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Abstract. Let Z be the transient reflecting Brownian motion on the clo-
sure of an unbounded domain D ⊂ Rd with N number of Liouville branches.

We consider a diffuion X on D having finite lifetime obtained from Z by a time
change. We show that X admits only a finite number of possible symmetric
conservative diffusion extensions Y beyond its lifetime characterized by possi-
ble partitions of the collection of N ends and we identify the family of the ex-

tended Dirichlet spaces of all Y (which are independent of time change used) as
subspaces of the space BL(D) spanned by the extended Sobolev space H1

e (D)
and the approaching probabilities of Z to the ends of Liouville branches.

1. Introduction.

The boundary problem of a Markov process X concerns all possible Markovian

prolongations Y of X beyond its life time ζ whenever ζ is finite. For a conservative

but transient Markov process, we can still consider its extension, after a time change

to speed up the original process. Let Z = (Zt,Qx) be a conservative right process

on a locally compact separable metric space E and ∂ be the point at infinity of E.

Suppose Z is transient relative to an excessive measure m: for the 0-order resolvent R

of Z, Rf(z) < ∞, m-a.e. for some strictly positive function (or equivalently, for any

non-negative function) f ∈ L1(E;m). Then

Qx

(
lim
t→∞

Zt = ∂
)
= 1 for q.e. x ∈ E,

if Rf is lower semicontinuous for any non-negative Borel function f ([FTa]). The last

condition is not needed when X is m-symmetric ([CF2]). Here, ‘q.e.’ means ‘except for

an m-polar set’.

Take any strictly positive bounded function f ∈ L1(E;m). Then At =
∫ t

0
f(Zs)ds,

t ≥ 0 is a strictly increasing PCAF of Z with EQ
x [A∞] = Rf(x) < ∞ for q.e. x ∈ E.

The time changed process X = (Xt, ζ,Px) of Z by means of A is defined by

Xt = Zτt , t ≥ 0, τ = A−1, ζ = A∞, Px = Qx, x ∈ E.

Since Px(ζ < ∞, limt→ζ Xt = ∂) = Px(ζ < ∞) = 1 for q.e. x ∈ E, the boundary prob-

lem forX at ∂ makes perfect sense. We denoteX also byXf to indicate its dependence on

the function f . For different choices of f , Xf have a common geometric structure related
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each other only by time changes. Making a closer look at the geometric behaviors of a

conservative transient process Z around ∂ is a right way toward the study of the bound-

ary problem for X = Xf . A strong Markov process X̂ on a topological space Ê is said to

be an extension of X on E if (i) E can be embedded homomorphically as a dense open

subset of Ê, (ii) the part process of X̂ killed upon leaving E has the same distribution

as X, and (iii) X̂ has no sojourn on Ê \ E; that is, X̂ spends zero Lebesgue amount of

time on Ê \ E.

In this paper, Z is the transient reflecting Brownian motion on the closure of an

unbounded domain D ⊂ Rd with N number of Liouville branches. Our main aim is

to prove in Section 5 that a time changed process Xf of Z admits essentially only

a finite number of possible symmetric conservative diffusion extensions Y beyond its

lifetime. They are characterized by the partition of the collection of N ends. Moreover,

all the corresponding extended Dirichlet spaces (EY ,FY
e ) are identified in terms of the

extended Dirichlet space of Z and the approaching probabilities of Z to the ends of

Liouville branches in an extremely simple manner. These extended Dirichlet spaces are

independent of the choice of f . The L2-generator of each extension Y is also characterized

in Section 6 by means of zero flux conditions at the ends of branches. Each extension Y

may be called a many point reflection at infinity of Xf generalizing the notion of the one

point reflection in [CF3] in the present specific context. The characterization of possible

extensions also uses quasi-homeomorphism and equivalence between Dirichlet forms. See

the Appendix, Section 8, of this paper for details.

In fact, our results are valid for a time changed process Xµ of Z by means of a more

general finite smooth measure µ on D than f(x)dx. This is demonstrated in Section 7.

Although we formulate our results for the reflecting Brownian motion on an un-

bounded domain in Rd with several Liouville branches, all of them except for Theorem

6.1 remain valid without any essential change for the reflecting diffusion process asso-

ciated with the uniformly elliptic second order self-adjoint partial differential operator

with measurable coefficients that was constructed in [C] and [FTo]. Since we need strong

Feller property of the reflecting diffusion process, we assume the underlying unbounded

domain is Lipschitz in the sense of [FTo]; see Remark 5.3. Thus we are effectively inves-

tigating common path behaviors at infinity holding for such a general family of diffusion

processes.

Acknowledgements. This paper is a direct outgrowth of our paper [CF1] and

Chapter 7 of our book [CF2]. In relation to them, we had very valuable discussions with

Krztsztof Burdzy on boundaries of transient reflecting Brownian motions. We would like

to express our sincere thanks to him.

2. Preliminaries.

For a domain D ⊂ Rd, let us consider the spaces

BL(D) = {u ∈ L2
loc(D) : |∇u| ∈ L2(D)}, H1(D) = BL(D) ∩ L2(D). (2.1)

The space BL(D) called the Beppo Levi space was introduced by Deny and Lions [DL]

as the space of Schwartz distributions whose first order derivatives are in L2(D), which
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can be identified with the function space described above. The quotient space ḂL(D)

of BL(D) by the space of all constant functions on D is a real Hilbert space with inner

product

D(u, v) =

∫
D

∇u(x) · ∇v(x)dx.

See Section 1.1 of Maz’ja [M] for proofs of the above stated facts, where the space BL(D)

is denoted by L1
2(D) and studied in a more general context of the spaces Lℓ

p(D), ℓ ≥
1, p ≥ 1.

Define

(E ,F) =

(
1

2
D,H1(D)

)
, (2.2)

which is a Dirichlet form on L2(D). The collection of those domains D ⊂ Rd for which

(2.2) is regular on L2(D) will be denoted by D. It is known that D ∈ D if D is either a

domain of continuous boundary or an extendable domain relative to H1(D) (cf. [CF1,

p.866]). For D ∈ D, the diffusion process Z on D associated with (2.2) is by definition the

reflecting Brownian motion (RBM in abbreviation) which is known to be conservative.

Furthermore, the space BL(D) is nothing but the reflected Dirichlet space of the form

(2.2) ([CF2, Section 6.5]). The Dirichlet form (2.2) is either recurrent or transient and

the latter case occurs only when d ≥ 3 and D is unbounded. For D1, D2 ∈ D with

D1 ⊂ D2, (2.2) is transient for D2 whenever so it is for the smaller domain D1. If (2.2)

is recurrent, then we have the identity

BL(D) = H1
e (D)

where H1
e (D) denotes the extended Dirichlet space of the form (2.2) or of the RBM Z

([CF2]) that may be called the extended Sobolev space of order 1.

Suppose D ∈ D and (2.2) is transient. Then H1
e (D) is a Hilbert space with inner

product D/2 possessing the space C∞
c (D) as its core. H1

e (D) can be regarded as a proper

closed subspace of the quotient space ḂL(D). Define

H∗(D) = {u ∈ BL(D) : D(u, v) = 0 for every v ∈ H1
e (D)}. (2.3)

Any function u ∈ BL(D) admits a unique decomposition

u = u0 + h, u0 ∈ H1
e (D), h ∈ H∗(D). (2.4)

Any function h ∈ H∗(D) is of finite Dirichlet integral and harmonic on D. Furthermore,

the quasi-continuous version of h is harmonic on D with respect to the RBM Z.

