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Abstract. We study the group of polynomial automorphisms of C3
(resp. birational self-maps of Pé) that preserve the contact structure.

1. Introduction.

In this article we work on the group of birational maps that preserve contact struc-
tures on IP’%. On IP’% there is, up to automorphisms, only one (non-singular) contact struc-
ture given in homogeneous coordinates by the 1-form 9 = zodz1 — z1dzg + 20dz3 — z3d2s.
In C? there is the Darboux 1-form w = zpdz; + dzy that is the standard local model of
contact forms; it thus defines a holomorphic contact structure on C? that extends to IP’%
meromorphically. Note that w has poles of order 3 along the hyperplane z3 = 0. We
denote by c(w) the (meromorphic) contact structure induced on P2 by w. Let us remark
that actually w is birationally conjugate to 5‘23:1 (more precisely they are conjugate
via a polynomial automorphism in the affine chart z3 = 1). As a result the group of
birational maps that preserve these structures are conjugate; since it is more convenient
to work with w than with ¢ we will focus on w.

The contact geometry has a long story. The Darboux local model zpdz; + dzo is
related to the formalization of zg = —dzp/dz;. For instance if S is a surface in C? given
by F(zo, 21, 2z2) = 0 then the restriction of w to S corresponds to the implicit differential
equation F (—0z2/0z1,21,22) = 0. A birational self-map of P which preserves the
contact structure (i.e., which sends the 1-form zpdz; + dzy viewed in the affine chart
z3 = 1 onto a multiple of 20dz; + dzo by a rational function) is said to be a contact
map. The space C3 with the contact form w can be seen as an affine chart of the
projectivization of the cotangent bundle T*C? (equipped with the standard Liouville
contact form). As a consequence there is a natural extension of any birational self-map
of the (z1, 22) plane ([23])

*8@252/(921 + (9(,252/322 Z0
6(;51 /82’1 — 3¢1/822 20

K: Bir(P2) < Bir(C%)c(w), (1, ¢2) — < ,¢1(21a22)7¢2(21722))
where Bir(C? )e(w) denotes the group of contact birational self-maps of IP’%. The image of
K is the Klein group J#". Klein conjectured that the group of contact maps is generated
by £ and the Legendre involution
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(20,21722) — (217207 —29 — 2021)-

In 2008 Gizatullin proved this “conjecture” in the case in which the contact transfor-
mations are polynomial automorphisms of the affine space ([21]). The conjecture about
generators of the contact group is still open in the birational case.

Let G be a subgroup of the group Bir(Pg¢) of birational self-maps of Pg, and let
be a meromorphic p-form on Pg; denote by

Gsg={0eG|¢p*B =5}

the subgroup of elements of G that preserve the form . In the same spirit for 1-forms
5 we set

Gep) = {0 € Glo"BAB=0}.

We have the obvious inclusions Gz C G¢(g) C G.
We first describe the group Aut((C3)C(w) of polynomial automorphisms of C? that
preserve the contact structure:

THEOREM 1.0.1.  Ifn is the form dw = dzg A dz1, then
Aut(C?),, ~ Aut(C?), x C, Aut(C?)¢() = Aut(C?), x C*.

Hence, as Banyaga did in the context of contact diffeomorphisms of smooth real
manifolds ([2][3][4]), one gets that the commutator of Aut(C?),, (resp. Aut(C?)e(,) is
perfect. Any automorphism of Aut(C?) is the composition of an inner automorphism
and an automorphism of the field C (see [16]). Following this idea we describe the group
Aut(Aut(C?),,).

Danilov and Gizatullin proved that any finite subgroup of Aut(C?) is linearizable
([22]). We obtain a similar statement:

THEOREM 1.0.2.  Any finite subgroup of Aut((Cs)C(w) is linearizable via an element
Of Aut((CS)C(w) .

We also deal with Bir((C?’)C(w). If ¢ belongs to Bir((C3)C(w)7 then ¢*w = V(o)w
where V (¢) is some rational function. In particular one gets a map V' from Bir(C?)(.,
to the set of rational functions in zg, 21, 22 satisfying cocycle conditions: V(¢ o ¢)) =
(V(¢)ow) V(¥).

The equality ¢*w = V(¢)w can be rewritten as the following system of PDE

¢06¢1/820 + 3(;52/820 =0, (*1)
(S) { ¢00p1/021 + 0p2 /021 = V ()20, (*x2)
¢08¢1/822 + 8(252/822 = V((b) (*3)

The first equation (x;) has a special family of solutions: maps for which both ¢; and
¢2 do not depend on zg; we can then compute ¢y from the two other equations. Taking
(41, ¢2) in Bir(P%) we get in this way the group 7.
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Assume now that ¢; or ¢ depends on zy then both depend on it and (S) implies
the following equality

8(;52/8;:1 — z08¢2/822 _ 8¢1/821 — Zoa¢1/822
02 /020 O¢1/0z0 '

Let us defined o the map from Bir(C3)C(w) into the set of rational functions in zg, 23 and
29 by: a(¢) = oo if ¢ belongs to £ and

_ 8¢2/6Z1 — 208([52/822 o 8¢1/821 — z08¢1/622

@ =
(@) 0p2/020 0¢1/0z9
otherwise.
If ¢1 and ¢9 are some first integrals of the rational vector field
0 0 0
Ty = - i
¢ OC(QI)) 320 321 + %0 822 ’

one gets ¢o thanks to the first equation of (S). Such ¢ is not necessary birational but
only rational; nevertheless one gets a lot of contact birational self-maps in this way.
Remark that since ¢ (resp. Bir(C?),) is a subgroup of Bir(C?).,, there is a natural
left translation action of " (resp. Bir(C?),,) on Bir(C?).(,,). These two actions admit a
complete invariant:

THEOREM 1.0.3. The map « is a complete invariant of the left translation action
of # on Bir(C?)y,), that is for any ¢ and ¢ in Bir(C?)c(.) one has a(¢) = a(y) if and
only if wo~' belongs to .

The map V is a complete invariant of the left translation action of Bir(C?), of
Bir((C?’)C(w), i.e. for any ¢, ¥ in Bir((C?’)C(w) one has V(¢) = V() if and only if ¢~*
belongs to Bir(C?),,.

We prove that « is not surjective: generic linear differential equations of second order
give linear functions that are not in the image of a. Painlevé equations give examples
of polynomials of higher degree that do not belong to im«a. The map V is also not
surjective.

Since w has no integral surface in C? a contact birational self-map ¢ either preserves
the hyperplane z3 = 0, or blows down z3 = 0. This naturally implies the following
definition: ¢ € Bir((C?’)C(w) is regular at infinity if 23 = 0 is preserved by ¢ and if ¢.,—¢
is birational. One shows that

PROPOSITION 1.0.4.  The set of maps of Bir(C3),, that are reqular coincides with
Aut(P),.

Let ¢: Bir(C?),, — Bir(C?),, be the projection onto the two first components. We
say that ¢ € Bir(C?), is exact if ¢ can be lifted via ¢ to Bir(C?),. One establishes the
following criterion:

THEOREM 1.0.5. A map ¢ = (¢o,¢1) € Bir(C?),, is exact if and only if the closed
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form ¢odp1 — zodz1 has trivial residues. In that case ¢podopy — zodzy = —db with b €
C(z0,21) and ¢ = (4,07 zo + b(zo, 21)) € Bir(C?),,.

We give a lot of examples, and even subgroups, of exact maps but also prove that
the map ¢ is not surjective:

THEOREM 1.0.6. A generic quadratic element of Bir((Cz)77 s not exact.

Furthermore we look at invariant curves and surfaces. Thanks to a local argument
of contact geometry one gets that if ¢ belongs to Bir(C?3),,, if m is a periodic point of
¢, and if there exists a germ of irreducible curve C invariant by ¢ and passing through
m, then either C is a curve of periodic points, or C is a legendrian curve. We also give a
precise description of elements of Aut(C3),, (resp. Bir(C?),) that preserve a surface.

