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Abstract. Klartag recently gave a beautiful alternative proof of the
isoperimetric inequalities of Lévy–Gromov, Bakry–Ledoux, Bayle and Milman

on weighted Riemannian manifolds. Klartag’s approach is based on a general-
ization of the localization method (so-called needle decompositions) in convex
geometry, inspired also by optimal transport theory. Cavalletti and Mondino
subsequently generalized the localization method, in a different way more di-

rectly along optimal transport theory, to essentially non-branching metric mea-
sure spaces satisfying the curvature-dimension condition. This class in partic-
ular includes reversible (absolutely homogeneous) Finsler manifolds. In this
paper, we construct needle decompositions of non-reversible (only positively

homogeneous) Finsler manifolds, and show an isoperimetric inequality un-
der bounded reversibility constants. A discussion on the curvature-dimension
condition CD(K,N) for N = 0 is also included, it would be of independent
interest.

1. Introduction.

In a recent paper [Kl], Klartag gave a beautiful alternative proof of the isoperimet-

ric inequalities of Lévy–Gromov ([Lé1], [Lé2], [Gr, Appendix C]), Bakry–Ledoux [BL],

Bayle [Bay] and Milman [Mi1], [Mi2] on weighted Riemannian manifolds with lower

Ricci curvature bounds. His idea, a generalization of the deep localization method à

la Payne–Weinberger [PW], Gromov–Milman [GM], Kannan–Lovász–Simonovits [LS],

[KLS] in convex geometry, is reducing the inequality to those on geodesics (called nee-

dles) forming a geodesic foliation of the space. Then we apply the one-dimensional

isoperimetric inequality intensively studied in [Mi1], [Mi2]. A crucial point of Klartag’s

argument is that it does not depend on the deep regularity theory of isoperimetric min-

imizers in geometric measure theory (due to Almgren, Federer, Morgan et al, see [Mo]),

that had played an irreplaceable role in the study of isoperimetric inequalities under lower

Ricci curvature bounds. This technique also provides (geometric) functional inequalities

such as the Brunn–Minkowski inequality.

Let us briefly explain how to construct a needle decomposition associated with a

1-Lipschitz function φ on a Riemannian manifold M in the manner we will adopt in

Section 4. We call a unit speed geodesic γ : I −→ M , on a closed interval I ⊂ R, a
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transport ray if

φ
(
γ(t)

)
− φ

(
γ(s)

)
= t− s for all s, t ∈ I with s < t.

Decompose M as M = Dφ ⊔ T φ ⊔ Bφ, where for x ∈ Dφ there is no non-constant

transport ray including x, and for x ∈ T φ (resp. x ∈ Bφ) we have exactly one (resp.

more than one) transport ray passing through x. The transport set T φ is of our main

interest. The set Rφ of non-constant transport rays can be regarded as a quotient space

Rφ = T φ/ ∼. Equip M with a weighted measure m satisfying RicN ≥ K (K ∈ R
and N ∈ (−∞, 0] ∪ [dimM,∞], see Definition 2.3 for the definition of RicN ). Pushing

m|Tφ forward to the measure v on Rφ, we have a disintegration m|Tφ = µγ v(dγ). Here

µγ is regarded as a measure on the domain of the geodesic γ ∈ Rφ, and enjoys the

same curvature bound RicN ≥ K. Now the analysis of (M,m) is reduced to the one-

dimensional analysis of µγ via the integration with respect to v.

As stressed in [Kl], the above construction is closely related to optimal transport

theory for the L1-cost function c(x, y) := d(x, y). We especially refer to [BC], [Ca1],

[Ca2] for studies in metric measure spaces. In fact, the construction in [BC], [Ca1],

[Ca2] applies to less smooth spaces than Klartag’s approach (for instance, it seems

difficult to extend Whitney’s extension theorem and the C1,1-calculus in [Kl] to non-

smooth metric measure spaces). Developing in this way, Cavalletti and Mondino [CM1]

generalized the localization method to essentially non-branching metric measure spaces

satisfying Lott–Sturm–Villani’s curvature-dimension condition CD(K,N) for K ∈ R
and N ∈ (1,∞) (precisely, the slightly weaker reduced curvature-dimension condition

CD∗(K,N) is enough). The class of essentially non-branching CD∗(K,N)-spaces includes

limits of (weighted) Riemannian manifolds, finite-dimensional Alexandrov spaces, metric

measure spaces satisfying the Riemannian curvature-dimension condition (see [AGS2],

[AGMR], [EKS]), and reversible Finsler manifolds (with appropriate lower curvature

bounds). For all of these spaces, the isoperimetric inequality obtained in [CM1] as an

application had been previously unknown. Some functional inequalities are also studied

in the subsequent paper [CM2].

The aim of this article is to further extend the localization method to non-reversible

Finsler manifolds. A Finsler manifold (M,F ) is a couple of a manifold M and a non-

negative function F : TM −→ [0,∞) giving a Minkowski norm on each tangent space

TxM (see Section 2.1 for the precise definition). We say that F (or (M,F )) is reversible

if F (−v) = F (v) for all v ∈ TM . The reversibility is equivalent to the symmetry of the

associated distance function: d(y, x) = d(x, y) for all x, y ∈M . In many situations, non-

reversible Finsler manifolds behave equally well as reversible ones. For instance, when we

equip (M,F ) with a positive C∞-measure m on M , the weighted Ricci curvature bound

RicN ≥ K is equivalent to the curvature-dimension condition CD(K,N) (see [Oh3] for

N ∈ [dimM,∞], [Oh8] for N ∈ (−∞, 0), and Section 3 in this paper for N = 0).

For needle decompositions, although it is unclear whether Klartag’s original con-

struction is extended to Finsler manifolds, the more abstract way due to Cavalletti et

al [BC], [Ca1], [CM1] is available.

Theorem 1.1 (Needle decompositions). Let (M,F ) be a connected, forward and
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backward complete, n-dimensional C∞-Finsler manifold of ∂M = ∅ and n ≥ 1, endowed

with a positive C∞-measure m on M .

(i) Given a 1-Lipschitz function φ : M −→ R, we have a decomposition M = Dφ ⊔
T φ ⊔Bφ such that m(Bφ) = 0 and that the set Rφ of non-constant transport rays

is identified with a quotient T φ/ ∼. Moreover, there exists a measure v on Rφ

satisfying

m|Tφ = µγ v(dγ),

where µγ is a probability measure on Image(γ) ⊂M for v-almost all γ ∈ Rφ.

(ii) For v-almost every γ ∈ Rφ, we have suppµγ = Image(γ) and µγ is absolutely

continuous with respect to the one-dimensional Lebesgue measure L1 on Dom(γ) ⊂
R (identified with Image(γ)) with a continuous density function ργ , namely µγ =

ργ · L1|Dom(γ).

(iii) If in addition (M,F,m) satisfies RicN ≥ K for K ∈ R and N ∈ (−∞, 0] ∪ [n,∞]

(with N ̸= 1 when n = 1), then for v-almost every γ ∈ Rφ the density function ργ
satisfies

ργ
(
(1− λ)s+ λt

)
≥

{
σ

(1−λ)
K/(N−1)(t− s)ργ(s)

1/(N−1) + σ
(λ)
K/(N−1)(t− s)ργ(t)

1/(N−1)
}N−1

if N ∈ (−∞, 0] ∪ [n,∞); and

log ργ
(
(1− λ)s+ λt

)
≥ (1− λ) log ργ(s) + λ log ργ(t) +

K

2
(1− λ)λ(t− s)2

if N =∞; both for all a < s < t < b with a, b ∈ Dom(γ) and λ ∈ (0, 1).

The inequalities in (iii) mean that each needle (Image(γ), F,µγ) again satisfies

RicN ≥ K. We remark that the special case of n = N = 1 is reduced to R or S1 equipped

with the Lebesgue measure (hence Ric1 ≡ 0) and easily analyzed (see Remark 2.4(c)).

We prove (i) in Section 4, (ii) in Section 6.2, and (iii) in Section 6.3. Notice that

no information of Dφ (which is in general a large set) is obtained from Theorem 1.1. In

applications one can ignore Dφ thanks to the following version of needle decompositions

conditioned by mean-zero functions (see Section 5).

Theorem 1.2 (Needle decompositions conditioned by mean-zero functions). Let

(M,F,m) be as in Theorem 1.1 and f ∈ L1(M ;m) satisfy
∫
M
f dm = 0 and∫

M

|f(x)|{d(x0, x) + d(x, x0)}m(dx) <∞ for some x0 ∈M.

Take a 1-Lipschitz function φ :M −→ R maximizing the integral
∫
M
fφ dm among all 1-

Lipschitz functions on M . Then the needle decomposition given by Theorem 1.1 satisfies
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f dµγ = 0

for v-almost all γ ∈ Rφ, and f ≡ 0 m-almost everywhere on Dφ.

In particular, if f is never being 0 (which is the case in our application to isoperi-

metric inequalities), then Theorem 1.2 ensures m(Dφ) = 0.

In order to state the isoperimetric inequalities, we need some notations. Suppose

m(M) <∞ and normalize m as m(M) = 1 (such a normalization does not change RicN ).

For a Borel set A ⊂M , define an analogue of theMinkowski exterior boundary measure as

m+(A) := lim inf
ε↓0

m(B+(A, ε))−m(A)

ε
,

where B+(A, ε) := {y ∈ M | infx∈A d(x, y) < ε} is the forward ε-neighborhood of A.

Then the isoperimetric profile I(M,F,m) : [0, 1] −→ [0,∞] of (M,F,m) is defined by, for

θ ∈ [0, 1],

I(M,F,m)(θ) := inf{m+(A) |A ⊂M : Borel sets with m(A) = θ}. (1.1)

We have I(M,F,m)(0) = I(M,F,m)(1) = 0 by taking A = ∅ and A = M , respectively.

The isoperimetric profile of (weighted) Riemannian manifolds is a classical research

object, and was intensively studied by Milman [Mi1], [Mi2] under the combination of

RicN ≥ K and diamM := supx,y∈M d(x, y) ≤ D for K ∈ R, N ∈ (−∞, 1) ∪ [n,∞],

D ∈ (0,∞] (so-called the curvature-dimension-diameter condition CDD(K,N,D)). He

showed that weighted Riemannian manifolds with RicN ≥ K and diamM ≤ D enjoy

the same isoperimetric inequality

I(M,g,m)(θ) ≥ IK,N,D(θ) for all θ ∈ [0, 1] (1.2)

regardless of the dimension n of the spaces (we remark that, to be precise, the case of

N ∈ (0, 1) and D < ∞ was excluded in [Mi2], see [Mi2, Remark 1.5]). Furthermore,

(1.2) is sharp in all parameters K, N and D in all dimensions n. In fact, in [Mi1],

[Mi2] the precise formula of IK,N,D in terms of the isoperimetric profile I♭ on intervals

I tested for A ⊂ I such that ∂A is a point (that is, A = [0, a) or (a,D] if I = [0, D]) and

model spaces assuring the sharpness are given. See [Mi1], [Mi2] for the precise formula

of IK,N,D, here we mention only the two classical cases:

IK,N,D(θ) =
sin(

√
K/(N − 1)R(θ))N−1∫ π√(N−1)/K

0
sin(

√
K/(N − 1)r)N−1 dr

for K > 0, N ∈ [n,∞) and D ≥ π
√
(N − 1)/K, where R(θ) ∈ [0, π

√
(N − 1)/K] is

given by

θ =

∫ R(θ)

0
sin(

√
K/(N − 1)r)N−1 dr∫ π√(N−1)/K

0
sin(

√
K/(N − 1)r)N−1 dr

;
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and

IK,∞,∞(θ) =

√
K

2π
e−Ka(θ)

2/2, where θ =

∫ a(θ)

−∞

√
K

2π
e−Ks

2/2 ds,

for K > 0. The first case corresponds to Lévy–Gromov’s isoperimetric inequality

(extended by Bayle [Bay] to the weighted situation and non-integer N) employing the

spheres of constant curvature as model spaces. The second case is Bakry–Ledoux’s isoperi-

metric inequality, where model spaces are Euclidean spaces with Gaussian distributions.

As an application of Theorems 1.1, 1.2, we give a Finsler version of (1.2) as follows.

Theorem 1.3 (Isoperimetric inequality). Let (M,F,m) be as in Theorem 1.1 with

m(M) = 1 and assume RicN ≥ K and diamM ≤ D for some K ∈ R, N ∈ (−∞, 0] ∪
[n,∞] (with N ̸= 1 if n = 1) and D ∈ (0,∞] as well as

Λ(M,F ) := sup
v∈TM\0

F (−v)
F (v)

<∞.

Then we have

I(M,F,m)(θ) ≥ Λ−1
(M,F ) · IK,N,D(θ) (1.3)

for all θ ∈ [0, 1]. If n = N = 1, then necessarily K = 0, D < ∞ and we have for all

θ ∈ (0, 1)

I(M,F,m)(θ) =
1 + Λ(M,F )

D
.

We call Λ(M,F ) the reversibility constant. Clearly Λ(M,F ) ≥ 1, and Λ(M,F ) = 1 holds

if and only if F is reversible. In the reversible case included in [CM1], we have the sharp

inequality I(M,F,m)(θ) ≥ IK,N,D(θ) same as the Riemannian case. In the non-reversible

case, however, needle decompositions seem to have a limited strength and gives only the

weaker estimate (1.3). This is because the reverse curve γ̄(t) := γ(l − t) of a geodesic

γ : [0, l] −→ M is not necessarily geodesic in the non-reversible situation. Hence in

Theorem 1.1(iii) we have no information of ργ along the reverse curve of γ (parametrized

by arc-length).

Though our construction of needle decompositions essentially follows the lines of

[BC], [Ca1], [CM1], one can give simpler and clearer descriptions at some points thanks

to finer properties of Finsler manifolds such as the better understanding of the behavior

of geodesics. For the sake of accessibility (to Finsler geometers for instance), we tried to

make this article self-contained up to some basic facts about the weighted Ricci curvature

and optimal transport theory (these can be found in [Oh3], see also [Oh8] for the case

of N < 0). We also believe that this alternative approach to Klartag’s work [Kl] is

worthwhile even in the Riemannian case.

