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Abstract. We study the group of polynomial automorphisms of C3

(resp. birational self-maps of P3
C) that preserve the contact structure.

1. Introduction.

In this article we work on the group of birational maps that preserve contact struc-

tures on P3
C. On P3

C there is, up to automorphisms, only one (non-singular) contact struc-

ture given in homogeneous coordinates by the 1-form ϑ̃ = z0dz1− z1dz0+ z2dz3− z3dz2.
In C3 there is the Darboux 1-form ω = z0 dz1 + dz2 that is the standard local model of

contact forms; it thus defines a holomorphic contact structure on C3 that extends to P3
C

meromorphically. Note that ω has poles of order 3 along the hyperplane z3 = 0. We

denote by c(ω) the (meromorphic) contact structure induced on P3
C by ω. Let us remark

that actually ω is birationally conjugate to ϑ̃|z3=1 (more precisely they are conjugate

via a polynomial automorphism in the affine chart z3 = 1). As a result the group of

birational maps that preserve these structures are conjugate; since it is more convenient

to work with ω than with ϑ̃ we will focus on ω.

The contact geometry has a long story. The Darboux local model z0dz1 + dz2 is

related to the formalization of z0 = −dz2/dz1. For instance if S is a surface in C3 given

by F (z0, z1, z2) = 0 then the restriction of ω to S corresponds to the implicit differential

equation F (−∂z2/∂z1, z1, z2) = 0. A birational self-map of P3
C which preserves the

contact structure (i.e., which sends the 1-form z0dz1 + dz2 viewed in the affine chart

z3 = 1 onto a multiple of z0dz1 + dz2 by a rational function) is said to be a contact

map. The space C3 with the contact form ω can be seen as an affine chart of the

projectivization of the cotangent bundle T∗C2 (equipped with the standard Liouville

contact form). As a consequence there is a natural extension of any birational self-map

of the (z1, z2) plane ([23])

K : Bir(P2
C) ↪→ Bir(C3)c(ω), (ϕ1, ϕ2) 7→

(
−∂ϕ2/∂z1 + ∂ϕ2/∂z2 z0
∂ϕ1/∂z1 − ∂ϕ1/∂z2 z0

, ϕ1(z1, z2), ϕ2(z1, z2)

)
where Bir(C3)c(ω) denotes the group of contact birational self-maps of P3

C. The image of

K is the Klein group K . Klein conjectured that the group of contact maps is generated

by K and the Legendre involution
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(z0, z1, z2) 7→ (z1, z0,−z2 − z0z1).

In 2008 Gizatullin proved this “conjecture” in the case in which the contact transfor-

mations are polynomial automorphisms of the affine space ([21]). The conjecture about

generators of the contact group is still open in the birational case.

Let G be a subgroup of the group Bir(PnC) of birational self-maps of PnC, and let β

be a meromorphic p-form on PnC; denote by

Gβ =
{
ϕ ∈ G |ϕ∗β = β

}
the subgroup of elements of G that preserve the form β. In the same spirit for 1-forms

β we set

Gc(β) =
{
ϕ ∈ G |ϕ∗β ∧ β = 0

}
.

We have the obvious inclusions Gβ ⊂ Gc(β) ⊂ G.

We first describe the group Aut(C3)c(ω) of polynomial automorphisms of C3 that

preserve the contact structure:

Theorem 1.0.1. If η is the form dω = dz0 ∧ dz1, then

Aut(C3)ω ≃ Aut(C2)η ⋉C, Aut(C3)c(ω) ≃ Aut(C3)ω ⋉C∗.

Hence, as Banyaga did in the context of contact diffeomorphisms of smooth real

manifolds ([2][3][4]), one gets that the commutator of Aut(C3)ω (resp. Aut(C3)c(ω)) is

perfect. Any automorphism of Aut(C2) is the composition of an inner automorphism

and an automorphism of the field C (see [16]). Following this idea we describe the group

Aut(Aut(C3)ω).

Danilov and Gizatullin proved that any finite subgroup of Aut(C2) is linearizable

([22]). We obtain a similar statement:

Theorem 1.0.2. Any finite subgroup of Aut(C3)c(ω) is linearizable via an element

of Aut(C3)c(ω).

We also deal with Bir(C3)c(ω). If ϕ belongs to Bir(C3)c(ω), then ϕ∗ω = V (ϕ)ω

where V (ϕ) is some rational function. In particular one gets a map V from Bir(C3)c(ω)
to the set of rational functions in z0, z1, z2 satisfying cocycle conditions: V (ϕ ◦ ψ) =(
V (ϕ) ◦ ψ

)
· V (ψ).

The equality ϕ∗ω = V (ϕ)ω can be rewritten as the following system of PDE

(S)


ϕ0∂ϕ1/∂z0 + ∂ϕ2/∂z0 = 0, (⋆1)

ϕ0∂ϕ1/∂z1 + ∂ϕ2/∂z1 = V (ϕ)z0, (⋆2)

ϕ0∂ϕ1/∂z2 + ∂ϕ2/∂z2 = V (ϕ). (⋆3)

The first equation (⋆1) has a special family of solutions: maps for which both ϕ1 and

ϕ2 do not depend on z0; we can then compute ϕ0 from the two other equations. Taking

(ϕ1, ϕ2) in Bir(P2
C) we get in this way the group K .
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Assume now that ϕ1 or ϕ2 depends on z0 then both depend on it and (S) implies

the following equality

∂ϕ2/∂z1 − z0∂ϕ2/∂z2
∂ϕ2/∂z0

=
∂ϕ1/∂z1 − z0∂ϕ1/∂z2

∂ϕ1/∂z0
.

Let us defined α the map from Bir(C3)c(ω) into the set of rational functions in z0, z1 and

z2 by: α(ϕ) = ∞ if ϕ belongs to K and

α(ϕ) =
∂ϕ2/∂z1 − z0∂ϕ2/∂z2

∂ϕ2/∂z0
=
∂ϕ1/∂z1 − z0∂ϕ1/∂z2

∂ϕ1/∂z0

otherwise.

If ϕ1 and ϕ2 are some first integrals of the rational vector field

Zϕ = α(ϕ)
∂

∂z0
− ∂

∂z1
+ z0

∂

∂z2
,

one gets ϕ0 thanks to the first equation of (S). Such ϕ is not necessary birational but

only rational; nevertheless one gets a lot of contact birational self-maps in this way.

Remark that since K (resp. Bir(C3)ω) is a subgroup of Bir(C3)c(ω) there is a natural

left translation action of K (resp. Bir(C3)ω) on Bir(C3)c(ω). These two actions admit a

complete invariant:

Theorem 1.0.3. The map α is a complete invariant of the left translation action

of K on Bir(C3)c(ω), that is for any ϕ and ψ in Bir(C3)c(ω) one has α(ϕ) = α(ψ) if and

only if ψϕ−1 belongs to K .

The map V is a complete invariant of the left translation action of Bir(C3)ω of

Bir(C3)c(ω), i.e. for any ϕ, ψ in Bir(C3)c(ω) one has V (ϕ) = V (ψ) if and only if ψϕ−1

belongs to Bir(C3)ω.

We prove that α is not surjective: generic linear differential equations of second order

give linear functions that are not in the image of α. Painlevé equations give examples

of polynomials of higher degree that do not belong to imα. The map V is also not

surjective.

Since ω has no integral surface in C3 a contact birational self-map ϕ either preserves

the hyperplane z3 = 0, or blows down z3 = 0. This naturally implies the following

definition: ϕ ∈ Bir(C3)c(ω) is regular at infinity if z3 = 0 is preserved by ϕ and if ϕ|z3=0

is birational. One shows that

Proposition 1.0.4. The set of maps of Bir(C3)ω that are regular coincides with

Aut(P3
C)ω.

Let ς : Bir(C3)ω → Bir(C2)η be the projection onto the two first components. We

say that φ ∈ Bir(C2)η is exact if φ can be lifted via ς to Bir(C3)ω. One establishes the

following criterion:

Theorem 1.0.5. A map φ = (ϕ0, ϕ1) ∈ Bir(C2)η is exact if and only if the closed
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form ϕ0dϕ1 − z0dz1 has trivial residues. In that case ϕ0dϕ1 − z0dz1 = −db with b ∈
C(z0, z1) and ϕ =

(
φ, z2 + b(z0, z1)

)
∈ Bir(C3)ω.

We give a lot of examples, and even subgroups, of exact maps but also prove that

the map ς is not surjective:

Theorem 1.0.6. A generic quadratic element of Bir(C2)η is not exact.

Furthermore we look at invariant curves and surfaces. Thanks to a local argument

of contact geometry one gets that if ϕ belongs to Bir(C3)ω, if m is a periodic point of

ϕ, and if there exists a germ of irreducible curve C invariant by ϕ and passing through

m, then either C is a curve of periodic points, or C is a legendrian curve. We also give a

precise description of elements of Aut(C3)ω (resp. Bir(C3)ω) that preserve a surface.

Besides we deal with some group properties. Danilov proved that Aut(C2)η is not

simple ([15]); Cantat and Lamy showed that Bir(P2
C) is not simple ([11]). In the same

spirit we establish that

Theorem 1.0.7. The groups Aut(C3)ω, Bir(C3)ω, Aut(C3)c(ω), the derived group

of Aut(C3)ω and the derived group of Aut(C3)c(ω) are not simple.

Lamy proved that Aut(C2) satisfies the Tits alternative ([26]), then Cantat showed

that Bir(P2
C) also ([10]). In our context one gets that

Theorem 1.0.8. The groups Aut(C3)ω, Aut(C3)c(ω) and Bir(C3)ω satisfy the Tits

alternative.

Acknowledgements. We would like to thank Guy Casale for discussions about

the non-integrability.

2. Contact polynomial automorphisms.

A polynomial automorphism ϕ of Cn is a polynomial map of the type

ϕ : Cn → Cn,

(z0, z1, . . . , zn−1) 7→
(
ϕ0(z0, z1, . . . , zn−1), ϕ1(z0, z1, . . . , zn−1), . . . , ϕn−1(z0, z1, . . . , zn−1)

)
that is bijective. The set of polynomial automorphisms of Cn form a group denoted

Aut(Cn).
The automorphisms of Cn of the form (ϕ0, ϕ1, . . . , ϕn−1) where ϕi depends only on

zi, zi+1, . . . , zn−1 form the Jonquières subgroup Jn ⊂ Aut(Cn). Moreover one has the

inclusions

GL(Cn) ⊂ Affn ⊂ Aut(Cn)

where Affn denotes the group of affine maps

ϕ : (z0, z1, . . . , zn−1) 7→
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ϕ0(z0, z1, . . . , zn−1), ϕ1(z0, z1, . . . , zn−1), . . . , ϕn−1(z0, z1, . . . , zn−1)
)

with ϕi affine; Affn is the semi-direct product of GL(Cn) with the commutative subgroups

of translations. The subgroup Tamen ⊂ Aut(Cn) generated by Jn and Affn is called the

group of tame automorphisms.

Convention. In all the article we denote PnC by Pn, and we write “birational

maps of Pn” instead of “birational self-maps of Pn”.

2.1. Contact forms and contact structures.

We recall in the context of 3-manifolds the formalism of contact structure. Let M

be a complex 3-manifold; we denote by Ωi(M) the space of holomorphic i-forms on M .

A contact form on M is an element Θ ∈ Ω1(M) such that the 3-form Θ ∧ dΘ ∈ Ω3(M)

has no zero: Θ ∧ dΘ(m) ̸= 0 for any m ∈ M . For such a contact form there is a local

model given by Darboux theorem: at each point m there is a local biholomorphism

F : M,m→ C3,0 such that Θ = F ∗(z0dz1 + dz2). The 1-form z0dz1 + dz2 is called the

standard contact form on C3; we denote it by ω.

A contact structure on the 3-manifold M is given by the following data:

(i) an open covering M = ⊔kUk,

(ii) on each Uk a contact form Θk ∈ Ω1(Uk),

(iii) on each non-trivial intersection Uk ∩Uℓ a holomorphic unit gkℓ ∈ O∗(Uk ∩Uℓ) such
that Θk = gkℓΘℓ.

A contact structure defines a holomorphic hyperplanes field t : M → P(TM)∨ given

for all m ∈ Uk by

t(m) = kerΘk(m).

The compact Kähler manifolds having a contact structure are classified by Frantzen

and Peternell theorem ([18]). On P3 there is no contact form because there is no non-

trivial global form. Nevertheless there are contact structures; one of them is given in

homogeneous coordinates by the 1-form

ϑ̃ = z0dz1 − z1dz0 + z2dz3 − z3dz2.

In that case we can take the standard covering by affine charts Uk = {zk = 1} and

ϑk = ϑ̃|Uk
.

Proposition 2.1.1. Up to automorphisms of P3 there is only one contact structure

on P3.

Proof. Remark that to a contact structure on P3 is associated a homogeneous

1-form β on C4 such that Uk = {zk = 1} and Θk = β|Uk
satisfies properties i., ii., iii.

Let β be a contact structure on P3, and let R =
∑
i zi∂/∂zi be the radial vector

field. Since iRβ = 0, to give β is equivalent to give dβ. According to [24, Chapter 2,

Proposition 2.1] one has deg dβ = 0; to give dβ is thus equivalent to give an antisymmetric
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matrix of maximal rank. But up to conjugacy there is only one 4×4 antisymmetric matrix

of maximal rank. □

Remark 2.1.2. The group of linear automorphisms of C4 that preserve ϑ̃ coincides

with the group of automorphisms of P3 that preserve dϑ̃; as a consequence the subgroup

of Aut(P3) that preserves the contact structure associated to dϑ̃ is the projectivization

of the symplectic group Sp(4;C).

Remark that the data of a global meromorphic 1-form Θ onM such that Θ∧dΘ ̸≡ 0

induces a contact form (and a contact structure) on the complement of the poles and

zeros of Θ and Θ ∧ dΘ. In that case we say that Θ induces a meromorphic contact

structure on M .