Besides we deal with some group properties. Danilov proved that Aut(C?),, is not
simple ([15]); Cantat and Lamy showed that Bir(PZ) is not simple ([11]). In the same
spirit we establish that

THEOREM 1.0.7.  The groups Aut(C?),, Bir(C?),, Aut(CS)C(w), the derived group
of Aut(C?), and the derived group of Aut(C?)c(,,) are not simple.

Lamy proved that Aut(C?) satisfies the Tits alternative ([26]), then Cantat showed
that Bir(P2) also ([10]). In our context one gets that

THEOREM 1.0.8.  The groups Aut(C?),, Aut(C?)s(y and Bir(C?),, satisfy the Tits

alternative.

ACKNOWLEDGEMENTS. We would like to thank Guy Casale for discussions about
the non-integrability.
2. Contact polynomial automorphisms.
A polynomial automorphism ¢ of C™ is a polynomial map of the type
¢: C" — C",
(20,2155 2n-1) = (0020, 215+, Zn-1), 01(20, 215+ -5 Zn1)s oo On—1(20, 215+ -5 Zn1))

that is bijective. The set of polynomial automorphisms of C™ form a group denoted
Aut(C™).

The automorphisms of C™ of the form (¢g, ¢1,...,¢Pn—1) where ¢; depends only on
Ziy Zit1,---s2n—1 form the Jonquiéres subgroup J, C Aut(C™). Moreover one has the
inclusions

GL(C™) C Aff,, C Aut(C™)

where Aff,, denotes the group of affine maps

O (20,215 oy 2n—1) —
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(¢0(20, 215+ -+, 20—1)s 1(205 21, - - -5 Zn—1), - -+ G—1(20, 215 - - -, Zn—1))

with ¢; affine; Aff,, is the semi-direct product of GL(C™) with the commutative subgroups
of translations. The subgroup Tame,, C Aut(C") generated by J,, and Aff,, is called the
group of tame automorphisms.

CONVENTION. In all the article we denote P¢ by P", and we write “birational
maps of P*” instead of “birational self-maps of P™”.

2.1. Contact forms and contact structures.

We recall in the context of 3-manifolds the formalism of contact structure. Let M
be a complex 3-manifold; we denote by Q¢(M) the space of holomorphic i-forms on M.
A contact form on M is an element © € Q(M) such that the 3-form © A dO € Q3(M)
has no zero: ©® A d®(m) # 0 for any m € M. For such a contact form there is a local
model given by Darboux theorem: at each point m there is a local biholomorphism
F: M,, — C3 such that © = F*(zodz; + dzg). The 1-form zqdz; + dzy is called the
standard contact form on C3; we denote it by w.

A contact structure on the 3-manifold M is given by the following data:

(i) an open covering M = Uil
(ii) on each Uy, a contact form Oy € QY (Uy),

(iii) on each non-trivial intersection Uy NUy a holomorphic unit gge € O* (U NU;) such
that @k = gkg@g.

A contact structure defines a holomorphic hyperplanes field t: M — P(TM)V given
for all m € Uy, by

t(m) = ker ©(m).

The compact Kéhler manifolds having a contact structure are classified by Frantzen
and Peternell theorem ([18]). On P? there is no contact form because there is no non-
trivial global form. Nevertheless there are contact structures; one of them is given in
homogeneous coordinates by the 1-form

'5 = Zodzl — ZleO + 22d23 — ngZQ.

In that case we can take the standard covering by affine charts U, = {2, = 1} and
U =Dy, -

PROPOSITION 2.1.1.  Up to automorphisms of P3 there is only one contact structure
on P3.

PROOF. Remark that to a contact structure on P? is associated a homogeneous
1-form B on C* such that Uy = {2, = 1} and O, = Biu, satisfies properties i., ii., ii.

Let 3 be a contact structure on P2, and let R = >, 2;0/0z; be the radial vector
field. Since igB = 0, to give 8 is equivalent to give d3. According to [24, Chapter 2,

Proposition 2.1] one has deg d8 = 0; to give d /3 is thus equivalent to give an antisymmetric
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matrix of maximal rank. But up to conjugacy there is only one 4 x4 antisymmetric matrix
of maximal rank. O

REMARK 2.1.2.  The group of linear automorphisms of C* that preserve ¥ coincides
with the group of automorphisms of P3 that preserve d@; as a consequence the subgroup
of Aut(P?) that preserves the contact structure associated to dd is the projectivization
of the symplectic group Sp(4;C).

Remark that the data of a global meromorphic 1-form © on M such that ©AdO # 0
induces a contact form (and a contact structure) on the complement of the poles and
zeros of ©® and © A dO. In that case we say that © induces a meromorphic contact
structure on M.

For instance the Darboux form w = zpdz; 4+ dzs induces a meromorphic contact
structure on P3. In fact the forms w and 5\%:1 are conjugate on C? via (20/2, 21, —22 +
2021/2). The corresponding (meromorphic) contact structure are birationally conjugate
on P3.

2.2. Description of contact automorphisms.
Let us describe Aut(C?),,. Set 7 = dw = dzg A d2;. Remark that the invariance of
w implies the invariance of 1 and as a consequence the equality (¢g, ¢1)*n = 7.

PROPOSITION 2.2.1.  If ¢ belongs to Aut(C?),, then ¢.0/0zy = 0/0z,.
In particular if ¢ belongs to Aut(C?),,, then

¢ = (¢0(20,21), ¢1(20, 21), 22 + b(20, 21))
and the map

¢: Aut(C?), — Aut(C?),,
(do(z0, 21), #1(20, 21), 22 + b(20, 21)) — (do(z0, 21), 1 (20, 21))

is a morphism.

PROOF. As we already mentioned, for a contact form there exists a unique vector

field x, called Reeb vector field, such that w(x) = 1 and i,dw = 0; here x = 9/0z,. If
¢ belongs to Aut(C3),,, then ¢.x = x. As a result ¢ has the following form

¢ = (¢o(20,21), $1(20, 21), 22 + b(20, 21))
with (¢o, ¢1) in Aut(C?) and b in C[zg, 21]. O
REMARK 2.2.2. Any element of Aut((C3)C(w) can be written
(o, ¢1,det jac ¢ 23 + b(z0, 21))

where ¢ = (o, p1) € Aut(C?) and db = (det jac p)zodz; — pode;. Let us still denote by
¢ the natural projection



Birational maps preserving the contact structure on IP’% 579
¢ Aut(C?)e(o) — Aut(C?).

An element ¢ of Bir(C?),; is ezact if it can be lifted via ¢ to Bir(C?),,, or equivalently
if it belongs to img.

Contrary to the birational case (Theorem 3.4.1) any element of Aut(C?) can be lifted
via ¢ to Aut(C?)(,y. Since b is defined up to a constant we do not speak about the ¢-lift
but a ¢-lift.

The following obvious statement describes the group Aut(C3?),:
PROPOSITION 2.2.3.  Let us consider the morphism
¢: Aut(C?), — Aut(C?),),
(¢0(20,21), #1(20,21), 22 + b(20, 21)) = (¢0(20, 21), P1(20, 21))-
One has the following exact sequence
0 — C — Aut(C?), = Aut(C?), — 1; (2.1)
more precisely ker ¢ = {(z0, 21,22 + 3) | B € C}. In particular
Aut(C?),, ~ Aut(C?),, x C.

Proor. The 1-form ¢gd¢; — zgdz; is a closed and polynomial one, so it is exact.
Therefore ¢ is surjective. O

Let G be a group. The derived group of G is the subgroup of G generated by all the
commutators of G:

[G,G] = (ghg"'h™"|g, h € G).

The group G is said to be perfect if it coincides with its derived group, or equivalently,
if the group has no nontrivial abelian quotients.