The article is organized as follows. After preliminaries on Finsler geometry and opti-

mal transport theory, in Section 3 we discuss Lott–Sturm–Villani’s curvature-dimension

condition CD(K,N) for K ∈ R, N ∈ (−∞, 0] ∪ [n,∞]. The case of N = 0 is new and of
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independent interest. We construct a needle decomposition associated with a 1-Lipschitz

function and prove Theorem 1.1(i) in Section 4. Section 5 is devoted to the proof of

Theorem 1.2. In Section 6 we come back to the study of general 1-Lipschitz functions

and show Theorem 1.1(ii), (iii). We prove Theorem 1.3 in Section 7, and close the article

with several further problems in Section 8.

2. Preliminaries.

We review basic facts in Finsler geometry and optimal transport theory necessary

in our discussion.

2.1. Finsler geometry.

We refer to [BCS], [Sh], [Oh3] for materials in this subsection. Let M be a con-

nected C∞-manifold of dimension n ≥ 1 without boundary. Given a local coordinate

(xi)ni=1 on an open set U ⊂ M , we will always use the fiber-wise linear coordinate

(xi, vj)ni,j=1 of TU such that

v =
n∑
j=1

vj
∂

∂xj

∣∣∣
x
∈ TxM for x ∈ U.

2.1.1. Finsler manifolds.

Definition 2.1 (Finsler structures). A nonnegative function F : TM −→ [0,∞)

is called a C∞-Finsler structure of M if the following three conditions hold.

(1) (Regularity) F is C∞ on TM \ 0, where 0 stands for the zero section.

(2) (Positive 1-homogeneity) F (cv) = cF (v) holds for all v ∈ TM and c > 0.

(3) (Strong convexity) The n× n matrix

(
gij(v)

)n
i,j=1

:=

(
1

2

∂2(F 2)

∂vi∂vj
(v)

)n
i,j=1

(2.1)

is positive-definite for all v ∈ TM \ 0.

We call such a pair (M,F ) a C∞-Finsler manifold.

Remark 2.2. We stress that the homogeneity is required only in the positive

direction, therefore F (−v) ̸= F (v) is allowed. Admitting such non-reversibility is one of

the important features of Finsler manifolds (see [BCS, Chapter 11] for an important class

of non-reversible Finsler manifolds called Randers spaces). We say that F is reversible if

F (−v) = F (v) holds for all v ∈ TM (in other words, F is absolutely 1-homogeneous).

For each v ∈ TxM \ 0, the positive-definite matrix (gij(v))
n
i,j=1 in (2.1) induces the

Riemannian structure gv of TxM by

gv

( n∑
i=1

ai
∂

∂xi

∣∣∣
x
,
n∑
j=1

bj
∂

∂xj

∣∣∣
x

)
:=

n∑
i,j=1

aibjgij(v). (2.2)
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This inner product is regarded as the best Riemannian approximation of F |TxM in the

direction v, and plays a vital role in Finsler geometry. A geometric way of introducing

gv is that the unit sphere of gv is tangent to that of F |TxM at v/F (v) up to the second

order. In particular, we have gv(v, v) = F (v)2.

For x, y ∈M , define the distance from x to y in a natural way by

d(x, y) := inf
η

∫ 1

0

F
(
η̇(t)

)
dt,

where the infimum is taken over all C1-curves η : [0, 1] −→M with η(0) = x and η(1) = y.

We remark that our distance can be asymmetric (namely d(y, x) ̸= d(x, y)) since F is only

positively homogeneous. The following (ordered) triangle inequality is readily observed

from the definition:

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈M. (2.3)

A C∞-curve η : [0, l] −→ M is called a geodesic if it is locally minimizing and has

a constant speed (meaning that F (η̇) is constant). We remark that the reverse curve

η̄(t) := η(l − t) is not necessarily locally minimizing nor of constant speed because of

the non-reversibility of F . One can write down the geodesic equation, then the stan-

dard ODE theory ensures the short time existence and the uniqueness of a geodesic

for each given initial velocity. Given v ∈ TxM , if there is a geodesic η : [0, 1] −→ M

with η̇(0) = v, then we define the exponential map by expx(v) := η(1). We say that

(M,F ) is forward complete if the exponential map is defined on whole TM . Then by the

Hopf–Rinow theorem any pair of points is connected by a minimal geodesic (see [BCS,

Theorem 6.6.1]).

2.1.2. Lipschitz functions.

Let us denote by L∗ : T ∗M −→ TM the Legendre transform associated with F and

its dual norm F ∗ on T ∗M . Precisely, L∗ is sending α ∈ T ∗
xM to the unique element

v ∈ TxM such that α(v) = F ∗(α)2 and F (v) = F ∗(α). Note that L∗|T∗
xM

becomes

a linear operator only when F |TxM is an inner product. For a differentiable function

φ : M −→ R, the gradient vector of φ at x is defined as the Legendre transform of the

derivative: ∇φ(x) := L∗(dφ(x)) ∈ TxM .

With respect to our asymmetric distance d, we say that a function φ : M −→ R is

L-Lipschitz for L ≥ 0 if

−Ld(y, x) ≤ φ(y)− φ(x) ≤ Ld(x, y) for all x, y ∈M. (2.4)

Notice that the first inequality in (2.4) indeed follows from the second one by exchanging

x and y. If φ is C1, then (2.4) is equivalent to supM F (∇φ) ≤ L.
We denote by LipL(M) the set of all L-Lipschitz functions onM . We will be mainly

interested in the case of L = 1. A typical example of a 1-Lipschitz function is the distance

function from a set: φA(x) = infz∈A d(z, x) with A ⊂ M . The triangle inequality (2.3)

ensures that φA ∈ Lip1(M).
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2.1.3. Weighted Ricci curvature.

Next we discuss the curvature. When n = 1, we consider the Ricci curvature to be

identically zero. When n ≥ 2, the Ricci curvature for a Finsler manifold is defined by

using the Chern connection. Instead of giving the precise definition, here we explain a

useful interpretation found in [Sh, Section 6.2] (going back to [Au]).

We denote the unit tangent sphere bundle by UM := TM∩F−1(1). Given v ∈ UxM ,

we extend it to a C∞-vector field V on a neighborhood of x in such a way that every

integral curve of V is geodesic, and consider the Riemannian structure gV induced from

(2.2). Then the Ricci curvature Ric(v) of v (= V (x)) with respect to F coincides with

the Ricci curvature of v with respect to gV (independently from the choice of V ).

Now we fix a positive C∞-measure m on M . Inspired by the above interpretation

of the Finsler-Ricci curvature and the theory of weighted Riemannian manifolds, the

weighted Ricci curvature for the triple (M,F,m) was introduced in [Oh3] as follows.

Definition 2.3 (Weighted Ricci curvature). We first define the function Ψ :

UM −→ R by the decomposition m = e−Ψ(η̇) volη̇ along unit speed geodesics η, where

volη̇ denotes the Riemannian volume measure of gη̇. Then, given a unit vector v ∈ UxM
and the geodesic η : (−ε, ε) −→M with η̇(0) = v, we define the weighted Ricci curvature

involving a parameter N ∈ (−∞, 0] ∪ [n,∞] by

(1) RicN (v) := Ric(v) + (Ψ ◦ η̇)′′(0)− (Ψ ◦ η̇)′(0)2

N − n
for N ∈ (−∞, 0] ∪ (n,∞),

(2) Ric∞(v) := Ric(v) + (Ψ ◦ η̇)′′(0),

(3) Ricn(v) :=

{
Ric(v) + (Ψ ◦ η̇)′′(0) if (Ψ ◦ η̇)′(0) = 0,

−∞ if (Ψ ◦ η̇)′(0) ̸= 0.

We also set RicN (cv) := c2 RicN (v) for c ≥ 0.

We will say that RicN ≥ K holds for some K ∈ R if RicN (v) ≥ KF 2(v) for all

v ∈ TM .

Remark 2.4. (a) In the notation of Definition 2.3, (Ψ◦η̇)′(0) coincides with the S-

curvature S(v) (see [Sh, Section 7.3]). For a Riemannian manifold (M, g, volg) endowed

with the Riemannian volume measure, clearly we have Ψ ≡ 0 and hence RicN = Ric

for all N . We know that, however, a Finsler manifold may not admit any measure m

satisfying S ≡ 0 (in other words, Ricn ̸= −∞), see [Oh5] for such an example. This

means that there may be no nice reference measure, thus it is natural (and necessary) to

begin with an arbitrary measure.

(b) Although we will consider only N ∈ (−∞, 0] ∪ [n,∞], the definition of RicN in

(1) makes sense also for N ∈ (0, n). We observe from the definition that

Ricn ≤ RicN ≤ Ric∞ ≤ RicN ′ for n < N <∞, −∞ < N ′ < n,

and RicN ,RicN ′ are non-decreasing in N ∈ [n,∞], N ′ ∈ (−∞, n), respectively. Tra-

ditionally the range of N was restricted in [n,∞] (see [Bak], [Qi], [Lo]). The case of

N ∈ (−∞, 0) was investigated rather recently in [OT1], [OT2], [MR], [KM], [Oh8],
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[Mi2], and some results admit N ∈ [0, 1) and even N = 1 (see [Wy3]). Klartag’s

work [Kl] also covers N ∈ (−∞, 1) ∪ [n,∞]. See [Mi3] for a recent interesting example

equipped with N ∈ (−∞, n).
(c) If n = N = 1, then Ric1 ≥ K implies (Ψ ◦ η̇)′ ≡ 0 and hence Ψ is constant on

each of the two connected components of UM . This means that

F

(
∂

∂x

)
≡ c1, F

(
− ∂

∂x

)
≡ c2, dm = c3dx

for some c1, c2, c3 > 0, where x is the standard coordinate of M = R or S1. In particular,

Ric1 ≡ 0 in this case.

Similarly to the weighted Riemannian case, the bound RicN ≥ K implies many

analytic and geometric consequences, such as Bochner’s inequality (for N ∈ (−∞, 0) ∪
[n,∞], see [OS2], [Oh8]), the Bishop–Gromov volume comparison theorem (for N ∈
[n,∞), see [Oh3]), and the Cheeger–Gromoll splitting theorem (for N ∈ [n,∞], see

[Oh7]). Bochner’s inequality and the splitting theorem can be generalized even for

N ∈ (−∞, 1], see [Wy3].

For later convenience, we introduce the following notations.

Definition 2.5 (Reverse Finsler structures). Define the reverse Finsler structure
←−
F of F by

←−
F (v) := F (−v). We will put arrows ← on those quantities associated with

←−
F , for example,

←−
d(x, y) = d(y, x),

←−
∇φ = −∇(−φ) and

←−−
RicN (v) = RicN (−v).

Observe that φ is 1-Lipschitz with respect to F if and only if −φ is 1-Lipschitz with

respect to
←−
F . Notice also that RicN ≥ K is equivalent to

←−−
RicN (v) ≥ K

←−
F (v)2, and hence

the weighted Ricci curvature bound is common between F and
←−
F . We say that (M,F )

is backward complete if (M,
←−
F ) is forward complete. We remark that the forward and

backward completenesses are not mutually equivalent in general.

2.2. Optimal transport theory.

We refer to [Vi1], [Vi2] for the basics and recent developments of optimal transport

theory. Here we restrict ourselves to the case of a Finsler manifold (M,F,m) as in the

previous subsection.

Denote by P(M) the set of all Borel probability measures on M . For p ∈ [1,∞), let

Pp(M) ⊂ P(M) be the subset consisting of measures µ satisfying∫
M

{dp(x, y) + dp(y, x)}µ(dy) <∞

for some (and hence all) x ∈ M . For µ, ν ∈ P(M), we say that π ∈ P(M ×M) is their

coupling if (p1)♯π = µ and (p2)♯π = ν, where p1, p2 : M ×M −→M are the projections

(p1(x, y) = x, p2(x, y) = y) and (pi)♯π denotes the push-forward measure of π by pi.

The Lp-Wasserstein distance between µ, ν ∈ Pp(M) is defined by

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
M×M

dp(x, y)π(dxdy)

)1/p

,
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where Π(µ, ν) ⊂ P(M ×M) is the set of all couplings of µ and ν. A coupling attaining

the above infimum is called a dp-optimal coupling. Notice that Wp(µ, ν) < ∞ by the

definition of Pp(M), and Wp enjoys the positivity (Wp(µ, ν) > 0 unless µ = ν in law)

and the (ordered) triangle inequality

Wp(µ, ν) ≤Wp(µ, ω) +Wp(ω, ν) for all µ, ω, ν ∈ Pp(M),

while Wp(µ, ν) ̸=Wp(ν, µ) due to the asymmetry of d. Finding an optimal coupling π of

given µ, ν ∈ Pp(M) is called the Monge–Kantorovich optimal transport problem.

The following elegant equivalent condition to the optimality of a coupling will play

a role (see [Vi2, Theorem 5.10]).

Theorem 2.6 (Cyclical monotonicity). For µ, ν ∈ Pp(M), a coupling π ∈ Π(µ, ν)

is dp-optimal if and only if the set suppπ ⊂ M ×M is dp-cyclically monotone in the

sense that, for any finite set {(xi, yi)}li=1 ⊂ suppπ, we have

l∑
i=1

dp(xi, yi) ≤
l∑
i=1

dp(xi, yi+1),

where yl+1 := y1 in the right hand side.

Although our discussion is much indebted to ideas from optimal transport theory

(especially the p = 1 situation), we will use only a few basic facts of the theory. Besides

Theorem 2.6, what we need is the fact (called the Brenier–McCann theorem due to [Br],

[Mc], see [Oh3] for the Finsler case) that any d2-optimal coupling between µ, ν ∈ P2(M),

µ being absolutely continuous with respect to m (denoted by µ ≪ m), is unique and

represented by using a measurable map T :M −→M as π = (idM ×T )♯µ. In particular,

we have T♯µ = ν. In this case we call T a d2-optimal transport from µ to ν. By denoting

a minimal geodesic from x to T (x) by ηx : [0, 1] −→ M (which is unique for µ-almost

every x) and putting Tλ(x) := ηx(λ), the curve µλ := (Tλ)♯µ in P2(M) clearly satisfies

µ0 = µ, µ1 = ν and

W2(µλ, µλ′) = (λ′ − λ)W2(µ, ν) for 0 ≤ λ < λ′ ≤ 1.