In what follows, we restrict our attention to the case where the form (2.2) is transient

and so we assume that d ≥ 3 and D ∈ D is unbounded.

Definition 2.1. A domain D ∈ D is called a Liouville domain if the Dirichlet

form (2.2) is transient and dimH∗(D) = 1.



836(414)

836 Z.-Q. Chen and M. Fukushima

A domain D ∈ D is a Liouville domain if and only if the form (2.2) is transient and

any function u ∈ BL(D) admits a unique decomposition

u = u0 + c, where u0 ∈ H1
e (D) and c ∈ R. (2.5)

We shall denote by c(u) the constant c in (2.5) uniquely associated with u ∈ BL(D) for

a Liouville domain D.

A trivial but important example of a Liouville domain is Rd with d ≥ 3, see Brelot

[B]. Another important example of a Liouville domain is provided by an unbounded

uniform domain that has been shown by Jones [J] (see also [HK]) to be an extendable

domain relative to the space BL(D).

A domainD ⊂ Rd is called a uniform domain if there exists C > 0 such that for every

x, y ∈ D, there is a rectifiable curve γ in D connecting x and y with length(γ) ≤ C|x−y|,
and moreover

min{|x− z|, |z − y|} ≤ Cdist(z,Dc) for every z ∈ γ.

It was proved in Theorem 3.5 of [CF1] that any unbounded uniform domain is a Liouville

domain in the sense of Definition 2.1. An unbounded uniform domain is such a domain

that is broaden toward the infinity. The truncated infinite cone CA,a = {(r, ω) : r > a,

ω ∈ A} ⊂ Rd for any connected open set A ⊂ Sd−1 with Lipschitz boundary is an

unbounded uniform domain. To the contrary, (2.2) is recurrent for the cylinder D =

{(x, x′) ∈ Rd : x ∈ R, |x′| < 1}. See Pinsky [P] for transience criteria for other types of

domains. On the other hand, it has been shown in [CF2, Proposition 7.8.5] that (2.2) is

transient but dim(H∗(D)) = 2 for a special domain

D = B1(0) ∪
{
(x, x′) ∈ Rd : x ∈ R, |x| > |x′|

}
, d ≥ 3 (2.6)

with two symmetric cone branches. Here Br(0), r > 0, denotes an open ball with radius

r centered at the origin. This domain is not uniform because of a presence of a bottleneck.

We shall consider much more general domains than this. But before proceeding to the

main setting of the present paper, we state a simple property of Liouville domains:

Proposition 2.2. For D1, D2 ∈ D with D1 ⊂ D2, suppose D1 is a Liouville

domain and D2 \D1 is bounded. Then D2 is a Liouville domain. Furthermore, for any

u ∈ BL(D2), it holds that c(u) = c(u
∣∣
D1

).

Proof. The proof is similar to that of [CF1, Proposition 3.6]. Note that (2.2)

is transient for D2. We show that any u ∈ BL(D2) admits a decomposition (2.5) with

u0 ∈ H1
e (D2) and c = c(u

∣∣
D1

). Due to the normal contraction property of BL(D2)

and the transience of (D/2,H1(D)), we may assume that u is bounded on D2. By

noting that u
∣∣
D1

∈ BL(D1) and D1 is a Liouville domain, we let c = c(u
∣∣
D1

) and

u0(x) = u(x) − c, x ∈ D2. Then u0
∣∣
D1

∈ H1
e (D1). To prove that u0 ∈ H1

e (D2), choose

an open ball Br(0) ⊃ D2 \D1 and a function w ∈ C∞
c (Rd) with w(x) = 1, x ∈ Br(0).

Clearly wu0 ∈ H1
e (D2).

It remains to show (1−w)u0 ∈ H1
e (D2). Take gn ∈ H1(D1) converging to u0 a.e. on
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D1 and in the Dirichlet norm on D1. By truncation, we may assume that gn is uniformly

bounded on D1. Then∫
D2

|∇[(1− w(x))gn(x)]|2dx

≤ 2 sup
x∈Rd

(1− w(x))2
∫
D1

|∇gn(x)|2dx+ 2 sup
x∈D1

|gn(x)|2
∫
Rd

|∇w(x)|2dx,

which is uniformly bounded in n, yielding by the Banach–Saks theorem that (1−w)u0 ∈
H1

e (D2). □

We shall work under the regularity condition

(A.1) D is of a Lipschitz boundary ∂D,

which means the following: there are constantsM > 0, δ > 0 and a locally finite covering

{Uj}j∈J of ∂D such that, for each j ∈ J, D∩Uj is a upper part of a graph of a Lipschitz

continuous function under an appropriate coodinate system with the Lipschitz constant

bounded by M and ∂D ⊂
∪

j∈J{x ∈ Uj : dist(x, ∂Uj) > δ}. According to [FTo], there

exists then a conservative diffusion process Z = (Zt,Qx) onD associated with the regular

Dirichlet form (2.2) on L2(D) whose resolvent {GZ
α ;α > 0} has the strong Feller property

in the sense that

GZ
α (bL

1(D)) ⊂ bC(D). (2.7)

Z is a precise version of the RBM on D. In particular, the transition probability of Z is

absolutely continuous with respect to the Lebesgue measure.

Under the condition (A.1) and the transience assumption on (2.2), the RBM Z =

(Zt,Qx) on D enjoys the properties that

Qx

(
lim
t→∞

Zt = ∂
)
= 1 for every x ∈ D, (2.8)

where ∂ denotes the point at infinity of D, and

Qx

(
lim
t→∞

u(Zt) = 0
)
= 1 for every x ∈ D, (2.9)

for any u ∈ H1
e (D), u being taken to be quasi-continuous. See [CF2, Section 7.8, (4o)].

In the rest of this paper, we fix a domain D of Rd, d ≥ 3, satisfying (A.1) and

(A.2) D \ Br(0) =

N∪
j=1

Cj

for some r > 0 and an integer N , where C1, . . . , CN are Liouville domains with Lipschitz

boundaries such that C1, . . . , CN are mutually disjoint. D may be called a Lipschitz

domain with N number of Liouville branches.

Let ∂j be the point at infinity of the unbounded closed set Cj for each 1 ≤ j ≤ N .

Denote the N -points set {∂1, . . . , ∂N} by F and put D
∗
= D ∪ F . D

∗
can be made

to be a compact Hausdorff space if we employ as a local base of neighborhoods of each
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point ∂j ∈ F the neighborhoods of ∂j in Cj ∪ {∂j}. D
∗
may be called the N -points

compactification of D.

Obviously the Dirichlet form (2.2) is transient for D. We shall verify in Section 4

that dim(H∗(D)) = N . Here we note the following implication of Proposition 2.2; if a

domain D is of the type (A.2) for different 0 < r1 < r2, and if D is a domain with N

number of Liouville branches relative to r2, then so it is relative to r1.

3. Approaching probabilities of RBM Z and limits of BL-functions along

Zt.