Such a property was established in the context of real smooth manifolds: Banyaga
proved that the derived group of the group of contact diffeomorphisms is a perfect one

([2][3][4])-
THEOREM 2.2.4.  The group [Aut(C3?),, Aut(C3),,] is perfect.

PROOF.  Since ¢ is surjective (Proposition 2.2.3) and Aut(C?), is perfect ([20,
Proposition 10]) the restriction of ¢

¢= SJ[Aut(C3),,, Aut(C3),] [Aut((C3)w7Aut((C3)w] —> Aut((CQ)n

is surjective. Let ¢ be in ker¢; on the one hand ¢ = (zg, 21, 22 + ) for some 8 (Proposi-
tion 2.2.3), and on the other hand ¢ is a product of commutators hence 8 = 0. We thus
have the following exact sequence
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0 — [Aut(C?),, Aut(C?),] — Aut(C?), — 1
and [Aut(C?),,, Aut(C?),,] ~ Aut(C?),, which is perfect ([20, Proposition 10]). O

We will now describe Aut(C?)¢(,). Let us recall that Aut(C?) is generated by Ja
and Aff, (see [25]). This implies that Aff; and

[Ja2,J2] = {(20 + 8,21 + P(20)) | B € C, P € C[z]}.
generate Aut(C?).
PROPOSITION 2.2.5.  The group Aut(C?).( is generated by A and € where
& = {¢-lifts of ¢|e € [J2,J2]} and A= {c-lifts of a|a € Aff5}.

PROOF. Let ¢ be a polynomial automorphism of C? and let ¢ be a ¢-lift of ¢ to
Aut(C?) ()

¢ = (i, det jac pzz + b(z0, 21))

with b in C[zp,21]. One can write ¢ as ajejases - - ase; where a; belongs to Affy and
¢; to [Ja,J2]. Let us now consider A4; a ¢-lift of a;, F; = (e;,22 + d;) a ¢-lift of e;.
Then A1 F1AsEs - - - AgE, belongs to Aut((C?’)C(w), and up to composition by an element
(20, 21,22 + B) € A one has

¢p=AEAEy - AJE,. O
PROPOSITION 2.2.6. One has
Aut(C?)e (o) = Aut(C?), x C*.

PROOF. Let us consider an element ¢ of Aut(C?).(,), then ¢*w = V(¢)w for
some polynomial V(¢). As w and ¢*w do not vanish, V(¢) does not vanish; therefore
V(¢) = X € C*. Let us write ¢ as follows:

¢ = (Az0, 21, A22) © &
of course gg*w = w. O

THEOREM 2.2.7.  The derived group [Aut((C3)C(w),Aut((C?’)c(w)] of Aut((C3)C(w) 18
perfect.

PrOOF.  According to Proposition 2.2.6 an element ¢ of Aut(CS)C(w) can be written

(Ao, 1, Az2 + Ab)

with A € C* and (¢, ¢1, 22 +b) € Aut(C3),,. Denote by ¢ the element of Aut(C?) given
by (¢, ®1). If ¢ belongs to kerg, then A =1, ¢ = id and b € C, that is ker¢ ~ C and
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C— Aut(CS)C(w) ELEN Aut((CQ) — 1. (2.2)

Since Aut(C?),, is perfect the restriction of ¢ to [Aut(C?)s(y, Aut(C?)c(,,] induces the
following exact sequence

0— [Aut((C?’)C(w),Aut(CS)C(w)] — Aut((CQ)n — 1

and [Aut(C?)e(w), Aut(C?)ewy] ~ Aut(C?),. One concludes as previously with [20,
Proposition 10]. O

Let us now deal with the finite subgroups of Aut(C?)c(,,.

PROPOSITION 2.2.8.  Any element of Aut(C?),, of period ¢ lifts via < to a unique
element of Aut(C?),, of period (.

PROOF.  Let us consider an element ¢ = (¢ (20, 21), #1(20,21)) of Aut(C?),. Ac-
cording to Proposition 2.2.3 there exists b € C[zg, z1] such that ((bo(zo, z1), ¢1(20,21), 22+
b(z0,21) + u) belongs to Bir(C3),, for any u € C. Assume that ¢ is of prime order ¢; let
us prove that there exists a unique v € C such that

((ZSO? ¢13 22 + b(207 Zl) + 7)

is of order ¢.
Assume for simplicity that £ = 2 (but a similar argument works for any ¢). Let us
recall that the following equality holds

zodz1 — ¢odepr = db. (2.3)
Applying ¢ to this equality one gets
Pode1 — zodz1 = d(bo ). (2.4)

We add (2.3) and (2.4) and obtain that b+ bo ¢ is a constant 5. Furthermore
2
(¢0(20,21), #1(20,21), 22+ (20, 21) + 1)~ = (20, 21, 22+ 27+b+boy) = (20, 21, 22+27+B)

so as soon as 7y = —f3/2 one has (¢0(zo,zl),¢1(zo,z1),zg + b(z0,21) + ,u)2 =id. d

PROPOSITION 2.2.9. A finite subgroup of Aut(C?) can be lifted to a finite subgroup
Of Aut((C3)C(w) .

PROOF. Let H be a finite subgroup of Aut(C?). The group H is linearizable ([22])
hence has a fixed point p. Since the translations belong to Aut(C?) one can assume that
p = (0,0). Let us consider the lifts of all elements of H in {¢ € Aut(C?)c(, | ¢(0) = 0};
they form a group isomorphic to H so is in particular finite. O

REMARK 2.2.10.  Any subgroup G of Aut(C?) that preserves (0,0) can be lifted to
a subgroup of Aut((C?’)C(w) isomorphic to G.
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THEOREM 2.2.11.  Any finite subgroup ofAut((C?’)C(w) 1s linearizable via an element
of Aut(C?)c()-

PRrROOF. Let G be a finite subgroup of Aut((Cf‘)C(w). The group G is isomorphic to
H = ¢(G) which is thus a finite subgroup of Aut(C?). There exists a map h € Aut(C?)
that linearizes H (see [22]); as a result H has a fixed point p and up to translations one can
suppose that p = (0,0). Note that ~(0) = 0. The lift of h in {¢ € Aut(C?).(,,|#(0) = 0}
linearizes G. O

2.3. Automorphisms group.

Let us first introduce some notations. The group of the field automorphisms of
C acts on Aut(C™) (resp. Bir(P™)): if f is an element of Aut(C") and if £ is a field
automorphism we denote by ¢ f the element obtained by letting & acting on f. Using the
structure of amalgamated product of Aut(C?), the automorphisms of this group have
been described ([16]): let ¢ be an automorphism of Aut(C?); there exist a polynomial
automorphism 1 of C2 and a field automorphism ¢ such that

VfeAut(C?,  o(f)=S(wfvh).

Even if Bir(IP?) has not the same structure as Aut(C?) (see Appendix of [11]) the auto-
morphisms group of Bir(P?) can be described and a similar result is obtained ([17]).

We now would like to describe the group Aut(Aut(C?),). Let us recall that the
center of a group G, denoted Z(G), is the set of elements that commute with every
element of G.

PROPOSITION 2.3.1.  The center of Aut(C?),, is isomorphic to C:
Z(Aut(C?),) = {(20,21,22 + B) | B € C}
and the center of Aut(C?’)c(w) is trivial.
As Aut(C?),, ~ Aut(C?), x C Proposition 2.3.1 implies the following statement:

COROLLARY 2.3.2. The quotient of Aut(C?), by its center is isomorphic to
2
Aut(C?),,.

LEMMA 2.3.3.  One has the following isomorphism
Hom(Aut(C?),,C) ~ Hom(C, C)
where Hom(C, C) denotes the homomorphisms of the additive group C.