For instance the Darboux form ω = z0dz1 + dz2 induces a meromorphic contact

structure on P3. In fact the forms ω and ϑ̃|z3=1 are conjugate on C3 via (z0/2, z1,−z2 +
z0z1/2). The corresponding (meromorphic) contact structure are birationally conjugate

on P3.

2.2. Description of contact automorphisms.

Let us describe Aut(C3)ω. Set η = dω = dz0 ∧ dz1. Remark that the invariance of

ω implies the invariance of η and as a consequence the equality (ϕ0, ϕ1)
∗η = η.

Proposition 2.2.1. If ϕ belongs to Aut(C3)ω, then ϕ∗∂/∂z2 = ∂/∂z2.

In particular if ϕ belongs to Aut(C3)ω, then

ϕ =
(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
and the map

ς : Aut(C3)ω −→ Aut(C2)η,(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
7→
(
ϕ0(z0, z1), ϕ1(z0, z1)

)
is a morphism.

Proof. As we already mentioned, for a contact form there exists a unique vector

field χ, called Reeb vector field, such that ω(χ) = 1 and iχdω = 0; here χ = ∂/∂z2. If

ϕ belongs to Aut(C3)ω, then ϕ∗χ = χ. As a result ϕ has the following form

ϕ =
(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
with (ϕ0, ϕ1) in Aut(C2) and b in C[z0, z1]. □

Remark 2.2.2. Any element of Aut(C3)c(ω) can be written(
φ0, φ1, det jacφz2 + b(z0, z1)

)
where φ = (φ0, φ1) ∈ Aut(C2) and db = (det jacφ)z0dz1 − φ0dφ1. Let us still denote by

ς the natural projection
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ς : Aut(C3)c(ω) → Aut(C2).

An element ϕ of Bir(C2)η is exact if it can be lifted via ς to Bir(C3)ω, or equivalently

if it belongs to im ς.

Contrary to the birational case (Theorem 3.4.1) any element of Aut(C2) can be lifted

via ς to Aut(C3)c(ω). Since b is defined up to a constant we do not speak about the ς-lift

but a ς-lift.

The following obvious statement describes the group Aut(C3)ω:

Proposition 2.2.3. Let us consider the morphism

ς : Aut(C3)ω −→ Aut(C2)η,(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
7→
(
ϕ0(z0, z1), ϕ1(z0, z1)

)
.

One has the following exact sequence

0 −→ C −→ Aut(C3)ω
ς−→ Aut(C2)η −→ 1; (2.1)

more precisely ker ς =
{
(z0, z1, z2 + β) |β ∈ C

}
. In particular

Aut(C3)ω ≃ Aut(C2)η ⋉C.

Proof. The 1-form ϕ0dϕ1 − z0dz1 is a closed and polynomial one, so it is exact.

Therefore ς is surjective. □

Let G be a group. The derived group of G is the subgroup of G generated by all the

commutators of G:

[G,G] = ⟨ghg−1h−1 | g, h ∈ G⟩.

The group G is said to be perfect if it coincides with its derived group, or equivalently,

if the group has no nontrivial abelian quotients.

Such a property was established in the context of real smooth manifolds: Banyaga

proved that the derived group of the group of contact diffeomorphisms is a perfect one

([2][3][4]).

Theorem 2.2.4. The group [Aut(C3)ω,Aut(C3)ω] is perfect.

Proof. Since ς is surjective (Proposition 2.2.3) and Aut(C2)η is perfect ([20,

Proposition 10]) the restriction of ς

ς̃ = ς|[Aut(C3)ω,Aut(C3)ω] : [Aut(C3)ω,Aut(C3)ω] −→ Aut(C2)η

is surjective. Let ϕ be in ker ς̃; on the one hand ϕ = (z0, z1, z2 + β) for some β (Proposi-

tion 2.2.3), and on the other hand ϕ is a product of commutators hence β = 0. We thus

have the following exact sequence
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0 −→ [Aut(C3)ω,Aut(C3)ω] −→ Aut(C2)η −→ 1

and [Aut(C3)ω,Aut(C3)ω] ≃ Aut(C2)η which is perfect ([20, Proposition 10]). □

We will now describe Aut(C3)c(ω). Let us recall that Aut(C2) is generated by J2
and Aff2 (see [25]). This implies that Aff2 and

[J2, J2] =
{
(z0 + β, z1 + P (z0)) |β ∈ C, P ∈ C[z0]

}
.

generate Aut(C2).

Proposition 2.2.5. The group Aut(C3)c(ω) is generated by A and E where

E =
{
ς-lifts of e | e ∈ [J2, J2]

}
and A =

{
ς-lifts of a | a ∈ Aff2

}
.

Proof. Let φ be a polynomial automorphism of C2 and let ϕ be a ς-lift of φ to

Aut(C3)c(ω)

ϕ =
(
φ, det jacφz2 + b(z0, z1)

)
with b in C[z0, z1]. One can write φ as a1e1a2e2 · · · ases where ai belongs to Aff2 and

ei to [J2, J2]. Let us now consider Ai a ς-lift of ai, Ei = (ei, z2 + di) a ς-lift of ei.

Then A1E1A2E2 · · ·AsEs belongs to Aut(C3)c(ω), and up to composition by an element

(z0, z1, z2 + β) ∈ A one has

ϕ = A1E1A2E2 · · ·AsEs. □

Proposition 2.2.6. One has

Aut(C3)c(ω) ≃ Aut(C3)ω ⋉C∗.

Proof. Let us consider an element ϕ of Aut(C3)c(ω), then ϕ∗ω = V (ϕ)ω for

some polynomial V (ϕ). As ω and ϕ∗ω do not vanish, V (ϕ) does not vanish; therefore

V (ϕ) = λ ∈ C∗. Let us write ϕ as follows:

ϕ = (λz0, z1, λz2) ◦ ϕ̃;

of course ϕ̃∗ω = ω. □

Theorem 2.2.7. The derived group [Aut(C3)c(ω),Aut(C3)c(ω)] of Aut(C3)c(ω) is

perfect.

Proof. According to Proposition 2.2.6 an element ϕ of Aut(C3)c(ω) can be written(
λϕ0, ϕ1, λz2 + λb

)
with λ ∈ C∗ and (ϕ0, ϕ1, z2 + b) ∈ Aut(C3)ω. Denote by φ the element of Aut(C2) given

by (ϕ0, ϕ1). If ϕ belongs to ker ς, then λ = 1, φ = id and b ∈ C, that is ker ς ≃ C and
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C −→ Aut(C3)c(ω)
ς−→ Aut(C2) −→ 1. (2.2)

Since Aut(C2)η is perfect the restriction of ς to [Aut(C3)c(ω),Aut(C3)c(ω)] induces the

following exact sequence

0 −→ [Aut(C3)c(ω),Aut(C3)c(ω)] −→ Aut(C2)η −→ 1

and [Aut(C3)c(ω),Aut(C3)c(ω)] ≃ Aut(C2)η. One concludes as previously with [20,

Proposition 10]. □

Let us now deal with the finite subgroups of Aut(C3)c(ω).

Proposition 2.2.8. Any element of Aut(C2)η of period ℓ lifts via ς to a unique

element of Aut(C3)ω of period ℓ.

Proof. Let us consider an element φ =
(
ϕ0(z0, z1), ϕ1(z0, z1)

)
of Aut(C2)η. Ac-

cording to Proposition 2.2.3 there exists b ∈ C[z0, z1] such that
(
ϕ0(z0, z1), ϕ1(z0, z1), z2+

b(z0, z1) + µ
)
belongs to Bir(C3)ω for any µ ∈ C. Assume that φ is of prime order ℓ; let

us prove that there exists a unique γ ∈ C such that(
ϕ0, ϕ1, z2 + b(z0, z1) + γ

)
is of order ℓ.

Assume for simplicity that ℓ = 2 (but a similar argument works for any ℓ). Let us

recall that the following equality holds

z0dz1 − ϕ0dϕ1 = db. (2.3)

Applying ϕ to this equality one gets

ϕ0dϕ1 − z0dz1 = d(b ◦ φ). (2.4)

We add (2.3) and (2.4) and obtain that b+ b ◦ ϕ is a constant β. Furthermore(
ϕ0(z0, z1), ϕ1(z0, z1), z2+b(z0, z1)+µ

)2
=
(
z0, z1, z2+2γ+b+b◦φ

)
= (z0, z1, z2+2γ+β)

so as soon as γ = −β/2 one has
(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1) + µ

)2
= id. □

Proposition 2.2.9. A finite subgroup of Aut(C2) can be lifted to a finite subgroup

of Aut(C3)c(ω).

Proof. Let H be a finite subgroup of Aut(C2). The group H is linearizable ([22])

hence has a fixed point p. Since the translations belong to Aut(C2) one can assume that

p = (0, 0). Let us consider the lifts of all elements of H in
{
ϕ ∈ Aut(C3)c(ω) |ϕ(0) = 0

}
;

they form a group isomorphic to H so is in particular finite. □

Remark 2.2.10. Any subgroup G of Aut(C2) that preserves (0, 0) can be lifted to

a subgroup of Aut(C3)c(ω) isomorphic to G.



582(160)

582 D. Cerveau and J. Déserti

Theorem 2.2.11. Any finite subgroup of Aut(C3)c(ω) is linearizable via an element

of Aut(C3)c(ω).

Proof. Let G be a finite subgroup of Aut(C3)c(ω). The group G is isomorphic to

H = ς(G) which is thus a finite subgroup of Aut(C2). There exists a map h ∈ Aut(C2)

that linearizes H (see [22]); as a result H has a fixed point p and up to translations one can

suppose that p = (0, 0). Note that h(0) = 0. The lift of h in
{
ϕ ∈ Aut(C3)c(ω) |ϕ(0) = 0

}
linearizes G. □

2.3. Automorphisms group.

Let us first introduce some notations. The group of the field automorphisms of

C acts on Aut(Cn) (resp. Bir(Pn)): if f is an element of Aut(Cn) and if ξ is a field

automorphism we denote by ξf the element obtained by letting ξ acting on f . Using the

structure of amalgamated product of Aut(C2), the automorphisms of this group have

been described ([16]): let φ be an automorphism of Aut(C2); there exist a polynomial

automorphism ψ of C2 and a field automorphism ξ such that

∀ f ∈ Aut(C2), φ(f) = ξ(ψfψ−1).

Even if Bir(P2) has not the same structure as Aut(C2) (see Appendix of [11]) the auto-

morphisms group of Bir(P2) can be described and a similar result is obtained ([17]).

We now would like to describe the group Aut
(
Aut(C3)ω

)
. Let us recall that the

center of a group G, denoted Z(G), is the set of elements that commute with every

element of G.

Proposition 2.3.1. The center of Aut(C3)ω is isomorphic to C :

Z(Aut(C3)ω) =
{
(z0, z1, z2 + β) |β ∈ C

}
and the center of Aut(C3)c(ω) is trivial.

As Aut(C3)ω ≃ Aut(C2)η ⋉C Proposition 2.3.1 implies the following statement:

Corollary 2.3.2. The quotient of Aut(C3)ω by its center is isomorphic to

Aut(C2)η.

Lemma 2.3.3. One has the following isomorphism

Hom(Aut(C3)ω,C) ≃ Hom(C,C)

where Hom(C,C) denotes the homomorphisms of the additive group C.

Proof. Note that if ϕ belongs to [Aut(C3)ω,Aut(C3)ω], then the last compo-

nent of ϕ is well defined (that is not defined modulo a constant). Besides Aut(C3)ω ≃
Aut(C2)η ⋉C and Aut(C2)η is perfect thus

Aut(C3)ω
/
[Aut(C3)ω,Aut(C3)ω]

≃ C
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and

Aut(C3)ω ≃ Aut(C2)η ⋉C

��
&&NN

NNN
NNN

NNN
NNN

NNN
NNN

NNN
NNN

N

Aut(C3)ω
/
[Aut(C3)ω,Aut(C3)ω]

∼ // C.

We conclude by noting that any element of Hom(Aut(C3)ω,C) acts trivially on ϕ. □

Remark 2.3.4. An element c of Hom(Aut(C3)ω,C) acts on Aut(C3)ω as follows(
ϕ0, ϕ1, z2 + b(z0, z1)

)
→
(
ϕ0, ϕ1, z2 + b(z0, z1) + c(ϕ)

)
.

Definition. Let H be a normal subgroup of a group G. We say that an automor-

phism of H of the form ϕ 7→ φϕφ−1, with φ in G, is G-inner.

Theorem 2.3.5. The group Aut
(
Aut(C3)ω

)
is generated by the automorphisms

group of the field C, the group of Aut(C3)c(ω)-inner automorphisms and the action of

Hom(C,C).

Proof. Consider an element ψ of Aut
(
Aut(C3)ω

)
. For any ϕ =

(
φϕ, z2 +

Tϕ(z0, z1)
)
one has

ψ(ϕ) =
(
φ̃ϕ, z2 +∆ϕ(z0, z1)

)
.

In particular ψ induces an automorphism ψ0 of Aut(C2)η; indeed since ψ is an automor-

phism of Aut(C3)ω, it preserves Z
(
Aut(C3)ω

)
and so, from Corollary 2.3.2 induces an

automorphism of Aut(C2)η.

According to Theorem 5.0.2 one can assume that ψ0 = id up to the action of an

automorphism of the field C and up to conjugacy by an Aut(C2)-inner automorphism,

i.e.

ψ(ϕ) =
(
φϕ, z2 +∆ϕ(z0, z1)

)
.