For each 1 ≤ j ≤ N , define the approaching probability of the RBM Z = (Zt,Qx)

to ∂j by

φj(x) = Qx

(
lim
t→∞

Zt = ∂j

)
, x ∈ D. (3.1)

Proposition 3.1. It holds that

N∑
j=1

φj(x) = 1 for every x ∈ D, (3.2)

and, for each 1 ≤ j ≤ N ,

φj(x) > 0 for every x ∈ D. (3.3)

Proof. (3.2) is a consequence of (2.8). As φj is a non-negative harmonic function

on the domain D, it is either identically zero on D or strictly positive on D. Since

φj(x) = Qtφj(x), x ∈ D, where Qt is the transition semigroup of the RBM Z, which has

a strictly positive transition density kernel, the above dichotomy extends from D to D.

Suppose φj(x) ≡ 0 on D. Then by (2.8)

Qx

(
σ∂Br(0) <∞

)
= 1, for any x ∈ Cj \Br+1(0). (3.4)

Let Zj = (Zj
t ,Q

j
x), x ∈ Cj , be the RBM on Cj , which is transient as Cj is a Liouville

domain. Since Z and Zj share the common part process on Cj \ ∂Br(0), (3.4) remains

valid if Qx is replaced by Qj
x. By the Markov property of Zj and the conservativeness

of Zj , we have

Qj
x

(
σ∂Br(0) ◦ θℓ <∞ for every integer ℓ

)
= 1,

for any x ∈ Cj \ Br+1(0). This however contradicts to the transience property (2.8)

of Zj . □

Proposition 3.2. For any u ∈ BL(D), let cj(u) = c(u|Cj ) for 1 ≤ j ≤ N . Then

Qx

(
Z∞− = ∂j , lim

t→∞
u(Zt) = cj(u)

)
= Qx (Z∞− = ∂j) , x ∈ D, 1 ≤ j ≤ N. (3.5)

If cj(u) = 0 for every 1 ≤ j ≤ N , then u ∈ H1
e (D).
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Proof. We prove (3.5) for j = 1. Let r > 0 be the radius in (A.2) and Z1 =

(Z1
t ,Q

1
x) be the RBM on C1. The hitting times of Br(0) and BR(0) for R > r will be

denoted by σr and σR, respectively. Observe that Z and Z1 share in common the part

process on C1 \ ∂Br(0). Since C1 is a Liouville domain, we see from (2.5) and (2.9) that

Q1
x

(
lim
t→∞

u(Z1
t ) = c1(u)

)
= 1 for every x ∈ C1.

For R > r, we consider the event

ΓR = {ZσR ∈ C1, σr ◦ θσR = ∞}.

Then ΓR ∩ {Z∞− = ∂} increases as R increases and {Z∞− = ∂1} =
∪

R>r[ΓR ∩ {Z∞− =

∂}]. In view of (2.8), we have for x ∈ D,

Qx(Z∞− = ∂1) = lim
R→∞

Qx(ΓR ∩ {Z∞− = ∂}) = lim
R→∞

Qx(ΓR)

= lim
R→∞

EQx

[
QZσR

(σr = ∞);ZσR
∈ C1

]
= lim

R→∞
EQx

[
Q1

ZσR
(σr = ∞);ZσR ∈ C1

]
= lim

R→∞
EQx

[
Q1

ZσR
(σr = ∞, lim

t→∞
u(Z1

t ) = c1(u));ZσR
∈ C1

]
.

In exactly the same way, we can see that Qx(Z∞− = ∂1, limt→∞ u(Zt) = c1(u)) equals

the last expression in the above display, proving (3.5) for j = 1

Suppose u ∈ BL(D) satisfies cj(u) = 0 for every 1 ≤ j ≤ N. Then u
∣∣
Cj

∈ H1
e (Cj) for

every 1 ≤ j ≤ N and we can conclude as the proof of Proposition 2.2 that u ∈ H1
e (D). □

We remark that, in view of Proposition 2.2 the constants cj(u), 1 ≤ j ≤ N , in the

above proposition are independent of the choice of the radius r in (A.2).

4. Reflecting extension X∗ of a time changed RBM X and dimension

of H∗(D).

Fix a strictly positive bounded integrable function f on D and define

At =

∫ t

0

f(Zs)ds, t ≥ 0. (4.1)

At is a positive continuous additive functional (PCAF) of the RBM Z = (Zt,Qx) on D

in the strict sense with full support. Notice that

Qx(A∞ <∞) = 1 for every x ∈ D, (4.2)

because EQx [A∞] = GZ
0+f(x) < ∞ for a.e. x ∈ D due to the transience of Z ([CF2,

Proposition 2.1.3]) and hence

Qx(A∞ = ∞) = Qx(A∞◦θt = ∞) = EQx [QZt(A∞ = ∞)] = 0 for every x ∈ D, (4.3)
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on account of the stated absolute continuity of the transition function of Z.

Let X = (Xt, ζ,Px) be the time changed process of Z by means of A:

Xt = Zτt , τ = A−1, ζ = A∞, Px = Qx for x ∈ D.

The Markov process X = Xf is a diffusion process on D symmetric with respect to the

measure m(dx) = f(x)dx and the Dirichlet form (EX ,FX) of X on L2(D;m) is given by

EX =
1

2
D, FX = H1

e (D) ∩ L2(D;m). (4.4)

Since the extended Dirichlet space and the reflected Dirichlet space are invariant under

a time change by a fully supported PCAF ([CF2, Corollary 5.2.12, Proposition 6.4.6]),

these spaces for EX are still given by H1
e (D) and BL(D), respectively. But the life time

ζ of X is finite Px-a.s. for every x ∈ D in view of (4.2) so that we may consider the

problem of extending X after ζ, particularly, from D to its N -points compactification

D
∗
= D ∪ F with F = {∂1, . . . , ∂N}.
We can rewrite the approaching probability φj of Z to ∂j defined by (3.1) as

φj(x) = Px (ζ <∞, Xζ− = ∂j) , x ∈ D, 1 ≤ j ≤ N, (4.5)

in terms of the time changed process X. The measure m(dx) = f(x)dx is extended from

D to D
∗
by setting m(F ) = 0. An m-symmetric conservative diffusion process X∗ on D

∗

will be called a symmetric conservative diffusion extension of X if its part process on D

being killed upon hitting F is equivalent in law with X. The resolvent of X is denoted

by {GX
α , α > 0}.