Therefore (µλ)λ∈[0,1] is a unique minimal geodesic from µ to ν with respect to W2. It

also holds that µλ ≪ m for all λ ∈ [0, 1).

Another fact behind our construction is the Kantorovich–Rubinstein duality :

W1(µ, ν) = sup
ϕ∈Lip1(M)

{∫
M

ϕdν −
∫
M

ϕdµ

}
for µ, ν ∈ P1(M) (2.5)

(see [Vi2, Theorem 5.10], and also [Vi2, p. 53] for an interesting economic explanation).

Though we will not use (2.5), the discussion in Section 5 is better understood keeping

(2.5) in mind.
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3. Curvature-dimension condition.

We next discuss the curvature-dimension condition in the sense of Sturm and Lott–

Villani. This theory is making a breathtaking progress in this decade. We refer to the

book [Vi2] for a detailed account at that time (2009), and to [Oh6] for a survey from a

more geometric viewpoint.

Hereafter, let (M,F ) be a connected, forward and backward complete C∞-Finsler

manifold of dimension n ≥ 1 without boundary, and let m be a positive C∞-measure on

M . For µ ∈ P(M) such that µ = ρm≪ m, define the relative entropy with respect tom by

Entm(µ) :=

∫
M

ρ log ρ dm

if
∫
{ρ>1} ρ log ρ dm < ∞, and Entm(µ) := ∞ otherwise. We also define for N ∈

(−∞, 0)∪ (1,∞) and µ = ρm ∈ P(M) the (relative) Rényi entropy with respect to m by

SN (µ) := −
∫
M

ρ(N−1)/N dm if N ∈ (1,∞),

SN (µ) :=

∫
M

ρ(N−1)/N dm if N ∈ (−∞, 0).

We suppressed the dependence on m for notational simplicity. Notice that the generating

functions h(s) = s log s (N = ∞), −s(N−1)/N (N > 1) and s(N−1)/N (N < 0) are all

convex on (0,∞) and h(0) = 0. In the special case of N = 0, the entropy S0 is defined

as the limit:

S0(µ) := ess sup ρ = lim
N↑0

SN (µ)−N .

The lower curvature bound RicN ≥ K is characterized by a convexity inequality of

Entm or SN as follows. The inequality involves the functions:

sκ(r) :=


1√
κ
sin(
√
κr) if κ > 0,

r if κ = 0,

1√
−κ

sinh(
√
−κr) if κ < 0,

for r ≥ 0 (3.1)

(this is the solution to the Jacobi equation f ′′ + κf = 0 with f(0) = 0 and f ′(0) = 1),

τ
(λ)
K,N (r) := λ1/N

(
sK/(N−1)(λr)

sK/(N−1)(r)

)(N−1)/N

, λ ∈ (0, 1), N ̸= 0, (3.2)

for r > 0 if K/(N − 1) ≤ 0 and for r ∈ (0, π
√
(N − 1)/K) if K/(N − 1) > 0. Set also

τ
(λ)
K,N (0) := λ for all K,N, λ. Moreover, when K/(N − 1) > 0, we define for convenience

τ
(λ)
K,N (r) :=∞ if r ≥ π

√
(N − 1)/K.

Theorem 3.1 (Curvature-dimension condition). For N ∈ [n,∞) (with N ̸= 1 if
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n = 1) and K ∈ R, we have RicN ≥ K if and only if (M,F,m) satisfies the curvature-

dimension condition CD(K,N) in the sense that, for any pair of absolutely continuous

measures µ0 = ρ0m, µ1 = ρ1m ∈ P2(M), we have for all λ ∈ (0, 1)

SN (µλ) ≤ −
∫
M×M

{
τ
(1−λ)
K,N

(
d(x, y)

)
ρ0(x)

−1/N + τ
(λ)
K,N

(
d(x, y)

)
ρ1(y)

−1/N
}
π(dxdy),

(3.3)

where (µλ)λ∈[0,1] ⊂ P2(M) is the unique minimal geodesic with respect to W2 and π ∈
Π(µ0, µ1) is the unique d2-optimal coupling.

Similarly, RicN ≥ K with N ∈ (−∞, 0) is equivalent to CD(K,N) in the sense that

SN (µλ) ≤
∫
M×M

{
τ
(1−λ)
K,N

(
d(x, y)

)
ρ0(x)

−1/N + τ
(λ)
K,N

(
d(x, y)

)
ρ1(y)

−1/N
}
π(dxdy)

(3.4)

holds instead of (3.3); Ric∞ ≥ K is equivalent to CD(K,∞) in the sense that

Entm(µλ) ≤ (1− λ) Entm(µ0) + λEntm(µ1)−
K

2
(1− λ)λW 2

2 (µ0, µ1);

and Ric0 ≥ K is equivalent to CD(K, 0) in the sense that

S0(µλ) ≤ max

{
ess sup
suppπ

[
s−K((1− λ)d(x, y))
(1− λ)s−K(d(x, y))

ρ0(x)

]
, ess sup

suppπ

[
s−K(λd(x, y))

λs−K(d(x, y))
ρ1(y)

]}
,

(3.5)

where the essential supremum is taken with respect to (x, y) ∈ suppπ.

The equivalence for N ∈ [n,∞] (established in [Oh3], see also the survey [Oh4]) is

a generalization to Finsler manifolds of the celebrated result on (weighted) Riemannian

manifolds by [CMS], [vRS], [St1], [St2], [LV1], [LV2]. The N < 0 case was shown in

[Oh8]. The case of N = 0 is new, we shall give an outline of the proof of this case after

some remarks.

Remark 3.2. (a) By the definition of τ
(λ)
K,N , on the one hand, (3.3) becomes void

if K > 0 and

π
(
{(x, y) | d(x, y) ≥ π

√
(N − 1)/K}

)
> 0. (3.6)

This, however, never happens thanks to the Bonnet–Myers theorem available for N ∈
[n,∞) and K > 0. On the other hand, (3.4) becomes trivial if K < 0 and (3.6) holds.

This means that (3.4) gives only a local control when K < 0.

(b) Stated in Theorem 3.1 is a somewhat simplified version of CD(K,N), which is

enough for our purpose and still characterizes RicN ≥ K. For instance, it is possible and

more consistent to include measures µ0, µ1 with singular parts.

(c) Let us briefly explain the proof of RicN ≥ K ⇒ CD(K,N) for N ∈ (−∞, 0) ∪
[n,∞). Recall that, since µ0 ≪ m, there is a unique d2-optimal coupling π ∈ Π(µ0, µ1)

written as π = (idM ×T )♯µ0 for a measurable map T : M −→ M . Define Tλ as in

Section 2.2, then µλ = (Tλ)♯µ0. The map Tλ is in fact almost everywhere differentiable

and, under the bound RicN ≥ K, we have the important concavity inequality:
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Jλ(x) ≥
{
τ
(1−λ)
K,N

(
d(x, T (x))

)
+ τ

(λ)
K,N

(
d(x, T (x))

)
J1(x)

1/N
}N

(3.7)

for µ0-almost all x, where Jλ(x) is the Jacobian of Tλ at x with respect to the measure

m. Together with the Jacobian equation (Monge–Ampère equation):

ρ0(x) = ρλ
(
Tλ(x)

)
Jλ(x) for µ0-almost all x ∈M, (3.8)

where µλ = ρλm, the integration of (3.7) yields (3.3) (see [Oh3], [Oh8] for details).

Conversely, the localization of (3.3) gives the infinitesimal inequality (3.7).

(d) When N ∈ (−∞, 0)∪ [n,∞], CD(0, N) means that SN or Entm is convex (in the

weak sense) along all W2-geodesics. For N = 0, CD(0, 0) implies

S0(µλ) ≤ max{S0(µ0), S0(µ1)},

namely

ess sup ρλ ≤ max {ess sup ρ0, ess sup ρ1} .

Proof. We give an outline of the proof of Theorem 3.1 for N = 0 using the same

notations as [Oh8, Theorem 4.10]. We first assume Ric0 ≥ K and take µk = ρkm ∈
P2(M) for k = 0, 1. Let Tλ and Jλ be as in Remark 3.2(c). Fix x ∈ M with ρ0(x) > 0

and decompose m along η(λ) := Tλ(x) as m|η = e−ψ(λ) volη̇ (recall Definition 2.3). Then

we have e−ψ(0)Jλ(x) = h2(λ)
−1eβ(λ) for h2, β as in [Oh8]. By the same calculation as

[Oh8], we find

eβ(λ) ≥ (1− λ)eβ(0) + λeβ(1),

h2(λ) ≤
s−K((1− λ)d)

s−K(d)
h2(0) +

s−K(λd)

s−K(d)
h2(1),

where d := d(x, T (x)). Combining these yields

e−ψ(0)Jλ(x) = h2(λ)
−1eβ(λ)

≥
{
s−K((1− λ)d)

s−K(d)
h2(0) +

s−K(λd)

s−K(d)
h2(1)

}−1

{(1− λ)eβ(0) + λeβ(1)}

≥ min

{(
s−K((1− λ)d)

s−K(d)
h2(0)

)−1

(1− λ)eβ(0),
(
s−K(λd)

s−K(d)
h2(1)

)−1

λeβ(1)
}

since for a, b, c, d > 0

a+ b

c+ d
=

c

c+ d

a

c
+

d

c+ d

b

d
≥ min

{
a

c
,
b

d

}
.

Therefore we have, since J0(x) = 1,

Jλ(x) ≥ min

{
(1− λ)s−K(d)

s−K((1− λ)d)
,
λs−K(d)

s−K(λd)
J1(x)

}
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(this is indeed the limit of (3.7) as N ↑ 0). Together with the Jacobian equation (3.8),

this implies

ρλ
(
Tλ(x)

)
=

ρ0(x)

Jλ(x)
≤ max

{
s−K((1− λ)d)
(1− λ)s−K(d)

ρ0(x),
s−K(λd)

λs−K(d)
ρ1
(
T (x)

)}
.

Hence we obtain (3.5).

To see the converse, we assume CD(K, 0) and employ the Brunn–Minkowski inequal-

ity of the form:

m(Aλ) ≥ min

{
min

x∈A0, y∈A1

(1− λ)s−K(d(x, y))

s−K((1− λ)d(x, y))
m(A0), min

x∈A0, y∈A1

λs−K(d(x, y))

s−K(λd(x, y))
m(A1)

}
(3.9)

for Borel measurable sets A0, A1 ⊂ M and λ ∈ (0, 1), where Aλ is the set consisting of

η(λ) for minimal geodesics η : [0, 1] −→M with η(0) ∈ A0 and η(1) ∈ A1. Notice that it

is enough to consider the case of 0 < m(A0),m(A1) < ∞. Then one can prove (3.9) by

applying (3.5) to uniform distributions µk := m(Ak)
−1 ·m|Ak

(k = 0, 1):

m(Aλ)
−1 ≤ m(supp ρλ)

−1 ≤ ess sup ρλ

≤ max

{
max

x∈A0, y∈A1

s−K((1− λ)d(x, y))
(1− λ)s−K(d(x, y))

m(A0)
−1, max

x∈A0, y∈A1

s−K(λd(x, y))

λs−K(d(x, y))
m(A1)

−1

}
.

Fix a unit vector v ∈ TxM and let η : (−δ, δ) −→M be the geodesic with η̇(0) = v.

Extend η̇ to a vector field V around Image(η) such that all integral curves of V are

geodesic, and consider the Riemannian structure gV . Put ψ(t) := Ψ(η̇(t)) for Ψ in

Definition 2.3, a := −ψ′(0)/n, and consider the open balls

A0 := BV
(
η(−r), ε(1 + ar)

)
, A1 := BV

(
η(r), ε(1− ar)

)
with respect to gV for 0 < ε ≪ r ≪ δ. On the one hand, the asymptotic behavior of

m(A1/2) is controlled in terms of the Ricci curvature and ψ as

m(A1/2)

cnεn
= e−ψ(0)

(
1 +

Ric(v)

2
r2
)
+O(r3),

where cn is the volume of the unit ball in Rn. On the other hand, it follows from (3.9)

that

m(A1/2) ≥
s−K(2r +O(ε))

2s−K(r +O(ε))
min{m(A0),m(A1)}

=

(
1 +

K

2
r2 +O(r4)

)
min{m(A0),m(A1)}.

Note that as r ↓ 0

m(A1) = e−ψ(r)cnε
n(1− ar)n +O(εn+1)
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= cnε
ne−ψ(0)

[
1− {ψ′(0) + na}r + 1

2
{−ψ′′(0) + ψ′(0)2 + 2ψ′(0)na+ n(n− 1)a2}r2

]
+O(r3)

= cnε
ne−ψ(0)

{
1− 1

2

(
ψ′′(0) +

ψ′(0)2

n

)
r2
}
+O(r3)

and similarly

m(A0) = cnε
ne−ψ(0)

{
1− 1

2

(
ψ′′(0) +

ψ′(0)2

n

)
r2
}
+O(r3).

Hence we obtain by comparing the coefficients of r2 that

Ric(v) ≥ K − ψ′′(0)− ψ′(0)2

n
.

Therefore

Ric0(v) = Ric(v) + ψ′′(0) +
ψ′(0)2

n
≥ K

and we complete the proof. □

We will also use the measure contraction property (see [Oh1], [St2]) which is weaker

and more flexible than the curvature-dimension condition. The measure contraction

property is regarded as a directional Bishop–Gromov inequality, and makes sense only

for N ∈ [n,∞).

Theorem 3.3 (Measure contraction property). Assume RicN ≥ K for N ∈ [n,∞)

(with N ̸= 1 if n = 1) and K ∈ R. Then, for any x ∈ M and a measurable set A ⊂ M

with 0 < m(A) <∞, we have

m(Aλ) ≥ λ inf
y∈A

{
sK/(N−1)(λd(x, y))

sK/(N−1)(d(x, y))

}N−1

m(A) (3.10)

for all λ ∈ (0, 1), where Aλ ⊂ M is the set consisting of η(λ) for minimal geodesics

η : [0, 1] −→M with η(0) = x and η(1) ∈ A.

We remark that the converse ((3.10) ⇒ RicN ≥ K) holds true only when N = n

(see [St2, Remark 5.6]). Hence the measure contraction property (3.10) is strictly weaker

than CD(K,N) in general.