Set ϕ−1 =
(
φ−1
ϕ , z2 + Tϕ−1(z0, z1)

)
. On the one hand ϕ−1 ◦ ϕ =

(
id, z2 + Tϕ(z0, z1) +

Tϕ−1(φϕ)
)
so

Tϕ + Tϕ−1(φϕ) = 0 (2.5)

and on the other hand

ψ(ϕ ◦ ϕ−1) =
(
id, z2 + Tϕ−1(z0, z1) + ∆ϕ φ

−1
ϕ

)
belongs to Aut(C3)ω hence Tϕ−1 + ∆ϕφ

−1
ϕ is a constant. This, combined with (2.5),
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implies that ∆ϕ = Tϕ + cϕ, where cϕ is a constant, and yields to a morphism from

Aut(C3)ω to C:

Aut(C3)ω → C, ϕ 7→ cϕ.

Consider an homomorphism

ρ : Aut(C3)ω → C, ϕ 7→ ρϕ.

Let us define ψ : Aut(C3)ω → Aut(C3)ω by:

ψ(ϕ) =
(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1) + ρϕ

)
where ϕ =

(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
∈ Aut(C3)ω. One can check that ψ

belongs to Aut
(
Aut(C3)ω

)
. □

3. Contact birational maps.

A rational map of Pn can be written

ϕ : Pn 99K Pn,

(z0 : z1 : · · · : zn) 99K
(
ϕ0(z0, z1, . . . , zn) : ϕ1(z0, z1, . . . , zn) : · · · : ϕn(z0, z1, . . . , zn)

)
where the ϕi’s are homogeneous polynomials of the same degree ≥ 1 and without common

factor of positive degree. The degree of ϕ is by definition the degree of the ϕi. A birational

map of Pn is a rational map that admits a rational inverse. Of course Aut(Cn) is a

subgroup of Bir(Pn). An other natural subgroup of Bir(Pn) is the group Aut(Pn) ≃
PGL(n+ 1;C) of automorphisms of Pn.

The indeterminacy set Indϕ of ϕ is the set of the common zeros of the ϕi’s. The

exceptional set Excϕ of ϕ is the (finite) union of subvarieties Mi of Pn such that ϕ is not

injective on any open subset of Mi.

Let us extend the definition of Jonquières group we gave in the case of polynomial

automorphisms of Cn to the case of birational maps of P2: the Jonquières group, de-

noted J , is the group of birational maps of P2 that preserve a pencil of rational curves.

Since two pencils of rational curves are birationally conjugate, J does not depend, up

to conjugacy, of the choice of the pencil. In other words one can decide, up to birational

conjugacy, that J is in the affine chart z2 = 1 the maximal group of birational maps

that preserve the fibration z1 = cst. An element φ of J permutes the fibers of the fibra-

tion thus induces an automorphism of the base P1; note that if the fibration is fiberwise

invariant, φ acts as an homography in the generic fibers. Hence J can be identified with

the semi-direct product PGL(2;C(z1))⋊ PGL(2;C).
We study the birational maps ϕ = (ϕ0, ϕ1, ϕ2) defined on C3 = (z3 = 1) ⊂ P3 that

preserve either the contact standard form ω, or the contact structure c(ω) associated to

ω. In other words we would like to describe the groups Bir(C3)ω and Bir(C3)c(ω) and

also their elements.

Let us now illustrate a fundamental difference between Bir(C3)ω and Bir(C3)c(ω):
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the first group preserves the fibration associated to ∂/∂z2 whereas the second doesn’t.

Proposition 3.0.6. If ϕ belongs to Bir(C3)ω, then ϕ∗∂/∂z2 = ∂/∂z2.

In particular if ϕ belongs to Bir(C3)ω, then

ϕ =
(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
and the map

ς : Bir(C3)ω −→ Bir(C2)η,(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
7→
(
ϕ0(z0, z1), ϕ1(z0, z1)

)
is a morphism.

Remark 3.0.7. The proof is similar to the proof of Proposition 2.2.1.

Remark 3.0.8. The first assertion of Proposition 3.0.6 is not true for the group

Bir(C3)c(ω); indeed let us consider the map ψ defined by

ψ =

(
z0

(1 + z2)2
, z1,

z2
1 + z2

)
;

it belongs to Bir(C3)c(ω) and does not preserve the fibration associated to the vector field

∂/∂z2.

3.1. A PDE approach.

Let ϕ = (ϕ0, ϕ1, ϕ2) be in Bir(C3)c(ω); then ϕ
∗ω = V (ϕ)ω for some rational function

V (ϕ). One inherits a map V from Bir(C3)c(ω) into the set of rational functions in z0, z1
and z2. The equality ϕ∗ω = V (ϕ)ω gives the following system (⋆) of PDE:

ϕ0
∂ϕ1
∂z0

+
∂ϕ2
∂z0

= 0, (⋆1)

ϕ0
∂ϕ1
∂z1

+
∂ϕ2
∂z1

= V (ϕ)z0, (⋆2)

ϕ0
∂ϕ1
∂z2

+
∂ϕ2
∂z2

= V (ϕ). (⋆3)

Thanks to (⋆2) and (⋆3) one gets

ϕ0

(
∂ϕ1
∂z1

− z0
∂ϕ1
∂z2

)
+

(
∂ϕ2
∂z1

− z0
∂ϕ2
∂z2

)
= 0. (⋆4)

Equation (⋆1) has a special family of solutions: maps for which both ϕ1 or ϕ2 do not

depend on z0 (note that if ϕ1 (resp. ϕ2) does not depend on z0 then (⋆1) implies that

ϕ2 (resp. ϕ1) also); in that case we can then compute ϕ0 thanks to (⋆4). Taking (ϕ1, ϕ2)

in Bir(P2) we get elements in imK; we will called this family of solutions Klein family.

Note that this family is a group denoted K , the Klein group.

Proposition 3.1.1. The elements of K are of the following type
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−∂ϕ2/∂z1 + z0∂ϕ2/∂z2
∂ϕ1/∂z1 − z0∂ϕ1/∂z2

, ϕ1(z1, z2), ϕ2(z1, z2)

)
with (ϕ1, ϕ2) in Bir(P2).

Assume now that ϕ1 or ϕ2 really depends on z0 (i.e. that ϕ does not belong to the

Klein family). Then (⋆1) and (⋆4) imply(
∂ϕ2
∂z1

− z0
∂ϕ2
∂z2

)
∂ϕ1
∂z0

=

(
∂ϕ1
∂z1

− z0
∂ϕ1
∂z2

)
∂ϕ2
∂z0

. (⋆5)

One can rewrite (⋆5) as

∂ϕ2/∂z1 − z0∂ϕ2/∂z2
∂ϕ2/∂z0

=
∂ϕ1/∂z1 − z0∂ϕ1/∂z2

∂ϕ1/∂z0
.

Denote by α the map from Bir(C3)c(ω) to the set of rational functions in z0, z1 and z2
defined by α(ϕ) = ∞ if ϕ belongs to K and

α(ϕ) =
∂ϕ2/∂z1 − z0∂ϕ2/∂z2

∂ϕ2/∂z0
=
∂ϕ1/∂z1 − z0∂ϕ1/∂z2

∂ϕ1/∂z0

otherwise.

If ϕ1 and ϕ2 are some first integrals of

Zϕ = α(ϕ)
∂

∂z0
− ∂

∂z1
+ z0

∂

∂z2
,

then (⋆5) is satisfied. One thus gets ϕ0 from (⋆1). Note that such a ϕ is not always

birational. But one can get a lot of birational examples in this way.

For instance when α(ϕ) ≡ 0 one obtains a family of rational maps solutions of (⋆)

and Legendre involution is one of them. The set of birational maps of that family is

called Legendre family, i.e. it is the set of birational maps of the following form(
−
(∂/∂z0)

(
ϕ2
(
z0,−(z2 + z0z1)

))
(∂/∂z0)

(
ϕ1
(
z0,−(z2 + z0z1)

)) , ϕ1(z0,−(z2 + z0z1)
)
, ϕ2
(
z0,−(z2 + z0z1)

))
.

Remark 3.1.2. The Legendre family composed with the Legendre involution (right

composition) yields to the Klein family.

Definition. Let γ be an irreducible curve; γ is a legendrian curve if s∗γω = 0

where sγ denotes a local parametrization of γ.

Remark 3.1.3. Elements of the Klein family preserve the fibration
{
z1 = cst, z2 =

cst
}
; note that its fibers are legendrian curves. The Legendre involution sends the

fibration
{
z0 = cst, z2 + z0z1 = cst

}
onto

{
z1 = cst, z2 = cst

}
. Then of course if one

conjugates the Klein family by the Legendre involution one gets a family that preserves

the fibration by legendrian curves
{
z0 = cst, z2 + z0z1 = cst

}
.
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A direct computation implies:

Proposition 3.1.4. Let ϕ = (ϕ0, ϕ1, ϕ2) be a contact birational map of P3. The

map ϕ conjugates the foliation induced by Zϕ to the foliation induced by ∂/∂z0. As a

consequence the field of the rational first integrals of Zϕ is generated by ϕ1 and ϕ2.

The left translation action of K on Bir(C3)c(ω) is given by

(ψ, ϕ) ∈ K × Bir(C3)c(ω) −→ ψϕ ∈ Bir(C3)c(ω).

Take ϕ and ψ in Bir(C3)c(ω) such that α(ϕ) = α(ψ), then ψ1 and ψ2 are first integrals

of Zϕ and by Proposition 3.1.4

ψ1 = φ1(ϕ1, ϕ2), ψ2 = φ2(ϕ1, ϕ2)

where φ = (φ1, φ2) is birational. Hence

ψϕ−1 =
(
ψ0 ◦ ϕ−1, φ1(z1, z2), φ2(z1, z2)

)
belongs to K ; in other words ϕ and ψ are in the same K -orbit.

Assume now that ψ = κϕ where κ denotes an element of K . Then the foliations

defined by Zϕ and Zψ coincide because they have the same set of first integrals. As a

consequence α(ϕ) = α(ψ).

Hence one can state:

Theorem 3.1.5. The map α is a complete invariant of the left translation action

of K on Bir(C3)c(ω), that is for any ϕ and ψ in Bir(C3)c(ω) one has α(ϕ) = α(ψ) if and

only if ψϕ−1 belongs to K .

Question 1. Is the map α surjective ?

Let us consider the following differential equation

y′′ = F (x, y, y′) (3.1)

where F denotes a rational function. Set y′ = u, then

(3.1) ⇔



du

dt
= F (x, y, u),

dy

dt
= u,

dx

dt
= 1.

So one can associate to (3.1) the following vector field

Z = F
∂

∂u
+ u

∂

∂y
+

∂

∂x
.
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We say that (3.1) is rationally integrable if the vector field Z has two first integrals

r1 and r2 rationally independent: dr1 ∧ dr2 ̸≡ 0.

For generic γ and β in C the differential equation y′′+γy′+βy = 0 is not rationally

integrable; as a consequence −γz0 − βz2 is not in the image of α. The first Painlevé

equation gives examples of polynomial of degree 2 that does not belong to imα:

Theorem 3.1.6 ([12]). The equation P1

y′′ = 6y2 + x

is not rationally integrable.

If we come back with our notations it means that 6z22 − z1 is not in the image of α.

Remark 3.1.7. Indeed all generic Painlevé equations give rise to rational functions

that do not belong to imα.

Nevertheless one can easily obtain examples of elements in the image of α:

Examples 3.1.8. • If ϕ = (z0/β, z0 + βz1, z2 − z20/2β) with β ∈ C∗, then

α(ϕ) = β.

• If

ϕ =
(
z0, z1 + P (z0), z2 +Q(z0)

)
with P , Q in C[z0] such that Q′(z0) = −z0P ′(z0), then α(ϕ) = 1/P ′(z0).

• If

ϕ =
(
− z1, z0 + P (z1), z2 + z0z1 +Q(z1)

)
with P , Q in C[z1] such that Q′(z1) = z1P

′(z1) then α(ϕ) = P ′(z1).

Consider the left translation action of Bir(C3)ω on Bir(C3)c(ω) defined by

(ψ, ϕ) ∈ Bir(C3)ω × Bir(C3)c(ω) −→ ψϕ ∈ Bir(C3)c(ω).

Theorem 3.1.9. The map V is a complete invariant of the left translation action

of Bir(C3)ω on Bir(C3)c(ω) : for any ϕ, ψ in Bir(C3)c(ω) one has V (ϕ) = V (ψ) if and

only if ψϕ−1 belongs to Bir(C3)ω.

Proof. Let ϕ be a contact birational map of P3. Obviously (fϕ)∗ω = V (ϕ)ω for

any f ∈ Bir(C3)ω.

Let us now consider two contact birational maps ϕ and ψ of P3 such that V =

V (ϕ) = V (ψ). On the one hand

(ϕ−1)∗ψ∗ω = (ϕ−1)∗V (ϕ)ω = V ◦ ϕ−1 (ϕ−1)∗ω

and on the other hand composing ϕ∗ω = V ω by (ϕ−1)∗ one gets
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ϕ∗ω = V ω ⇒ (ϕ−1)∗(ϕ∗ω) = (ϕ−1)∗(V ω) ⇒ ω = V ◦ ϕ−1 (ϕ−1)∗ω.

As a consequence (ϕ−1)∗ψ∗ω = ω, that is ψϕ−1 belongs to Bir(C3)ω. □

Proposition 3.1.10. If ϕ and ψ are two contact birational maps of P3 such that

α(ϕ) = α(ψ) and V (ϕ) = V (ψ), then ψϕ−1 belongs to{(
z0 − b′(z1)

ν′(z1)
, ν(z1), z2 + b(z1)

) ∣∣∣∣ b ∈ C(z1), ν ∈ PGL(2;C)
}

= K ∩ Bir(C3)ω.

Proof. Since both α(ϕ) = α(ψ) and V (ϕ) = V (ψ) the map ψϕ−1 is an element

of Bir(C3)ω ∩ K . One gets the result from the descriptions of the Klein family and of

Bir(C3)ω (Proposition 2.2.1). □

Let us now give some examples of V (ϕ).

