), holds if and only
if

|F |∑

l=1

|Dṽl|2 − c ∈ o

W
1,1

(φ̃(Ω)). (2.26)
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Remark 2.27. We note that if φ̃(Ω) is of class C1,1, then by standard elliptic
regularity theory, we have ṽh ∈ W 2,2(φ̃(Ω)) for h = 1, . . . , |F | (cf. e.g., Troianiello [15,
Theorem 3.29, p. 195]). Of course, the same may happen also under weaker regularity
assumptions.

Furthermore, we note that if we assume that Ω is of class C1,1, and that φ̃ ∈ AΩ

has continuous partial derivatives in Ω satisfying a Lipschitz condition in Ω, then φ̃(Ω)
is of class C1,1 (cf. e.g., [8, Lemma 2.4]).

Remark 2.28. If we know that ṽh ∈ C1(clφ̃(Ω)) for h = 1, . . . , |F |, and that φ̃(Ω)
is of class C1, and if we denote by ν the exterior normal to ∂φ̃(Ω), then condition (2.26)
takes the more familiar form

|F |∑

l=1

(
∂ṽl

∂ν

)2

= c on ∂φ̃(Ω). (2.29)

By standard Elliptic Theory, condition ṽh ∈ C1(clφ̃(Ω)) for h = 1, . . . , |F | holds if φ̃(Ω)
is of class C1,α for some α ∈]0, 1[ (cf. e.g., Gilbarg and Trudinger [4, Theorem 8.33,
p. 210]).

As the following Proposition shows, condition (2.29) holds if φ̃(Ω) is a ball. It clearly
suffices to consider the unit ball Bn ≡ {x ∈ Rn : |x| < 1}.

Proposition 2.30. Let λ̃ be a Dirichlet eigenvalue of −∆ in Bn. Let F be the
set of j ∈ N \ {0} such that the j-th Dirichlet eigenvalue of −∆ in Bn coincides with λ̃.
Let ṽ1,. . . , ṽ|F | be an orthonormal basis of the eigenspace associated to the eigenvalue λ̃

of −∆ in W 1,2
0 (Bn), where the orthonormality is taken with respect to the scalar product

in w1,2
0 (Bn) (cf. (2.2)). Let ν denote the exterior unit normal to ∂Bn. Then

∑|F |
j=1 ṽ2

j is

a radial function and
∑|F |

j=1

(∂ṽj

∂ν

)2 is constant on ∂Bn.

Proof. Let On(R) denote the group of the orthogonal linear transformations in
Rn. By rotation invariance of the Laplace operator, ṽj ◦ A is an eigenfunction corre-
sponding to λ̃ for all j = 1, . . . , |F | and for all A ∈ On(R). If A ∈ On(R), a straight-
forward computation shows that {ṽj ◦ A : j = 1, . . . , |F |} is an orthonormal system in
w1,2

0 (Bn). Since both {ṽj : j = 1, . . . , |F |} and {ṽj ◦ A : j = 1, . . . , |F |} are orthonor-
mal bases, then there exists R[A] ∈ On(R) with matrix (Rij [A])ij=1,...,|F | such that
ṽj ◦A =

∑|F |
l=1 Rjl[A]ṽl. Then we have

|F |∑

j=1

ṽ2
j ◦A =

|F |∑

j=1

ṽ2
j . (2.31)

Since (2.31) holds for all A ∈ On(R), we conclude that
∑|F |

j=1 ṽ2
j is radial. Since the

Laplace operator is rotation invariant, then ∆
{ ∑|F |

j=1 ṽ2
j

}
is also radial. Next we note

that
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|F |∑

j=1

∆
(
ṽ2

j

)
= −2λ̃

|F |∑

j=1

ṽ2
j + 2

|F |∑

j=1

|Dṽj |2.

