doi: 10.2969/jmsj/07027848

Erratum to " L^p measure of growth and higher order Hardy-Sobolev-Morrey inequalities on \mathbb{R}^N "

By Patrick J. Rabier

[The original paper is in this journal, Vol. 69 (2017), 127–151.]

(Received July 21, 2017)

In the proof of part (i) of Theorem 3.2 of [1], the argument for the existence of a sequence $r_n \to \infty$ such that $\lim ||u(r_n,\cdot) - \overline{u}(r_n)||_{p,\mathbb{S}^{N-1}} = 0$ must be slightly modified. Indeed, $\nabla_{\mathbb{S}^{N-1}} u(r,\sigma)$ is not the orthogonal projection of $\nabla u(r,\sigma)$ on the tangent space $\{\sigma\}^{\perp}$ to \mathbb{S}^{N-1} at σ , but r times this projection. To account for the omitted factor r, the left-hand side of the inequality

$$\int_{0}^{\infty} (1+r)^{-sp-N} r^{N-1} ||u(r,\cdot) - \overline{u}(r)||_{p,\,\mathbb{S}^{N-1}}^{p} dr \le C||\,|\nabla u|\,||_{L_{s}^{p}}^{p},$$

must be replaced with $\int_0^\infty (1+r)^{-sp-N} r^{N-1-p} ||u(r,\cdot) - \overline{u}(r)||_{p,\,\mathbb{S}^{N-1}}^p dr$. Since s < -1 is assumed, the function $(1+r)^{-sp-N} r^{N-1-p}$ (equivalent to $r^{-(s+1)p-1}$ for large r) is not integrable at infinity, which suffices to ensure the existence of the sequence r_n .

References

[1] P. J. Rabier, L^p measure of growth and higher order Hardy–Sobolev–Morrey inequalities on \mathbb{R}^N , J. Math. Soc. Japan, **69** (2017), 127–151.

Patrick J. RABIER
Department of Mathematics
University of Pittsburgh
Pittsburgh, PA 15260, USA
E-mail: rabier@pitt.edu