Examples 3.1.11. • If ϕ belongs to K , then

V (ϕ) =
∂ϕ1/∂z1 · ∂ϕ2/∂z2 − ∂ϕ1/∂z2 · ∂ϕ2/∂z1

∂ϕ1/∂z1 − z0∂ϕ1/∂z2
.

• If

ϕ =

(
1

nzn−1
0 z2 + (n+ 1)zn0 (z1 + 1)

, zn0 (z0 + z2 + z0z1) ,−z0
)

with n ∈ Z, then V (ϕ) = z0/
(
(n+ 1)z0z1 + nz2 + (n+ 1)z0

)
.

• If

ϕ =

(
(z1 − z0)

2

2z0z1 + 2z2 − z20
,
2z2 + z20
z1 − z0

, z1 − z0

)
,

then V (ϕ) = 2(z0 − z1)/(z
2
0 − 2z0z1 − 2z2).

Remark 3.1.12. If ϕ belongs to Bir(C3)c(ω), then ϕ
∗ω = V (ϕ)ω and ϕ∗(ω∧dω) =

V (ϕ)2ω ∧ dω and det jacϕ is a square. This gives some constraint on V (ϕ).

As previously we can ask: is V surjective ? The answer is no. Indeed let us assume

that there exists ϕ ∈ Bir(C3)c(ω) such that V (ϕ) = z2. Then ϕ0dϕ0 + dϕ2 = z0z2dz1 +

d(z22/2) and dϕ0 ∧ dϕ1 = d(z0z2) ∧ dz1. Since the fibers of (z0z2, z1) are connected one

can write ϕ0 as φ0(z0z2, z1) and ϕ1 as φ1(z0z2, z1). Then ϕ∗ω = V (ϕ)ω implies that

ϕ2 − z22/2 = φ2(z0z2, z1). In other words

ϕ =

(
φ0(z0z2, z1), φ1(z0z2, z1), φ2(z0z2, z1) +

z22
2

)
.

But ϕ ◦ (z0/z2, z1, z2) is clearly not birational so does ϕ: contradiction.
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3.2. Invariant forms and vector fields.

The next statement deals with flows in Bir(C3)ω (see [13] for a definition).

Proposition 3.2.1. Let ϕt be a flow in Bir(C3)ω. Then ϕt has a first integral

depending only on (z0, z1) and with rational fibers.

In other words

ϕt =
(
φt(z0, z1), z2 + bt(z0, z1)

)
where φt belongs, up to conjugacy, to J and bt to C(z0, z1).

Proof. Let χ be the infinitesimal generator of ϕt, i.e.

χ =
∂ϕt
∂t

∣∣∣
t=0

.

By derivating ϕ∗tω = ω with respect to t one gets that the Lie derivative Lχω is zero.

Set χ =
∑2
i=0 χi∂/∂zi, hence

Lχω = ιχdω + dιχω = χ0dz1 + z0dχ1 + dχ2

and so

Lχω =

(
z0
∂χ1

∂z0
+
∂χ2

∂z0

)
dz0 +

(
χ0 + z0

∂χ1

∂z1
+
∂χ2

∂z1

)
dz1 +

(
z0
∂χ1

∂z2
+
∂χ2

∂z2

)
dz2.

In particular z0χ1 + χ2 = γ(z0, z1), then χ0 + (∂/∂z1)(z0χ1 + χ2) = 0 so χ0 = −∂γ/∂z1
and finally χ1 = ∂γ/∂z0.

If γ is constant, then χ = ∂/∂z2, that is ϕt = (z0, z1, z2 + βt) with β ∈ C.
Let us now assume that γ is non-constant; one has

χ = − ∂γ

∂z1

∂

∂z0
+
∂γ

∂z0

∂

∂z1
+

(
γ(z0, z1)− z0

∂γ

∂z0

)
∂

∂z2

and γ is a first integral of χ. For all t

ϕt =
(
ϕ0,t(z0, z1), ϕ1,t(z0, z1), z2 + bt(z0, z1)

)
and the function γ is invariant by ϕt and as a consequence by the flow φt. The fibers

of γ in C2 (up to compactification/normalization) are rational or elliptic since they own

a flow. As ⟨φt⟩ is uncountable they have to be rational ([9]) and up to conjugacy φt
belongs to J . □

The following examples contain many flows.

Example 3.2.2. The elements of Aut(P3)c(ω) can be written(
εz0 + λ, βz1 + γ,−βλz1 + εβz2 + δ

)
with ε, β in C∗ and λ, γ, δ in C. The group Aut(P3)c(ω) acts transitively on C3 = {z3 = 1}.
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Examples 3.2.3. a) For any ε, β, γ and δ in C such that εδ−βγ ̸= 0, the map(
(γz1 + δ)2

εδ − βγ
z0,

εz1 + β

γz1 + δ
, z2

)
belongs to Bir(C3)ω. These maps form a group contained in imK and isomorphic

to PGL(2;C).

b) The birational maps given by

•
(
z0, z1 + φ(z0), z2 + ψ(z0)

)
with z0φ

′(z0) + ψ′(z0) = 0,

•
(
z0 − ψ′(z1), z1, z2 + ψ(z1)

)
belong to Bir(C3)ω. Any of these families forms an abelian group.

The fact that an element of Bir(C3)c(ω) preserves a vector field and the fact that it

preserves a contact form are related:

Proposition 3.2.4. Let ϕ be a contact birational map of P3. There exist a contact

form Θ colinear to ω such that ϕ∗Θ = Θ if and only if V (ϕ) can be written U/U ◦ ϕ for

some rational function U . In that case ϕ preserves the Reeb flow associated to Θ, so a

foliation by curves.

Proof. Assume that such a Θ exists. On the one hand ϕ∗ω = V (ϕ)ω and on the

other hand Θ = Uω. Hence

ϕ∗Θ = U ◦ ϕ · ϕ∗ω = U ◦ ϕ · V (ϕ)ω =
U ◦ ϕ
U

· V (ϕ)Θ

and so if such U exists, one has V (ϕ) = U/U ◦ ϕ.
Reciprocally if ϕ ∈ Bir(C3)c(ω) ∖ Bir(C3)ω satisfies ϕ∗ω = (U/U ◦ ϕ)ω for some

rational function U , then ϕ∗Θ = Θ where Θ = Uω. □

Examples 3.2.5. • First consider the Legendre involution L = (z1, z0,−z2 −
z0z1). As we have seen V (L) = −1. One can check that U = z2 + (z0z1/2) suits.

• For an element ϕ in Aut(P3)c(ω)

ϕ = (εz0 + λ, βz1 + γ,−βλz1 + εβz2 + δ)

with ε, β in C∗ and λ, γ, δ in C (Example 3.2.2) we have V (ϕ) = εβ. If

U =
εβ

εβz0z1 + εγz0 + βλz1 + λγ

then V (ϕ) = U/U ◦ ϕ.

Proposition 3.2.6. Let ϕ be an element of Bir(C3)c(ω)∖Bir(C3)ω. Assume that ϕ

preserves a vector field χ non-tangent to ω. Then ϕ preserves a contact form ω′ colinear

to ω.
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Remark 3.2.7. Under these assumptions ϕ preserves the vector field χ and the

Reeb vector field Z associated to ω′. With the previous notations if f = z0χ1 + χ2

and g = z0Z1 + Z2 one has V (ϕ) = f ◦ ϕ/f = g ◦ ϕ/g. In particular if H = f/g is

non-constant, then H is non-constant and invariant: H ◦ ϕ = H.

Proof of Proposition 3.2.6. Write χ as χ0∂/∂z0 + χ1∂/∂z1 + χ2∂/∂z2 and ϕ

as (ϕ0, ϕ1, ϕ2). Then ϕ∗χ = χ if and only if dϕi(χ) = χi ◦ϕ for i = 0, 1 and 2. Therefore

ϕ∗ω(χ) = V (ϕ)ω(χ) can be rewritten

ϕ0dϕ1(χ) + dϕ2(χ) = ϕ0χ1 ◦ ϕ+ χ2 ◦ ϕ = V (ϕ)(z0 χ1 + χ2).

The vector field χ is not tangent to ω, i.e. ω(χ) ̸≡ 0 or in other words z0χ1+χ2 ̸≡ 0 and

so

V (ϕ) =
(z0χ1 + χ2) ◦ ϕ
z0χ1 + χ2

.

As a consequence ϕ preserves a contact form ω′ colinear to ω (Proposition 3.2.4). □

Remark 3.2.8. Let ϕ ∈ Bir(C3)c(ω)∖Bir(C3)ω. Assume that there exists a vector

field χ such that ϕ∗χ = Wχ. If W can be written U ◦ ϕ/U , then ϕ preserves the vector

field Y = Uχ. According to Proposition 3.2.6 the map ϕ belongs to Bir(C3)ω′ where ω′

denotes a contact form colinear to ω.

3.3. Regular birational maps.

Let ei be the point of P3
C whose all components are zero except the i-th.

Let us denote by H∞ the hyperplane z3 = 0. As H∞ is the unique invariant surface

of c(ω) one has the following statement:

Proposition 3.3.1. The hyperplane H∞ is either preserved, or blown down by

any element of Bir(C3)c(ω).

Example 3.3.2. Let φ be a birational map of the complex projective plane; K(φ)

is polynomial if and only if φ =
(
βz1 + γ, δz2 +P (z1)

)
with P ∈ C[z1]; remark that such

a φ is a Jonquières polynomial automorphism. In that case

K(φ) =

(
1

β

(
δz0 −

∂P (z1)

∂z1

)
, βz1 + γ, δz2 + P (z1)

)
.

Note that degP = 1 if and only if K(φ) is an automorphism of P3. If degP > 1, then

IndK(φ) =
{
z1 = z3 = 0

}
and H∞ is blown down onto e3.

Proposition 3.3.1 naturally implies the following definition. We say that ϕ ∈
Bir(C3)c(ω) is regular at infinity if H∞ is preserved by ϕ and if ϕ|H∞ is birational. We

denote by Bir(C3)regc(ω)

(
resp. Bir(C3)regω

)
the set of regular maps at infinity that belong

to Bir(C3)c(ω)
(
resp. Bir(C3)ω

)
.

Example 3.3.3. Of course the elements of Aut(P3)c(ω) (Example 3.2.2) are regular

at infinity.
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The contact structure is also given in homogeneous coordinates by the 1-form

ω = z0z3dz1 + z23dz2 − (z0z1 + z2z3)dz3.

Let ϕ be an element of Bir(C3)regc(ω); denote by ϕ its homogeneization. Since ϕ∗ω = V (ϕ)ω

one has ϕ
∗
ω = V (ϕ)ω where V (ϕ) is a homogeneous polynomial. With these notations

one can state:

Lemma 3.3.4. Let ϕ be a contact birational map of P3. Assume that ϕ either

preserves H∞, or blows down H∞ onto a subset contained in H∞.

The map ϕ is regular if and only if V (ϕ) does not vanish identically on H∞.

Proof. Let us work in the affine chart z2 = 1. On the one hand

ω ∧ dω = −z23dz0 ∧ dz1 ∧ dz3

and on the other hand

ϕ∗(ω ∧ dω) = V (ϕ)
2
ω ∧ dω.

Hence

ϕ
2

3 det jacϕ = V (ϕ)
2
z23 (3.2)

where ϕ3 is the third component of ϕ expressed in the affine chart z2 = 1.

Suppose that ϕ is regular. Let p be a generic point of H∞. As ϕ is regular, ϕ|H∞

is a local diffeomorphism at p. Since ϕ is birational and p is generic, ϕ,p is a local

diffeomorphism. As a consequence det jacϕ is an unit at p; moreover the invariance of

H∞ by ϕ implies that ϕ3 = z3u where u is a unit. Therefore V (ϕ) does not vanish at p.

Conversely assume that V (ϕ) does not vanish identically on H∞. As ϕ either pre-

serves H∞, or contracts H∞ onto a subset in H∞, one can write ϕ3 as z3P . As a result

(3.2) ⇔ P 2 det jacϕ = V (ϕ)
2
.

Since V (ϕ) does not vanish the map ϕ is then regular at infinity. □

Corollary 3.3.5. One has Bir(C3)regω = Aut(P3)ω.

Proof. Let ϕ be an element of Bir(C3)regω . From ϕ∗ω = ω, one gets with the

previous notations ϕ
∗
ω = zn3 ω for some integer n. Lemma 3.3.4 implies that n = 0,

that is ϕ
∗
ω = ω; then looking at the degree of the members of this equality one gets

deg ϕ = 1. □

Example 3.3.6. The group Bir(C3)regc(ω) contains blow-ups in restriction to H∞.

Indeed let us look at ω in the affine chart z2 = 1 and consider the birational map ϕ given

in z2 = 1 by

ϕ =
(
z0, z0z1 − z3, z0z3

)
.
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Since (ϕn)∗ω = z−n0 ω, ϕn ∈ Bir(C3)regc(ω) ∖ Bir(C3)ω for any n ̸= 0; in restriction to H∞

the map ϕn coincides with (z0, z1z
n
0 ).

Let us note that Indϕn = {e1} ∪ (z0 = z2 = 0), that z0 = 0 is contracted by ϕ onto

(z0 = z2 = 0) and z2 = 0 onto (z0 = z3 = 0). Besides Indϕ−n = {z0 = z2 = 0} ∪ {z0 =

z3 = 0}, (z0 = 0) is blown down by ϕ−1 onto e2 and (z2 = 0) onto e1.

Remark 3.3.7. The group generated by Examples 3.3.3 and 3.3.6 is in restriction

to H∞ and in the affine chart z2 = 1⟨(
γz0

βz1 + λ
,

λz1
γ(βz1 + λ)

)
, (z0, z0z1)

∣∣∣∣ γ, β ∈ C∗, λ ∈ C
⟩
;

it is of course a subgroup of Bir(C3)regc(ω).

Question 2. Does this group coincide with Bir(C3)regc(ω) ?