Hence,
∑|F |

j=1 |Dṽj |2 is radial. Since Bn is an open set of class C∞, standard elliptic reg-
ularity theory implies that ṽj ∈ C∞(clBn). Since ṽj vanishes on ∂Bn for j = 1, . . . , |F |,
we have

∑|F |
j=1 |Dṽj |2 =

∑|F |
j=1

(∂ṽj

∂ν

)2 on ∂Bn, and accordingly
∑|F |

j=1

(∂ṽj

∂ν

)2 is constant
on ∂Bn. ¤

Now, if we know that Ω is an open connected subset of Rn, and that φ̃ ∈ AΩ ,
and that φ̃(Ω) is a ball, then φ̃(−1) ∈ Aφ̃(Ω), and Ω must have finite measure, and
∂Ω must have zero n-dimensional Lebesgue measure (cf. (2.24)) and (1.1) holds (cf. [6,
Proposition 3.7 (vii)]). Then by combining Theorem 2.15, Theorem 2.25, and Remark
2.28, we deduce that the following theorem holds.

Theorem 2.32. Let Ω be a connected open nonempty subset of Rn. Let XΩ be
a Banach space continuously imbedded in Lip(Ω) and containing DΩ. If φ̃ ∈ AΩ, and if
φ̃(Ω) is a ball, and if λ̃ is a Dirichlet eigenvalue of −∆ in φ̃(Ω), and if F is the set of
j ∈ N \ {0} such that λj [φ̃] = λ̃, then ΛF,s[·] has a critical point at φ̃ on V [V [φ̃]], for all
s = 1, . . . , |F |.

It would be interesting to know whether there are other φ’s which are critical for
the symmetric functions ΛF,s[·] on the level set of the volume function V , and for which
φ̃(Ω) is not a ball. In terms of boundary value problems, one can state the following
problem.

Problem 2.33. Classify all open connected subsets Ω of Rn of finite measure
with ∂Ω of zero n-dimensional Lebesgue measure, and for which there exists a Dirichlet
eigenvalue λ̃ corresponding to the set of indices F ⊆ N \ {0} and an orthonormal basis
ṽ1,. . . , ṽ|F | of the eigenspace associated to the eigenvalue λ̃, where the orthonormality is
taken with respect to the scalar product in w1,2

0 (Ω) (cf. (2.2)), for which
∑|F |

j=1 |Dṽj |2 is,

up to an additive constant, an element of
o

W
1,1

(Ω).

3. Critical deformations for the symmetric functions of the Neumann
eigenvalues.

For the Neumann problem, we are interested in open connected subsets Ω of Rn of
finite measure |Ω| such that

W 1,2(Ω) is compactly imbedded in L2(Ω). (3.1)

As is well known, if (3.1) holds, then the Poincaré-Wirtinger inequality holds in Ω (cf. e.g.,
Evans [3, Proof of Theorem 1, p. 275]). Now it can be verified that if Ω satisfies (3.1) and
if φ ∈ AΩ , then φ(Ω) also satisfies (3.1) (cf. e.g., [7, Proposition 2.6 (ii)]). Accordingly,
the Neumann eigenvalue problem
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∫

φ(Ω)

DvDwt dy = γ

∫

φ(Ω)

vw dy ∀w ∈ W 1,2(φ(Ω)) (3.2)

in the unknowns v ∈ W 1,2(φ(Ω)) (the Neumann eigenfunctions), γ ∈ R (the Neumann
eigenvalues) has a sequence of eigenvalues

0 = γ0[φ] < γ1[φ] ≤ γ2[φ] ≤ . . . ,

which we write as many times as their multiplicity. The eigenvalue γ0[φ] corresponds to
the constant eigenfunction. We find convenient to introduce the space

W 1,2,0(Ω) ≡
{

u ∈ W 1,2(Ω) :
∫

Ω

u dx = 0
}

.

We denote by w1,2,0(Ω) the space W 1,2,0(Ω) endowed with the energy scalar product

〈u1, u2〉 ≡
∫

Ω

Du1Dut
2 dx ∀u1, u2 ∈ W 1,2(Ω). (3.3)

Then all the nonconstant eigenfunctions of problem (3.2) belong to w1,2,0(φ(Ω)). Then
we have the following version of Theorem 2.6 for the Neumann problem (cf. [10, §2]).