Remark 3.4. Although Theorems 3.1, 3.3 are usually stated for n ≥ 2, the case

of n = 1 and N ∈ (−∞, 0] ∪ (1,∞] is analyzed in the same way more easily (the Ricci

curvature term does not appear). In fact, RicN ≥ K (read as ψ′′−(ψ′)2/(N−1) ≥ K with

m = e−ψL1) implies the sharp Brunn–Minkowski inequality via (6.10) (see Remark 6.6

and [CM2] for details). From the Brunn–Minkowski inequality one can recover RicN ≥
K as well as derive the measure contraction property. In the excluded case of n =

N = 1, we have the concrete description of (M,F,m) and only K = 0 makes sense (see

Remark 2.4(c)).
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4. Construction of needle decompositions.

This section is devoted to the construction of a needle decomposition associated

with a 1-Lipschitz function. The construction closely follows the strategy developed in

optimal transport theory: we refer to [EG] for the Euclidean case, [FM], [Kl] for the

Riemannian case, and [BC], [Ca1], [CM1] for the general metric measure setting.

Let the triple (M,F,m) be as in the previous section. Throughout this section, we

fix a 1-Lipschitz function φ :M −→ R in the sense of (2.4).

4.1. Transport rays.

Define

Γφ := {(x, y) ∈M ×M |φ(y)− φ(x) = d(x, y)}.

Clearly Γφ is a closed set containing the diagonal set {(x, x) |x ∈ M}. A relation with

optimal transport theory can be seen in the next lemma.

Lemma 4.1. The set Γφ is d-cyclically monotone.

Proof. For any finite set {(xi, yi)}li=1 ⊂ Γφ, we have

l∑
i=1

d(xi, yi+1) ≥
l∑
i=1

{φ(yi+1)− φ(xi)} =
l∑
i=1

{φ(yi)− φ(xi)} =
l∑
i=1

d(xi, yi),

where yl+1 := y1. □

If (x, y) ∈ Γφ, then we have, along any unit speed minimal geodesic γ : [0, d(x, y)] −→
M from x to y,

φ
(
γ(t)

)
= φ(x) + t for all t ∈ [0, d(x, y)].

In particular, (γ(s), γ(t)) ∈ Γφ for all 0 ≤ s ≤ t ≤ d(x, y). This observation leads us to

the following definition.

Definition 4.2 (Transport rays). We call a unit speed geodesic γ : Dom(γ) −→M

from a closed interval Dom(γ) ⊂ R a transport ray associated with φ if

(1) (γ(s), γ(t)) ∈ Γφ for all s, t ∈ Dom(γ) with s ≤ t;

(2) γ cannot be extended to a longer geodesic satisfying the above property (1).

The domain Dom(γ) ⊂ R will be taken so as to satisfy φ(γ(t)) = t for all t ∈ Dom(γ). If

Dom(γ) is a singleton, then we say that γ is a degenerate transport ray.

Example 4.3. In the simple example φ(x) = |x| on R (with the standard distance),

we have two transport rays: γ1(t) = t and γ2(t) = −t for t ∈ [0,∞).

Analogous to the set of strain points in [Kl], let us introduce

Mφ := {x ∈M | ∃w, y ∈M \ {x} such that (w, x), (x, y) ∈ Γφ}. (4.1)
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The following property is easily observed, we state it as a lemma for later use.

Lemma 4.4. Given a triplet w, x, y ∈ M as in (4.1), let γ− : [−d(w, x), 0] −→ M

and γ+ : [0, d(x, y)] −→M be any minimal geodesics from w to x and x to y, respectively.

Then along the concatenation γ := γ− ∪ γ+ : [−d(w, x), d(x, y)] −→M we have

φ
(
γ(t)

)
− φ

(
γ(s)

)
= t− s for all s < t.

In particular, γ is a minimal geodesic from w to y, and γ− and γ+ are unique minimal

geodesics from w to x and x to y, respectively.

On the set Mφ, because of the competition between the 1-Lipschitz condition and

the defining property of Γφ, φ cannot behave badly. The next lemma is an analogue of

[FM, Lemma 10].

Lemma 4.5 (Differentiability of φ on Mφ). Given x ∈ Mφ, let γ : [−ε, ε] −→ M

be a unit speed geodesic satisfying γ(0) = x and (γ(−ε), x), (x, γ(ε)) ∈ Γφ. Then φ is

differentiable at x with ∇φ(x) = γ̇(0). In particular, such a geodesic γ is unique.

Proof. By taking smaller ε > 0 if necessary, we can assume that the distance

functions d(γ(−ε), ·) and d(·, γ(ε)) are smooth in a neighborhood of x. We observe from

φ(γ(t)) = φ(x) + t that, for any y ∈M ,

φ(y)− φ(x) = φ(y)− φ
(
γ(−ε)

)
− ε ≤ d

(
γ(−ε), y

)
− ε,

φ(y)− φ(x) = φ(y)− φ
(
γ(ε)

)
+ ε ≥ −d

(
y, γ(ε)

)
+ ε.

Then the claim follows from

∇
[
d
(
γ(−ε), ·

)]
(x) = ∇

[
−d

(
·, γ(ε)

)]
(x) = γ̇(0). □

4.2. Transport sets.

For each point x ∈M , there are three possibilities:

(I) There is no non-degenerate transport ray containing x. The set of such points x

will be denoted by Dφ.

(II) There is exactly one non-degenerate transport ray containing x. The set of such

points will be called the transport set associated with φ and denoted by T φ.

(III) There are more than one non-degenerate transport rays containing x. The set of

such points will be denoted by Bφ.

Clearly M = Dφ ⊔ T φ ⊔ Bφ and Mφ ⊂ T φ by Lemma 4.5. Transport rays give

a geodesic foliation of T φ, that we call the needle decomposition associated with φ. In

the case (III), thanks to Lemma 4.5, x cannot be an internal point of those transport

rays containing x. Precisely, x is either the starting point of all the rays or the terminal

point of all the rays (thus one may say that transport rays branch out from x). Let us

introduce the decomposition Bφ = B+
φ ⊔B−

φ into starting and terminal points for later

convenience, that is,
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B+
φ := {x ∈ Bφ | (x, y) ∈ Γφ for some y ̸= x},

B−
φ := {x ∈ Bφ | (w, x) ∈ Γφ for some w ̸= x}.

(4.2)

In the simple example in Example 4.3, we have T φ = R \ {0} and B+
φ = {0}.

Lemma 4.6. The sets Mφ, T φ ⊔Bφ, B
+
φ and B−

φ are σ-compact. In particular,

Dφ and T φ are Borel sets.

Proof. Recall that Γφ ⊂ M ×M is a closed set. Denoting by pk : M3 −→ M

(k = 1, 2, 3) the projection to the k-th component, we observe that

Mφ = p2
(
{(w, x, y) ∈M3 | (w, x) ∈ Γφ, (x, y) ∈ Γφ, w ̸= x, y ̸= x}

)
=

∪
i∈N

p2
(
{(w, x, y) ∈M3 | (w, x) ∈ Γφ, (x, y) ∈ Γφ, d(w, x) ≥ i−1, d(x, y) ≥ i−1}

)
is σ-compact. We similarly see that

T φ ⊔Bφ =
2∪
k=1

pk
(
{(x, y) ∈ Γφ |x ̸= y}

)
,

B+
φ = p1

(
{(x, y, z) ∈M3 | (x, y), (x, z) ∈ Γφ, d(x, y) = d(x, z) > 0, y ̸= z}

)
,

and B−
φ are all σ-compact. □

The set Dφ is in general large, we have even Dφ = M if φ is (1 − ε)-Lipschitz for

some ε > 0. The transport set T φ is our main object, being a full measure set in the

situation we consider in applications (by virtue of Proposition 5.4). One can see that

m(Bφ) = 0 always holds true with the help of the following useful lemma, which has

played crucial roles in [Ca1], [Ca2], [CM1].

Lemma 4.7. Suppose that a subset Ξ ⊂ Γφ satisfies sup(x,y)∈Ξ φ(x) ≤
inf(x,y)∈Ξ φ(y) and

{φ(x2)− φ(x1)}{φ(y2)− φ(y1)} ≥ 0 for all (x1, y1), (x2, y2) ∈ Ξ. (4.3)

Then Ξ is d2-cyclically monotone.

Proof. We first see that the set

Ξ′ :=
{(
φ(x), φ(y)

) ∣∣ (x, y) ∈ Ξ
}
⊂ R× R

is | · |2-cyclically monotone by induction, where | · | is the standard distance. For any pair

(x1, y1), (x2, y2) ∈ Ξ, the hypothesis (4.3) immediately yields (with y3 := y1)

2∑
i=1

|φ(yi+1)− φ(xi)|2 −
2∑
i=1

|φ(yi)− φ(xi)|2 = 2{φ(x2)− φ(x1)}{φ(y2)− φ(y1)} ≥ 0.



669(247)

Needle decompositions and isoperimetric inequalities in Finsler geometry 669

Suppose that the claim holds true for any set consisting of (l−1) elements in Ξ′, and take

arbitrary {(xi, yi)}li=1 ⊂ Ξ. It follows from (4.3) that φ(xi) < φ(xj) only if φ(yi) ≤ φ(yj).
Hence we can assume without loss of generality that φ(x1) = mini φ(xi) as well as

φ(y1) = mini φ(yi). Then, putting si := φ(xi) and ti := φ(yi) for simplicity, we have

(with tl+1 := t1)

l∑
i=1

|ti+1 − si|2 −
l∑
i=1

|ti − si|2 ≥ {(t2 − s1)2 + (t1 − sl)2 − (t2 − sl)2} − (t1 − s1)2

= 2(t2 − t1)(sl − s1) ≥ 0,

where we applied the claim to {(si, ti)}li=2 in the inequality. Therefore Ξ′ is |·|2-cyclically
monotone.

Now, for any {(xi, yi)}li=1 ⊂ Ξ, we observe from sup(x,y)∈Ξ φ(x) ≤ inf(x,y)∈Ξ φ(y)

that 0 ≤ φ(yi+1)− φ(xi) ≤ d(xi, yi+1). Hence we obtain

l∑
i=1

d2(xi, yi) =
l∑
i=1

{φ(yi)− φ(xi)}2 ≤
l∑
i=1

{φ(yi+1)− φ(xi)}2 ≤
l∑
i=1

d2(xi, yi+1),

where yl+1 := y1. This completes the proof. □

We remark that the assumption sup(x,y)∈Ξ φ(x) ≤ inf(x,y)∈Ξ φ(y) is unnecessary

if F is reversible. The next proposition, an analogue of [Ca1, Proposition 4.5], is an

interesting application of a basic fact in optimal transport theory. For x ∈M and r > 0,

let

B+(x, r) := {y ∈M | d(x, y) < r}, B−(x, r) := {y ∈M | d(y, x) < r}

be the forward and backward open balls with center x and radius r.

Proposition 4.8. We have m(Bφ) = 0.

Proof. Recalling the decomposition Bφ = B+
φ ⊔ B−

φ in (4.2), we suppose in

contradiction that m(B+
φ ) > 0. Then the case of m(B−

φ ) > 0 is covered as well by

considering the function −φ which is 1-Lipschitz with respect to the reverse Finsler

structure
←−
F .

By the definition of B+
φ , for each x ∈ B+

φ , there are (at least) two distinct non-

degenerate transport rays emanating from x. Let us take r ≫ ε > 0 for which the set

A(r, ε) ⊂ B+
φ consisting of x such that there are transport rays γ1x, γ

2
x emanating from x

with

Dom(η1x) ∩Dom(η2x) ⊃ [0, 2r], min
{
d
(
η1x(2r), η

2
x(2r)

)
, d
(
η2x(2r), η

1
x(2r)

)}
≥ εr

has a positive measure, where we set ηkx(t) := γkx(φ(x) + t) for k = 1, 2 for brevity.

Notice that A(r, ε) is a closed set in B+
φ . Thanks to the selection theorem stated below

(Theorem 4.9), one can choose γkx in such a way that T k(x) := ηkx(2r) is a Borel map on

A(r, ε) for k = 1, 2. Precisely, we consider the map Υ : A(r, ε) −→ 2M sending x to the
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nonempty set {γ(φ(x) + 2r)}γ , where γ runs over all transport rays emanating from x

whose domains include [0, 2r]. For any open set U ⊂M ,

{x ∈ A(r, ε) |Υ(x) ∩ U ̸= ∅} = p1
(
{(x, y) ∈ Γφ |x ∈ A(r, ε), y ∈ U, d(x, y) = 2r}

)
is a Borel set. Thus we can select a Borel map T 1 : A(r, ε) −→M such that T 1(x) ∈ Υ(x)

for all x ∈ A(r, ε). One can similarly obtain T 2 from

Υ′(x) := Υ(x) \
(
B+(T 1(x), εr) ∪B−(T 1(x), εr)

)
̸= ∅,

since

{x ∈ A(r, ε) |Υ′(x) ∩ U ̸= ∅}

= p1

({
(x, y) ∈ Γφ

∣∣∣∣x ∈ A(r, ε), y ∈ U, d(x, y) = 2r,

min
{
d(T 1(x), y), d(y, T 1(x))

}
≥ εr

})
is Borel.

Now we fix x0 ∈ A(r, ε) such that

Ax0(r, ε) := A(r, ε) ∩B+(x0, r) ∩B−(x0, r)

has a positive measure. Since φ is 1-Lipschitz and φ(T 1(x)) = φ(T 2(x)) = φ(x) + 2r for

all x ∈ Ax0
(r, ε), we find

sup
x∈Ax0 (r,ε)

φ(x) ≤ φ(x0) + r ≤ inf
x∈Ax0 (r,ε)

φ(x) + 2r = inf
x∈Ax0 (r,ε)

φ
(
T k(x)

)
for k = 1, 2. Hence the set

Ξ :=
{(
x, T k(x)

) ∣∣x ∈ Ax0(r, ε), k = 1, 2
}

is d2-cyclically monotone by Lemma 4.7. It follows from Theorem 2.6 that the coupling

π :=
1

2
(idM ×T 1)♯

(
m|Ax0 (r,ε)

m(Ax0(r, ε))

)
+

1

2
(idM ×T 2)♯

(
m|Ax0 (r,ε)

m(Ax0(r, ε))

)
is d2-optimal. This is, however, a contradiction since Ξ cannot be represented as the

graph of any map (recall the Brenier–McCann theorem in Section 2.2). Therefore we

conclude m(B+
φ ) = 0. □

We have used in the above proof the following special case of the classical selection

theorem (see [KR, Theorem in p. 398]).