Proposition 4.1. There exists a unique symmetric conservative diffusion exten-

sion X∗ of X from D to D
∗
= D ∪ F . The process X∗ is recurrent. Let (E∗,F∗) and

F∗
e be the Dirichlet form of X∗ on L2(D

∗
,m) (= L2(D;m)) and its extended Dirichlet

space, respectively. Then

F∗
e = H1

e (D) ⊕


N∑
j=1

cjφj : cj ∈ R

 ⊂ BL(D), (4.6)

E∗(u, v) =
1

2
D(u, v), u, v ∈ F∗

e . (4.7)

Proof. We apply a general existence theorem of a many-point extension formu-

lated in [CF2, Theorem 7.7.4] to the m-symmetric diffusion X on D and the N -points

compactification D
∗
= D ∪ F of D. We verify conditions (M.1), (M.2), (M.3) for X

required in this theorem. ψj(x) := Px(ζ <∞, Xζ− = ∂j) is positive for every x ∈ D, 1 ≤
j ≤ N , by (3.3) and (4.5), and so (M.1) is satisfied. Since m(D) =

∫
D
fdx < ∞, the

m-integrability (M.2) of the function u
(j)
α (x) = Ex

[
e−αζ ;Xζ− = ∂j

]
, x ∈ D, is trivially

fulfilled, 1 ≤ j ≤ N . For any 1 ≤ j ≤ N and any compact set V ⊂ D, infx∈V G
X
α ψj(x)

is positive because GX
α ψj = GX

0+u
(j)
α = GZ

0+(u
(j)
α f) is lower semi-continuous on account

of (2.7) and u
(j)
α is positive on D. Accordingly, condition (M.3) is also satisfied.
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Therefore there exists an m-symmetric diffusion extension X∗ of X from D to D
∗

admitting no killing on F . We can then use a general characterization theorem [CF2,

Theorem 7.7.3] to conclude that such an extension X∗ of X is unique in law and its

extended Dirichlet space (F∗
e , E∗) is given by (4.6) and (4.7) as ψj = φj , 1 ≤ j ≤ N . In

particular, (3.2) implies 1 ∈ F∗
e , E∗(1, 1) = 0, so that X∗ is recurrent and consequently

conservative. This also means the unique existence of an m-symmetric conservative

diffusion extension X∗ of X to D
∗
. □

Theorem 4.2. dim(H∗(D)) = N and

H∗(D) =


N∑
j=1

cj φj : cj ∈ R

 . (4.8)

The m-symmetric conservative diffusion extension X∗ of the time changed RBM X con-

structed in Proposition 4.1 is a reflecting extension of X in the sense that the extended

Dirichlet space (F∗
e , E∗) of X∗ equals (BL(D),D/2) the reflected Dirichlet space of X.

Proof. By Proposition 4.1, {φj ; 1 ≤ j ≤ N} ⊂ H∗(D) ⊂ BL(D). For 1 ≤ j, k ≤
N , let c

(j)
k = ck(φj). We claim that

c
(j)
k = δjk, 1 ≤ k ≤ N. (4.9)

Let τn be the exit time of Z from the set D ∩ Bn(0), n ≥ 1. Then {φj(Zτn)}n≥1 is a

bounded Qx-martingale and possesses an a.s. limit Φ with φj(x) = EQx [Φ]. By (3.5),

Φ =
N∑

k=1

c
(j)
k 1{Z∞−=∂k}. (4.10)

For k ̸= j, put Fk,n = Ck ∩ {|x| = n}. Then by (3.5) again

c
(j)
k φk(x) = lim

n→∞
EQx

[
φj(Zτn)1{Z∞−=∂k}

]
≤ lim sup

n→∞
EQx

[
φj(Zτn)1{Zτn∈Ck}

]
= lim sup

n→∞
EQx

[
Qx

(
Z∞− ◦ θτn = ∂j , Zτn ∈ Ck

∣∣ Fτn

)]
≤ lim

n→∞
Qx

(
Z∞− = ∂j , σFk,n

<∞
)
= 0,

yielding c
(j)
k = 0, k ̸= j. Taking Qx-expectation in (4.10) proves the claim (4.9).

Next for any u ∈ BL(D), let u0 = u −
∑N

j=1 cj(u)φj . Then u0 ∈ BL(D) with

cj(u0) = 0 for every 1 ≤ j ≤ N . So by Proposition 3.2, u0 ∈ H1
e (D). This establishes

(4.8). The linear independence of {φj ; 1 ≤ j ≤ N} follows from (4.9), while (4.6) and

(4.8) yield the last assertion of the theorem. □

Remark 4.3. This theorem for the special domain (2.6) was stated in [CF2,

Proposition 7.8.5]. We take this opportunity to mention that the proof of the latter

given in the book [CF2] contained a flaw (on the third line of page 386), that should be

corrected in the above way.
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5. Partitions Π of F and all possible symmetric diffusion extensions Y

of a time changed RBM X.

We continue to consider the N -points compactification D
∗
= D∪F of D introduced

at the end of Section 1. A map Π from the boundary set F = {∂1, . . . , ∂N} onto a finite

set F̂ = {∂̂1, . . . , ∂̂ℓ} with ℓ ≤ N is called a partition of F . We let D
Π,∗

= D ∪ F̂ .

We extend the map Π from F to D
∗
by setting Πx = x, x ∈ D, and introduce the

quotient topology on D
Π,∗

by Π. In other words, we employ U Π = {U ⊂ D
Π,∗

:

Π−1(U) is an open subset of D
∗} as the family of open subsets of D

Π,∗
. Then D

Π,∗
is a

compact Hausdorff space and may be called an ℓ-points compactification of D obtained

from D
∗
by identifying the points in the set Π−1∂̂i ⊂ F as a single point ∂̂i for each

1 ≤ i ≤ ℓ.

Given a partition Π of F , the approaching probabilities φ̂i of the RBM Z = (Zt,Qx)

to ∂̂i ∈ F̂ are defined by

φ̂i(x) =
∑

j∈Π−1∂̂i

φj(x), x ∈ D, 1 ≤ i ≤ ℓ. (5.1)

As in the preceding section, we define the time changed process X = (Xt, ζ,Px) on D

of Z by means of a strictly positive bounded integrable function f on D. The measure

m(dx) = f(x)dx is extended from D to D
Π,∗

by setting m(F̂ ) = 0. Just as in Proposition

4.1, there exists then a unique m-symmetric conservative diffusion extension XΠ,∗ of X

fromD toD
Π,∗

and the Dirichlet form (EΠ,∗,FΠ,∗) ofXΠ,∗ on L2(D
Π,∗

;m) (= L2(D;m))

admits the extended Dirichlet space (FΠ,∗
e , EΠ,∗) expressed as

FΠ,∗
e = H1

e (D) ⊕

{
ℓ∑

i=1

ciφ̂i : ci ∈ R

}
⊂ BL(D), (5.2)

EΠ,∗(u, v) =
1

2
D(u, v), u, v ∈ FΠ,∗

e . (5.3)

XΠ,∗ is recurrent. EΠ,∗ is a quasi-regular Dirichlet form on L2(D
Π,∗

;m).

We now prove that the family {XΠ,∗ : Π is a partition of F} exhausts all possible

m-symmetric conservative diffusion extensions of the time changed RBM X on D.

Let E be a Lusin space into which D is homeomorpically embedded as an open

subset. The measurem(dx) = f(x)dx onD is extended to E by settingm(E\D) = 0. Let

Y = (Yt,P
Y
x ) be an m-symmetric conservative diffusion process on E whose part process

on D is identical in law with X. We denote by (EY ,FY ) and FY
e the Dirichlet form of Y

on L2(E;m) and its extended Dirichlet space. We call Y an m-symmetric conservative

diffusion extension of X. The following theorem extends [CF1, Theorem 3.4]. See also

[F4, Theorem 6.1] for analogous statements in a different context.

Theorem 5.1. There exists a partition Π of F such that, as Dirichlet forms on

L2(D;m),

(EY ,FY ) = (EΠ,∗,FΠ,∗). (5.4)
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Y under Pg·m and XΠ.∗ under PΠ,∗
g·m have the same finite dimensional distribution for

any non-negative g ∈ L2(D;m). Furthermore, a quasi-homeomorphic image of Y is

identical with XΠ,∗ in the sense of Theorem 8.2 in Appendix.