Theorem 3.4. Let Ω be a connected open subset of Rn of finite measure such that
(3.1) holds. Let XΩ be a normed space continuously imbedded in Lip(Ω). Let F be a
finite nonempty subset of N \ {0}. Let

A N
Ω [F ] ≡ {

φ ∈ AΩ ∩X n
Ω : γl[φ] /∈ {γj [φ] : j ∈ F}∀l ∈ N \ (F ∪ {0})}.

Then the following statements hold.

(i) The set A N
Ω [F ] is open in X n

Ω .
(ii) Let s ∈ {1, . . . , |F |}. The function ΓF,s of A N

Ω [F ] to R defined by

ΓF,s[φ] ≡
∑

j1,...,js∈F j1<···<js

γj1 [φ] · · · γjs [φ] ∀φ ∈ A N
Ω [F ]

is real analytic.
(iii) Let φ̃ ∈ A N

Ω [F ] be such that the eigenvalues γj [φ̃] assume a common value γF [φ̃]
for all j ∈ F . Let ṽ1,. . . ,ṽ|F | be an orthonormal basis of the eigenspace associated
to the eigenvalue γF [φ̃] of −∆ in W 1,2,0(φ̃(Ω)), where the orthonormality is taken
with respect to the scalar product of w1,2,0(φ̃(Ω)) (cf. (3.3)). Then we have

d|φ=φ̃(ΓF,s)[ψ] = γs
F [φ̃]

(|F | − 1
s− 1

) |F |∑

l=1

Υ[φ, ṽl, ṽl, γF [φ̃], ψ], (3.5)
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for all ψ ∈ X n
Ω . If we further assume that ṽl ∈ W 2,2(φ̃(Ω)) for l = 1, . . . , |F |,

then

Υ[φ, ṽl, ṽl, γF [φ̃], ψ] =
∫

φ̃(Ω)

div
{[|Dṽl|2 − γF [φ̃]ṽ2

l

](
ψ ◦ φ̃(−1)

)}
dy, (3.6)

for all ψ ∈ (Lip(Ω) ∩ L∞(Ω))n, l = 1, . . . , |F |.
Then we have the following characterization.

Theorem 3.7. Let Ω be a connected open nonempty subset of Rn of finite measure
such that (3.1) holds. Let XΩ be a Banach space continuously imbedded in Lip(Ω). Let
F be a finite nonempty subset of N \ {0}. Let V0 ∈]0,+∞[. Let φ̃ ∈ V [V0] be such
that γj [φ̃] assume a common value γF [φ̃] for all j ∈ F and such that γl[φ̃] 6= γF [φ̃] for
all l ∈ N \ (F ∪ {0}). Let s = 1, . . . , |F |. The function φ̃ is a critical point for ΓF,s

on V [V0] if and only if there exists an orthonormal basis ṽ1, . . . , ṽ|F | of the eigenspace
corresponding to the eigenvalue γF [φ̃] of −∆ in W 1,2,0(φ̃(Ω)), where the orthonormality
is taken with respect to the scalar product of w1,2,0(φ̃(Ω)) (cf. (3.3)), and a constant
c ∈ R such that

|F |∑

l=1

Υ[φ̃, ṽl, ṽl, γF [φ̃], ψ] + c

∫

φ̃(Ω)

div
(
ψ ◦ φ̃(−1)

)
dy = 0 (3.8)

for all ψ ∈ X n
Ω .

It is interesting to note that although here we are dealing with the Neumann problem,
the critical point condition (3.8) has the same form of the critical point condition (2.16)
for the Dirichlet problem.

By arguing exactly as for the Dirichlet problem, we can prove the following technical
statement.

Proposition 3.9. Let the same assumptions of Theorem 3.7 hold. Let XΩ contain
DΩ. Let ṽl ∈ W 2,2(φ̃(Ω)) for l = 1, . . . , |F |. Then condition (3.8) holds for all ψ ∈ X n

Ω

if and only if

∫

φ̃(Ω)

div







|F |∑

l=1

(|Dṽl|2 − γF [φ̃]ṽ2
l

)
+ c


 ξ



 dy = 0 ∀ξ ∈ (

Dφ̃(Ω)

)n
. (3.10)

Then we have the following.