PROOF. Note that if ¢ belongs to [Aut(C3),, Aut(C?),], then the last compo-
nent of ¢ is well defined (that is not defined modulo a constant). Besides Aut(C?),, ~
Aut(C?),, x C and Aut(C?), is perfect thus

Aut(C3),, ~
© /[Aut((cg)w,AUt((Cg)w] =C
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and

Aut(C?),, ~ Aut(C?), x C

Aut(C3),, -~ 2
1 /[Aut((C?’)w,Aut((C:S)w} c

We conclude by noting that any element of Hom(Aut(C?),,C) acts trivially on ¢. O

REMARK 2.3.4. An element ¢ of Hom(Aut(C?),, C) acts on Aut(C?),, as follows

(¢0, D1, 22 + b(20, 21)) = (b0, D1, 22 + b(20, 21) + ().

DEFINITION. Let H be a normal subgroup of a group G. We say that an automor-

phism of H of the form ¢ — o', with ¢ in G, is G-inner.

THEOREM 2.3.5. The group Aut (Aut(CS)w) is generated by the automorphisms

group of the field C, the group of Aut(@g)c(w)—inner automorphisms and the action of
Hom(C,C).

ProoF. Consider an element v of Aut(Aut(CS)w). For any ¢ = (QD¢,ZQ +
Ty(z0,71)) one has

V(@) = (Pg, 22 + Ay(20,21)).

In particular ¢ induces an automorphism 1y of Aut((Cz)n; indeed since 1 is an automor-
phism of Aut(C?),, it preserves Z(Aut(C?),) and so, from Corollary 2.3.2 induces an
automorphism of Aut(C?),,.

According to Theorem 5.0.2 one can assume that ¢y = id up to the action of an
automorphism of the field C and up to conjugacy by an Aut(C?)-inner automorphism,
ie.

V() = (<P¢>7 2o + Ay(20, 21))

Set ¢! = (('0;1722 + T¢—1(ZO,Zl)). On the one hand ¢~ ' o ¢ = (id,ZQ + Ty(20,21) +
Tyor(¢5)) 50

T¢ =+ T¢71 (goqg) =0 (25)
and on the other hand
Y(pod™) = (id, 22 + Ty-1(20, 21) + Ay @;1)

belongs to Aut(C?),, hence Tj-1 + A¢<p;1 is a constant. This, combined with (2.5),
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implies that Ay = T4 + ¢4, where c4 is a constant, and yields to a morphism from
Aut(C?),, to C:

Aut(C?), — C, @ Cg.
Consider an homomorphism
p: Aut(C?), — C, O ps.
Let us define ¢: Aut(C?),, — Aut(C?),, by:

U(¢) = (do(20,21), $1(20,21), 22 + b(20, 21) + po)

where ¢ = (¢0(z0,21),¢1(zo,21),22 + b(zo,zl)) € Aut(C3),. One can check that 1
belongs to Aut(Aut(C?),,). O

3. Contact birational maps.

A rational map of P" can be written

¢: P ——» P,
(zo:21: 0 2p) - (qbo(zo,zl,...,zn) s 1(20, 21,0y 2m) P ¢n(zo,zl,...,zn))

where the ¢;’s are homogeneous polynomials of the same degree > 1 and without common
factor of positive degree. The degree of ¢ is by definition the degree of the ¢;. A birational
map of P is a rational map that admits a rational inverse. Of course Aut(C") is a
subgroup of Bir(P™). An other natural subgroup of Bir(P") is the group Aut(P") ~
PGL(n + 1;C) of automorphisms of P".

The indeterminacy set Ind ¢ of ¢ is the set of the common zeros of the ¢;’s. The
exceptional set Exc ¢ of ¢ is the (finite) union of subvarieties M; of P such that ¢ is not
injective on any open subset of M;.

Let us extend the definition of Jonquieres group we gave in the case of polynomial
automorphisms of C" to the case of birational maps of P2: the Jonquiéres group, de-
noted 7, is the group of birational maps of P2 that preserve a pencil of rational curves.
Since two pencils of rational curves are birationally conjugate, J does not depend, up
to conjugacy, of the choice of the pencil. In other words one can decide, up to birational
conjugacy, that J is in the affine chart z5 = 1 the maximal group of birational maps
that preserve the fibration z; = cst. An element ¢ of J permutes the fibers of the fibra-
tion thus induces an automorphism of the base P'; note that if the fibration is fiberwise
invariant, ¢ acts as an homography in the generic fibers. Hence 7 can be identified with
the semi-direct product PGL(2;C(z1)) x PGL(2;C).

We study the birational maps ¢ = (¢g, ¢1, p2) defined on C3 = (23 = 1) C P that
preserve either the contact standard form w, or the contact structure c(w) associated to
w. In other words we would like to describe the groups Bir(C?), and Bir(C?).(,) and
also their elements.

Let us now illustrate a fundamental difference between Bir(C?),, and Bir(C?)c(,,:
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the first group preserves the fibration associated to 9/0zs whereas the second doesn’t.

PROPOSITION 3.0.6.  If ¢ belongs to Bir(C?),, then ¢.0/0z2 = 0/0zs.
In particular if ¢ belongs to Bir(C3),,, then

¢ = (do(20, 21), $1(20, 21), 22 + b(20, 21))
and the map
s: Bir(C?),, — Bir(C?),,
(¢o(20,21), d1(20,21), 22 + b(20,21)) — (¢0(20, 21), ¢1(20, 21))
s a morphism.
REMARK 3.0.7. The proof is similar to the proof of Proposition 2.2.1.

REMARK 3.0.8. The first assertion of Proposition 3.0.6 is not true for the group
Bir((C3)C(w); indeed let us consider the map v defined by

20 z2

Y= <(1+Z2)27217 1+22>§

it belongs to Bir((C3)C(w) and does not preserve the fibration associated to the vector field

8/822

3.1. A PDE approach.

Let ¢ = (¢bo, @1, 02) be in Bir((Cg’)C(w); then ¢*w = V(¢)w for some rational function
V(¢). One inherits a map V from Bir(C?).,,) into the set of rational functions in zg, 2
and zs. The equality ¢*w = V(¢)w gives the following system (*) of PDE:

961 06y

¢0872’0 + 3720 = O7 (*1)
0 0

(1)0% + 8;212 = V(¢)z0, (*2)
0p1 | Opy

¢08722 + P V(). (x3)

Thanks to (x2) and (x3) one gets

o <3¢1 8¢1> L <3¢2 3¢2) _o (%)

— — 2p—— = — 20—
(921 622 821 822

Equation (%) has a special family of solutions: maps for which both ¢; or ¢5 do not
depend on zp (note that if ¢1 (resp. ¢2) does not depend on zy then (x1) implies that
@2 (resp. ¢1) also); in that case we can then compute ¢y thanks to (x4). Taking (¢1, ¢2)
in Bir(P?) we get elements in im KC; we will called this family of solutions Klein family.
Note that this family is a group denoted %, the Klein group.

PROPOSITION 3.1.1.  The elements of £ are of the following type
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<—8¢2/621 + 20(9(252/822
a¢1/82’1 — z08¢1/8z2

with (d)l, d)g) mn BiI‘(PQ).

6121, 22)s (21, zQ>>

Assume now that ¢ or ¢, really depends on 2y (i.e. that ¢ does not belong to the
Klein family). Then (x1) and (%4) imply

062 062\ 091 _ (061 061 0bs (va)
82:1 0 822 82:0 N 821 0 822 82:0 ' 5

One can rewrite (*5) as

Opa /021 — 200¢2 /020 Op1/021 — 200¢1 /0%

(9(,252/820 o 6¢1/820

Denote by a the map from Bir((C?’)C(w) to the set of rational functions in zg, z; and 29
defined by a(¢) = oo if ¢ belongs to £ and

_ 8¢2/321 - z03¢2/8z2 - 3¢1/321 - 208¢1/322

a(9) 2920 - 61920
otherwise.
If ¢1 and @9 are some first integrals of
0 0
Zy = —_— = — —
¢ 04(¢) 8250 821 + %0 82’2 ’

then (%5) is satisfied. One thus gets ¢¢ from (x1). Note that such a ¢ is not always
birational. But one can get a lot of birational examples in this way.