Theorem 4.9. Let X,Y be metric spaces and suppose that Y is complete and

separable. If a map Υ : X −→ 2Y satisfies that

{x ∈ X |Υ(x) ∩ U ̸= ∅} is Borel for any open set U ⊂ Y,

then there exists a Borel map T : X −→ Y such that T (x) ∈ Υ(x) for any x ∈ X.
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4.3. Disintegration.

Denote the set of non-degenerate transport rays γ : Dom(γ) −→ R by Rφ. Observe

that ∪
γ∈Rφ

Image(γ) = T φ ⊔Bφ.

We shall give another interpretation of Rφ as a quotient of T φ. This will lead us to a

disintegration of m|Tφ with respect to Rφ.

Lemma 4.10. The relation ∼ on T φ defined by

x ∼ y if (x, y) ∈ Γφ or (y, x) ∈ Γφ

is an equivalence relation. Moreover, the map Θ : T φ/∼ −→ Rφ sending [γ(t)] to γ for

each γ ∈ Rφ with γ(t) ∈ T φ is well-defined and bijective.

Proof. It is obvious that the relation ∼ is symmetric and x ∼ x for all x ∈ T φ.

Given x ∈ T φ, there is a unique transport ray γ : Dom(γ) −→ M passing through

x. Clearly every y ∈ Image(γ) ∩ T φ enjoys x ∼ y. Conversely, if y ∈ T φ satisfies x ∼ y

with (x, y) ∈ Γφ, then any minimal geodesic from x to y needs to be a part of γ by the

definition of T φ (thus, in particular, a minimal geodesic from x to y is unique). In the

other case of (y, x) ∈ Γφ, we similarly see that a unique minimal geodesic from y to x is

a part of γ. This shows that ∼ is transitive and Θ is bijective. □

We equip Rφ with the quotient topology induced from the identification with T φ/∼
via Θ. Then Rφ is σ-compact since Mφ is σ-compact (Lemma 4.6) and p(Mφ) = Rφ,

where p : T φ −→ Rφ is the projection. We remark that ∼ is not an equivalence relation

of T φ⊔Bφ. Consider the example φ(x) = |x| in Example 4.3 and observe −1 ∼ 0, 0 ∼ 1,

but −1 ̸∼ 1.

Following [BC] (see also [Ca1], [CM1]), we shall disintegrate m|Tφ along T φ/∼,
via a Borel map σ : T φ −→ T φ satisfying

x ∼ σ(x) for all x ∈ T φ, and σ(x) = σ(y) if x ∼ y. (4.4)

Such a map σ is given again by the selection theorem as follows.

Lemma 4.11. There exists a Borel map σ : T φ −→ T φ satisfying (4.4).

Proof. Theorem 4.9 applies to Υ : T φ −→ 2M defined as Υ(x) := Image(γ)∩T φ,

where γ is the unique transport ray containing x. Indeed, for any open set U ⊂M ,

{x ∈ T φ |Υ(x) ∩ U ̸= ∅} = p1
(
{(x, y) ∈ T 2

φ | y ∈ U, x ∼ y}
)

is a Borel set. □

We fix σ as in Lemma 4.11 from here on (σ will play a role also in Section 6). By

identifying σ(T φ) ⊂ T φ with Rφ (via T φ/∼),
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v := σ♯(m|Tφ)

becomes a Borel regular measure on Rφ with v(Rφ) = m(T φ). Then the disintegration

theorem (see [DM, III.70–73] or [AGS1, Theorem 5.3.1]) gives a v-almost everywhere

uniquely determined family of Borel probability measures {µγ}γ∈Rφ ⊂ P(M) such that

µγ(Image(γ) ∩ T φ) = 1 and∫
Tφ

f dm =

∫
Rφ

∫
Image(γ)

f(x)µγ(dx) v(dγ)

for all Borel integrable functions f on T φ. We will use the slightly rewritten form:∫
Tφ

f dm =

∫
Rφ

∫
Dom(γ)

f
(
γ(t)

)
µγ(dt) v(dγ), (4.5)

by regarding µγ as a measure on the interval Dom(γ) ⊂ R. Further qualitative and

quantitative properties of the measures µγ will be discussed in Section 6.2 and Section 6.3,

respectively.

5. Needle decompositions conditioned by mean-zero functions.

Before explaining further properties of disintegrated measures, we present in this

section an important situation to which we apply our construction. It also reveals a deep

connection between our construction and optimal transport theory.

We fix an m-integrable function f :M −→ R such that
∫
M
f dm = 0 (mean-zero) and∫

M

|f(x)|{d(x0, x) + d(x, x0)}m(dx) <∞

for some (hence all) x0 ∈M . Consider the following maximization problem:

Find a 1-Lipschitz function φ maximizing

∫
M

fϕ dm among all ϕ ∈ Lip1(M). (5.1)

Note that fϕ is m-integrable since, given x0 ∈M ,∫
M

|fϕ| dm ≤
∫
M

|f(x)|
(
|ϕ(x0)|+max{d(x0, x), d(x, x0)}

)
m(dx)

= |ϕ(x0)|
∫
M

|f | dm+

∫
M

|f(x)|max{d(x0, x), d(x, x0)}m(dx)

<∞.

The condition
∫
M
f dm = 0 yields that

∫
M
fϕ dm =

∫
M
f{ϕ − ϕ(x0)} dm, hence we can

restrict ourselves to ϕ ∈ Lip1(M) with ϕ(x0) = 0 for some fixed point x0 ∈ M in (5.1).

Thus we also find supϕ∈Lip1(M)

∫
M
fϕ dm <∞.

When f is given as the difference of the densities of two absolutely continuous

probability measures (f = ρ1−ρ0 with µk = ρkm ∈ P1(M)), (5.1) is nothing but the dual

formulation of the Monge–Kantorovich problem for the cost function c(x, y) := d(x, y)
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(recall (2.5)).

One can find a solution to (5.1) by a simple application of the Ascoli–Arzelà theorem.

Lemma 5.1. There exists a 1-Lipschitz function φ : M −→ R which is a solution

to (5.1).

Proof. Take a sequence {ϕi}i∈N ⊂ Lip1(M) satisfying

lim
i→∞

∫
M

fϕi dm = sup
ϕ∈Lip1(M)

∫
M

fϕ dm

and ϕi(x0) = 0 for some x0 ∈ M and all i ∈ N. By the Ascoli–Arzelà theorem and the

diagonal argument, a subsequence of {ϕi}i∈N converges to some φ ∈ Lip1(M) uniformly

on each compact set. Thanks to −d(x, x0) ≤ ϕi(x) ≤ d(x0, x) for all i ∈ N and x ∈ M ,

one can use the dominated convergence theorem to see∫
M

fϕ dm = lim
i→∞

∫
M

fϕi dm = sup
ϕ∈Lip1(M)

∫
M

fϕ dm. □

In the remainder of this section, we fix a 1-Lipschitz function φ given by Lemma 5.1.

Along the lines of [EG] (see also [Kl, Section 4]), we shall show that f is mean-zero along

almost every transport ray associated with φ. Given a Borel set A ⊂M , we define

S(A) := {x ∈M | (x, y) ∈ Γφ or (y, x) ∈ Γφ for some y ∈ A}.

Clearly A ⊂ S(A) and S(A) is a Borel set. We say that A is a saturated set associated

with φ if A = S(A). Notice that a singleton {x} is a saturated set if x ∈Dφ.

Lemma 5.2. Take a compact set Z ⊂M and δ > 0.

(i) The function

φδ(x) := inf
y∈M
{φ(y) + d(y, x)− δ · χZ(y)}, x ∈M,

satisfies 0 ≤ φ(x)−φδ(x) ≤ δ for all x ∈M , where χZ is the characteristic function

of Z.

(ii) The limit

Φ(x) := lim
δ↓0

φ(x)− φδ(x)
δ

exists in [0, 1] at all x ∈M , and we have Φ ≡ 1 on Z and Φ ≡ 0 on M \ S(Z).

Proof. (i) On the one hand, choosing y = x in the definition of φδ, we find

φδ(x) ≤ φ(x)− δ · χZ(x) ≤ φ(x).

On the other hand, since φ is 1-Lipschitz,
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φδ(x) ≥ inf
y∈M
{φ(y) + d(y, x)} − δ ≥ φ(x)− δ.

(ii) We first observe that, since φ(x)− φ(y)− d(y, x) ≤ 0,

φ(x)− φδ(x)
δ

= sup
y∈M

{
φ(x)− φ(y)− d(y, x)

δ
+ χZ(y)

}
∈ [0, 1]

is non-increasing as δ ↓ 0. Hence Φ(x) is well-defined for all x ∈M .

If x ∈ Z, then the definition of φδ and (i) above imply φδ(x) ≤ φ(x) − δ ≤ φδ(x).

Therefore φδ(x) = φ(x)− δ for all δ > 0 and Φ(x) = 1.

Let x ∈M \ S(Z). Then, for any y ∈ Z, it follows from the definition of S(Z) that

x and y are not on the same transport ray. This implies φ(y) + d(y, x) > φ(x), and the

compactness of Z gives a positive constant δx > 0 such that

φ(y) + d(y, x) ≥ φ(x) + δx

for all y ∈ Z. Hence φδ(x) = φ(x) for all δ ≤ δx, and Φ(x) = 0. □

Lemma 5.3. For any saturated set A ⊂M associated with φ, we have∫
A

f dm = 0.

Proof. We first show that
∫
A
f dm ≥ 0. For arbitrary ε > 0, since m is Borel

regular, there is a compact set Z ⊂ A such that
∫
A\Z |f | dm < ε. Then S(Z) ⊂ S(A) = A.

Take δ > 0 and let φδ be as in Lemma 5.2. Note that the function x 7−→ d(y, x) is

1-Lipschitz for every fixed y ∈M . This implies that the function

x 7−→ φ(y) + d(y, x)− δ · χZ(y)

is 1-Lipschitz for every y ∈ M , and hence φδ ∈ Lip1(M). Then by the choice of φ

(Lemma 5.1) we have ∫
M

f
φ− φδ
δ

dm ≥ 0 for all δ > 0.

Letting δ ↓ 0, we obtain by the dominated convergence theorem and Lemma 5.2(ii) that

0 ≤
∫
M

fΦ dm =

∫
S(Z)

fΦ dm =

∫
S(Z)\Z

fΦ dm+

∫
Z

f dm.

Combining this with 0 ≤ Φ ≤ 1, we have∫
Z

f dm ≥ −
∫
S(Z)\Z

fΦ dm ≥ −
∫
S(Z)\Z

|f | dm > −ε.

Since ε > 0 was arbitrary, this yields
∫
A
f dm ≥ 0.

To see
∫
A
f dm ≤ 0, we simply apply the above claim to the functions −f and −φ,

the latter is 1-Lipschitz with respect to the reverse Finsler structure
←−
F . □
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Proposition 5.4. We have∫
Dom(γ)

f
(
γ(t)

)
µγ(dt) = 0

for v-almost every γ ∈ Rφ. Moreover, f ≡ 0 m-almost everywhere on Dφ.

Proof. Recall the disintegration (4.5):∫
Tφ

f dm =

∫
Rφ

∫
Dom(γ)

f
(
γ(t)

)
µγ(dt) v(dγ).

For any Borel set B ⊂ Rφ, p
−1(B) ⊂ T φ is a saturated set up to an m-negligible set

contained in Bφ, where p : T φ −→ Rφ is the projection. Then it follows from Lemma 5.3

that ∫
B

∫
Dom(γ)

f
(
γ(t)

)
µγ(dt) v(dγ) =

∫
σ−1(B)

f dm = 0,

and hence
∫
Dom(γ)

f ◦ γ dµγ = 0 for v-almost every γ ∈ Rφ.

The second assertion also follows from Lemma 5.3 since any Borel set A ⊂ Dφ is a

saturated set. □

6. Properties of disintegrated measures.

Coming back to a general 1-Lipschitz function φ : M −→ R, we investigate in this

section properties of the disintegrated measures µγ , γ ∈ Rφ, given in Section 4.3.

6.1. Ray maps.

Along [BC, Section 4], we introduce the following.

Definition 6.1 (Ray maps). Define the subset Dom(G) ⊂ σ(T φ)×R (⊂ T φ×R) by

Dom(G) := {(x, t) | (x, y) ∈ Γφ, t = d(x, y) for some y ∈ T φ}
∪{(x, t) | (w, x) ∈ Γφ, t = −d(w, x) for some w ∈ T φ}, (6.1)

and the ray map G : Dom(G) −→ T φ by G(x, t) := y in the first set of (6.1) and

G(x, t) := w in the second set.

Recall that, if (x, y) ∈ Γφ with x ∈ T φ and y ̸= x, then there is a transport ray γ

passing through x and y, and γ is the unique transport ray containing x. Thus the map

G is well-defined. Clearly σ(T φ)×{0} ⊂ Dom(G) and G is a bijective map from Dom(G)
to T φ. Since the graph of G

{(x, t, y) ∈ σ(T φ)× R× T φ | (x, t) ∈ Dom(G), y = G(x, t)}
= {(x, t, y) | (x, y) ∈ Γφ, t = d(x, y)} ∪ {(x, t, w) | (w, x) ∈ Γφ, t = −d(w, x)}

is a Borel set, G and G−1 are Borel maps. Moreover, Dom(G) is convex in the R-direction
in the sense that (x, s), (x, t) ∈ Dom(G) with s < t implies {x} × [s, t] ⊂ Dom(G). We
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also observe from Lemma 4.5 that

∂rG(x, r) = ∇φ
(
G(x, r)

)
for all r ∈ (s, t).

Hence G is regarded as the (ascending) gradient flow of φ on T φ.

The convexity of Dom(G) in the R-direction readily implies the following property

that will be useful in the sequel and can be compared with the decompositions into ray

clusters in [Kl, Section 3.2].