Theorem 3.11. Let the same assumptions of Theorem 3.7 hold. Let ∂Ω have zero
n-dimensional Lebesgue measure. Let XΩ contain DΩ. Let ṽh ∈ W 2,2(φ̃(Ω)) for all
h = 1, . . . , |F |. Then condition (3.10), or equivalently condition (3.8), holds if and only
if
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|F |∑

l=1

(|Dṽl|2 − γF [φ̃]ṽ2
l

)
+ c ∈ o

W
1,1

(φ̃(Ω)). (3.12)

As for the Dirichlet problem, we note that if φ̃(Ω) is of class C1,1, then by standard
elliptic regularity theory, we have ṽr ∈ W 2,2(φ̃(Ω)) for r = 1, . . . , |F | (cf. e.g., Troian-
iello [15, Theorem 3.17, p. 179]). Of course, the same may happen also under weaker
regularity assumptions.

Remark 3.13. If we know that ṽr ∈ C1(clφ̃(Ω)) for r = 1, . . . , |F |, and that φ̃(Ω)
is of class C1, then condition (3.12) takes the more familiar form

|F |∑

l=1

(|Dṽl|2 − γF [φ̃]ṽ2
l

)
+ c = 0 on ∂φ̃(Ω). (3.14)

As the following shows, condition (3.14) holds if φ̃(Ω) is a ball. As for the Dirichlet
problem, it suffices to consider the unit ball.

Proposition 3.15. Let γ̃ > 0 be a Neumann eigenvalue of (3.2) in Bn. Let F be
the set of j ∈ N \{0} such that the j-th Neumann eigenvalue of −∆ in Bn coincides with
γ̃. Let ṽ1,. . . , ṽ|F | be an orthonormal basis of the eigenspace associated to the eigenvalue
γ̃ of −∆ in W 1,2,0(Bn), where the orthonormality is taken with respect to the scalar
product in w1,2,0(Bn) (cf. (3.3)). Let ν denote the exterior unit normal to ∂Bn. Then∑|F |

j=1 ṽ2
j and

∑|F |
j=1 |Dṽj |2 are radial functions, and

∑|F |
l=1

(|Dṽl|2 − γ̃ṽ2
l

)
is constant on

∂Bn.

Proof. By proceeding exactly as in the proof of Proposition 2.30, we can prove
that

∑|F |
j=1 ṽ2

j and
∑|F |

j=1 |Dṽj |2 are radial. Hence we deduce the constancy on the bound-
ary requested by the statement. ¤

Then by combining Theorem 3.7, Theorem 3.11, and Remark 3.13, we deduce the
validity of the following.

Theorem 3.16. Let Ω be a connected open nonempty subset of Rn of finite mea-
sure such that (3.1) holds. Let XΩ be a Banach space continuously imbedded in Lip(Ω)
and containing DΩ. If φ̃ ∈ AΩ, and if φ̃(Ω) is a ball, and if γ̃ > 0 is a Neumann eigen-
value of −∆ in φ̃(Ω), and if F is the set of j ∈ N \ {0} such that γj [φ̃] = γ̃, then ΓF,s[·]
has a critical point at φ̃ on V [V [φ̃]], for all s = 1, . . . , |F |.

It would be interesting to know whether there are other φ’s which are critical for
the symmetric functions ΓF,s[·] on the level set of the volume function V , and for which
φ̃(Ω) is not a ball. In terms of boundary value problems, one can state the following
problem.

Problem 3.17. Classify all open connected subsets Ω of Rn of finite measure for
which (3.1) holds, and for which there exists a Neumann eigenvalue γ̃ > 0 corresponding
to the set of indices F ⊆ N \ {0} and an orthonormal basis ṽ1,. . . , ṽ|F | of the eigenspace
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associated to the eigenvalue γ̃, where the orthonormality is taken with respect to the scalar
product in w1,2,0(Ω) (cf. (3.3)), for which

∑|F |
l=1

(|Dṽl|2 − γ̃ṽ2
l

)
is, up to an additive

constant, an element of
o

W
1,1

(Ω).
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