For instance when «(¢) = 0 one obtains a family of rational maps solutions of (x)
and Legendre involution is one of them. The set of birational maps of that family is
called Legendre family, i.e. it is the set of birational maps of the following form

<_ (0/020) (¢2 (Zo, —(22 + 2021)))

(0/020) (61 (20, —(22 + 2021))) 10, =2 202)), 020 =2 ZOZl))) .

REMARK 3.1.2. The Legendre family composed with the Legendre involution (right
composition) yields to the Klein family.

DEFINITION.  Let v be an irreducible curve; v is a legendrian curve if siw = 0
where s, denotes a local parametrization of +.

REMARK 3.1.3. Elements of the Klein family preserve the fibration {zl = cst, 29 =
cst}; note that its fibers are legendrian curves. The Legendre involution sends the
fibration {zo = cst, 29 + 2921 = cst} onto {21 = cst, 29 = cst}. Then of course if one
conjugates the Klein family by the Legendre involution one gets a family that preserves
the fibration by legendrian curves {zo = cst, 29 + 2021 = cst}.
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A direct computation implies:

PROPOSITION 3.1.4.  Let ¢ = (¢o, ¢1,$2) be a contact birational map of P3. The
map ¢ conjugates the foliation induced by Z, to the foliation induced by 0/0zy. As a
consequence the field of the rational first integrals of Zy is generated by ¢1 and ¢o.

The left translation action of J# on Bir((CS)C(w) is given by
(% ¢) SRS Bir(CS)C(w) — ?M? € Bir(cg)c(w)~

Take ¢ and % in Bir(C?’)C(w) such that a(¢) = a(y), then ¥, and 9 are first integrals
of Z,4 and by Proposition 3.1.4

1 = @1(d1, P2), Yo = pa(P1, P2)

where ¢ = (¢1, ¢2) is birational. Hence

Yot = (Yoo ¢ (21, 22), pa(21, 22))

belongs to J¢; in other words ¢ and ¢ are in the same . -orbit.

Assume now that 1) = k¢ where k denotes an element of #. Then the foliations
defined by Z4 and Z coincide because they have the same set of first integrals. As a
consequence «(¢) = a(v)).

Hence one can state:

THEOREM 3.1.5. The map « is a complete invariant of the left translation action
of Z on Bir((C?’)C(w), that is for any ¢ and 1y in Bir((C?’)C(w) one has a(¢) = a(v) if and
only if ¢~ belongs to KA .

QUESTION 1. Is the map « surjective 7

Let us consider the following differential equation
y'=F(z,y,y) (3.1)

where F' denotes a rational function. Set 3y’ = u, then

du
E :F(IIZ,y,U),
dy
3.1)e ¢ 2 =
B e Y=
dzx
— =1.
dt

So one can associate to (3.1) the following vector field

0 0 0
Z=F— +u—+ —.
ou +u8y * Or
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We say that (3.1) is rationally integrable if the vector field Z has two first integrals
r1 and 7 rationally independent: dry; A drg #Z 0.

For generic v and 3 in C the differential equation 4" +~y’ + By = 0 is not rationally
integrable; as a consequence —yzg — 8z2 is not in the image of . The first Painlevé
equation gives examples of polynomial of degree 2 that does not belong to im «:

THEOREM 3.1.6 ([12]). The equation Py
y' =6y" +
s mot rationally integrable.
If we come back with our notations it means that 6253 — z; is not in the image of a.

REMARK 3.1.7. Indeed all generic Painlevé equations give rise to rational functions
that do not belong to im a.

Nevertheless one can easily obtain examples of elements in the image of a:

ExXAMPLES 3.1.8. o If ¢ = (20/8,20 + Bz1,22 — 22/28) with 8 € C*, then
a(¢) = 5.
o If

¢ = (20,21 + P(20), 22 + Q(20))
with P, @ in C[zg] such that Q'(z0) = —2z0P’(20), then a(¢) = 1/P’(z).
o If
¢ = (— 21,20 + P(21), 22 + 2021 + Q(21))
with P, @ in C[z1] such that Q’(z1) = 21 P'(z1) then a(¢) = P'(21).
Consider the left translation action of Bir(C?),, on Bir(C?)(,) defined by
(1, ¢) € Bir(C?),, x Bir(C?)q(wy — 96 € Bir(C?)y ().

THEOREM 3.1.9. The map V is a complete invariant of the left translation action
of Bir(C3),, on Bir(C3)C(w): for any ¢, Y in Bir((C?’)C(w) one has V(¢) = V(¢) if and
only if e~ belongs to Bir(C3),.

PROOF. Let ¢ be a contact birational map of P3. Obviously (f¢)*w = V(¢)w for
any f € Bir(C3),.

Let us now consider two contact birational maps ¢ and v of P? such that V =
V(¢) = V(¢). On the one hand

(@) VW= (") V(@w=Vos () w

and on the other hand composing ¢*w = Vw by (¢~ 1)* one gets
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pw=Vu= (") (@w=>0")(Vw)=sw=Vod (¢ ) w
As a consequence (¢~ 1)*1)*w = w, that is ¢! belongs to Bir(C?),. O
PROPOSITION 3.1.10.  If ¢ and v are two contact birational maps of P? such that

a(¢) = a(y) and V(¢) = V(¢), then 1¢p~1 belongs to

{(w,y(m,zg + b(zl)) ‘ beC(z), ve PGL(Q;(C)} = ¢ NBir(C?),.

PROOF.  Since both a(¢) = a(¢)) and V(¢) = V(¢)) the map ¢¢~! is an element
of Bir(C3), N #. One gets the result from the descriptions of the Klein family and of
Bir(C3?),, (Proposition 2.2.1). O

Let us now give some examples of V(¢).
ExampLES 3.1.11. e If ¢ belongs to J#, then

_ 8(151/82’1 . 3¢2/822 — 8(251/322 . 8(252/821
8¢1/821 — Z08¢1 /822 ’

V(%)

o If

1

¢= (nzglzz +(n+1)z5(z1 +1)

,Zg (Z() + z9 + 2021) s —Zo>

with n € Z, then V(¢) = zo/((n + 1)z021 + nz2 + (n+ 1)z).

o If

22021 + 220 — 287 21 — 20

21— 20)% 229 + 22
¢=( ) : 0721—20),

then V(¢) = 2(20 — 21) /(28 — 22021 — 222).

REMARK 3.1.12.  If ¢ belongs to Bir(C?)(,,), then ¢*w = V(¢)w and ¢*(w Adw) =
V(¢)?w A dw and det jac ¢ is a square. This gives some constraint on V(¢).

As previously we can ask: is V surjective ? The answer is no. Indeed let us assume
that there exists ¢ € Bir((C3)C(w) such that V(¢) = z2. Then ¢odeog + dopo = zpz2dz1 +
d(23/2) and dep A dgy = d(2022) A dz1. Since the fibers of (2922, 21) are connected one
can write ¢g as po(z022,21) and ¢1 as p1(2022,21). Then ¢*w = V(¢)w implies that
¢ — 25 /2 = pa(2022, 21). In other words

.2
¢ = (@0(2022,21)7801(2022721)7@2(2022721) + 22) .

But ¢ o (20/22, 21, 22) is clearly not birational so does ¢: contradiction.
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3.2. Invariant forms and vector fields.
The next statement deals with flows in Bir(C?),, (see [13] for a definition).

PROPOSITION 3.2.1. Let ¢; be a flow in Bir(C3),. Then ¢; has a first integral
depending only on (2o, z1) and with rational fibers.
In other words

¢t = (¢i(20,21), 22 + be(20,21))
where @y belongs, up to conjugacy, to J and by to C(zo,21).
PROOF. Let x be the infinitesimal generator of ¢, i.e.

s
Ot lt=0

By derivating ¢;w = w with respect to ¢ one gets that the Lie derivative L,w is zero.
Set x = Z?:o x:0/0z;, hence

Lyw = 1y dw + deyw = xodz1 + zodx1 + dxe

and so

_ (%, 9x2 I, Ix2 X1, Oxe
Lyw = (zo B2 + 32()) dzo + (XO + 20 91 + 921 dz1 + | 20 925 + 95 dzs.

