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By Ömer Küçüksakallı and Hurşit Önsı̇per
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Abstract. We consider the arithmetic exceptionality problem for the
generalized Lattès maps on P2. We prove an existence result for maps arising
from the product E × E of elliptic curves E with CM.

Introduction.

This paper concerns the problem of arithmetic exceptionality for the endomorphisms

of the projective plane P2. More precisely, we want to determine morphisms

F : P2 → P2

defined over a number field K, which when reduced mod p induce a bijection

F̄ : P2(Kp)→ P2(Kp),

where Kp = OK/p, for infinitely many primes p of K.

The problem of arithmetic exceptionality in its initial form stems from Schur’s con-

jecture to the effect that if a polynomial f(x) ∈ Z[x] induces a bijection on Z/pZ for

infinitely many primes, then it is essentially a composition of linear polynomials, mono-

mials and the Chebyshev polynomials [GMS03]. This conjecture was proved by Fried

[Fr70]. The generalization of this problem to polynomials in two variables defined over

number fields has been studied by several authors. It is in this version of the exception-

ality problem that one is lead to work with polynomials induced on the quotients (affine

two-planes) of simple Lie algebras by the corresponding Weyl groups [Kü16].

A natural extension of this problem is obtained when one replaces polynomials with

rational functions defined over number fields, hence equivalently with endomorphisms of

the projective line P1. For a detailed analysis of this case, we refer to [GMS03].

In this paper we consider the arithmetic exceptionality problem for the generalized

Lattès maps on P2. This version of the problem has some geometric flavor since it is

related to the action of those crystallographic reflection groups on C2 for which P2 is the

quotient. In this vein, for a complete generalization one will definitely need to take into

account the actions of the crystallographic reflection groups with weighted projective

surfaces P(1, 1, 2), P(1, 1, 3), P(1, 1, 4), P(1, 2, 3), P(1, 3, 4) as the quotient [TY82,

Table II].

In Section 1 of the paper, we first recall the basic definitions and results concerning

the set-up
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C2 → C2/L ≃ E × E → (E × E)/G ≃ P2

for the action of the crystallographic group G ⋉ L. We basically quote the explicit list

of these groups and the corresponding quotient maps worked out in [KTY82]. Then

in the Lemmata 1.4, 1.5 and 1.6, we characterize the fixed points of the corresponding

Lattès maps in terms of the quotient map Φ. In Lemma 1.7, we determine the number

of fixed points |Fix(Fλ)| of the Lattès map Fλ. Section 2 contains the main results of

the paper. In Theorem 2.2, we give precise number theoretic criteria for the reduction

modulo a prime of a Lattès map to be bijective on Fp2 . This result is applied to prove

the following existence theorem for exceptional Lattès maps.

Theorem 1. Let E be an elliptic curve defined over a number field with CM and

let Fk : P2 → P2 be the resulting Lattès map under the action of G = G(m, ℓ, 2). There

exists a positive integer k such that Fk is exceptional.

1. Generalized Lattès maps.

Lattès maps on P1 has been a central theme in the work related to the dynamics

of rational maps on P1 [Mi06]. We recall that these maps are defined by commutative

diagrams of the form

E E

P1 P1

℘

λ

Fλ

℘

where E = C/L(τ), L(τ) = Z + τZ, is an elliptic curve, λ ∈ End(E) and ℘ is the

Weierstrass ℘-function attached to L(τ). Observing that ℘ : E → P1 is the quotient

map for the action of Z2 = ⟨σ⟩, σ(q) = −q on E and lifting to the cover

C −→ E

we see that the diagram arises from the action of the discrete group of motions

Z2 ⋉ L(τ)

on C.

To construct higher dimensional analogues of this set-up, one works with the crys-

tallographic reflection groups in the group E(n) of complex motions of Cn. We recall

the following definitions.

Definition 1.1. A discrete subgroup Γ ⊂ E(n) is called a complex crystallo-

graphic group if the quotient Cn/Γ is compact.

Definition 1.2. A complex crystallographic group Γ is said to be a crystallo-

graphic reflection group if it is finitely generated by reflections.

A crystallographic reflection group Γ ⊂ E(n) has a natural decomposition
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0→ L→ Γ→ G→ 1

where G ⊂ U(n) is a finite group of unitary reflections and L is a lattice of rank 2n in

Cn invariant under G.