Lemma 6.2. There exists a countable family {Zi}i∈N of compact subsets of T φ

together with {(ai, bi)}i∈N ⊂ R× R such that ai ≤ 0 ≤ bi and

σ(Zi)× [ai, bi] ⊂ Dom(G), (v× L1)

(
Dom(G) \

∪
i∈N

(
σ(Zi)× [ai, bi]

))
= 0,

where L1 denotes the 1-dimensional Lebesgue measure on R.

Proof. Take dense sets {ai}i∈N ⊂ (−∞, 0] and {bj}j∈N ⊂ [0,∞) with a1 = b1 =

0, and consider the intervals Ii,j := [ai, bj ]. For every x ∈ σ(T φ) and the transport ray

γx ∈ Rφ passing through x, there are i, j ∈ N such that

γ−1
x (T φ) ⊃ [φ(x) + ai, φ(x) + bj ].

Let Ai,j be the set of points x ∈ σ(T φ) satisfying γ
−1
x (T φ) ⊃ [φ(x) + ai, φ(x) + bj ]. We

observe from the convexity of Dom(G) in the R-direction that

Ai,j = {x ∈ σ(T φ) | (x, ai), (x, bj) ∈ Dom(G)}

which is a Borel set. Moreover, we have

Ai,j × Ii,j ⊂ Dom(G), (v× L1)

(
Dom(G) \

∪
i,j∈N

(Ai,j × Ii,j)
)

= 0.

Since m is Borel regular, we can choose compact sets Zki,j ⊂ σ−1(Ai,j) ⊂ T φ, k ∈ N, with
v(Ai,j \

∪
k∈N σ(Z

k
i,j)) = 0. Then the family {σ(Zki,j)× [ai, bj ]}i,j,k∈N satisfies the desired

properties. □

6.2. Qualitative properties derived from MCP.

Following the lines of [BC, Sections 5, 9] and [Ca1, Section 6], we obtain some qual-

itative properties of the disintegrated measures from the measure contraction property

(3.10).

Given a compact set Z ⊂M and α ∈ R, let us consider the set

Ẑα := {(x, y) ∈ Γφ |x ∈ Z, φ(y) = α}. (6.2)

Note that, for any (x, y) ∈ Ẑα, we have

d(x, y) = φ(y)− φ(x) = α− φ(x) ≤ α− inf
Z
φ. (6.3)
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Thus Ẑα is a (possibly empty) compact set in the closed set Γφ ⊂M ×M . For λ ∈ [0, 1],

define

Zαλ :=
{
η(λ)

∣∣ η runs over minimal geodesics with
(
η(0), η(1)

)
∈ Ẑα

}
. (6.4)

Observe that Zα0 = p1(Ẑ
α) ⊂ Z and Zα1 = p2(Ẑ

α) ⊂ φ−1(α). For each λ ∈ [0, 1], Zαλ is

closed and hence compact (indeed, if {ηi(λ)}i∈N ⊂ Zαλ is convergent, then a subsequence

{ηij}j∈N is convergent in the uniform topology, and hence limi→∞ ηi(λ) ∈ Zαλ ).
By virtue of (6.3), taking small Z and appropriately choosing α allows us to assume

that
∪
λ∈[0,1] Z

α
λ is contained in an open set U ⊂M on which RicN ≥ K holds for some

N ∈ (n,∞) and K ∈ R. Then we have the following useful estimate. Recall (3.1) for the

definition of the function sK/(N−1).

Lemma 6.3. Let Z ⊂ M be compact, α ∈ R, and consider Ẑα, Zαλ as in (6.2),

(6.4). Suppose that
∪
λ∈[0,1] Z

α
λ is contained in an open set U ⊂M on which RicN ≥ K

holds for some N ∈ (n,∞) and K ∈ R. Then we have, for all λ ∈ (0, 1),

m(Zαλ ) ≥ (1− λ) inf
(x,y)∈Ẑα

{
sK/(N−1)((1− λ)d(x, y))

sK/(N−1)(d(x, y))

}N−1

m(Zα0 ). (6.5)

Proof. There is nothing to prove if m(Zα0 ) = 0, thus we assume m(Zα0 ) > 0.

Choose a dense set {yi}i∈N in Zα1 and, for each k ∈ N, decompose Zα0 into

Aki := {x ∈ Zα0 | d(x, yi) = min
1≤j≤k

d(x, yj)}, i = 1, . . . , k.

Then Aki is a compact set and, for each λ ∈ (0, 1), the measure contraction property

(3.10) under RicN ≥ K (with respect to
←−
F , to be precise) yields

m
(
Aki (λ)

)
≥ (1− λ) inf

x∈Ak
i

{
sK/(N−1)((1− λ)d(x, yi))

sK/(N−1)(d(x, yi))

}N−1

m(Aki ),

where we set

Aki (λ) := {η(λ) | η runs over minimal geodesics with η(0) ∈ Aki , η(1) = yi}.

We remark that, for i ̸= j,

Aki (λ) ∩Akj (λ) ⊂ {x ∈M | d(x, yi) = d(x, yj)}

and hence it has null measure. Letting k → ∞,
∪k
i=1A

k
i (λ) converges to Zαλ in the

Hausdorff distance (with respect to any distance structure comparable to the Finsler

structure). Therefore the upper semi-continuity of the measure m with respect to the

Hausdorff distance on compact sets (the author could not find a good reference, but see

for example [BV]) shows (6.5). □

The bound (6.5) is a weak one coming only from the measure contraction property,

in fact as λ → 1 it converges to the trivial bound m(Zα1 ) ≥ 0. We will give a sharper
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estimate based on the curvature-dimension condition in the next subsection. Nonetheless,

(6.5) can be used to obtain the important qualitative property of disintegrated measures,

namely the absolute continuity with respect to the Lebesgue measure on v-almost all

transport rays.

Recall the disintegration m|Tφ = µγ v(dγ) in (4.5) and consider the Lebesgue de-

composition

m|Tφ = ρ · G♯[(v× L1)|Dom(G)] + ω (6.6)

into the absolutely continuous and singular parts with respect to G♯[(v×L1)|Dom(G)]. We

remark that v is regarded as a measure on Rφ in the former expression m|Tφ = µγ v(dγ)

and as a measure on σ(T φ) in the latter (6.6) by the identification between Rφ and

σ(T φ) (see Section 4.3). Recalling that µγ is regarded as a measure on Dom(γ), we also

have the decomposition along γ ∈ Rφ,

µγ = ργ · L1|Dom(γ) + ωγ , (6.7)

whose integration with respect to v gives rise to (6.6).

Proposition 6.4. For v-almost every γ ∈ Rφ, we have the following.

(i) µγ is absolutely continuous with respect to L1|Dom(γ), that is, ωγ(Dom(γ)) = 0.

(ii) The density function ργ : Dom(γ) −→ [0,∞) as in (6.7) satisfies{
sK/(N−1)(b− t)
sK/(N−1)(b− s)

}N−1

≤ ργ(t)

ργ(s)
≤

{
sK/(N−1)(t− a)
sK/(N−1)(s− a)

}N−1

(6.8)

for any a < s < t < b such that a, b ∈ Dom(γ), by assuming that RicN ≥ K holds

on γ([a, b]) with N ∈ (n,∞) and K ∈ R.

(iii) ργ is positive and locally Lipschitz on the interior of Dom(γ).

Proof. (i) Take a Borel set A ⊂ T φ such that G♯[(v×L1)|Dom(G)](A) = 0 as well

as ω(A) = ω(T φ). It suffices to show m(A) = 0 since m(A) = ω(A) and

ω(A) =

∫
Rφ

ωγ
(
γ−1(A)

)
v(dγ).

Thus we suppose m(A) > 0 and derive a contradiction.

Since m is Borel regular, we can take a compact set Z ⊂ A still enjoying m(Z) > 0.

For each x ∈ Z, there is y ̸= x with either (x, y) ∈ Γφ or (y, x) ∈ Γφ. By taking smaller Z

if necessary, we can assume that the former holds for all x ∈ Z (consider −φ with respect

to
←−
F if (y, x) ∈ Γφ for almost all x ∈ Z). Then, along the unique minimal geodesic

η : [0, 1] −→ T φ from x to y, we have

x ∈ Zφ(η(λ))0 for all λ ∈ [0, 1].
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Hence for some α > φ(x) we have m(Zα0 ) > 0, and Zαλ satisfies the hypothesis of

Lemma 6.3 for some N and K. Then Lemma 6.3 ensures m(Zαλ ) > 0 for all λ ∈ [0, 1),

and it follows from Fubini’s theorem that

0 <

∫ 1/2

0

m(Zαλ ) dλ =

∫ 1/2

0

[(G−1)♯(m|Tφ)]
(
G−1(Zαλ )

)
dλ

=

∫
Dom(G)

L1

({
λ ∈

[
0,

1

2

] ∣∣∣∣G(x, s) ∈ Zαλ})
[(G−1)♯(m|Tφ)](dxds).

Recall that G(x, s) ∈ Zαλ if and only if G(x, sx0) ∈ Zα0 and G(x, sx1) ∈ φ−1(α) for some

sx0 < s < sx1 with s = (1− λ)sx0 + λsx1 , and s
x
1 is uniquely determined by x. Therefore we

obtain

0 <

∫
Dom(G)

L1

({
λ ∈

[
0,

1

2

] ∣∣∣∣G(x, s− λsx11− λ

)
∈ Zα0

})
[(G−1)♯(m|Tφ)](dxds). (6.9)

However, the hypothesis G♯[(v× L1)|Dom(G)](A) = 0 and Zα0 ⊂ Z ⊂ A imply

0 = G♯[(v× L1)|Dom(G)](Z
α
0 ) = (v× L1)

(
G−1(Zα0 )

)
=

∫
σ(Tφ)

L1({t ∈ R | G(x, t) ∈ Zα0 }) v(dx)

and hence L1({t ∈ R | G(x, t) ∈ Zα0 }) = 0 for v-almost all x ∈ σ(T φ). This contradicts

(6.9) by noticing

(p1)♯[(G−1)♯(m|Tφ)] = (p1 ◦ G−1)♯(m|Tφ) = σ♯(m|Tφ) = v.

(ii) Thanks to Lemma 6.2 and the hypothesis RicN ≥ K on γ([a, b]), we can apply

(6.5) with α = b and λ = (t− s)/(b− s). Put

tδ := s+ δ + λ
(
b− (s+ δ)

)
= t+ (1− λ)δ, δ ∈ [0, b− s).

Then we obtain from (6.5) and m|Tφ = (ργ · L1|Dom(γ)) v(dγ) that, for small ε > 0,

(1− λ)
∫ ε

0

ργ(tδ) dδ ≥ (1− λ)
∫ ε

0

{
sK/(N−1)((1− λ)(b− s− δ))

sK/(N−1)(b− s− δ)

}N−1

ργ(s+ δ) dδ.

Thus we have for L1-almost all t and s

ργ(t) = lim
ε↓0

1

ε

∫ ε

0

ργ(tδ) dδ

≥
{
sK/(N−1)((1− λ)(b− s))

sK/(N−1)(b− s)

}N−1

lim
ε↓0

1

ε

∫ ε

0

ργ(s+ δ) dδ

=

{
sK/(N−1)(b− t)
sK/(N−1)(b− s)

}N−1

ργ(s).

The other inequality in (6.8) is derived from the same argument for −φ with respect to
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←−
F . These estimates allow us to take the continuous version of ργ (see (iii) below), and

hence (6.8) indeed holds for all a < s < t < b.

(iii) The positivity is obvious from (6.8), and taking the logarithm of (6.8) yields

the local Lipschitz continuity. □

We remark that Klartag [Kl, Theorem 1.2] further showed the smoothness of the

density function ργ , while the local Lipschitz continuity is sufficient for our purpose.

6.3. Quantitative estimates derived from CD.

Having the properties of ργ in Proposition 6.4 at hand, we derive the following

sharper quantitative estimate from the curvature-dimension condition along the lines of

[CM1, Theorem 4.2]. Define

σ(λ)
κ (r) :=

sκ(λr)

sκ(r)
, κ ∈ R, λ ∈ (0, 1),

for r > 0 if κ ≤ 0 and for r ∈ (0, π/
√
κ) if κ > 0. We set σ

(λ)
κ (0) := λ and, when κ > 0,

σ
(λ)
κ (r) := ∞ for r ≥ π/

√
κ. Recall from (3.2) that τ

(λ)
K,N (r)N = λσ

(λ)
K/(N−1)(r)

N−1 for

N ̸= 0.

Theorem 6.5 (N ∈ (−∞, 0) ∪ [n,∞) case). Suppose that (M,F,m) satisfies

RicN ≥ K for some N ∈ (−∞, 0) ∪ [n,∞) (with N ̸= 1 if n = 1) and K ∈ R. Then,

along v-almost every γ ∈ Rφ, we have

ργ
(
(1− λ)s+ λt

)
≥

{
σ

(1−λ)
K/(N−1)(t− s)ργ(s)

1/(N−1) + σ
(λ)
K/(N−1)(t− s)ργ(t)

1/(N−1)
}N−1

(6.10)

for all a < s < t < b with a, b ∈ Dom(γ) and λ ∈ (0, 1).

Proof. One can prove (6.10) by a localization argument similar to the derivation

of (6.8) from (6.5) with the help of Lemma 6.2. Fix a compact set Z ⊂ M , α ∈ R and

l≫ ε > 0 satisfying v(σ(Zα1 )) > 0 and supZα
0
φ ≤ α− l− ε, where Zα0 is as in (6.4). Put

s := α− l, t := α, tλ := (1− λ)s+ λt and

µλ :=
1

v(σ(Zα1 )) · cλε
· G♯

[
(v× L1)|Ωλ

]
∈ P(M)

for λ ∈ [0, 1], where

Ωλ := {(x, r) |x ∈ σ(Zα1 ), r ∈ [tλ − cλε− φ(x), tλ − φ(x)]} ⊂ Dom(G),
cλ := (1− λ) + λc,

and c > 0 is a constant (depending on l) chosen later in (6.12). Notice that, since ε≪ l,

α− l − ε ≤ tλ − cλε ≤ r + φ(x) ≤ tλ ≤ α

for (x, r) ∈ Ωλ, thus indeed Ωλ ⊂ Dom(G). It follows from Lemma 4.7 that the set{(
G(x, s− δ − φ(x)),G(x, t− cδ − φ(x))

) ∣∣x ∈ σ(Zα1 ), δ ∈ [0, ε]
}
⊂ Γφ
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is d2-cyclically monotone. Therefore (µλ)λ∈[0,1] is a minimal geodesic with respect to

W2. Moreover, by construction, µλ = (Tλ)♯µ0 holds with

Tλ
(
G(x, s− δ − φ(x))

)
:= G

(
x, tλ − cλδ − φ(x)

)
for x ∈ σ(Zα1 ), δ ∈ [0, ε].