Proof. As has been noted in the preceding section, the extended Dirichlet space

(FX
e , EX) and the reflected Dirichlet space ((FX)ref , (EX)ref) of the Dirichlet form (4.4)

are given by

FX
e = H1

e (D), EX =
1

2
D, (5.5)

(FX)ref = BL(D) = H1
e (D)⊕H∗(D), (EX)ref =

1

2
D, (5.6)

respectively.

EY is a quasi-regular Dirichlet form on L2(E;m) and Y is properly associated with it

by virtue of Ma and Röckner [MR]. By Chen–Ma–Röckner [CMR], EY is therefore quasi

homeomorphic with a regular Dirichlet form. In particular, via a quasi homeomorphism j

in [CF2, Theorems 3.1.13]), we can assume that E is a locally compact separable metric

space, EY is a regular Dirichlet form on L2(E;m), Y is an associated Hunt process on E,

and F̃ := E\D is quasi-closed. Since Y is a conservative extension of the non-conservative

process X, F̃ must be non EY -polar. Y can be also shown to be irreducible as in the

proof of [CF2, Lemma 7.2.7 (ii)]. Thus we are in the same setting as in Section 7.1 of

[CF2] and Theorem 7.1.6 in it applies to Y and F̃ .

Every function in FY
e will be taken to be EY -quasi continuous. As Y is a diffusion

with no killing inside, the jumping measure J and the killing measure k in the Beurling-

Deny decomposition of EY vanish so that we have by [CF2, Theorem 7.1.6]

H1
e (D) ⊂ FY

e ⊂ BL(D), HY := {Hu : u ∈ FY
e } ⊂ H∗(D), (5.7)

EY (u, u) =
1

2
D(u, u) +

1

2
µc
⟨Hu⟩(F̃ ), u ∈ FY

e , (5.8)

where Hu(x) = EY
x [u(YσF̃

)], x ∈ E.

Let us prove that

µc
⟨u⟩(F̃ ) = 0, u ∈ HY . (5.9)

To this end, we consider a finite measure ν on E defined by

ν(B) =

∫
D

PY
x

(
YσF̃

∈ B, σF̃ <∞
)
m(dx), B ∈ B(E).

ν vanishes off F̃ and charges no EY -polar set. In view of [CF2, Lemma 5.2.9 (i)], F̃ is

a quasi support of ν in the following sense: ν(E \ F̃ ) = 0 and F̃ ⊂ F̂ q.e. for any quasi

closed set F̂ with ν(E \ F̂ ) = 0.

Now, for u ∈ HY , (4.8) and (5.7) imply that u =
∑N

j=1 cjφj for some constants cj .

Take F̂ = {ξ ∈ E : u(ξ) ∈ {c1, . . . , cN}}. Since u is quasi continuous, F̂ is a quasi closed

set. As u is continuous along the sample path of Y (cf. [CF2, Theorem 3.1.7]), we have
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ν(E \ F̂ ) = Pm(u(YσF̃
) /∈ {c1, . . . , cN}) = 0 on account of Proposition 3.2 and (4.9).

Accordingly F̃ ⊂ F̂ q.e., namely, u takes only finite values {c1, . . . , cN} q.e. on F̃ . By

the energy image density property of µc
⟨u⟩ due to Bouleau and Hirsch [BH] (cf. [CF2,

Theorem 4.3.8]), we thus get (5.9).

Relation (5.7) and Proposition 3.2(ii) imply that every function u ∈ HY (⊂ BL(D))

admits a limit u(∂j) at each boundary point ∂j ∈ F along the path of Z. Define an

equivalence relation ∼ on F by ∂j ∼ ∂k if and only if u(∂j) = u(∂k) for every u ∈ HY .

Notice that, for every 1 ≤ j ≤ N , there exists u ∈ HY with u(∂j) ̸= 0. Otherwise, for the

resolvent {GY
α : α > 0} of Y , GY

α 1 ∈ FY
e (⊂ BL(D)) approaches to zero at some ∂j along

the path of Z, contradiction to the conservativeness of Y . Let Π be the corresponding

partition of F : Π maps F onto {∂̂1, . . . , ∂̂ℓ} the set of all equivalence classes with respect

to ∼. Then HY =
{∑ℓ

i=1 ciφ̂i : ci ∈ R
}
for φ̂i defined by (5.1). Hence (5.2), (5.3),

(5.7), (5.8) and (5.9) lead us to the desired identity (5.4).

Since the both Dirichlet forms share a common semigroup on L2(D;m), we get the

first conclusion of the theorem. Further the Dirichlet spaces

(E, m, EY ,FY ), (D
Π,∗
, m, EΠ,∗,FΠ,∗)

are equivalent in the sense of Appendix (Section 8) by the identity map Φ from FY
b onto

FΠ,∗
b so that we get the second conclusion from Theorem 8.2. □

Remark 5.2. (i) For different choices of f , the family of all symmetric conservative

extensions Y of Xf is invariant up to time changes because it shares a common family

of extended Dirichlet spaces (5.2)–(5.3). The same can be said for more general time

changed RBM Xµ, which will be formulated in Section 7.

(ii) We can replace the conservativeness assumption on Y by a weaker one that Y

is a proper extension of X with no killing on E \ D. Then the above theorem remains

valid if XΠ,∗ is allowed to be replaced by its subprocess being killed upon hitting some

(but not all) ∂̂i.

Remark 5.3 (Symmetric diffusion for a uniformly elliptic differential operator).

Given measurable functions aij(x), 1 ≤ i, j ≤ d, on D such that

aij(x) = aji(x), Λ−1|ξ|2 ≤
∑

1≤i,j≤d

aij(x)ξiξj ≤ Λ|ξ|2, x ∈ D, ξ ∈ Rd, (5.10)

for some constant Λ ≥ 1, we consider a Dirichlet form

(E ,F) = (a,H1(D)) (5.11)

on L2(D) where

a(u, v) =

∫
D

d∑
i,j=1

aij(x)
∂u

∂xi
(x)

∂v

∂xj
(x)dx, u, v ∈ H1(D).

If we replace the Dirichlet form (2.2) on L2(D) and the associated RBM Z on D, re-
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spectively, by the Dirichlet form (5.11) on L2(D) and the associated reflecting diffusion

process on D constructed in [FTo], all results from Section 3 to Section 5 still hold

without any change as we shall see now.

By this replacement, the extended Dirichlet space and the reflected Dirichlet space

are still H1
e (D) and BL(D), respectively, although the inner product D/2 is replaced

by a. The transience of (5.11) is equivalent to that of (2.2). The space H∗(D) is now

defined by (2.3) with a in place of D/2. But, by noting that a(c, c) = 0 for any constant

c and by taking the characterization of a Liouville domain stated below Definition 2.1

into account, we readily see that D ∈ D is a Liouville domain relative to (5.11) if and

only if so it is relative to (2.2).