In particular zgx1 + x2 = v(20, 21), then xo + (8/921)(z0x1 + x2) = 0 80 x0 = —07v/0z1
and finally x1 = 97/0z0.

If ~ is constant, then x = 9/9z9, that is ¢, = (20, 21, 22 + Gt) with 5 € C.

Let us now assume that v is non-constant; one has

0y 0 oy 0 oy\ 0
X= 821 82’0 + 82’0 62:1 + <7(ZO, Zl) =0 820 Z9

and +y is a first integral of y. For all ¢
¢t = (do,t(20,21), P1,¢ (20, 21), 22 + be (20, 21))

and the function y is invariant by ¢; and as a consequence by the flow ;. The fibers
of v in C? (up to compactification /normalization) are rational or elliptic since they own
a flow. As () is uncountable they have to be rational ([9]) and up to conjugacy ¢
belongs to J. O

The following examples contain many flows.
EXAMPLE 3.2.2.  The elements of Aut(P?).(, can be written
(e20 + A, Bz1 + v, —BAz1 + €822 + 6)

with e, fin C* and A, vy, 6 in C. The group Aut(IP’S)C(w) acts transitively on C® = {23 = 1}.
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EXAMPLES 3.2.3. a) For any ¢, 8, v and 6 in C such that 6 — S # 0, the map

('yz1+(5)2z ez + 0 ;
ed — By O+

belongs to Bir(C?),,. These maps form a group contained in im K and isomorphic
to PGL(2;C).

b) The birational maps given by

° (Zo, 21+ ¢(z0), 22 + ¢(zO)) with zo¢'(20) +9'(20) = 0,
o (20— ¥'(21), 21,22 + ¥(21))

belong to Bir(C?),. Any of these families forms an abelian group.

The fact that an element of Bir(C?).,) preserves a vector field and the fact that it
preserves a contact form are related:

PROPOSITION 3.2.4.  Let ¢ be a contact birational map of P3. There exist a contact
form © colinear to w such that $*© = O if and only if V(¢) can be written U/U o ¢ for
some rational function U. In that case ¢ preserves the Reeb flow associated to ©, so a
foliation by curves.

PROOF. Assume that such a © exists. On the one hand ¢*w = V(¢)w and on the
other hand ©® = Uw. Hence
Uog
U

$'O=Uod-¢gw=Uod  V(¢)w= - V(9)©

and so if such U exists, one has V(¢) = U/U o ¢.
Reciprocally if ¢ € Bir(C?)q,,) \ Bir(C?),, satisfies ¢*w = (U/U o ¢)w for some
rational function U, then ¢*® = © where © = Uw. O

EXAMPLES 3.2.5. e First consider the Legendre involution £ = (z1, 29, —22 —
z0z1). As we have seen V(L) = —1. One can check that U = z9 + (z021/2) suits.

e For an element ¢ in Aut(P?), ()
d) = (SZQ + /\,ﬂzl + Y —B/\Zl + 5B22 + 5)
with €, 8 in C* and A, +, 0 in C (Example 3.2.2) we have V(¢) = ¢f. If

U= i
eBzoz1 + €vzo + BAz1 + Ay

then V(¢) = U/U o 6.

PROPOSITION 3.2.6.  Let ¢ be an element of Bir(C?) () \Bir(C?),,. Assume that ¢
preserves a vector field x non-tangent to w. Then ¢ preserves a contact form w' colinear
to w.
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REMARK 3.2.7. Under these assumptions ¢ preserves the vector field y and the
Reeb vector field Z associated to w’. With the previous notations if f = zox1 + X2
and g = z0Z1 + Z2 one has V(¢) = foo/f = go¢/g. In particular if H = f/g is
non-constant, then H is non-constant and invariant: H o ¢p = H.

PROOF OF PROPOSITION 3.2.6. Write x as x00/0z0 + x10/0z1 + x20/0z2 and ¢
as (¢o, ¢1,d2). Then ¢,y = x if and only if de;(x) = xi 0 ¢ for i = 0, 1 and 2. Therefore
d*w(x) = V(¢)w(x) can be rewritten

Bode1(x) +dp2(x) = pox1 0 ¢+ x200¢ = V(¢)(20 X1 + X2)-

The vector field y is not tangent to w, i.e. w(x) Z 0 or in other words zgx1 + x2 Z 0 and
SO

(zox1 + x2) © ¢.

Vig) = 2oX1 T X2

As a consequence ¢ preserves a contact form w’ colinear to w (Proposition 3.2.4). O

REMARK 3.2.8. Let ¢ € Bir(C?).(,) \ Bir(C?),,. Assume that there exists a vector
field x such that ¢.x = Wy. If W can be written U o ¢/U, then ¢ preserves the vector
field Y = Uy. According to Proposition 3.2.6 the map ¢ belongs to Bir(C?),,, where w’
denotes a contact form colinear to w.

3.3. Regular birational maps.

Let e; be the point of IP’(% whose all components are zero except the i-th.

Let us denote by Ho the hyperplane z3 = 0. As H, is the unique invariant surface
of ¢(w) one has the following statement:

PropPOSITION 3.3.1.  The hyperplane Hoo is either preserved, or blown down by
any element of Bir((C3)C(w).

EXAMPLE 3.3.2. Let ¢ be a birational map of the complex projective plane; ()
is polynomial if and only if ¢ = (821 4+, 822 + P(z1)) with P € C[z]; remark that such
a  is a Jonquieres polynomial automorphism. In that case

K(p) = (; ((520 _ 81;21)) Be1 47,62 +P(zl)) .

Note that deg P = 1 if and only if K(i) is an automorphism of P3. If deg P > 1, then
Ind K(p) = {z1 =23 = 0} and H ., is blown down onto es.

Proposition 3.3.1 naturally implies the following definition. We say that ¢ €
Bir((CS)C(w) is regular at infinity if Hoo is preserved by ¢ and if @3, is birational. We
denote by Bir((C?’)Z(zi ) (resp. Bir(C®)i%8) the set of regular maps at infinity that belong
to Bir(C?)c( (resp. Bir(C3),,).

EXAMPLE 3.3.3.  Of course the elements of Aut(P?).(,) (Example 3.2.2) are regular
at infinity.
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The contact structure is also given in homogeneous coordinates by the 1-form
@ = 20z3dz1 + 253d2z — (2021 + 2023)d23.

Let ¢ be an element of Bir((C?’)Z?i); denote by ¢ its homogeneization. Since ¢*w = V(¢)w

one has 6*5 = V(¢)w where V(¢) is a homogeneous polynomial. With these notations
one can state:

LEMMA 3.3.4. Let ¢ be a contact birational map of P3. Assume that ¢ either
preserves Heoo, or blows down Hoo onto a subset contained in Hoo.
The map ¢ is reqular if and only if V(@) does not vanish identically on Heo.

PROOF. Let us work in the affine chart zo = 1. On the one hand
TAdw = —22dzg Adzy Adzs
and on the other hand
P" (WA dw) = V(qﬁ)QU A dw.
Hence
—2 L= =2
$3 detjacd = V() 3 (3.2)

where ¢5 is the third component of ¢ expressed in the affine chart zo = 1.

Suppose that ¢ is regular. Let p be a generic point of H.,. As ¢ is regular, $|HOO
is a local diffeomorphism at p. Since ¢ is birational and p is generic, $p is a local
diffeomorphism. As a consequence det jac ¢ is an unit at p; moreover the invariance of
Hoo by ¢ implies that ¢; = z3u where u is a unit. Therefore V (¢) does not vanish at p.