Let us rewrite µλ by using (6.6) as

µλ =
ρ−1

v(σ(Zα1 )) · cλε
·m|G(Ωλ).

Applying the curvature-dimension condition (3.3) or (3.4) following from RicN ≥ K to

(µλ)λ∈[0,1], we obtain(∫
suppµλ

(c−1
λ ρ−1)(N−1)/N dm

)N
≥

(∫
suppµ0

τ
(1−λ)
K,N

(
d(z, T1(z))

)
ρ(z)(1−N)/N m(dz)

+

∫
suppµ1

τ
(λ)
K,N

(
d(T−1

1 (z), z)
)(
cρ(z)

)(1−N)/N
m(dz)

)N
=

(∫ ε

0

∫
σ(Zα

1 )

τ
(1−λ)
K,N

(
l + (1− c)δ

)
ρ
(
G(x, s− δ − φ(x))

)1/N
v(dx)dδ

+

∫ cε

0

∫
σ(Zα

1 )

τ
(λ)
K,N

(
l + (c−1 − 1)δ

)
c(1−N)/Nρ

(
G(x, t− δ − φ(x))

)1/N
v(dx)dδ

)N
.

The localization of this inequality (as δ ↓ 0) leads to, for v-almost all x ∈ σ(Zα1 ),

cλργ
(
G(x, tλ − φ(x))

)
≥

{
τ
(1−λ)
K,N (l)ργ

(
G(x, s− φ(x))

)1/N
+ τ

(λ)
K,N (l)c1/Nργ

(
G(x, t− φ(x))

)1/N}N
. (6.11)

Set f(λ) := ργ(G(x, tλ − φ(x))) and let us rewrite (6.11) as

f(λ) ≥
{
τ
(1−λ)
K,N (l)c

−1/N
λ f(0)1/N + τ

(λ)
K,N (l)(cλ/c)

−1/Nf(1)1/N
}N

.

By calculation, the right hand side is maximized when

c =

{
(1− λ)τ (λ)

K,N (l)f(1)1/N

λτ
(1−λ)
K,N (l)f(0)1/N

}N/(N−1)

. (6.12)

On the one hand, substituting this into (6.11) yields

cλf(λ) ≥
{
σ

(1−λ)
K/(N−1)(l)f(0)

1/(N−1) + σ
(λ)
K/(N−1)(l)f(1)

1/(N−1)
}N

×

{
1− λ

τ
(1−λ)
K,N (l)f(0)1/N

}N/(N−1)

.
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On the other hand, we find

cλ =
{
σ

(1−λ)
K/(N−1)(l)f(0)

1/(N−1) + σ
(λ)
K/(N−1)(l)f(1)

1/(N−1)
}

×

{
1− λ

τ
(1−λ)
K,N (l)f(0)1/N

}N/(N−1)

.

Therefore we obtain

f(λ) ≥
{
σ

(1−λ)
K/(N−1)(l)f(0)

1/(N−1) + σ
(λ)
K/(N−1)(l)f(1)

1/(N−1)
}N−1

.

This is exactly the desired inequality (6.10) (recall that the domain Dom(γ) was taken

so as to satisfy φ(γ(r)) = r). □

Remark 6.6. (a) Notice that choosing c = 1 in (6.11) gives only the weaker bound

ργ
(
(1− λ)s+ λt

)
≥

{
τ
(1−λ)
K,N (t− s)ργ(s)1/N + τ

(λ)
K,N (t− s)ργ(t)1/N

}N
.

The above improving argument employing a shrinking (c < 1) or expanding (c > 1)

transport would be compared with a similar technique in the implication from CD(K,N)

to RicN ≥ K via the Brunn–Minkowski inequality (recall the role of a in the proof of

Theorem 3.1).

(b) If ργ ∈ C2(Dom(γ)), then comparing (6.10) with

∂2

∂λ2

[
σ

(1−λ)
K/(N−1)(t− s)ργ(s)

1/(N−1) + σ
(λ)
K/(N−1)(t− s)ργ(t)

1/(N−1)
]

= −K(t− s)2

N − 1

[
σ

(1−λ)
K/(N−1)(t− s)ργ(s)

1/(N−1) + σ
(λ)
K/(N−1)(t− s)ργ(t)

1/(N−1)
]

shows that (
ρ1/(N−1)
γ

)′′
+

K

N − 1
ρ1/(N−1)
γ ≤ 0 for N ∈ [n,∞),(

ρ1/(N−1)
γ

)′′
+

K

N − 1
ρ1/(N−1)
γ ≥ 0 for N ∈ (−∞, 0).

This is equivalent to, in either case,

ψ′′ − (ψ′)2

N − 1
≥ K, where ργ = e−ψ.

Hence (Dom(γ), | · |,µγ) satisfies RicN ≥ K. We stress that the standard distance | · |
cannot be replaced with the distance function induced from the Finsler structure F ,

since we do not know anything about the behavior of the reverse curve of γ (that is not

necessarily a geodesic nor of constant speed with respect to F ).

Theorem 6.7 (N = 0 case). Suppose that (M,F,m) satisfies Ric0 ≥ K for some

K ∈ R. Then, along v-almost every γ ∈ Rφ, we have
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ργ
(
(1− λ)s+ λt

)
≥

{
σ

(1−λ)
−K (t− s)ργ(s)−1 + σ

(λ)
−K(t− s)ργ(t)−1

}−1

(6.13)

for all a < s < t < b with a, b ∈ Dom(γ) and λ ∈ (0, 1).

Proof. The proof is a modification of that of Theorem 6.5. Instead of (6.11), we

obtain

c−1
λ f(λ)−1 ≤ max

{
σ

(1−λ)
−K (l)

1− λ
f(0)−1,

σ
(λ)
−K(l)

cλ
f(1)−1

}
,

where f(λ) := ργ(G(x, tλ − φ(x))) as before. Choosing

c =
(1− λ)σ(λ)

−K(l)f(0)

λσ
(1−λ)
−K (l)f(1)

,

we have

c−1
λ f(λ)−1 ≤

σ
(1−λ)
−K (l)

1− λ
f(0)−1.

Note also that

cλ =
{
σ

(1−λ)
−K (l)f(0)−1 + σ

(λ)
−K(l)f(1)−1

}
· (1− λ)f(0)

σ
(1−λ)
−K (l)

.

Thus we obtain

f(λ) ≥ c−1
λ

(1− λ)f(0)
σ

(1−λ)
−K (l)

=
{
σ

(1−λ)
−K (l)f(0)−1 + σ

(λ)
−K(l)f(1)−1

}−1
. □

We remark that the estimate (6.13) is indeed the limit of (6.10) as N ↑ 0. The case

of N =∞ is simpler and goes as follows.

Theorem 6.8 (N =∞ case). Suppose that (M,F,m) satisfies Ric∞ ≥ K for some

K ∈ R. Then, along v-almost every γ ∈ Rφ, we have

log ργ
(
(1− λ)s+ λt

)
≥ (1− λ) log ργ(s) + λ log ργ(t) +

K

2
(1− λ)λ(t− s)2 (6.14)

for all a < s < t < b with a, b ∈ Dom(γ) and λ ∈ (0, 1).

Proof. Arguing as in the proof of Theorem 6.5 with c = 1, we have by Ric∞ ≥ K∫
suppµλ

ρ−1 log(ρ−1) dm ≤ (1− λ)
∫ ε

0

∫
σ(Zα

1 )

log
[
ρ
(
G(x, s− δ − φ(x))

)−1]
v(dx)dδ

+ λ

∫ ε

0

∫
σ(Zα

1 )

log
[
ρ
(
G(x, t− δ − φ(x))

)−1]
v(dx)dδ

− v
(
σ(Zα1 )

)
ε · K

2
(1− λ)λW 2

2 (µ0, µ1).
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The localization gives

log ργ
(
G(x, tλ − φ(x))

)
≥ (1− λ) log ργ

(
G(x, s− φ(x))

)
+ λ log ργ

(
G(x, t− φ(x))

)
+
K

2
(1− λ)λl2

which shows (6.14). □

Remark 6.9. Similarly to Remark 6.6(b), if ργ ∈ C2(Dom(γ)), then the inequali-

ties (6.13) and (6.14) imply ψ′′ + (ψ′)2 ≥ K and ψ′′ ≥ K, respectively.

One can deduce (6.14) also from (6.10) as N ↓ −∞. Indeed, RicN ≥ Ric∞ ≥ K for

N < 0 and, by putting ε = −1/(N − 1),

(N − 1) log
[
σ

(1−λ)
K/(N−1)(l)a

1/(N−1) + σ
(λ)
K/(N−1)(l)b

1/(N−1)
]

= −1

ε
log

[
s−Kε((1− λ)l)

s−Kε(l)
a−ε +

s−Kε(λl)

s−Kε(l)
b−ε

]
→ (1− λ) log a+ λ log b+

K

2
(1− λ)λl2

as ε ↓ 0 for a, b > 0.

7. Isoperimetric inequalities.

We prove in this section the isoperimetric inequality (Theorem 1.3). We follow the

argument in [CM1, Section 6], however, the non-reversibility finally makes a difference.

7.1. Proof of Theorem 1.3.

The strategy is to reduce the isoperimetric inequality (1.3) to the one-dimensional

isoperimetric inequalities on needles (Dom(γ), F,µγ). Then, since the density function

ργ of µγ is only locally Lipschitz, we approximate ργ by smooth functions and apply the

isoperimetric inequality in [Mi1], [Mi2]. Before discussing the general situation, let us

consider the special case of n = N = 1.

Step 1 (The case of n = N = 1). In this extremal case, only K = 0 is meaningful

and D < ∞ is necessary for m(M) = 1 (recall Remark 2.4(c)). Thus it is sufficient to

consider the case where (M,F ) is diffeomorphic to the circle S1 = R/Z with F (∂/∂x) ≡ D
and F (−∂/∂x) ≡ Λ−1

(M,F ) · D, and m coincides with the standard (Hausdorff) measure

dx. Therefore we have, for all θ ∈ (0, 1),

I(M,F,m)(θ) =
1

D
+

1

Λ−1
(M,F ) ·D

=
1 + Λ(M,F )

D
.

This bound is better than I0,1,D(θ) = D−1 for the reason that ∂M = ∅ is assumed. If

one admits manifolds with boundary, then for M = [0, 1] we indeed have I(θ) = D−1.

Step 2 (Reduction to needles). Assume N ̸= 1 from here on. Since I(M,F,m)(θ) =

IK,N,D(θ) clearly holds for θ = 0, 1 (recall (1.1) for the definition of I(M,F,m)(θ)), we fix
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θ ∈ (0, 1). Given a Borel set A ⊂M with m(A) = θ, we consider the function

f(x) := χA(x)− θ, x ∈M.

Clearly
∫
M
f dm = 0 holds and hence the argument in Section 5 applies. Let φ :M −→ R

be a 1-Lipschitz function given by Lemma 5.1. Since f ̸= 0 on whole M , we have

m(Dφ) = 0 by Proposition 5.4. It also follows from Proposition 5.4 that, for v-almost

all γ ∈ Rφ,

0 =

∫
Dom(γ)

f ◦ γ dµγ = µγ
(
γ−1(A)

)
− θ.

Hence we have µγ(γ
−1(A)) = θ and, by the definition of the isoperimetric profile,

µ+
γ

(
γ−1(A)

)
≥ I(Dom(γ),Fγ ,µγ)

(θ),

where Fγ denotes the Finsler structure induced from F |Image(γ) by identifying Dom(γ)

and Image(γ). We shall see in the following steps that

I(Dom(γ),Fγ ,µγ)
(θ) ≥ Λ−1

(M,F ) · IK,N,D(θ). (7.1)

It follows from Fubini’s theorem and Fatou’s lemma that

m+(A) = lim inf
ε↓0

m(B+(A, ε))−m(A)

ε

= lim inf
ε↓0

∫
Rφ

µγ(γ
−1(B+(A, ε)))− µγ(γ

−1(A))

ε
v(dγ)

≥
∫
Rφ

lim inf
ε↓0

µγ(γ
−1(B+(A, ε)))− µγ(γ

−1(A))

ε
v(dγ).

Notice that γ−1(B+(A, ε)) ⊃ B+(γ−1(A), ε), where B+(γ−1(A), ε) is the ε-neighborhood

in Dom(γ) with respect to Fγ . Assuming (7.1), we obtain

lim inf
ε↓0

µγ(B
+(γ−1(A), ε))− µγ(γ

−1(A))

ε
= µ+

γ

(
γ−1(A)

)
≥ Λ−1

(M,F ) · IK,N,D(θ).

Therefore we conclude that the desired isoperimetric inequality

m+(A) ≥ Λ−1
(M,F ) · IK,N,D(θ)

holds. There only remains to show the one-dimensional inequality (7.1).

Step 3 (Reduction to smooth densities). We next reduce (7.1) to smooth density

functions similarly to [CM1], in order to apply the smooth arguments in [Mi1], [Mi2].

Precisely, we apply the following lemma (borrowed from [CM1, Lemma 6.2]) to the

density function ργ : Dom(γ) −→ [0,∞) of µγ . As a mollifier, let us fix an arbitrary

non-negative function ϕ ∈ C∞(R) with suppϕ ⊂ [0, 1] and
∫
R ϕdL

1 = 1.
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Lemma 7.1. Let ID := [0, D] for D ∈ (0,∞) and I∞ := R, and take a non-

negative continuous function ρ : R −→ [0,∞) with
∫
R ρ dt = 1 and supp ρ ⊂ ID. For

N ∈ (−∞, 0] ∪ [n,∞), ε > 0 and t ∈ R, put ϕε(t) := ϕ(t/ε)/ε and consider

ρN,ε(t) := (ρ1/(N−1) ∗ ϕε)(t)N−1 =

(∫
R
ρ(t− s)1/(N−1)ϕε(s) ds

)N−1

, t ∈ R,

and

ρ∞,ε(t) := exp
[
(log ρ ∗ ϕε)(t)

]
= exp

[ ∫
R
log

(
ρ(t− s)

)
ϕε(s) ds

]
, t ∈ R.