Remark 5.4 (All possible symmetric conservative diffusion extensions of a one-di-

mensional minimal diffusion). Consider a minimal diffusion X on a one-dimensional

open interval I = (r1, r2) with no killing inside for which both boundaries r1, r2 are

regular. Let E be a Lusin space into which I is homeomorphically embedded as an open

subset. The speed measure m of X is extended to E by setting m(E \ I) = 0. Let Y be

an m-symmetric conservative diffusion extension of X from I to E. Then, by removing

some m-polar open set for Y from F̃ = E \ I, a homeomorphic image of Y is identical

with either the two point extension of X to [r1, r2] or its one-point extension to the

one-point compactification of I. This fact was implicitly indicated in [F2, Section 5] and

[F3, Section 5] without proof. This can be shown in a similar manner to the proof of

Theorem 5.1 by establishing the counterpart of the identity (5.9) and by noting that, for

the one-point and two-point extensions of X, every non-empty subset of the state space

has a positive 1-capacity uniformly bounded away from zero due to the bound [CF2,

(2.2.31)] and so a quasi-homeomorphism is reduced to a homeomorphism.

To put it another way, Theorem 5.1 reveals that the time changed RBM X on an

unbounded domain with N -Liouville branches has a very similar structure to the one-

dimensional diffusion only by changing two boundary points to N boundary points.

We note that the connected sum of non-parabolic manifolds being studied by

Kuz’menko and Molchanov [KM], Grigor’yan and Saloff-Coste [GS] bears a strong sim-

ilarity to the present paper in the setting although the main concern in these papers was

the heat kernel estimates.

6. Characterization of L2-generator of extension Y by zero flux condi-

tion at infnity.

For a strictly positive bounded integrable function f on D, we put m(dx) = f(x)dx

and denote by (·, ·) the inner product for L2(D;m). Let Y be any m-symmetric con-

servative diffusion extension of the time changed process X = Xf = (Xt, ζ,Px) of the

RBM Z on D. Let Π : F 7→ {∂̂1, . . . , ∂̂ℓ}, ℓ ≤ N, be the corresponding partition of the

boundary F = {∂1, . . . , ∂N} appearing in Theorem 5.1. The Dirichlet form (EY ,FY ) of

Y on L2(D;m) is then described as
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FY =

{
u = u0 +

∑ℓ
i=1 ciφ̂i : u0 ∈ H1

e (D) ∩ L2(D;m), ci ∈ R
}
,

EY (u, v) =
1

2
D(u, v), u, v ∈ FY ,

where φ̂i, 1 ≤ i ≤ ℓ, are defined by (5.1).

Let A be the L2-generator of Y , that is, A is a self-adjoint operator on L2(D;m)

such that u ∈ D(A), Au = v ∈ L2(D;m) if and only if u ∈ FY with EY (u,w) = −(v, w)

for every w ∈ FY . In view of Proposition 3.2, the condition (7.3.4) of [CF2] is fulfilled

by Y . Therefore Theorem 7.7.3 (vii) of [CF2] is well applicable in getting the following

characterization of A:

u ∈ D(A) if and only if u ∈ D(L) and N (u)(∂̂i) = 0, 1 ≤ i ≤ ℓ.

In this case, Au = Lu.
Here L is a linear operator defined as follows: u ∈ D(L), Lu = v ∈ L2(D;m) if and

only if u ∈ BL(D)∩L2(D;m) and D/2(u,w) = −(v, w) for every w ∈ H1
e (D)∩L2(D;m),

or equivalently, for every w ∈ C1
c (D). N (u)(∂̂i) is the flux of u at ∂̂i defined by

N (u)(∂̂i) =
1

2
D(u, φ̂i) + (Lu, φ̂i), 1 ≤ i ≤ ℓ.

It can be readily verified that u ∈ D(L) if and only if u ∈ BL(D)∩L2(D;m), ∆u in

the Schwartz distribution sense is in L2(D) and

D(u,w) +

∫
D

∆u(x) · w(x)dx = 0 for every w ∈ C1
c (D). (6.1)

In this case, Lu(x) = 1/2f(x)∆u(x), x ∈ D. The equation (6.1) can be interpreted as

the requirement that the generalized normal derivative of u vanishes on ∂D. Thus we

have

Theorem 6.1. u ∈ D(A) if and only if u ∈ BL(D)∩L2(D;m), ∆u in the Schwartz

distribution sense belongs to L2(D), the equation (6.1) is satisfied and(
N (u)(∂̂i) =

) 1

2
D(u, φ̂i) +

1

2

∫
D

∆u(x)φ̂i(x)dx = 0, 1 ≤ i ≤ ℓ. (6.2)

In this case,

Au(x) = 1

2f(x)
∆u(x), a.e. on D. (6.3)

Suppose u ∈ D(A) is smooth on D. Then ∂u/∂n = 0 on ∂D due to the condition

(6.1) so that the zero flux condition (6.2) at ∂̂j can be expressed as

lim
r↑∞

∫
D∩∂Br(0)

ur(x)φ̂i(x)dσr(dx) = 0, 1 ≤ i ≤ ℓ, (6.4)

where σr is the surface measure on ∂Br(0).
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The last part of Section 7.6 (4◦) of [CF2] has treated a very special case of the

above where D = Rd, d ≥ 3, and Y is the one-point reflection at the infinity of Rd of a

time changed Brownian motion on Rd.

In [F3], the L2-generator of any symmetric diffusion extension Y of a one-

dimensional minimal diffusion X is identified. In this case, the Dirichlet form of Y

admits its reproducing kernel which enables us to identify also the Cb-generator of Y ,

recovering the general boundary condition due to Feller and Itô–McKean.

7. Extensions of more general time changed RBMs.

All the results in Sections 4–6 except for (6.3) hold for more general time changed

RBMs than Xf . Let Z = (Zt,Qx), f , X = Xf = (Xt, ζ,Px), X
∗ = (X∗

t ,P
∗
x) be as in

Section 4.

We consider a positive finite measure µ on D charging no polar set with full quasi-

support D relative to the Dirichlet form (E ,F) of (2.2). Let Aµ be the PCAF of Z with

Revuz measure µ and Xµ = (Xµ
t , ζ

µ,Pµ
x) be the time changed process of Z by Aµ. The

Markov process Xµ is µ-symmetric and its Dirichlet form (EXµ

,FXµ

) on L2(D;µ) is

given by

EXµ

=
1

2
D, FXµ

= H1
e (D) ∩ L2(D;µ). (7.1)

Proposition 7.1. It holds that

Qx(A
µ
∞ <∞) = 1 for q.e. x ∈ D, (7.2)

Pµ
x(ζ

µ <∞, Xµ
ζµ− = ∂i) = φi(x) > 0 for q.e. x ∈ D and 1 ≤ i ≤ N. (7.3)

Proof. Fix a strictly positive bounded integrable function h0. By the transience

of Z and [CF2, Theorem A.2.13 (v)], GZ
0+h0(x) <∞ for q.e. x ∈ D. For integer k ≥ 1, let

Λk :=
{
x ∈ D : GZ

0+h0(x) ≤ 2k
}

and h(x) =

∞∑
k=1

2−2k1Λk
(x)h0(x).

Then h is a strictly positive bounded integrable function on D with GZ
0+h(x) ≤ 1 q.e.

on D. From [CF2, (4.1.3)], we have∫
D

EQx [Aµ
∞]h(x)dx = ⟨GZ

0+h, µ⟩ ≤ µ(D) <∞. (7.4)

It follows that EQx [Aµ
∞] < ∞ a.e x ∈ D and hence q.e. x ∈ D by [CF2, Theorem

A.2.13 (v)], yielding (7.2). (7.3) follows from (7.2) and Proposition 3.1. □

Since m(dx) = f(x)dx has its quasi-support D relative to (E ,F), the Dirichlet form

(EX ,FX) of (4.4) shares the common quasi-notion with (E ,F) ([CF2, Theorem 5.2.11]).