Examples 3.3.8. a) If ϕ is either a monomial map (i.e. a map of the form

(zp1z
q
2 , z

r
1z
s
2) with [ p qr s ] in GL(2;Z)), or a non-linear polynomial automorphism, or

a Jonquières map, then K(ϕ) is not regular at infinity.

b) The map of order 5 given by (−(z2 + 1 + z0z1)/z0z
2
1 , z2, (z2 + 1)/z1), the map

(z0/(z2 + 1)2, z1, z2/(z2 + 1)) and Examples 3.2.3 a) are non-regular at infinity.

c) Any map of the form (
1

z0
− f ′(z2), z2, z1 + f(z2)

)
is in Bir(C3)c(ω) ∖ Bir(C3)ω and is not regular at infinity.

d) Elements of the Legendre family are not regular at infinity.

3.4. Exact birational maps.

Recall that an element ϕ of Bir(C2)η is exact if it can be lifted via ς to Bir(C3)ω,

or equivalently if it belongs to im ς. The following statement allows to determine such

maps.

Theorem 3.4.1. A map
(
ϕ0(z0, z1), ϕ1(z0, z1)

)
∈ Bir(C2)η is exact if and only if

the closed form ϕ0dϕ1 − z0dz1 has trivial residues. In that case ϕ0dϕ1 − z0dz1 = −db

with b ∈ C(z0, z1) and

ϕ =
(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
belongs to Bir(C3)ω.

Proof. Remark that ϕ =
(
ϕ0(z0, z1), ϕ1(z0, z1), z2+b(z0, z1)

)
belongs to Bir(C3)ω

if and only if

ϕ0dϕ1 − z0dz1 = −db;
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in other words ϕ0dϕ1 − z0dz1 is not only a closed rational 1-form but also an exact one.

Recall that a closed rational 1-form Θ can be written ([14])

Θ =
∑
i

λi
dfi
fi

+ dg

where the λi are complex numbers and the fi’s and g are rational. The 1-form Θ is exact

(i.e. the differential of a rational function) if λi = 0 for all i, that is if the residues of Θ

are trivial. □

Example 3.4.2. The set{(
A(z0),

z1
A′(z0)

) ∣∣∣∣A ∈ PGL(2;C)
}

is a subgroup of exact maps isomorphic to PGL(2;C); it is a direct consequence of

Theorem 3.4.1.

An other direct consequence of Theorem 3.4.1 is the following statement:

Corollary 3.4.3. The maps ϕ = (ϕ0, ϕ1) of Bir(C2)η such that ϕ0dϕ1 − z0dz1
has trivial residues form a group.

Let us deal with exact birational involutions.

Bertini gives a classification of birational involutions ([6]): a non-trivial birational

involution is conjugate to either a Jonquières involution of degree ≥ 2, or a Bertini

involution, or a Geiser involution. More recently Bayle and Beauville precise it ([5]);

the map which associates to a birational involution of P2 its normalized fixed curve

establishes a one-to-one correspondence between:

• conjugacy classes of Jonquières involutions of degree d and isomorphism classes of

hyperelliptic curves of genus d− 2 (d ≥ 3);

• conjugacy classes of Geiser involutions and isomorphism classes of non-hyperelliptic

curves of genus 3;

• conjugacy classes of Bertini involutions and isomorphism classes of non-

hyperelliptic curves of genus 4 whose canonical model lies on a singular quadric.

Besides the Jonquières involutions of degree 2 form one conjugacy class.

Proposition 3.4.4. Let I ∈ Bir(P2) be a birational involution. If I is conjugate

to either a Geiser involution, or a Bertini involution, or a Jonquières involution of degree

≥ 3, then I does not belong to Bir(C2)η.

Hence the only involutions in Bir(C2)η are birationally conjugate to (−z0,−z1).
Some of them can not be lifted.

Proof. Let us consider such an involution, then the set of fixed points contains

a curve Γ of genus > 0 and thus it is not contained in the line at infinity. The jacobian

determinant of I at a fixed point of Γ is −1 hence I does not preserve η.
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Contrary to the polynomial case (Proposition 2.2.8) Bir(C2)η contains periodic ele-

ments that are non-exact. Consider the map (ϕ0(z0, z1), ϕ1(z0, z1)) where

ϕ0(z0, z1) = −z0 +
1

z21 − 1
, ϕ1(z0, z1) = −z1;

it is a birational involution that preserves η. Furthermore the 1-form ϕ0dϕ1 − z0dz1 has

non-trivial residues and so is not exact (Theorem 3.4.1). □

We will now focus on quadratic exact birational maps.

Any birational map of P2 can be written as a composition of birational maps of

degree ≤ 2 (see for instance [1]). The three following maps are birational and of degree 2

σ : P2 99K P2, (z0 : z1 : z2) 99K (z1z2 : z0z2 : z0z1),

ρ : P2 99K P2, (z0 : z1 : z2) 99K (z0z2 : z0z1 : z22),

τ : P2 99K P2, (z0 : z1 : z2) 99K (z0z2 + z21 : z1z2 : z22).

Denote by B̊ir2(P2) the set of birational maps of P2 of degree 2 exactly; for any ϕ ∈
Bir(P2) set

O(ϕ) =
{
gϕ h−1 | g, h ∈ Aut(P2)

}
one has ([13])

B̊ir2(P2) = O(σ) ∪ O(ρ) ∪ O(τ).

Let us now describe the quadratic birational maps that preserve η; note that τ

preserves η. Consider Υ the set of pairs
(
g(γ), g(β)

)
where

g(β) =

(
β0z0 + β1z1 + β2
β6z0 + β7z1 + β8

,
β3z0 + β4z1 + β5
β6z0 + β7z1 + β8

)
in Aut(P2)×Aut(P2) such that

γ6 = 0, γ7β3 = 0, γ7β4 = 0, det g det h =
(
γ7β5 + γ8

)3
.

Proposition 3.4.5. A quadratic birational map that preserves η belongs to O(τ).

More precisely a birational map belongs to B̊ir2(P2) ∩ Bir(C2)η if and only if it can

be written g (z0 + z21 , z1) h with (g, h) in Υ.

Proof. Let ψ be in Bir(C2)η ∩ B̊ir2(P2); it is sufficient to prove that ψ ̸∈ O(σ) ∪
O(ρ).

Assume by contradiction that ψ belongs to O(σ), i.e. ψ = gσh with g = g(γ),

h−1 = g(β). One can rewrite ψ∗η = η as σ∗g∗η = h∗η; this last one relation is equivalent

in the affine chart z3 = 1 to

(det g) z0z1(
γ6z1 + γ7z0 + γ8z0z1

)3 η =
det h(

β6z0 + β7z1 + β8
)3 η (3.3)
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the coefficients γ6 and γ7 have thus to be zero and (3.3) is equivalent to

det g

γ38z
2
0z

2
1

η =
det h(

β6z0 + β7z1 + β8
)3 η

and this equality never holds.

A similar argument allows to exclude the case: ψ ∈ O(ρ). This proves the first

assertion.

Let us consider ψ = g τ h in B̊ir2(P2) ∩ Bir(C2)η with g = g(γ) and h = g(β). The

1-form η has a line of poles of order 3 at infinity so does ψ∗η and so does (z0+z
2
1 , z1)

∗g∗η.

But

(z0 + z21 , z1)
∗g∗η =

det g(
γ6(z0 + z21) + γ7z1 + γ8

)3 η
therefore γ6 has to be 0. This implies that

ψ∗η =
det g det h(

γ7(β3z0 + β4z1 + β5) + γ8
)3 η

as a consequence ψ∗η = η if and only if

γ6 = 0, γ7β3 = 0, γ7β4 = 0, det g det h =
(
γ7β5 + γ8

)3
. □

Theorem 3.4.6. A generic element of B̊ir2(P2) ∩ Bir(C2)η is not exact.

In fact there exists a non-empty Zariski open subset Υ̃ of Υ such that no element of{
g(γ) τ g(β) | (g(γ), g(β)) ∈ Υ̃

}
is exact.

Proof. It is sufficient to exhibit a non-exact element. Let us recall that the

birational map ϕ = (ϕ0, ϕ1) belongs to B̊ir2(P2) ∩ Bir(C2)η if and only if it can be

written as g(γ) τ g(β) with (g(γ), g(β)) in Υ (Proposition 3.4.5).

If we consider the special case γi = βi = 0 for any i ∈ {1, 2, 3, 4, 6, 8}, γ5 = γ7 and

γ0 = γ7β
2
5/β0β7 then

z0dz1 − ϕ0dϕ1 = − β2
5dz1

β0β7z1
.

But det g(β) ̸= 0 so β5 ̸= 0 and ϕ can not be lifted to Bir(C3)ω.

The set Υ is rational hence irreducible, this yields the result. □

Let us end this section with examples of exact maps.

Proposition 3.4.7. Let φ be an automorphism of P2 ; the map φ is exact if and

only if φ is affine in the affine chart z2 = 1 and preserves η, that is

φ =
(
δ0z0 + β0z1 + γ0, δ1z0 + β1z1 + γ1

)
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with δi, βi, γi in C such that δ0β1 − δ1β0 = 1.

Proof. The form η has a pole at infinity so if φ ∈ Aut(P2) preserves η, it preserves

the pole. Hence φ belongs to Aff2, so in particular to Aut(C2)η and then φ is exact. □

We will now consider the subgroup of Bir(C2)η that preserves the fibration z0z1 =

cst fiberwise. The following statement says that this subgroup is not isomorphic to the

subgroup of Bir(C2)η that preserves z1 = cst fiberwise.

Proposition 3.4.8. The set

Λ =

{(
z0 a(z0z1),

z1
a(z0z1)

) ∣∣∣∣ a ∈ C(t)
}

is a subgroup isomorphic to the uncountable abelian subgroup
{
(a(z1)z0, z1) | a ∈ C(z1)∗

}
and is contained in Bir(C2)η.

Any birational map of the form
(
z0 a(z0, z1), z1/a(z0, z1)

)
that preserves η belongs

to Λ.

A generic element of Λ is in Bir(C2)η but not in im ς. More precisely

(z0 a(z0z1), z1/a(z0z1)) ∈ Λ is exact if and only if a is a monomial.

If a is a monomial, i.e. a(z0z1) = czµ0 z
µ
1 with c ∈ C∗ and µ ∈ Z, then the ς-lifted

maps are (
z0 cz

µ
0 z

µ
1 ,

z1
czµ0 z

µ
1

, z2 − µz0z1 + β

)
, β ∈ C.

These maps form a subgroup of Bir(C3)ω isomorphic to C× C∗ × Z.

Proof. The first assertion follows from(
z0 a(z0z1),

z1
a(z0z1)

)
= (z0, z0z1)

−1(z0 a(z1), z1)(z0, z0z1).

A direct computation shows that Λ ⊂ Bir(C2)η.

A birational map
(
z0 a(z0, z1), z1/a(z0, z1)

)
preserves η if and only if(

z0
∂

∂z0
− z1

∂

∂z1

)
(a) = 0

that is, if and only if a = a(z0z1).

Let us consider ϕ = (ϕ0, ϕ1) =
(
z0 a(z0z1), z1/a(z0z1)

)
an element of Λ; then

ϕ0dϕ1 − z0dz1 = t
a′(t)

a(t)
dt

with t = z0z1. Let us write a as follows:

a(t) =
n∏
i=1

(t− ti)
µi
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then

t
a′(t)

a(t)
dt = t

n∑
i=1

µi
t− ti

dt

and the residues of this 1-form are trivial if and only if a is monomial, i.e. a(t) = c tµ

where c ∈ C∗ and µ ∈ Z. □

We can determine J ∩ Bir(C2)η and the exact maps in J ∩ Bir(C2)η.

Proposition 3.4.9. A Jonquières map of P2 preserves η if and only if it can be

written as follows (
(γz1 + δ)2

εδ − βγ
z0 + r(z1),

εz1 + β

γz1 + δ

)
where r belongs to C(z1) and

[ ε β
γ δ

]
to PGL(2;C).

Furthermore it is exact if it has the following form(
(γz1 + δ)2

εδ − βγ
z0 + P (z1)(γz1 + δ)2,

εz1 + β

γz1 + δ

)
where P denotes an element of C[z1].

Let us now look at monomial maps that belong to Bir(C2)η and those who are exact.

Proposition 3.4.10. A monomial map belongs to Bir(C2)η if and only if it can

be written either (
γ zp0z

p−1
1 ,

1

γ
z1−p0 z2−p1

)
(3.4)

or (
γ zp0z

p+1
1 ,− 1

γ
z1−p0 z−p1

)
(3.5)

with γ in C∗ and p in Z.
Furthermore any monomial map of Bir(C2)η is exact.

The ς-lifts of a map of type (3.4) are(
γzp0z

p−1
1 ,

1

γ
z1−p0 z2−p1 , z2 + (p− 1)z0z1 + β

)
β ∈ C

similarly the ς-lifts of a map of type (3.5) are(
γzp0z

p+1
1 ,− 1

γ
z1−p0 z−p1 , z2 + (1− p)z0z1 + β′

)
β′ ∈ C.

Remarks 3.4.11. • Both maps of type (3.4) and of type (3.5) preserve

(z0z1)
2 = cst.
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• Maps of type (3.4) form a group G1. Note that the matrices
[ p p−1
1−p 2−p

]
are in

SL(2;Z); they are stochastic up to transposition and have trace equal to 2. The

group {[
p p− 1

1− p 2− p

] ∣∣∣ p ∈ Z
}

is isomophic to Z. As a consequence G1 is isomorphic to C∗ × Z.

The maps of type (3.5) don’t form a group. The corresponding matrices
[ p p+1
1−p −p

]
have determinant −1, trace 0 and are stochastic up to transposition.

But the union of the maps of type (3.4) or (3.5) is a group which is a double

extension of C∗ × Z.