In this paper, we are concerned with n = 2 case. In this two-dimensional case, we

have a detailed analysis of Γ and of the quotient spaces C2/Γ in [TY82], [KTY82]. In

particular,

• we have a complete list of pairs (G,L) for crystallographic reflection groups in E(2)

(up to equivalence of pairs; (G,L), (G′, L′) if and only if G′ = AGA−1, L′ = AL for

some matrix A) [TY82, Table I]

• we know that the quotient spaces C2/Γ are weighted projective spaces [TY82,

Table II]

As it appears in [TY82, Table I], certain unitary reflection groups G give rise to

non-equivalent pairs (G,L), (G,L′) with non-isomorphic quotients.

The fact that in arbitrary dimensions n, the quotient space Cn/Γ is a weighted

projective space, is proved in [BS78] for crystallographic reflection groups for which

G can be generated by real reflections. The approach in [BS78] and in the expanded

version [BS06] is via affine root systems. This approach was initiated in [Lo76], where

one finds a beautiful algebraic geometric analysis of setups of the form

Q∨ × E ≃ E × · · · × E −→ P(n0, . . . , nl)

where Q∨ is the lattice generated by the dual of an affine root system R and W is the

Weyl group of R. In these three articles, one finds explicit descriptions of the weights

n0, . . . , nl in terms of the invariants of the root system.

For the rest of the paper, we will consider Γ ⊂ E(2) for which the quotientM = C2/Γ

is smooth, which is necessarily P2 [TY82, Corollary 3.3.3]. It is known that there are

precisely six such Γ as listed below.

Theorem 1.3 ([KTY82]). Every two dimensional complex crystallographic group

Γ for which M ∼= P2, is conjugate in the affine transformation group to one of the

following six groups,

(2, 1)0 := G(2, 1, 2)⋉ L2(τ),

(3, 1)0 := G(3, 1, 2)⋉ L2(ζ6),

(4, 1)0 := G(4, 1, 2)⋉ L2(i),

(6, 1)0 := G(6, 1, 2)⋉ L2(ζ6),

(4, 2)1 := G(4, 2, 2)⋉
{
L2(i) + Z

1 + i

2

(
1

1

)}
,

(3, 3)0 := G(3, 3, 2)⋉
{
L2(τ)

(
−1
1

)
+ L2(τ)

(
ζ26
ζ6

)}
,
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where L(τ) = Z + τZ and L2(τ) = L(τ)
(
1
0

)
+ L(τ)

(
0
1

)
, Im τ > 0, i =

√
−1, ζ6 =

exp(2πi/6).

Recall that the primitive reflection groupG(m, ℓ, 2) ⊂ U(2) is the group generated by(
0 1

1 0

)
,

(
0 ζm
ζ−1
m 0

)
, and

(
ζℓm 0

0 1

)
where ζm = exp(2πi/m). The number of elements in such a group is given by

|G(m, ℓ, 2)| = 2m2/ℓ.

In the same article, the corresponding quotient maps

Φ : C2 −→ C2/Γ ≃ P2

and the ramification data were given explicitly [KTY82, Theorem 3]. The maps Φ are

as follows:

Group The map Φ

(2, 1)0 [℘(x) + ℘(y) : ℘(x)℘(y) : 1]

(3, 1)0 [℘′(x) + ℘′(y) : ℘′(x)℘′(y) : 1]

(4, 1)0 [℘2(x) + ℘2(y) : ℘2(x)℘2(y) : 1]

(6, 1)0 [℘′2(x) + ℘′2(y) : ℘′2(x)℘′2(y) : 1]

(4, 2)1 [(℘(x)℘(y) + e21)
2 : (℘(x) + ℘(y))2 : (℘(x)℘(y)− e21)2]

(3, 3)0 [℘′(x)− ℘′(y) : ℘(x)− ℘(y) : ℘′(x)℘(y)− ℘(x)℘′(y)]

where e1 = ℘(1/2;L(i)). On the other hand, Rong [Ro10] determined for each of

these six groups Γ, all affine maps λ : C2 → C2 giving rise to Lattès maps Fλ, hence

equivalently to diagrams of the form

C2 C2

E × E ≃ C2/L E × E ≃ C2/L

P2 ≃ (E × E)/G P2 ≃ (E × E)/G

λ

[λ]

Fλ

For simplicity, we consider λ = k for some positive integer k. In such a case (x, y)

is mapped to (kx, ky) under λ. As a result, we have the following identity

Fk(Φ(x, y)) = Φ(kx, ky)

Now, we are ready to analyze the set of fixed points under the maps Fk for each group

G(m, ℓ, 2) in Theorem 1.3.
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Lemma 1.4. Let G = (m, 1)0 for some integer m = 2, 3, 4, 6 and L(τ) be the

corresponding lattice. For k ̸= −1, 0, 1, we have Fix(Fk) = S1 ∪ S2 where

S1 =

{
Φ

(
a+ bτ

k − ζcm
,
d+ eτ

k − ζfm

)
: a, b, c, d, e, f ∈ Z

}
S2 =

{
Φ

(
a+ bτ

k2 − ζcm
,
k(a+ bτ)

k2 − ζcm

)
: a, b, c ∈ Z

}
.