Hence the quasi-support of µ relative to (EX ,FX) is still D.

The Dirichlet form (E∗,F∗) on L2(D
∗
,m) of X∗ is quasi-regular. According to

the quasi-homeomorphism method already used in Section 4, we may assume it to be
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regular. The measure µ on D is extended to D
∗
by setting µ(F ) = 0. We claim that

the quasi-support of µ relative to this Dirichlet form equals D
∗
by using a criteria [CF2,

Theorem 3.3.5].

Assume that u ∈ F∗ is E∗-quasi-continuous and that u = 0 µ-a.e. Then u
∣∣
D

is

EX -quasi-continuous ([CF2, Theorem 3.3.8]) so that u = 0 q.e. on D. According to the

same reference, there exists a Borel m-polar set C ⊂ D relative to X∗ such that u(x) = 0

for every x ∈ D \C. Since u is continuous along the path of X∗ ([CF2, Theorem 3.1.7]),

we have for each 1 ≤ i ≤ N

P∗
m

(
u(∂i) = lim

t↑σF

u(X∗
t ), σC = ∞, σF <∞, X∗

σF
= ∂i

)
= Pm(ζ <∞, Xζ− = ∂i) > 0,

and so u vanishes on F and hence q.e. on D
∗
, as was to be proved.

Theorem 7.2. There exists a unique µ-symmetric conservative diffusion X̃∗,µ on

D
∗
which is a q.e. extension of Xµ in the sense that the part of the former on D coincides

in law with the latter for q.e. starting points x ∈ D. The extended Dirichlet space of

X̃∗,µ equals (BL(D),D/2) the reflected Dirichlet space of Xµ.

Proof. Let B0
t and Bt be the PCAFs of X and X∗, respectively, with Revuz

measure µ. According to [CF2, Proposition 4.1.10]

B0
t = Bt∧σF

. (7.5)

Let X̃µ and X̃∗,µ be the time changed processes of X and X∗ by means of B0
t and Bt,

respectively. The Markov process X̃µ is then the part of X̃∗,µ on D by (7.5). Since X∗ is

recurrent, so is X̃∗,µ in view of [CF2, Theorem 5.2.5]. Therefore X̃∗,µ is a µ-symmetric

conservative diffusion extension of X̃µ.

On the other hand, the Dirichlet form of X̃µ on L2(D;µ) is identical with (7.1) the

Dirichlet form of Xµ on L2(D;µ), and consequently X̃∗,µ is a q.e. extension of Xµ.

The last statement follows from the invariance of extended and reflected Dirichlet spaces

under time changes by fully supported PCAFs.

The uniqueness of such a µ-symmetric conservative Markovian extension of Xµ to

D
∗
follows from [CF2, Theorem 7.7.3]. □

Similarly, all results in Section 4 and 5 with µ in place of dm = fdx remain valid

except for (6.3).

Remark 7.3. One can give an alternative proof of Theorem 7.2 without invok-

ing the time change of X∗ but still using the quasi-regularity of (E∗,F∗). Indeed, the

following proposition combined with (7.3) and [CF2, Theorem 7.7.3] readily yields The-

orem 7.2.

Each function in F∗
e is taken to be E∗-quasi continuous. Define

F̂ = F∗
e ∩ L2(D;µ) and Ê(u, v) = E∗(u, v) =

1

2
D(u, v) for u, v ∈ F̂ . (7.6)
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Proposition 7.4. (i) (Ê , F̂) is a quasi-regular Dirichlet form on L2(D
∗
;µ).

(ii) Its associated strong Markov process X̂ on D
∗
is a µ-symmetric conservative dif-

fusion which is a q.e. extension of Xµ.

(iii) Each ∂j is non-Ê-polar.

Proof. (i) As D is a quasi-support of µ, u = 0 µ−a.e. for u ∈ F̂ implies u = 0

a.e. on D and D(u, u) = 0. This together with the transience of (F∗
e , E∗) implies that

(Ê , F̂) is a well defined Dirichlet form on L2(D
∗
;µ).

Since (E∗,F∗) is a quasi-regular Dirichlet form on L2(D
∗
;m), by [CF2, Remark

1.3.9], there is an increasing sequence of compact subsets {Fk} of D
∗
so that

(a) there is an increasing sequence of compact subsets {Fk} of D
∗
so that ∪k≥1F∗

Fk
is

E∗
1 -dense in F∗.

(b) there is an E∗
1 -dense of countable set Λ0 := {fj ; j ≥ 1} of bounded functions of F∗

so that {fj ; j ≥ 1} ⊂ C({Fk}) and they separate points of ∪k≥1Fk.

By the contraction of the Dirichlet form, we may and do assume without loss of generality

that for every integer n ≥ 1 and f ∈ Λ0, ((−n)∨f)∧n ∈ Λ0. We claim that ∪k≥1F∗
Fk,b

⊂
∪k≥1F̂Fk,b is Ê1-dense in F̂b. Let u ∈ F̂b. Since F̂b = F∗

b , there are uk ∈ F∗
Fk

so that uk →
u in E∗

1 -norm. Using truncation if needed, we may and do assume ∥uk∥∞ ≤ ∥u∥∞ + 1.

Taking a subsequence if needed, we may also assume that uk converges to u E∗-q.e. on

D
∗
. Since µ is a finite smooth measure, we conclude that uk is Ê1-convergent to u. This

proves the claim. As F̂b is Ê1 dense in F̂ , it follows that {Fk} is an Ê-nest on D∗
.

A similar argument shows that Λ0 ⊂ F̂b = F∗
b is Ê1-dense in F̂b and hence in F̂ .

This proves the assertion (i).

(ii) Since 1 ∈ F̂ and D(1, 1) = 0, the associated µ-symmetric diffusion X̂ on D
∗
is

recurrent and conservative. For R > r, take ψ ∈ C∞
c (D) with ψ = 1 on BR+1(0). Then,

for any bounded u ∈ F̂ , ψu ∈ H1
e (D) and so

{v ∈ F̂ : v = 0 q.e. on D
∗ \BR(0)} = {v ∈ H1

e (D)∩L2(D;µ) : v = 0 q.e. on D\BR(0)},

namely, the part of Ê on D ∩ BR(0) coincides with the part of EXµ

on D ∩ BR(0). By

letting R→ ∞, we see that the part of Ê on D coincides with EXµ

, proving (ii).

(iii) The non-Ê-polarity of ∂j follows from (ii) and (7.3). □

8. Appendix: equivalence and quasi-homeomorphism.

In dealing with boundary problems for symmetric Markov processes, it is convenient

to introduce an equivalence of Dirichlet spaces following [FOT, A.4] as will be stated

below.