3.5. Indeterminacy and exceptional sets.

As we have seen if ϕ is a contact map, then H∞ is either preserved by ϕ, or blown

down by ϕ (Proposition 3.3.1). In case it is blown down, H∞ can be blown down onto a

point or onto a curve; in this last eventualityH∞ can be contracted onto a curve contained

in H∞ (take for instance ϕ = K(z1, z1z2)). Note also that H∞ can be contracted onto a

curve not contained in H∞: the map K(z1/z2, 1/z2) blows down H∞ onto the legendrian

curve z0 = z2 = 0. We will see that this is a general case and for any contracted surface:

Proposition 3.5.1. Let ϕ be a contact birational map of P3. Assume that ϕ blows

down a surface S onto a curve C. Then

• either C is contained in H∞,

• or C is an algebraic legendrian curve.

Corollary 3.5.2. Let ϕ be a contact birational map of P3. If C is a curve not

contained in H∞ and blown-up by ϕ on a surface distinct from H∞, then C is a legendrian

curve.

Let us now give an example of maps of finite order that illustrates Proposition 3.5.6.

Example 3.5.3. Start with the birational map φ = (z2, (z2 + 1)/z1) of order 5.

The map K(φ) = (−(z2 + 1 + z0z1)/z0z
2
1 , z2, (z2 + 1)/z1) blows down z2 = −z3 onto the

legendrian curve (z2 = z1 + z3 = 0);

Proof of Proposition 3.5.1. We will distinguish the cases S = H∞ and S ̸=
H∞.

Let us start with the eventuality S = H∞. Suppose that C is not contained in H∞.

Note that ϕ|H∞∖Indϕ is holomorphic of rank ≤ 1. If p belongs to C ∖ Indϕ, then ϕ−1(p)

is a curve contained in H∞; there exists a curve C′ transverse to{
ϕ−1(p) | p ∈ C ∖ Indϕ

}
contained in H∞ and such that ϕ(C′) = C. Consider a parametrization s of C′; then

t = ϕ ◦ s is a parametrization of C and
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t∗ω = (ϕ ◦ s)∗ω = s∗ϕ∗ω = s∗V (ϕ)ω = V (ϕ) ◦ s · s∗ω = 0.

Assume now that S ̸= H∞ and C ̸⊂ H∞. Set C = ϕ(S). Let us consider a generic

point p of S. The germ ϕ,p is holomorphic and ϕ(p) ∈ C does not belong to H∞. In

particular the 3-form ϕ∗ω ∧ dω is thus holomorphic at p; in fact V (ϕ),p is holomorphic

and as we have seen

ϕ∗ω ∧ dω = V (ϕ)2ω ∧ dω.

Since S is blown down by ϕ, the jacobian determinant of ϕ is identically zero on S and

then V (ϕ) vanishes on S.
Assume that C is not a legendrian curve, then the restriction of ω to C in a neigh-

borhood of ϕ(p) defines a 1-form Θ on C without zero (let us recall that p is generic). As

the restriction

ϕ,p|S,p
: S,p → C,ϕ(p)

is locally a submersion, ϕ∗,p|S,p
Θ is a nonzero 1-form on S,p: contradiction with the fact

that ϕ∗,pω vanishes on S,p. □

There is no statement if ϕ ∈ Bir(C3)c(ω) blows down H∞ onto a point. Indeed

K
(
z1
z22
,
z1
z32

)
=

(
z2 + 3z0z1

z2(z2 − 2z0z1)
,
z1
z22
,
z1
z32

)
contracts H∞ onto e3 ̸∈ H∞ but K(z1z2, z1z

2
2) contracts H∞ onto e2 ∈ H∞. But we get

some result when ϕ ∈ Bir(C3)c(ω) blows down a surface distinct from H∞ onto a point.

Definition. Let ϕ be a contact birational map of P3. Let S = (f = 0) be an

irreducible surface blown down by ϕ, and let p be a smooth point of S such that ϕ and

V (ϕ) are holomorphic at p. The multiplicity of contraction of ϕ at p is the greatest

integer n such that fn,p divides V (ϕ). One can check that n is independent on p. The

integer n is the multiplicity of contraction of ϕ on S.

Remark 3.5.4. Let ϕ be a contact birational map of P3. If ϕ is holomorphic at

p ∈ P3 ∖H∞, then V (ϕ) is too.

Example 3.5.5. Let us consider the birational map ϕ defined in the affine chart

z1 = 1 by

ϕ =

(
z0z

2
3

(z2 + z3)2
,

z2z3
(z2 + z3)

, z3

)
;

in this chart ω = dz2 − (z0 + z2z3)/z
2
3 dz3 and one can check that V (ϕ) = z23/(z2 + z3

2).

Furthermore H∞ is blown down by ϕ onto the point (0, 0, 0) ; the multiplicity of con-

traction of ϕ on H∞ is thus 2.
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Proposition 3.5.6. Let ϕ be a map of Bir(C3)c(ω) and let S be an irreducible sur-

face distinct from H∞ blown down by ϕ onto a point p. If the multiplicity of contraction

of ϕ on S is 1, then p belongs to H∞.

Remark 3.5.7. As soon as the multiplicity of contraction of ϕ on S is > 1, the

point p can be in P3 ∖H∞. Let us consider the map of Bir(C3)c(ω) given in the affine

chart z3 = 1 by (
z2(nz0z1 − z2)

z2 + (1− n)z0z1
, z1z

n−1
2 , z1z

n
2

)
with n ∈ Z. The surface z2 = 0 is blown down onto e3 ̸∈ H∞. One can check that

V (ϕ) = z1z
n
2 /(z2 + (1− n)z0z1) so the multiplicity of contraction of ϕ on z2 = 0 is n if

n ≥ 2 and 0 otherwise.

Proof of Proposition 3.5.6. Assume by contradiction that p = (p0, p1, p2)

does not belong to H∞. Let (f = 0) be an equation of S; as the multiplicity of con-

traction of ϕ on S is 1 one has V (ϕ) = fV1 with V1|S generically regular. There exists

a point m ∈ S such that f,m is a submersion and ϕ is holomorphic at m. One has

ϕ,m = (p0 + fA, p1 + fB, p2 + fC) with A, B, C holomorphic and ϕ∗,mω = V (ϕ)ω can

be rewritten

(fA+ p0)(fdB +Bdf) + (fdC + Cdf) = fV1(z0dz1 + dz2). (3.6)

This implies that there exists C1 holomorphic such that p0B + C = fC1, i.e. C =

fC1 − p0B. Hence

(3.6) ⇐⇒ fAdB +ABdf + fdC1 + 2C1df = V1(z0dz1 + dz2). (3.7)

The multiplicity of contraction of ϕ on S is 1 hence f does not divide V1. Then S is

invariant by ω and this gives a contradiction with the fact that H∞ is the only invariant

surface of ω. □

For elements in Bir(C3)ω we only have one statement that includes both cases of a

surface contracted onto a point and onto a curve. Let us remark that in the case of a point,

we don’t need the assumption about the multiplicity of contraction; in the other one the

statement shows that Proposition 3.5.1 applies to elements of Bir(C3)c(ω) ∖ Bir(C3)ω.

Proposition 3.5.8. Let ϕ be a map of Bir(C3)ω. If S is a surface distinct from

H∞ contracted by ϕ, then ϕ(S) belongs to H∞.

Proof. From ϕ∗ω = ω one gets ϕ∗
(
ω ∧ dω

)
= ω ∧ dω = dz0 ∧ dz1 ∧ dz2. Suppose

that for p ∈ S generic ϕ(p) does not belong to H∞. As codim Indϕ ≥ 2, the map ϕ is

holomorphic at p. Since ϕ preserves the volume form, ϕ is a diffeomorphism; hence ϕ

cannot blow down a subvariety onto a curve or a point not contained in H∞. □

Example 3.5.9. If ϕ = (ϕ1, ϕ2) =
(
zp1z

q
2 , z

r
1z
s
2

)
, with [ p qr s ] ∈ SL(2;Z), then
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K(ϕ) =

(
zr−p1 zs−q2

−rz2 + sz0z1
pz2 − qz0z1

, zp1z
q
2 , z

r
1z
s
2

)
.

Note that for any [ p qr s ] ∈ SL(2;Z) the map K(ϕ) belongs to Bir(C3)c(ω) ∖ Bir(C3)ω.

For instance if [ p qr s ] =
[−1 0

0 −1

]
, i.e. if σ = (1/z0, 1/z1) is the Cremona involution,

then

K(σ) = K(σ−1) =

(
z0z

2
1

z22
,
1

z1
,
1

z2

)
and IndK(σ) = {z0 = z2 = 0} ∪ {z0 = z3 = 0} ∪ {z1 = z2 = 0} ∪ {z1 = z3 = 0};
furthermore z2 = 0 and H∞ are blown down onto e1 and z1 = 0 onto e2.

4. Some common properties.

4.1. Invariant curves and surfaces.

The following statement is a local statement of contact analytic geometry.

Proposition 4.1.1. Let ϕ be an element of Aut(C3)ω or Bir(C3)ω. Suppose that

m is a periodic point of ϕ and that there exists a germ of irreducible curve C invariant

by ϕ, passing through m. Then

• either C is a curve of periodic points (i.e. ϕℓ|C = id for some integer ℓ),

• or C is a legendrian curve.

Let us note that according to Proposition 4.2.4 we know that such a situation often

occurs.

Proof. Assume that ϕ belongs to Aut(C3)ω. Up to considering a well-chosen it-

erate of ϕ let us assume that m is a fixed point of ϕ. Let s 7→ γ(s) be a local parametriza-

tion of C at m. Up to reparametrization one can suppose that γ(0) = m. Let φ be the

“restriction” to C of ϕ, that is the local map φ : C,0 → C defined by φ(0) = 0 and

∀ s ∈ C,0 ϕ(γ(s)) = γ(φ(s)).

On the one hand γ∗ω = ε(s)ds and on the other hand γ∗ω = γ∗ϕ∗ω = (ϕ ◦ γ)∗ω so

ε(s)ds = φ∗(ε(s)ds) = ε(φ)φ′ds.

Let us set ε̃(s) =
∫ s
0
ε(t)dt. One has (ε̃(φ))

′
= ε(φ)φ′ = ε(s) = (ε̃(s))

′
hence

ε̃(φ) = ε̃+ β for some β ∈ C. As φ(0) = 0, one gets β = 0 and ε̃(φ) = ε̃. Then:

• either ε̃ = 0 therefore ε = 0 and C is a legendrian curve.

• or there exists some local coordinate for which ε̃ = zℓ, φ = e2iπk/ℓ z and ϕℓ|C =

id. □

If φ is a polynomial automorphism of C2 that preserves a curve distinct from the

line at infinity, then φ is conjugate to a Jonquières polynomial automorphism ([8]); in

particular φ preserves a rational fibration. We have a similar statement in dimension 3:
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Proposition 4.1.2. If ϕ ∈ Aut(C3)ω preserves a surface, then

ϕ =
(
φ(z0, z1), z2 + b(z0, z1)

)
where φ is Aut(C2)-conjugate to a Jonquières polynomial automorphism.

Proof. Let us write ϕ as
(
ϕ0(z0, z1), ϕ1(z0, z1), z2+b(z0, z1)

)
and set φ = (ϕ0, ϕ1).

First note that if b ≡ 0 then ϕ0dϕ1 − z0dz1 = 0; as a result ϕ1 = ϕ1(z1) and φ is a

Jonquières polynomial automorphism.

Let us now assume that the surface S preserved by ϕ is described by

aℓ(z0, z1)z
ℓ
2 + aℓ−1(z0, z1)z

ℓ−1
2 + aℓ−2(z0, z1)z

ℓ−2
2 + · · · = 0

where ai ∈ C[z0, z1], or equivalently by

zℓ2 + ãℓ−1(z0, z1)z
ℓ−1
2 + ãℓ−2(z0, z1)z

ℓ−2
2 + · · · = 0

where ãi = ai/aℓ. Writing that S is invariant by ϕ one gets that

(
z2 + b(z0, z1)

)ℓ
+ ãℓ−1

(
φ(z0, z1)

)(
z2 + b(z0, z1)

)ℓ−1

+ ãℓ−2

(
φ(z0, z1)

)(
z2 + b(z0, z1)

)ℓ−2
+ · · ·

= zℓ2 + ãℓ−1(z0, z1)z
ℓ−1
2 + ãℓ−2(z0, z1)z

ℓ−2
2 + · · ·

Looking at terms in zℓ−1
2 one gets that ℓb(z0, z1) = ãℓ−1(z0, z1)− ãℓ−1

(
φ(z0, z1)

)
.

• If ãℓ−1 is constant, then b ≡ 0 and as we just see φ is a Jonquières polynomial

automorphism.

• Otherwise ϕ is conjugate (in Bir(P3)) via (z0, z1, z2 + ãℓ−1/ℓ) to ψ = (φ, z2). The

map ψ preserves ω̃ = z0dz1 + d(z2 + ãℓ−1/ℓ), the surface S̃ given by

zℓ2 + ãℓ−2(z0, z1)z
ℓ−2
2 + ãℓ−3(z0, z1)z

ℓ−3
2 + · · · = 0

and thus ãi(φ) = ãi. If one of the ãi is non-constant, then φ is a Jonquières polynomial

automorphism. Otherwise S̃ = ∪j(z2 = cj); up to take an iterate ψk of ψ one can

suppose that any z2 = cj is invariant. Consider z2 = c0; up to a well-chosen translation

(that belongs to Bir(C3)ω) the hypersurface z2 = 0 is invariant, that is ψk is a Jonquières

map and so does ψ. □

Example 4.1.3. For any n ≥ 1 consider ϕ = (z0 + zn1 , z1, z2 − zn+1
1 /(n+ 1)) in

Aut(C3)ω. The map φ = (z0 + zn1 , z1) is a Jonquières polynomial automorphism. The

surface S given by z2 + z0z1/(n+ 1) = 0, is invariant by ϕ. The foliation induced by ω

on S is described by the linear differential equation nz0dz1− z1dz0. In fact the functions

z2 + z0z1/(n+ 1) and z1 are invariant by ϕ and the commutative Lie algebra generated

by the vector fields ∂/∂z0 + z1/(n+ 1) · ∂/∂z2 and ∂/∂z2 are invariant by ϕ.