Proof. Recall that Φ(x, y) = Φ(x′, y′) if and only if there exists g ∈ G such

that g
(
x
y

)
≡

(
x′

y′

)
modulo L2(τ). There are 2m2 elements of G and Φ(x, y) is equal

to Φ(xζ∗m, yζ
∗
m) or Φ(yζ∗m, zζ

∗
m) for any choice of m2 pairs of mth roots of unity (not

necessarily primitive).

The map Fk acts very nicely on Φ(x, y), we have Fk(Φ(x, y)) = Φ(kx, ky). Supposing

Φ(x, y) is fixed under Fk, we find that Φ(kx, ky) is equal to any one of the 2m2 expressions

described above.

To illustrate the idea of the proof, we will consider one of these cases. The other cases

are similar. Suppose that Φ(kx, ky) = Φ(yζm, x). Then kx ≡ yζm and ky ≡ x. It follows
that k2x ≡ kyζm ≡ xζm. From here we find that x is of the form x = (a+ bτ)/(k2 − ζm)

for some integers a and b. Note that ζm is a unit in L(τ). Using kx ≡ yζm, we find that

y ≡ (k(a+ bτ)/ζm)/(k2 − ζm). Thus

Φ (x, y) = Φ

(
a+ bτ

k2 − ζm
,
k(a+ bτ)/ζm
k2 − ζm

)
= Φ

(
a+ bτ

k2 − ζm
,
k(a+ bτ)

k2 − ζm

)
.

Here the last equality follows from the Φ(x, y) = Φ(x, yζm) □

Lemma 1.5. Let G = (4, 2)1. For k ̸= −1, 0, 1, we have Fix(Fk) = S1 ∪ S2 where

S1 =

{
Φ

(
a+ bi

k − ic
,
d+ ei

k − if

)
: a, b, c, d, e, f ∈ Z and c ≡ f (mod 2)

}
,

S2 =

{
Φ

(
a+ bi

k2 − (−1)c
,
idk(a+ bi)

k2 − (−1)c

)
: a, b, c, d ∈ Z

}
.

Proof. The group G = (4, 2)1 has 16 elements and the following are equal:

Φ(x, y) Φ(−x, y) Φ(x,−y) Φ(−x,−y)
Φ(ix, iy) Φ(−ix, iy) Φ(ix,−iy) Φ(−ix,−iy)
Φ(y, x) Φ(y,−x) Φ(−y, x) Φ(−y,−x)
Φ(iy, ix) Φ(iy,−ix) Φ(−iy, ix) Φ(−iy,−ix)

The proof is similar to the previous one. The eight expressions in the first two rows give

rise to the fixed points in the set S1. The parameter d appearing within the description

of S2 is essential because Φ(x, y) ̸= Φ(x, iy) unlike the case (4, 1)0. □

Lemma 1.6. Let G = (3, 3)0. For k ̸= −1, 0, 1, we have Fix(Fk) = S1 ∪ S2 ∪ S3

where
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S1 =

{
Φ

(
a+ bτ

k − 1
,
c+ dτ

k − 1

)
: a, b, c, d ∈ Z

}
S2 =

{
Φ

(
a+ bτ

k2 − 1
,
k(a+ bτ)

k2 − 1

)
: a, b ∈ Z

}
S3 =

{
Φ

(
a+ bτ

k2 + k + 1
,
k(a+ bτ)

k2 + k + 1

)
: a, b ∈ Z

}
.