Conversely assume that V(¢) does not vanish identically on H,. As ¢ either pre-
serves Hoo, Or contracts H,, onto a subset in H.,, one can write 53 as z3P. As a result

2

(3.2) < P? detjacg = V(o)

Since V' (¢) does not vanish the map ¢ is then regular at infinity. O
COROLLARY 3.3.5.  One has Bir(C?)r¢ = Aut(P?),,.

PROOF. Let ¢ be an element of Bir(C?)!*¢. From ¢*w = w, one gets with the
previous notations 5*5 = zy w for some integer n. Lemma 3.3.4 implies that n = 0,
that is a*w = w; then looking at the degree of the members of this equality one gets
degop = 1. g

ExXAMPLE 3.3.6. The group Bir((CS)Z(Zi ) contains blow-ups in restriction to Ho.
Indeed let us look at w in the affine chart zo = 1 and consider the birational map ¢ given
in zo =1 by

¢ = (20, 2021 — 23, 20%3).
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Since (¢™)*w = 2y "w, ¢" € Bir(C?’)ZfEi) ~ Bir(C?),, for any n # 0; in restriction to Hoo
the map ¢™ coincides with (zg, z12{)).

Let us note that Ind ¢™ = {e;} U (29 = 22 = 0), that zg = 0 is contracted by ¢ onto
(20 = 22 = 0) and 23 = 0 onto (zp = z3 = 0). Besides Ind¢™" = {29 = 20 =0} U {20 =
z3 = 0}, (20 = 0) is blown down by ¢! onto ez and (22 = 0) onto e;.

REMARK 3.3.7.  The group generated by Examples 3.3.3 and 3.3.6 is in restriction
to Ho and in the affine chart zo =1

YZo0 AZl
<<621 + N (B2 + A)) » (20, 2021)

reg

c(w)”

%6€<C*,>\€<C>;
it is of course a subgroup of Bir(C3)

QUESTION 2. Does this group coincide with Bir(C?’)Z‘zi) ?

EXAMPLES 3.3.8. a) If ¢ is either a monomial map (i.e. a map of the form
(2023, 2725) with [2 2] in GL(2;Z)), or a non-linear polynomial automorphism, or

a Jonquieres map, then K(¢) is not regular at infinity.

b) The map of order 5 given by (—(z2+ 1+ 2021)/202%, 22, (22 + 1)/21), the map
(20/(22 +1)2, 21, 22/ (22 + 1)) and Examples 3.2.3 a) are non-regular at infinity.

¢) Any map of the form

(Zlo — f'(22), 22,21 + f(Z2)>

is in Bir(C?)¢(.) \ Bir(C?), and is not regular at infinity.
d) Elements of the Legendre family are not regular at infinity.

3.4. Exact birational maps.
Recall that an element ¢ of Bir(C?),, is ezact if it can be lifted via ¢ to Bir(C?),,,

or equivalently if it belongs to im¢. The following statement allows to determine such
maps.

THEOREM 3.4.1. A map ((bo(zo,zl),d)l(zo,zl)) € Bir(C?),, is ezact if and only if
the closed form ¢od¢1 — zodzy has trivial residues. In that case ¢podps — zgdzy = —db
with b € C(zp,21) and

¢ = (¢0(20,21), ¢1(20, 21), 22 + b(20, 21))
belongs to Bir(C3),.

PROOF.  Remark that ¢ = (¢o(z0, 21), ¢1(20, 21), 224+b(20, 21)) belongs to Bir(C?),,
if and only if

¢podo1 — zpdzy = —db;
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in other words ¢gd¢; — zpdz; is not only a closed rational 1-form but also an exact one.
Recall that a closed rational 1-form © can be written ([14])

where the \; are complex numbers and the f;’s and g are rational. The 1-form © is exact
(i.e. the differential of a rational function) if A; = 0 for all ¢, that is if the residues of ©
are trivial. g

EXAMPLE 3.4.2. The set

{(A(zo), A’?ZO)) ‘A € PGL(2;(C)}

is a subgroup of exact maps isomorphic to PGL(2;C); it is a direct consequence of
Theorem 3.4.1.

An other direct consequence of Theorem 3.4.1 is the following statement:

COROLLARY 3.4.3.  The maps ¢ = (¢o,¢1) of Bir(C?), such that ¢odp1 — zodzy
has trivial residues form a group.

Let us deal with exact birational involutions.

Bertini gives a classification of birational involutions ([6]): a non-trivial birational
involution is conjugate to either a Jonquiéres involution of degree > 2, or a Bertini
involution, or a Geiser involution. More recently Bayle and Beauville precise it ([5]);
the map which associates to a birational involution of P? its normalized fixed curve
establishes a one-to-one correspondence between:

e conjugacy classes of Jonquieres involutions of degree d and isomorphism classes of
hyperelliptic curves of genus d — 2 (d > 3);

e conjugacy classes of Geiser involutions and isomorphism classes of non-hyperelliptic
curves of genus 3;

e conjugacy classes of Bertini involutions and isomorphism classes of non-
hyperelliptic curves of genus 4 whose canonical model lies on a singular quadric.

Besides the Jonquieres involutions of degree 2 form one conjugacy class.

PROPOSITION 3.4.4. Let T € Bir(P?) be a birational involution. If T is conjugate
to either a Geiser involution, or a Bertini involution, or a Jonquiéeres involution of degree
> 3, then T does not belong to Bir(C?),,.

Hence the only involutions in Bir(C?), are birationally conjugate to (—z9, —z1).
Some of them can not be lifted.

PROOF. Let us consider such an involution, then the set of fixed points contains
a curve I' of genus > 0 and thus it is not contained in the line at infinity. The jacobian
determinant of Z at a fixed point of I" is —1 hence Z does not preserve 7.
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Contrary to the polynomial case (Proposition 2.2.8) Bir(C?), contains periodic ele-
ments that are non-exact. Consider the map (¢o(z0, 21), ¢1(%0,21)) where

1

$o(20,21) = —20 + 21

o1(20,21) = —215

it is a birational involution that preserves 7. Furthermore the 1-form ¢od¢; — 29dz; has
non-trivial residues and so is not exact (Theorem 3.4.1). O

We will now focus on quadratic exact birational maps.
Any birational map of P2 can be written as a composition of birational maps of
degree < 2 (see for instance [1]). The three following maps are birational and of degree 2

o: P? - P2, (20 : 21 : 22) —-+ (2122 : 2022 : 2021),
p: P? ——5 P2, (20 : 21 : 22) ——» (2022 @ 2021 : 23),
7: P? -5 P2, (20 : 21 : 22) —=» (2022 + 22 : 2129 : 22).

Denote by ]DSirg(]P’Q) the set of birational maps of P? of degree 2 exactly; for any ¢ €
Bir(P?) set

O(¢) = {goh™"|g, b € Aut(P?)}
one has ([13])
Biry (P?) = O(0) U O(p) U O(7).

Let us now describe the quadratic birational maps that preserve 7; note that 7
preserves 7. Consider T the set of pairs (g(’y), g(ﬁ)) where

Bozo + Brz1 + P2 B3z0 + Baz1 + 55)
Bezo + Prz1 + Bs’ Bezo + Brz1 + Ps

in Aut(P?) x Aut(P?) such that

9(B) = (

3
%6 =0, 7Bs=0, 77B1=0, detgdeth= (y785+s)" -

PROPOSITION 3.4.5. A quadratic birational map that preserves n belongs to O(r).
More precisely a birational map belongs to Birs(P?) N Bir(C?),, if and only if it can
be written g (20 + 237, 21) b with (g,b) in Y.

PrOOF. Let ¢ be in Bir(C?), N Biry (P2); it is sufficient to prove that ¢ & O(c) U
O(p).

Assume by contradiction that ¥ belongs to O(o), i.e. ¢ = goh with g = g(v),
h~! = g(B). One can rewrite ¢*n = 1 as o*g*n = h*n; this last one relation is equivalent
in the affine chart z3 = 1 to

det g) 202 det b
( ) Lat 31 = 37 (33)
(V621 + 720 + Y82021) (Bszo + Brz1 + fs)
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the coefficients g and 7 have thus to be zero and (3.3) is equivalent to

det g n = det b .
gL e (Bozo + Brz1 + 58)3

and this equality never holds.