We say that a quadruplet (E,m, E ,F) is a Dirichlet space if E is a Hausdorff topo-

logical space with a countable base, m is a σ-finite positive Borel measure on E and

E with domain F is a Dirichlet form on L2(E;m). The inner product in L2(E;m) is

denoted by (·, ·)E . For a given Dirichlet space (E,m, E ,F), the notions of an E-nest, an
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E-polar set, an E-quasi-continuous numerical function and ‘E-quasi-everywhere’ (‘E-q.e.’
in abbreviation) are defined as in [CF2, Definition 1.2.12]. The quasi-regularity of the

Dirichlet space is defined just as in [CF2, Definition 1.3.8]. We note that the space

Fb = F ∩ L∞(E;m) is an algebra.

Remark 8.1. In Section 1.2 and the first half of Section 1.3 of [CF2], it is as-

sumed that

supp[m] = E. (8.1)

We need not assume it. Generally, if we let E′ = supp[m], then E\E′ is E-polar according
to the definition of the E-polarity. If (E,m, E ,F) is quasi-regular, so is (E′,m

∣∣
E′ , E ,F)

accordingly. Therefore we may assume (8.1) if we like by replacing E with E′.

Given two Dirichlet spaces

(E,m, E ,F), (Ẽ, m̃, Ẽ , F̃), (8.2)

we call them equivalent if there is an algebraic isomorphism Φ from Fb onto F̃b preserving

three kinds of metrics: for u ∈ Fb

∥u∥∞ = ∥Φu∥∞, (u, u)E = (Φu,Φu)Ẽ , E(u, u) = Ẽ(Φu,Φu).

One of the two equivalent Dirichlet spaces is called a representation of the other.

The underlying spaces E, Ẽ of two Dirichlet spaces (8.2) are said to be quasi-

homeomorphic if there exist E-nest {Fn}, Ẽ-nest {F̃n} and a one to one mapping q

from E0 = ∪∞
n=1Fn onto Ẽ0 = ∪∞

n=1F̃n such that the restriction of q to each Fn is

a homeomorphism onto F̃n. {Fn}, {F̃n} are called the nests attached to the quasi-

homemorphism q. Any quasi-homeomorphism is quasi-notion-preseving.

We say that the equivalnce Φ of two Dirichlet spaces (8.2) is induced by a quasi-

homeomorphism q of the underlying spaces if

Φu(x̃) = u(q−1(x̃)), u ∈ Fb, m̃−a.e. x̃.

Then m̃ is the image measure of m and (Ẽ , F̃) is the image Dirichlet form of (E ,F).

Theorem 8.2. Assume that two Dirichlet spaces (8.2) are quasi-regular and that

they are equivalent. Let X = (Xt,Px) (resp. X̃ = (X̃t, P̃x)) be an m-symmetric right

process on E (resp. an m̃-symmetric right process on Ẽ) properly associated with (E ,F)

on L2(E;m) (resp. (Ẽ , F̃) on L2(Ẽ; m̃)). Then the equivalence is induced by a quasi-

homeomorphism q with attached nests {Fn}, {F̃n} such that X̃ is the image of X by q in

the following sense : there exist an m-inessential Borel subset N of E containing ∩∞
n=1F

c
n

and an m̃-inessential Borel subset Ñ of Ẽ containing ∩∞
n=1F̃

c
n so that q is one to one

from E \N onto Ẽ \ Ñ and

X̃t = q(Xt), P̃x̃ = Pq−1x̃, x̃ ∈ Ẽ \ Ñ . (8.3)

Proof. Since both Dirichlet spaces in (8.2) are assumed to be quasi-regular, they
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are equivalent to some regular Dirichlet spaces and the equivalences are induced by

some quasi-homeomorphisms q1, q2 in view of [CF2, Theorem 1.4.3]. Since two Dirichlet

spaces in (8.2) are also assumed to be equivalent, so are the corresponding two regular

Dirichlet spaces, the equivalence being induced by a quasi-homeomorphism q3 on account

of [FOT, Theorem A.4.2] combined with [CF2, Theorem 1.2.14]. Hence the equivalence

of the quasi-regular Dirichlet spaces in (8.2) is induced by the quasi-homeomorphism

q = q1 ◦ q3 ◦ q−1
2 between E and Ẽ. Let {Fn}, {F̃n} be the nests attached to q.

According to [CF2, Theorem 3.1.13], we may assume without loss of generality

that both X and X̃ are Borel right processes. Further the E-polarity is equivalent to

the m-polar for X. By virtue of [CF2, Theorem A.2.15], we can therefore find an m-

inessential Borel set N1 ⊂ E containing ∩∞
n=1F

c
n. Consider the set Ñ1 ⊂ Ẽ defined by

q(E \ N1) = Ẽ \ Ñ1. Ñ1 is an Ẽ-polar Borel set and q is one to one from E \ N1 onto

Ẽ \ Ñ1.

Define the process X̂ = (X̂t, P̂x̃)x̃∈Ẽ\Ñ1
by

X̂t = q(Xt), P̂x̃ = Pq−1x̃, x̃ ∈ Ẽ \ Ñ1.

On account of [FFY, Lemma 3.1], we can then see that X̂ is an m̃-symmetric Markov

process on Ẽ \ Ñ1 properly associated with the Dirichlet form (Ẽ , F̃) on L2(Ẽ; m̃). Since

the m̃-symmetric Borel right process X̃ is also properly associated with the Dirichlet

form (Ẽ , F̃) on L2(Ẽ; m̃), the same method as in the proof of [CF2, Theorem 3.1.12]

combined with [CF2, Theorem A.2.15] leads us to finding an m̃-inessential Borel set Ñ

containing Ñ1 for X̃ such that the Markov processes X̃
∣∣
Ẽ\Ñ and X̂

∣∣
Ẽ\Ñ are identical in

law. It now suffices to define the set N by E \N = q−1(Ẽ \ Ñ). □

Remark 8.3. Owing to the works of Albeverio, Ma, Röckner and Fitzsimmons, the

quasi-regularity of a Dirichlet form has been known to be not only a sufficient condition

but also a necessary one for the existence of a properly associated right process. It is

further shown in [CMR] that a Dirichlet form is quasi-regular if and only if it is quasi-

homeomorphic to a regular Dirichlet form on a locally compact separable metric space.

These facts are formulated by Theorem 1.5.3 and Theorem 1.4.3, respectively, of [CF2]

under the assumption (8.1) which is not needed actually. But we may assume it without

loss of generality as will be seen below.

Indeed, let E be a Lusin space, m be a σ-finite measure on E and X be an m-

symmetric Borel right process on E. Then, for E0 = supp[m], E \ E0 is an m-negligible

open set so that it is m-polar for X by [CF2, Theorem A.2.13 (iii)]. Hence, by [CF2,

Theorem A.2.15], there exists a Borel set E1 ⊂ E0 such that E \ E1 is m-inessential for

X. E1 is the support of m
∣∣
E1

because, for any x ∈ E1 and any neighborhood O(x) of x,

m(O(x)∩E1) = m(O(x))−m(O(x)∩ (E \E1)) > 0. Hence it suffices to replace E by E1.

In Theorem 5.1, the extension process Y is assumed to live on a Lusin space E into

which D is homeomorphically embedded as an open subset. In this particular case, the

above set E1 can be choosen to contain D on account of the proof of [CF2, Theorem

A.2.15]. Therefore, in Theorem 5.1 (resp. Remark 5.4), we can assume more strongly

that D (resp. I) is homeomorphically embedded into the state space E of Y as a dense

open subset.
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