Proof. The group (3, 3)0 has size 6 and the expressions giving rise to fixed points

in the sets Si are as follows:

S1 S2 S3

Φ(x, y) Φ(y, x) Φ(−(x+ y), x)

Φ(x,−(x+ y)) Φ(y,−(x+ y))

Φ(−(x+ y), y)

The proof is similar to the proof of Lemma 1.4 and omitted. □

For the number-theoretic applications in the next section of this paper, we need

to determine |Fix(Fλ)|, the number of fixed points of Fλ. If the fixed points are non-

degenerate, then it takes a standard application of the Lefschetz fixed point formula

to compute |Fix(Fλ)|. In the next lemma, we determine |Fix(Fλ)| by a simple calcula-

tion which exploits the following explicit description of non-constant holomorphic (hence

algebraic) maps F : Pn → Pn:

F = [f1 : f2 : f3] where each fi is a homogeneous polynomial of the same

degree d, and the only common zero of fi, i = 1, 2, 3 is the origin.

Lemma 1.7. Let k be an integer not equal to −1, 0, 1. Then

|Fix(Fk)| ≤ k4 + k2 + 1.

Proof. Suppose that Fk = [f1 : f2 : f3]. Since the topological degree deg(Fk) =

k4, we see that deg(fi) = k2. Set d = k2. We want to solve the system (I)

f1(x, y, z) = cx,

f2(x, y, z) = cy,

f3(x, y, z) = cz.

where c is a non-zero constant. We work in P3, to exploit elementary intersection theory

and we consider the system (II)

f1(x, y, z) = xwd−1,

f2(x, y, z) = ywd−1,

f3(x, y, z) = zwd−1.

by putting c = wd−1. In P3, we have d3 number of solutions for (II) which is counted

with multiplicities. Clearly all of these solutions lie in P3 \ {w = 0}, since otherwise
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f1 = f2 = f3 = 0

at such a point giving rise to x = y = z = 0 = w which is impossible. Discarding the

trivial solution [0 : 0 : 0 : 1] ∈ P3, we see that

d3 − 1 = (d− 1)(d2 + d+ 1)

solutions project to solutions of (I) in P2. We observe that if ζd = ζ ̸= 0, then [ζx : ζy :

ζz : 1] gives a solution of (II) for each solution [x : y : z : 1]. Since [x : y : z] = [ζx : ζy :

ζz] when projected to P2, we see that

|Fix(Fk)| ≤
d3 − 1

d− 1
= d2 + d+ 1. □

2. Exceptionality.

Let E be an elliptic curve and let p be a prime at which E has a supersingular

reduction. In this case, the map [p] : E → E reduces to the Frobenius map

Frobp2 : [X : Y : Z] 7→ [Xp2

: Y p2

: Zp2

].

Therefore, working with the reduction mod p of the commutative diagram defining Fp

and letting ψ = (ψ1, ψ2, ψ3) denote the projection map

ψ : E × E → P2

we see that

F̄p ◦ ψ = ψ ◦ [p] = (ψp2

1 , ψ
p2

2 , ψ
p2

3 ).

Hence it follows that F̄p = Frobp2 . From this observation, we obtain the following

Lemma 2.1. Let E be an elliptic curve and let p be a prime at which E has a

supersingular reduction. Let L be the number field obtained by adjoining the coordinates

of p-torsion points of E to Q and let p be a prime ideal of L lying over p. Then there

exists a one-to-one correspondence

P2(Fp2)←→ Fix(Fp)

which is given by the reduction modulo p.

Proof. There are at most p4 + p2 + 1 fixed points of Fp. On the other hand,

we have F̄p = Frobp2 and Fix(Frobp2) = P2(Fp2). Since |P2(Fℓ2)| = p4 + p2 + 1, the

reduction of each fixed point of Fp modulo p must reduce to a different fixed point of

Frobp2 . □

This correspondence is compatible with the action of Fk and allows us to obtain one

of the main results of this paper.

829(407)
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Theorem 2.2. Let E be an elliptic curve and let Fk be the resulting map under

a crystallographic group of Theorem 1.3. Let p be a prime at which E has supersingular

reduction. Then the reduced map F̄k : P2(Fp2) → P2(Fp2) is a permutation if and only

if the corresponding condition (or conditions) holds :

• G(m, 1, 2): gcd(p2m − 1, k) = 1,

• G(4, 2, 2): gcd(p4 − 1, k) = 1,

• G(3, 3, 2): gcd(ps − 1, k) = 1 for s = 1, 2, 3.

Proof. By the lemmata 1.4, 1.5 and 1.6, we see that the fixed points of Fp are of

the form

Φ

(
a+ bτ

ps − 1
,
c+ dτ

ps − 1

)
for some a, b, c, d ∈ Z and s ∈ {1, 2, 3, 4, 6, 8, 12}. Moreover Fk : Fix(Fp) → Fix(Fp) is

well-defined, i.e. if α ∈ Fix(Fp) then so is Fk(α).