Then we have the following.

(i) ρN,ε ∈ C∞(R) with supp ρε ⊂ ID+ε, and ρN,ε converges to ρ uniformly on each

bounded interval as ε ↓ 0. If D =∞, we also have ρN,ε → ρ in L1.

(ii) If ρ satisfies (6.10) (or (6.13) if N = 0, (6.14) if N =∞), then ρN,ε satisfies

ψ′′
N,ε −

(ψ′
N,ε)

2

N − 1
≥ K, where ρN,ε = e−ψN,ε . (7.2)

Proof. Since the proofs are common, we consider only N ∈ (−∞, 0] ∪ [n,∞).

(i) It is a standard fact that ρ
1/(N−1)
N,ε converges to ρ1/(N−1) uniformly on each

bounded interval, then the first assertion follows. When D = ∞, observe from Jensen’s

inequality that

ρN,ε(t) ≤
∫
R
ρ(t− s)ϕε(s) ds =: ρε(t).

Hence −ρ ≤ ρN,ε − ρ ≤ ρε − ρ, then the dominated convergence theorem and ρε → ρ in

L1 show that ρN,ε → ρ in L1.

(ii) We first remark that supp ρ is convex (thus a closed interval) by (6.10) or (6.13).

Take a < t0 < t1 < b with a, b ∈ supp ρ and put l := t1 − t0. Then we observe for

λ ∈ (0, 1)

ρN,ε
(
(1− λ)t0 + λt1

)
= (ρ1/(N−1) ∗ ϕε)

(
(1− λ)t0 + λt1

)N−1

=

(∫
R
ρ
(
(1− λ)(t0 − s) + λ(t1 − s)

)1/(N−1)
ϕε(s) ds

)N−1

≥
(∫

R

{
σ

(1−λ)
K/(N−1)(l)ρ(t0 − s)

1/(N−1) + σ
(λ)
K/(N−1)(l)ρ(t1 − s)

1/(N−1)
}
ϕε(s) ds

)N−1

=
{
σ

(1−λ)
K/(N−1)(l)ρN,ε(t0)

1/(N−1) + σ
(λ)
K/(N−1)(l)ρN,ε(t1)

1/(N−1)
}N−1

.

This concavity inequality implies (7.2) as we discussed in Remark 6.6(b) (and Remark 6.9

for N = 0,∞). □

When we apply Lemma 7.1 to ρ = ργ , the resulting smooth function needs to be
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normalized since
∫
R ρN,ε dt =: mN,ε may not be 1. Notice that ρN,ε/mN,ε still enjoys (7.2)

since ρN,ε/mN,ε = e−ψN,ε−logmN,ε . Thus it follows from Lemma 7.1 and the isoperimetric

inequality (1.2) in [Mi1], [Mi2] that

I(Dom(γ),|·|,µγ)
(θ) ≥ lim

ε↓0
IK,N,D+ε(θ) = IK,N,D(θ),

where the latter equality holds thanks to the precise formula of IK,N,D(θ) in [Mi1],

[Mi2]. (We remark that, to be precise, when Dom(γ) is a half-infinite interval we use a

variant of Lemma 7.1 on [0,∞) or (−∞, 0].)

Step 4 (Proof of (7.1)). We finally need to compare F and | · | along γ, this is the
only difference between the reversible and non-reversible cases. For s, t ∈ Dom(γ) with

s < t, we observe by the definition of the Finsler distance and the reversibility constant

Λ(M,F ) that

d
(
γ(s), γ(t)

)
= t− s, d

(
γ(t), γ(s)

)
≤ Λ(M,F ) · (t− s).

Therefore we have (7.1) as

I(Dom(γ),Fγ ,µγ)
(θ) ≥ Λ−1

(M,F ) · I(Dom(γ),|·|,µγ)
(θ) ≥ Λ−1

(M,F ) · IK,N,D(θ),

and complete the proof of Theorem 1.3.

Remark 7.2. In Step 4, one can readily find an isoperimetric minimizer I ⊂
Dom(γ) satisfying µγ(I) = θ and µ+

γ (I) = IDom(γ),Fγ ,µγ
(θ). If I is of the form I = [a, c]

with Dom(γ) = [a, b] or I = (−∞, c] with Dom(γ) = (−∞, b], then in the calculation of

µ+
γ (I) only d(γ(s), γ(t)) = t − s for s < t matters, and we obtain I(Dom(γ),Fγ ,µγ)

(θ) ≥
IK,N,D(θ). This condition on I, however, seems not true for general (M,F,m).

7.2. Corollaries.

We state two special cases of Theorem 1.3 as corollaries.

Corollary 7.3 (Lévy–Gromov’s isoperimetric inequality). If K > 0, N ∈ [n,∞)

(with N ̸= 1 if n = 1) and D ≥ π
√
(N − 1)/K in Theorem 1.3, then we have

I(M,F,m)(θ) ≥ Λ−1
(M,F ) ·

sK/(N−1)(R(θ))
N−1∫ π√(N−1)/K

0
sK/(N−1)(r)N−1 dr

,

where R(θ) is given by∫ R(θ)

0

sK/(N−1)(r)
N−1 dr = θ

∫ π
√

(N−1)/K

0

sK/(N−1)(r)
N−1 dr.

Corollary 7.4 (Bakry–Ledoux’s isoperimetric inequality). If K > 0 and N =

D =∞ in Theorem 1.3, then we have
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I(M,F,m)(θ) ≥ Λ−1
(M,F ) ·

√
K

2π
e−Ka(θ)

2/2, where θ =

∫ a(θ)

−∞

√
K

2π
e−Ks

2/2 ds.

Notice finally that, although our Finsler structures are necessarily C∞ and strongly

convex, bi-Lipschitz approximations give the following isoperimetric inequality on general

normed spaces.

Corollary 7.5. Let n ≥ 2, N ∈ (−∞, 0]∪[n,∞], K ∈ R, and ∥·∥ : Rn −→ [0,∞)

be a continuous function satisfying:

(1) ∥x∥ > 0 for all x ̸= 0 := (0, . . . , 0);

(2) ∥cx∥ = c∥x∥ for any x ∈ Rn and c > 0;

(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for any x, y ∈ Rn.

Take a probability measure m = ρLn on Rn absolutely continuous with respect to the

n-dimensional Lebesgue measure Ln such that ρ is positive, continuous and satisfies:

ρ
(
(1−λ)x+λy

)
≥

{
σ

(1−λ)
K/(N−1)(∥y−x∥)ρ(x)

1/(N−1)+σ
(λ)
K/(N−1)(∥y−x∥)ρ(y)

1/(N−1)
}N−1

(7.3)

for all x, y ∈ Rn and λ ∈ (0, 1) if N ∈ (−∞, 0] ∪ [n,∞);

log ρ
(
(1− λ)x+ λy

)
≥ (1− λ) log ρ(x) + λ log ρ(y) +

K

2
(1− λ)λ∥y − x∥2 (7.4)

if N =∞. Then we have

I(Rn,∥·∥,m)(θ) ≥ Λ−1
(Rn,∥·∥) · IK,N,∞(θ)

for all θ ∈ [0, 1], where we consider the distance function d(x, y) := ∥y − x∥ associated

with ∥ · ∥ and Λ(Rn,∥·∥) := supx ̸=0 ∥−x∥/∥x∥.

Proof. We first see that, for any ε > 0, there exists a Minkowski norm ∥ · ∥ε
(in the sense of Definition 2.1) with ∥x∥ ≤ ∥x∥ε ≤ (1 + ε)∥x∥ for all x ∈ Rn. To this

end, we modify ∥ · ∥ in two steps. Denote by | · | the Euclidean norm of Rn. We first

employ a rotationally symmetric mollifier ϕ ∈ C∞(Rn) such that suppϕ is included in

the unit ball with respect to | · | and
∫
Rn ϕdL

n = 1. For δ > 0 and y ∈ Rn, we define

ϕδ(y) := ϕ(δ−1 · y)/δn and

∥x∥′δ :=
∫
Rn

∥x− y∥ϕδ|x|(y)Ln(dy)

for x ∈ Rn \ {0}, and ∥0∥′δ := 0. Then ∥ · ∥′δ is C∞ on Rn \ {0} and

∥ · ∥ ≤ ∥ · ∥′δ ≤ ∥ · ∥′δ′ for 0 < δ < δ′.

Using this monotonicity we also observe the convexity of ∥ · ∥′δ. Next we consider

∥x∥′′δ :=
√
(∥x∥′δ)2 + δ|x|2, x ∈ Rn.
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Clearly ∥ · ∥′′δ is strongly convex and enjoys ∥ · ∥′δ ≤ ∥ · ∥′′δ . Choosing small δ > 0 and

letting ∥ · ∥ε := ∥ · ∥′′δ shows the claim.

The space (Rn, ∥ · ∥ε,m) satisfies (7.3) or (7.4) by replacing K with min{K, (1 +

ε)−2K}. Therefore the assertion follows from Theorem 1.3 by letting ε ↓ 0. □

We remark that the above proof heavily relies on the special properties of normed

spaces; The bi-Lipschitz deformations ∥·∥ε still have straight lines as geodesics, and they

do not destroy the curvature bounds (7.3), (7.4). Hence it is unclear if one can generalize

Theorem 1.3 to non-smooth and non-strongly convex Finsler structures.

8. Further problems.

This final section is devoted to further problems on isoperimetric inequalities on

Finsler manifolds. We refer to [Kl, Section 6] for other kinds of open problems related

to needle decompositions. (The first problem suggested in [Kl, Section 6] is actually a

generalization to Finsler manifolds, which is resolved by [CM1] and the present article.)

(A) N ∈ (0, 1) and N = 1 cases. Because of recent works [Mi2], [Kl], [Wy3] on

weighted Riemannian manifolds with RicN ≥ K for N ∈ (0, 1) and even N = 1,

it is natural to try to generalize the entropy-based curvature-dimension condition

CD(K,N) to N ∈ (0, 1) and N = 1. It seems necessary to modify the entropy

SN , since the generating function h(s) = s(N−1)/N is still convex but h(0) ̸= 0 for

N ∈ (0, 1).

(B) Concavity of isoperimetric profile. In the weighted Riemannian case, we have a

more precise control of the isoperimetric profile. Under RicN ≥ K, the differential

inequality (
IN/(N−1)
(M,g,m)

)′′
≤ − KN

N − 1
I(2−N)/(N−1)
(M,g,m) (8.1)

holds in the weak sense (see [Bay], [BR], [Mo]). Then, together with the asymp-

totic analysis at θ → 0, we have the sharp isoperimetric inequality. The standard

technique showing this inequality uses the regularity theorem of isoperimetric min-

imizers, that is not yet established in the Finsler situation. If it is generalized,

then one could follow the lines of the Riemannian case (even in the non-reversible

case). Alternatively, it is very interesting if one can derive (8.1) by using needle

decompositions.

(C) Asymmetric CD-spaces. As a general framework including both CD-spaces in

[CM1] and non-reversible Finsler manifolds in the present article, it would be

worthwhile to consider asymmetric metric measure spaces satisfying the curvature-

dimension condition. Many results could be generalized verbatim, while we need a

careful treatment on the relation between d(x, y) and d(y, x), they are always locally

comparable in the Finsler case by virtue of the smoothness of Finsler structures.

(D) Other curvature bounds. Our construction of needle decompositions used only the

manifold structure of the space and the curvature bound RicN ≥ K came into play
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only from Section 6.3. Thus there would be applications of this technique to other

curvature bounds, for instance, Hadamard manifolds (simply connected Riemann-

ian manifolds of nonpositive sectional curvature) or its Finsler counterparts. Then,

since needles are weighted spaces (even if the original manifold is unweighted), we

need to develop the theory of sectional curvature for weighted spaces. This is not as

well understood as the weighted Ricci curvature (we refer to [Wy1], [KW], [Wy2]

for recent attempts in such a direction).

(E) Rigidity. In [CM1], some rigidity results for the isoperimetric inequality in posi-

tively curved spaces were obtained with the help of the maximal diameter rigidity

in [Ke] for metric measure spaces satisfying the Riemannian curvature-dimension

condition. In the Finsler setting, rigidity is a more challenging problem and we

know only a few including the following.

(a) The maximal diameter under RicN ≥ K > 0, N ∈ [n,∞), implies the spherical

suspension structure. This is essentially included in the framework of the

measure contraction property (see [Oh2]).

(b) Under RicN ≥ 0 with N ∈ [n,∞], the existence of a straight line implies that

the space splits off the real line R (see [Oh7]). This is a generalization of

Cheeger–Gromoll’s classical splitting theorem.

Now, it would be interesting to consider rigidity problems, for instance, in the

setting of Corollary 7.3 for reversible spaces.

(F) Semigroup approach to Bakry–Ledoux’s inequality. Bakry–Ledoux’s isoperimetric

inequality [BL] was shown in the more abstract framework of linear semigroups sat-

isfying an inequality corresponding to the dimension-free Bochner inequality (this

is the original “curvature-dimension condition” CD(K,∞)). Applying this result to

the weighted Laplacian on weighted Riemannian manifolds gives the Riemannian

case of Corollary 7.4. In the Finsler case, although the natural Laplacian is not lin-

ear (see [OS1]), a kind of Bochner–Weitzenböck formula was established in [OS2]

and has a number of applications including the aforementioned splitting theorem

in [Oh7]. It seems worthwhile to consider whether this alternative approach works

or not, that may improve the estimate in Corollary 7.4.
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Note added in proof. In our subsequent paper [Oh9], the sharp isoperimetric

inequality under Ric∞ ≥ K > 0 is resolved along the lines of Bakry–Ledoux’s Γ-calculus

approach, exactly suggested in (F) above. A similar technique further yields several

functional inequalities on non-reversible Finsler manifolds ([Oh10], see also the survey

[Oh11]), as well as Bakry–Ledoux’s isoperimetric inequality on RCD(K,∞)-spaces with

K > 0 ([AM], note that in [CM1] they assumed N ∈ (1,∞)).
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