In general an element of Aut(C3)ω has no invariant surface. For instance there is no

polynomial solution to
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−a
(
φ(z0, z1)

)
+ a(z0, z1) = − zn+1

1

n+ 1
+ β

with φ = (z0 + zn1 , z1) as soon as β ̸= 0.

Remark 4.1.4. If ϕ ∈ Bir(C3)ω preserves z2 = 0, then ϕ belongs to the Klein

family; more precisely ϕ = (z0/ν
′(z1), ν(z1), z2) with ν ∈ PGL(2;C(z1)). Indeed since ϕ

belongs to Bir(C3)ω,

ϕ =
(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
.

But ϕ preserves z2 = 0 so b ≡ 0 and ϕ∗ω = ω implies that ϕ1 = ν(z1) with ν ∈
PGL(2;C(z1)) and ϕ0 = z0/ν

′(z1).

Of course there are more general contact maps that preserve z2 = 0; let us give some

examples:

K
(
z1,

z2
a(z1)z2 + 1

)
, K

(
z1 + P (z2), z2

)
where a ∈ C(z1)∗ and P ∈ C[z2].

Let ϕ be an element of Bir(C3)ω. Suppose that ϕ preserves a surface S distinct

from H∞. The contact form is non-zero on S so induces a foliation F on S, necessarily
invariant by ϕ; let us describe (S, ϕ|S ,F):

Proposition 4.1.5. Let ϕ be an element of Bir(C3)ω that preserves a surface

distinct from H∞. Then ϕ is Bir(P3)-conjugate to (φ(z0, z1), z2) with φ in Bir(P2). The

map φ preserves a codimension 1 foliation given by a closed 1-form. As a consequence

ϕ preserves a “vertical” foliation and a rational function z2 + a(z0, z1).

Proof. Let us denote by S the surface invariant by ϕ =
(
φ(z0, z1), z2 + b(z0, z1)

)
with φ ∈ Bir(P2). One can assume that S is given by

zℓ2 + aℓ−1(z0, z1)z
ℓ−1
2 + · · · = 0.

The fact that S is invariant by ϕ implies that aℓ−1(z0, z1)− aℓ−1

(
φ(z0, z1)

)
= ℓ b(z0, z1).

Let us consider the map ψ = (z0, z1, z2 + (aℓ−1(z0, z1))/ℓ). One has

ϕ̃ = ψϕψ−1 =

(
φ(z0, z1), z2 + b(z0, z1)−

aℓ−1(z0, z1)

ℓ
+
aℓ−1

(
φ(z0, z1)

)
ℓ

)
=
(
φ(z0, z1), z2

)
.

As S and ω are invariant by ϕ, the restriction ϕ|S preserves the foliation induced by ω

on S, and ϕ̃ preserves the “vertical” foliation given by z0dz1 − daℓ−1(z0, z1). Therefore

φ preserves a codimension 1 foliation given by a closed 1-form. □

Example 4.1.6. If ϕ = (z2, z1z
n
2 ), then K(ϕ) = (−(zn2 /z0) + nz1, z1z

n
2 , z2) belongs

to Bir(C3)c(ω) ∖ Bir(C3)ω, preserves the surface z1 = 0 and also z2 = cst.
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4.2. Dynamical properties.

Let us first focus on periodic points.

Let ϕ be a birational map of Pn; a point p is a periodic point of ϕ of period ℓ if ϕ is

holomorphic on a neighborhood of any point of {ϕj(q) | j = 0, . . . , ℓ−1} and if ϕℓ(q) = q

and ϕj(q) ̸= q for 1 ≤ j ≤ ℓ− 1.

Recall that a polynomial automorphism of C2 of Hénon type (see [19]) has an infinite

number of hyperbolic periodic points. For any of these points p of period ℓp there exists

a stable manifold Ws(p) defined as the set of points that move towards the orbit of p

by positive iteration of φℓp ; such a Ws(p) is an immersion from C to C2. Remark that

even if Ws(m) ̸= Ws(p) are different as soon as p and m have distinct orbits one has

Ws(m) = Ws(p). The Julia set of φ is the topological boundary of the set of points with

bounded positive orbits. One can prove that the Julia set of φ is equal to the closure of

any of the stable manifold. Hence its topology is very complicated: this set contains an

infinite number of immersions of C and pairwise distinct ([19]).

Example 4.2.1. Let us consider a polynomial automorphism φ of Hénon type

given by φ = (βz1 + z20 ,−γz0). A ς-lift of φ to Aut(C3)c(ω) is

ϕ =
(
βz1 + z20 ,−γz0, γβz2 + γβz0z1 +

γ

3
z30

)
.

Take a periodic point (p0, p1) of φ of period k; then as ϕk =
(
φk(z0, z1), (γβ)

kz2 +

f(z0, z1)
)
one gets, as soon as γβ is not a root of unity, that there exists p2 such that

ϕk(p0, p1, p2) = (p0, p1, p2).

More generally, one can state:

Proposition 4.2.2. Let ϕ the element of Bir(C3)c(ω) of the following type

ϕ =
(
φ, det jacφz2 + b(z0, z1)

)
with φ in Bir(P2) and b in C(z0, z1).

If det jacφ is not a root of unity, then any periodic point of φ can be lifted into a

periodic point of ϕ.

Corollary 4.2.3. Let φ be a polynomial automorphism of C2 of Hénon type. A

ς-lift of φ has an infinite number of periodic points that lift the hyperbolic periodic points

of φ.

Question 3. Let φ be a Hénon automorphism and let ϕ be a ς-lift of φ. The

closure of the hyperbolic periodic points of φ is the Julia set of φ; in particular it is a

Cantor set. Is the closure of the set of periodic points of ϕ a Cantor set ?

Let us consider a Hénon automorphism φ = (φ1, φ2) and let m be an hyperbolic

periodic point of φ; then the matrix
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∂φ2

∂z1

∂φ2

∂z2
∂φ1

∂z1
−∂φ1

∂z2


is a non-parabolic one and so z0 7→ (−∂φ2/∂z1 + ∂φ2/∂z2 z0)/(∂φ1/∂z1 − ∂φ1/∂z2 z0)

has two fixed points. We can thus state the following:

Proposition 4.2.4. Let φ be an automorphism of C2 of Hénon type ; to any

periodic point of period ℓ of φ corresponds two periodic points of period ℓ of K(φ) ∈
Bir(C3)c(ω).

A similar question as Question 3 is the following:

Question 4. Let φ be a polynomial automorphism of C2 of Hénon type; what is

the topology of the distribution of periodic points of K(φ) ? Is it a discrete set ? Is its

closure a Cantor set ?

Remark 4.2.5. Let us consider an element
(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1)

)
of

Bir(C3)ω. Then ϕt =
(
ϕ0(z0, z1), ϕ1(z0, z1), z2 + b(z0, z1) + t

)
belongs to Bir(C3)ω. If

p = (p0, p1, p2) is a fixed point of ϕt, then (p0, p1) is a fixed point of φ = (ϕ0, ϕ1) and

b(p0, p1) + t = 0. In particular if φ only has isolated fixed points (that is φ has no curve

of fixed points, which is the case in general), then ϕt has no fixed points for t generic.

Similarly, if φ has a countable number of periodic points, then for t generic ϕt has

no periodic points.

We will look at degree and degree growths of some contact birational maps.

In the 2-dimensional case, that is if φ belongs to Aut(C2), or Bir(P2), then degφ =

degφ−1. This equality is not true in higher dimension; for instance if

ϕ =
(
z20 + z22 + z1, z

2
2 + z0, z2

)
,

then ϕ−1 =
(
z1 − z22 , z0 − (z1 − z22)

2 − z22 , z2
)
. What happens in our context ? The

equality degφ = degφ−1 still does not hold; indeed if (ϕ0, ϕ1, z2 + b(z0, z1)) belongs

to Aut(C3)ω, then −db = ϕ0dϕ1 − z0dz1 and deg b = deg ϕ0 + deg ϕ1. For instance if

φ =
(
z0 + (z31 − z0)

2, z31 − z0
)
, then

φ−1 =
(
(z0 − z21)

3 − z1, z0 − z21
)
.

Hence the degree of the ς-lifts of φ (resp. φ−1) is 9 (resp. 8).

Let ϕ and ψ be two birational self-maps of P3. We will say that the degree growths

of ϕ and ψ are of the same order if one of the following holds

• (deg ϕn)n and (degψn)n are bounded,

• there exist an integer k such that limn→+∞ deg ϕn/nk and limn→+∞ degψn/nk are

finite and nonzero,

• (deg ϕn)n and (degψn)n grow exponentially.
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Let φ be a polynomial automorphism of C2; let us recall that φ has either a bounded

growth or an exponential one ([19]). Denote by ϕ a ς-lift of φ to Aut(C3)c(ω)

ϕ =
(
φ,det jacφz2 + b(z0, z1)

)
.

Note that b belongs to C[z0, z1] and so deg b(φj(z0, z1)) ≤ deg bdegφj for any j. Hence

degφn ≤ deg ϕn ≤ max(degφn, deg b degφn−1)

and

• if (degφn)n is bounded, then (deg ϕn)n is bounded,

• if (degφn)n grows exponentially, then (deg ϕn)n grows exponentially.

Remark that if ψ is a polynomial automorphism of C3 linear growth is also possible ([7])

and this eventuality does not appear when we look at elements of Aut(C3)c(ω).

In the case of the ς-lift of an exact element of Bir(C2)η we cannot give formula

because we are not dealing with polynomials. But the degree growth of a ς-lift ϕ of

an exact element φ of Bir(C2)η and the degree growth of φ are the same. Indeed set

φn = (φ0,n, φ1,n) for any n ≥ 1. On the one hand

ϕn =
(
φ0,n, φ1,n, z2 + b(z0, z1) + b(φ0,1, φ1,1) + b(φ0,2, φ1,2) + · · ·+ b(φ0,n−1, φ1,n−1)

)
with db = z0dz1 − φ0dφ1, but on the other hand ϕn =

(
φ0,n, φ1,n, z2 + b̃(z0, z1)

)
with

db̃ = z0dz1 − φ0,ndφ1,n. Using this last writing one gets the statement.

Let ϕ be a birational self-map of P2. For any n ≥ 1 set ϕn = (ϕ1,n, ϕ2,n) =

(P1,n/Q1,n, P2,n/Q2,n) with Pi,n, Qi,n ∈ C[z0, z1] without common factor; denote by pi,q
(resp. qi,n) the degree of Pi,n (resp. Qi,n). Of course deg ϕn = max(p1,n + q2,n, p2,n +

q1,n, q1,n + q2,n) and since

K(ϕ)n = K(ϕn)

=

Q2
2,n

Q2
1,n

P2,n
∂Q2,n

∂z1
−Q2,n

∂P2,n

∂z1
+
(
Q2,n

∂P2,n

∂z2
− P2,n

∂Q2,n

∂z2

)
z0

Q1,n
∂P1,n

∂z1
− P1,n

∂Q1,n

∂z1
−
(
Q1,n

∂P1,n

∂z2
− P1,n

∂Q1,n

∂z2

)
z0
,
P1,n

Q1,n
,
P2,n

Q2,n


one gets deg ϕn ≤ degK(ϕ)n ≤ max(4q2,n+p2,n+1, 2p1,n+2q1,n+q2,n+1, p2,n+3q1,n+

p1,n + 1).

Proposition 4.2.6. • Assume that G = Aut(C2) or G = Bir(C2)η. Let φ be

an element of G, and let ϕ be a ς-lift of φ. The degree growths of φ and ϕ are of

the same order.

• Let φ be a birational self-map of the complex projective plane, and let us consider

K(φ) the image of φ by K. The degree growths of φ and K(φ) are of the same

order.

Let us end this section by some considerations about centralisers of contact birational

maps.
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If G is a group and f an element of G, we denote by Cent(f,G) the centraliser of f

in G, that is

Cent(f,G) =
{
g ∈ G | fg = gf

}
.

Let φ be a polynomial automorphism of C2, then ([19][26])

• either φ is conjugate to an element of J2 and Cent
(
φ,Aut(C2)

)
is uncountable;

• or φ is of Hénon type and the centraliser of φ is isomorphic to Z ⋊ Z/pZ for some

p.

Let H be the set of polynomial automorphisms of C2 of Hénon type.

Proposition 4.2.7. Let φ be a polynomial automorphism of C2 and let ϕ be one

of its ς-lift.

• If det jacφ = 1, then Cent
(
ϕ,Aut(C3)ω

)
is uncountable and isomorphic to

Cent(ϕ)⋊C.

• If det jacφ ̸= 1 and φ belongs to H, then Cent
(
ϕ,Aut(C3)c(ω)

)
is countable and

isomorphic to Cent(φ).

Proof. One can look at the restriction of ς to Cent
(
ϕ,Aut(C3)c(ω)

)
:

ς|Cent(ϕ,Aut(C3)c(ω)) : Cent
(
ϕ,Aut(C3)c(ω)

)
→ Cent

(
φ,Aut(C2)

)
Of course

ker ς|Cent(ϕ,Aut(C3)c(ω)) ⊂
{
(z0, z1, z2 + β) |β ∈ C

}
.

If det jacφ = 1, i.e. φ belongs to Aut(C2)η, then

ker ς|Cent(ϕ,Aut(C3)c(ω)) =
{
(z0, z1, z2 + β) |β ∈ C

}
and the centraliser of a ς-lift of φ is always uncountable even if Cent

(
φ,Aut(C2)

)
is

countable.

If det jacφ ̸= 1, i.e. φ belongs to Aut(C2)∖Aut(C2)η, then ker ς|Cent(ϕ,Aut(C3)c(ω)) =

{id} and

Cent
(
ϕ,Aut(C3)c(ω)

)
↪→ Cent

(
φ,Aut(C2)

)
.