Suppose that k is an integer satisfying the condition (or conditions) of the group

G(m, ℓ, 2). In other words gcd(ps − 1, k) = 1 for one (or several) s. Then there exists an

integer k′ such that kk′ ≡ 1 (mod ps − 1) for each s. Then Fk ◦ Fk′ is the identity map

on Fix(Fp). Thus Fk permute Fix(Fp) and therefore F̄k permutes P(Fp2).

Conversely, if gcd(ps − 1, k) ̸= 1 for one s, then we can construct a fixed point of

Fp which is no longer in Fk(Fix(Fp)). We illustrate this by giving an example for one

case. For example, suppose that G = G(4, 2, 2) and gcd(p4 − 1, k) = t > 1. Without

loss of generality, assume that gcd(t, p2 − i) is not trivial in Z[i]. Then the element

Φ(1/(p2 − i), p/(p2 − i)) is in Fix(Fp) but it is not in Fk(Fix(Fp)). One can construct

similar examples for the other cases. Since Fix(Fp) is a finite set, this implies that Fk

does not permute Fix(Fp) and therefore F̄k does not permute P2(Fp2). □

Corollary 2.3. Let E be an elliptic curve defined over a number field with CM.

Then for each G(m, ℓ, 2), the map F19 is exceptional.

Proof. Suppose that E has complex multiplication by an order O in an imaginary

quadratic field K. Consider the number field L = K(ζ19 + ζ−1
19 ) with

Gal(L/Q) ≃ Z18.

By Chebotarev’s density theorem there are infinitely many primes which remain inert in

L. Each such prime p remains inert in both K and Q(ζ19 + ζ−1
19 ). It follows that E has

supersingular reduction at p and the order of p modulo 19 is either 9 or 18. It is now easy

to see that each condition gcd(ps− 1, 19) = 1 with s ∈ {1, 2, 3, 4, 6, 8, 12} of Theorem 2.2

is satisfied for infinitely many primes. □

This corollary proves Theorem 1. We remark that the assumption that E has com-

plex multiplication is essential for the proof of Theorem 1:
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Firstly, we do not know if there are infinitely many primes at which E has supersin-

gular reduction. Lang and Trotter [LT76] conjectured the distribution of supersingular

primes of norms ≤ x for a non-CM elliptic curve E over Q to be asymptotic to

cE

√
x

log(x)

as x goes infinity, for some positive constant cE . Serre proved that the density of su-

persingular primes is zero [Se81]. Elkies proved that there is an infinite number of

supersingular primes for any elliptic curve E/Q [El87]. Later, he extended his result to

an elliptic curve E over any number field with a real embedding [El89]. No such result

is known in general for other number fields.

Secondly, even if there are infinitely many primes {p1, p2, . . .} at which E has su-

persingular reduction, one may fail to construct an exceptional map Fk by our method.

It is possible that the set {ps1 − 1, ps2 − 1, . . .} reduced modulo k has only finitely many

nonzero terms for each positive integer k. To see that such a set of primes exist, let us

define pi to be congruent to 1 modulo the first i primes. Such a prime pi exists by the

infinitude of primes in arithmetic progressions.
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Sci. Publ. Math., 54 (1981), 323–401.

[TY82] S. Tokunaga and M. Yoshida, Complex crystallographic groups, I, J. Math. Soc. Japan, 34

(1982), 581–593.

831(409)

https://doi.org/10.2991/jnmp.2006.13.2.2
https://doi.org/10.1007/BF01388985
https://doi.org/10.1307/mmj/1029000374
https://doi.org/10.1090/memo/0773
https://doi.org/10.1090/memo/0773
https://doi.org/10.2969/jmsj/03440595
https://doi.org/10.2969/jmsj/03440595
https://doi.org/10.1016/j.jnt.2016.04.021
https://doi.org/10.1007/BFb0082087
https://doi.org/10.1007/BFb0082087
https://doi.org/10.1007/BF01390167
https://doi.org/10.4171/011-1/1
https://doi.org/10.4171/011-1/1
https://doi.org/10.1016/j.matpur.2009.10.002
https://doi.org/10.1007/BF02698692
https://doi.org/10.1007/BF02698692
https://doi.org/10.2969/jmsj/03440581
https://doi.org/10.2969/jmsj/03440581
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