In particular if φ belongs to
(
Aut(C2) ∖ Aut(C2)η

)
∩ H, then Cent

(
ϕ,Aut(C3)c(ω)

)
is

countable. □

Remark 4.2.8. Contrary to the 2-dimensional case there exist some ϕ in Aut(C3)ω
such that

• Cent
(
ϕ,Aut(C3)ω

)
is uncountable,

• and (deg ϕn)n∈N grows exponentially.
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A similar reasoning leads to:

Proposition 4.2.9. Let φ ∈ Bir(C2)η be an exact map, and let ϕ be one of its

ς-lifts. Then Cent
(
ϕ,Bir(C3)ω

)
is uncountable.

Let G = Aut(C2) or G = Bir(C2)η. Let φ be an element of G, and let ϕ be one of

its ς-lift. In the following examples we look at the links between the ς-lift of Cent(φ,G)

and Cent(ϕ,G′) where G′ = Aut(C3)c(ω) or Bir(C3)c(ω).

Example 4.2.10. In this example we give a polynomial automorphism φ and

maps in Cent
(
φ,Aut(C2)

)
whose only one ς-lift belongs to Aut

(
ϕ,Aut(C3)c(ω)

)
where ϕ

denotes a ς-lift of φ.

Let us now consider the Hénon automorphism φ given by

φ = (δz1, βz
k
1 − γz0)

where δ, β, γ are complex numbers such that δβ ̸= 0, δβ ̸= 1 and k ≥ 4. The map

ϕ =
(
δz1, βz

k
1 − γz0, δγz2 + δγz0z1 −

δβ

k + 1
zk+1
1

)
is a ς-lift of φ. One can check that (ζz0, ζz1), where ζ ∈ C∗ such that ζk = ζ, commutes

with φ. Among the ς-lifts (ζz0, ζz1, ζ
2z2 + β), β ∈ C, only one commutes with ϕ.

Example 4.2.11. We consider a polynomial automorphism φ, a subgroup G

of Cent
(
φ,Aut(C2)

)
and Gς its ς-lift. In the first example the inclusion Gς ⊂

Cent
(
ϕ,Aut(C3)c(ω)

)
holds whereas in the second example it doesn’t.

Let us consider the polynomial automorphism φ = (βdz0 + βdzd1Q(zr1), βz1) with

β ∈ C∗, Q ∈ C[z1] and d, r ∈ N. One can check that

G =
{
(z0 + γzd1 , z1) | γ ∈ C

}
⊂ Cent

(
φ,Aut(C2)

)
.

The map ϕ =
(
βdz0+β

dzd1Q(zr1), βz1, β
d+1z2−βP (z1)

)
with P ′(z1) = zq1Q(zr1) is a ς-lift

of φ. Let Gς be the ς-lift of G; the group

Gς =

{(
z0 + γzd1 , z1, z2 −

γzd+1
1

d+ 1

) ∣∣∣∣∣ γ ∈ C

}

is here contained in Cent
(
ϕ,Aut(C3)c(ω)

)
.

Let φ be the polynomial automorphism given by φ = (z0+ z
2
1 , λz1) with λ ∈ C∗ and

λ2 ̸= 1. A ς-lift of φ to Aut(C3)c(ω) is

ϕ =
(
z0 + z21 , λz1, λz2 −

z31
3

+ µ
)

for some µ ∈ C. Note that

G =
{(
δz0 +

γ2 − δ

λ2 − 1
z1 + ε, γz1

) ∣∣∣ δ, γ ∈ C∗, ε ∈ C
}
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is contained in Cent
(
φ,Aut(C2)

)
. Let us denote by Gς the ς-lift of G; a direct computa-

tion shows that

Gς =
{(
δz0 +

γ2 − δ

λ2 − 1
z1 + ε, γz1, δγz2 −

γ(γ2 − δ)

3(λ2 − 1)
z31 − γεz1 + β

) ∣∣∣ δ, γ ∈ C∗, β, ε ∈ C
}
.

The inclusion Gς ∩ Cent
(
ϕ,Aut(C3)c(ω)

)
⊊ Gς is strict; indeed

Gς ∩ Cent
(
ϕ,Aut(C3)c(ω)

)
=
{(
γ2z0 + ε, γz1, γ

3z2 − γεz1 +
γ3 − 1

λ− 1
δ
) ∣∣∣ γ ∈ C∗, ε ∈ C

}
.

4.3. Non-simplicity, Tits alternative.

Let us recall that a simple group is a non-trivial group G whose only normal sub-

groups are {id} and G.

Danilov proved that Aut(C2)η is not simple ([15]). More recently Cantat and Lamy

showed that Bir(P2) is not simple ([11]). As a consequence one has:

Proposition 4.3.1. The groups

Aut(C3)ω, Bir(C3)ω, Aut(C3)c(ω), [Aut(C3)c(ω),Aut(C3)c(ω)], [Aut(C3)ω,Aut(C3)ω]

are not simple.

Proof. Since [Aut(C3)c(ω),Aut(C3)c(ω)] ≃ Aut(C2)η and [Aut(C3)ω,Aut(C3)ω]

≃ Aut(C2)η the first assertion follows from [15].

The exact sequence (2.1) implies in particular that there exists a morphism with a

non-trivial kernel from Aut(C3)ω into Aut(C2)η, hence Aut(C3)ω is not simple. A similar

argument holds for Bir(C3)ω and Aut(C3)c(ω). □

The morphism

Bir(C3)regω −→ Bir(P2)

that consists to take the restriction of ϕ ∈ Bir(C3)regω to H∞ has a non-trivial kernel;

indeed

ϕ =

(
z0 −

(
P (z1)

Q(z1)

)′

, z1, z2 +
P (z1)

Q(z1)

)

with P , Q two polynomials of degree p, q such that p < q+1, is regular and induces the

identity on H∞. In particular one gets the following statement:

Proposition 4.3.2. The group Bir(C3)regω is not simple.

Let us consider the maps ψ = (γz20z1, 1/γz0, z2 + z0z1) and ϕ = (z0 + 1/z31 , z1, z2 +

1/2z21). One can check that ψ belongs to Bir(C3)ω∖Bir(C3)regω whereas ϕ is in Bir(C3)regω .

A direct computation shows that ψ−1ϕψ blows down H∞ onto e3. Hence one can state:

Proposition 4.3.3. The subgroup Bir(C3)regω of Bir(C3)ω is not normal.
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We will end this section by establishing Tits Alternative for Aut(C3)ω, Aut(C3)c(ω)
and Bir(C3)ω.

The derived series of a group G is defined as follows

D0(G) = G, D1(G) = [G,G], . . . , Dn+1(G) = [G, Dn(G)].

The group G is solvable if there exists an integer k such that Dk(G) = {id}. The least ℓ

such that Dℓ = {id} is called the derived length of G.

A group G satisfies the Tits alternative if any finitely generated subgroup of G

contains either a non-abelian free group, or a solvable subgroup of finite index. This

alternative has been established by Tits for linear groups GL(n;k) for any field k ([28]).

Lamy proves that the group of polynomial automorphisms of Aut(C2) satisfies the Tits

alternative ([26]), so does Cantat for the group of birational maps of a complex, compact,

kähler surface (see [10]). Note that the automorphisms groups of complex, compact,

kähler manifolds of any dimension also satisfy Tits alternative ([10][27]).

Theorem 4.3.4. The groups Aut(C3)ω, Aut(C3)c(ω) and Bir(C3)ω satisfy the Tits

alternative.

Proof. Let G be a finitely generated subgroup of Bir(C3)ω. Set

G0 = ς(G) ⊂ Bir(C2)η.

Since Bir(C2)η is a subgroup of Bir(P2) that satisfies the Tits alternative, either G0

contains a non-abelian free group, or a solvable subgroup of finite index.

Assume first that G0 contains two elements f and h such that ⟨f, h⟩ ≃ Z∗Z. Let us
denote by F , resp. H a lift of f , resp. h in Bir(P3). Suppose that there exists a non-trivial

word M such that M(F,H) = {id}. As ς is a morphism, one gets that M(f, h) = {id}:
contradiction.

Suppose now that up to finite index G0 is solvable, and let ℓ be its derived length;

in particular Dℓ(G0) = {id} and Dℓ(G) belongs to ker ς. Since

ker ς = {(z0, z1, z2 + β) |β ∈ C}

one gets Dℓ+1(G) = {id}. □

4.4. Non-conjugate isomorphic groups.

Let us denote by υ1 the trivial embedding from (Aut(C2)η|0) into Aut(C3)

υ1 : (Aut(C2)η|0) ↪→ Aut(C3), (ϕ0, ϕ1) 7→ (ϕ0, ϕ1, z2)

and by υ2 the trivial embedding from Bir(P2) into Bir(P3)

υ2 : Bir(P2) ↪→ Bir(P3), (ϕ1, ϕ2) 7→ (z0, ϕ1, ϕ2).

Despite im υ1 (resp. im υ2) is isomorphic to im ς (resp. imK) one has the following

statement:
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Proposition 4.4.1. The image of υ1 (resp. υ2) is not Aut(C3)-conjugate (resp.

Bir(P3)-conjugate) to a subgroup of Aut(C3)c(ω) (resp. Bir(C3)c(ω)).

Proof. Let us assume that there exists ψ in Aut(C3) (resp. Bir(P3)) such that

for any ϕ = (ϕ0, ϕ1) (resp. ϕ = (ϕ1, ϕ2)) in Aut(C2) (resp. Bir(P2)) the map ψυ1(ϕ)ψ
−1

(resp. ψυ2(ϕ)ψ
−1) is a contact polynomial automorphism (resp. contact birational map);

as a result υ1(ϕ) (resp. υ2(ϕ)) preserves a polynomial form Θ = Adz0 + Bdz1 + Cdz2.

Looking at the restriction to any hyperplane z2 = λ (resp. z0 = λ) for λ generic one gets

that all the ϕ preserve the foliation given by Θ|z2=λ (resp. Θ|z0=λ): contradiction. □

5. Appendix: Automorphisms group of Aut(C2)η.

As we recalled Aut(C2) is generated by J2 and Aff2. More precisely Aut(C2) has a

structure of amalgamated product ([25])

Aut(C2) = J2 ∗J2∩Aff2 Aff2;

this is also the case for Aut(C2)η ([20, Proposition 9])

Aut(C2)η = (J2)η ∗(J2)η∩(Aff2)η (Aff2)η.

Following [16] we prove that:

Theorem 5.0.2. The group Aut(Aut(C2)η) is generated by the automorphisms of

the field C and the group of Aut(C2)-inner automorphisms.

Idea of the Proof. Let us set G = Aut(C2)η. One can follow [16] and prove

that if φ is an automorphism of G, then

• φ((J2)η) = (J2)η up to conjugacy by an element of Aut(C2) ([16, Proposition 4.4]);

• for any integer k if R = ∪n≤k⟨(βz0, z1/β) |β n-th root of unity⟩, then there exists

ψ in (J2)η such that φ(R) = ψRψ−1. So one can suppose that φ((J2)η) = (J2)η
and φ(R) = R (see [16, Proposition 4.4]);

• set Dη =
{
(βz0, z1/β) |β ∈ C∗} one can show that conjugating ϕ by an element of

(J2)η one has φ((J2)η) = (J2)η and φ(Dη) = Dη.

• set

T1 =
{
(z0 + β, z1) |β ∈ C

}
, T2 =

{
(z0, z1 + β) |β ∈ C

}
and

T =
{
(z0 + γ, z1 + β) | γ, β ∈ C

}
.

Since T1 ⊂ [[(J2)η, (J2)η], [(J2)η, (J2)η]], then T1 ⊂ {(z0 + P (z1), z1) |P ∈ C[z1]}.
As

∀n ∈ N, ∀β ∈ C
(z0
n
, nz1

)
(z0 + β, z1)

n
(
nz0,

z1
n

)
= (z0 + β, z1)
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and φ(Dη) = Dη, one gets

∀n ∈ N, ∀β ∈ C φ
(z0
n
, nz1

)
φ(z0 + β, z1)

nφ
(
nz0,

z1
n

)
= φ(z0 + β, z1)

that is

∀n ∈ N
(z0
δ
, δz1

)
(z0 + nP (z1), z1)

n
(
δz0,

z1
δ

)
= (z0 + P (z), z1)

so P (z1) = n/δP (z1/δ). The polynomial P is non-zero hence n = δ and P is a

constant. Therefore φ(T1) ⊂ T1.

The groups T1 and T2 commute, that’s why

φ(T2) ⊂
{
(z0 + P (z1), z1 + β) |P ∈ C[z1], β ∈ C

}
.

The relation (z0
n
, nz1

)
(z0, z1 + β)

(
nz0,

z1
n

)
= (z0, z1 + β)n

true for any integer n and for any β in C implies that φ(T2) ⊂ T2. The group T

being a maximal abelian subgroup of G, one has φ(T) = T and φ(Ti) = Ti.

• There exist ξ1, ξ2 two additive morphisms and ζ a multiplicative one such that

φ(z0+γ, z1+β) = (z0+ξ1(γ), z1+ξ2(β)) & φ

(
γz0,

z1
γ

)
=

(
ζ(γ)z0,

z1
ζ(γ)

)
.

The statement follows from [16, Proposition 1.4]. □
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Mathématique de France, Paris, 1982.

[15] V. I. Danilov, Non-simplicity of the group of unimodular automorphisms of an affine plane, Mat.

Zametki, 15 (1974), 289–293.

[16] J. Déserti, Sur le groupe des automorphismes polynomiaux du plan affine, J. Algebra, 297 (2006),

584–599.

[17] J. Déserti, Sur les automorphismes du groupe de Cremona, Compos. Math., 142 (2006), 1459–

1478.

[18] K. Frantzen and T. Peternell, On the bimeromorphic geometry of compact complex contact

threefolds, In: Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich,
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