A similar argument allows to exclude the case: ¥ € O(p). This proves the first
assertion.

Let us consider 1 = g7 b in Biry(P?) N Bir(C?), with g = g(7) and b = g(3). The
1-form 7 has a line of poles of order 3 at infinity so does 1/*n and so does (29 + 2%, 21)*g*n.
But

det g

(20 + 21, 21) g™ = ; 571
(v6(20 + 23) + 7721 + 78)

therefore 74 has to be 0. This implies that
N detg deth
Yy = 37
(v7(Bszo + Baz1 + Bs) +7s)

as a consequence Y*n = n if and only if
3
%6 =0, vBs=0, v7Bs=0, detgdeth= (y785+7s) - O

THEOREM 3.4.6. A generic element of Biry(P2) N Bir(C?),, is not ezact.
In fact there exists a non-empty Zariski open subset T of T such that no element of

{a(v) T a(8) | (8(7),8(8)) € T}
18 exact.

Proor. It is sufficient to exhibit a non-exact element. Let us recall that the
birational map ¢ = (¢o,$1) belongs to Biry(P?) N Bir(C?), if and only if it can be
written as g(vy) 7 g(5) with (g(v),9(8)) in T (Proposition 3.4.5).

If we consider the special case v; = 5; = 0 for any i € {1, 2, 3, 4, 6, 8}, 75 = 7 and
Yo = 7733/ Bof then

_ Bgdzl
BoBrz1

But det g(3) # 0 so 85 # 0 and ¢ can not be lifted to Bir(C3),,.
The set Y is rational hence irreducible, this yields the result. g

2pdz1 — ¢ode1 =

Let us end this section with examples of exact maps.

PROPOSITION 3.4.7.  Let ¢ be an automorphism of P?; the map ¢ is exact if and
only if ¢ is affine in the affine chart zo =1 and preserves n, that is

¢ = (G020 + Boz1 + 70,120 + 121 + 1)
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with (Si, ﬁi, Yi i C such that (50,81 — (Slﬂo =1.

PROOF. The form 7 has a pole at infinity so if ¢ € Aut(P?) preserves 7, it preserves
the pole. Hence ¢ belongs to Aff, so in particular to Aut(C?),, and then ¢ is exact. [

We will now consider the subgroup of Bir(C?),, that preserves the fibration 29z =
cst fiberwise. The following statement says that this subgroup is not isomorphic to the
subgroup of Bir(C?),, that preserves z; = cst fiberwise.

PROPOSITION 3.4.8. The set

A= { (Zo a(zoz1), a(;lzl))

is a subgroup isomorphic to the uncountable abelian subgroup {(a(z1)z0,21)|a € C(z1)*}
and is contained in Bir(C?),.

Any birational map of the form (zo a(zo,zl),zl/a(ZO,zl)) that preserves n belongs
to A.

A generic element of A is in Bir(C?), but not in ims.  More precisely
(z0a(z021), z1/a(z021)) € A is exact if and only if a is a monomial.

If a is a monomial, i.e. a(z9z1) = czbzy with ¢ € C* and p € 7Z, then the -lifted
maps are

ac (C(t)}

21
zoczh 2, ——, 22 — pzoz1 + B ), B ecC.
czb 2t

071

These maps form a subgroup of Bir(C?),, isomorphic to C x C* x Z.

PROOF. The first assertion follows from

Z1

(zo a(zo21),

a(zozl)> = (2o, 2'021)*1(;;0 a(z1), 21)(z0, 2021)-

A direct computation shows that A C Bir(C?),.
A birational map (zo a(z0, 21), 21/a(z0, 21)) preserves n if and only if

0 0
(20820—21821> (a)—O

that is, if and only if a = a(zpz1).
Let us consider ¢ = (¢o, ¢1) = (20 a(2021), 21/a(2021)) an element of A; then

a'(t) gt

¢podp1 — zodzy =1 )

with ¢t = zg21. Let us write a as follows:
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then

a'(t) —~
t dt =t dt

(t) t—t;

and the residues of this 1-form are trivial if and only if a is monomial, i.e. a(t) = ct*
where ¢ € C* and p € Z. 0

We can determine J N Bir(C?), and the exact maps in J N Bir(C?),,.

PROPOSITION 3.4.9. A Jonquiéres map of P? preserves 1 if and only if it can be
written as follows

<<721 ik 2o +7(21)

ed — Py

where 1 belongs to C(z1) and [i g] to PGL(2;C).

Furthermore it is exact if it has the following form

(yz1 +6)? 5 €21+ 0
(65 ~ 5 2o + P(z1)(y#1 + 0)7, P

where P denotes an element of C[z1].

2 —I—,@’)
Tyz1 46

Let us now look at monomial maps that belong to Bir(C?),, and those who are exact.

PROPOSITION 3.4.10. A monomial map belongs to Bir(C?), if and only if it can
be written either

11 1, o
(et 2arate) (3.9

or

with v in C* and p in Z.
Furthermore any monomial map of Bil"(((:2)77 15 exact.
The s-lifts of a map of type (3.4) are
p_ p—1 1 1—p _2—p
(72021 ) ;Zo 21 Yzt (p—1Dzoz + 5) BeC
similarly the s-lifts of a map of type (3.5) are

14,
(b =22 e s+ (L= pzoma + ) gec

REMARKS 3.4.11. e Both maps of type (3.4) and of type (3.5) preserve
(2021)% = cst.
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p p-l1
1-p2—p
SL(2;7); they are stochastic up to transposition and have trace equal to 2. The

group
p p—1 ’
L2,82,) lrez)

is isomophic to Z. As a consequence G is isomorphic to C* x Z.

e Maps of type (3.4) form a group G;. Note that the matrices [ | are in

P p+1]

The maps of type (3.5) don’t form a group. The corresponding matrices [l—p =

have determinant —1, trace 0 and are stochastic up to transposition.

But the union of the maps of type (3.4) or (3.5) is a group which is a double
extension of C* x Z.

3.5. Indeterminacy and exceptional sets.

As we have seen if ¢ is a contact map, then H, is either preserved by ¢, or blown
down by ¢ (Proposition 3.3.1). In case it is blown down, H can be blown down onto a
point or onto a curve; in this last eventuality H ., can be contracted onto a curve contained
in Heo (take for instance ¢ = K(z1,2122)). Note also that H, can be contracted onto a
curve not contained in Heo: the map K(z1/22,1/22) blows down Ho, onto the legendrian
curve zg = 2o = 0. We will see that this is a general case and for any contracted surface:

PROPOSITION 3.5.1.  Let ¢ be a contact birational map of P3. Assume that ¢ blows
down a surface S onto a curve C. Then

e cither C is contained in Hao,
e or C is an algebraic legendrian curve.

COROLLARY 3.5.2. Let ¢ be a contact birational map of P3. If C is a curve not
contained in Heo and blown-up by ¢ on a surface distinct from Heo, then C is a legendrian
curve.

Let us now give an example of maps of finite order that illustrates Proposition 3.5.6.

EXAMPLE 3.5.3. Start with the birational map ¢ = (22, (22 + 1)/21) of order 5.
The map K(¢) = (—(22 + 1 + 2021) /2023, 22, (22 + 1) /21) blows down 29 = —23 onto the
legendrian curve (zz = z1 + 23 = 0);

PROOF OF PROPOSITION 3.5.1.  We will distinguish the cases S = Hoo and S #
Hoo-

Let us start with the eventuality S = Ho,. Suppose that C is not contained in H..
Note that ¢z < ina¢ is holomorphic of rank < 1. If p belongs to C \ Ind ¢, then o~ 1(p)
is a curve contained in H.; there exists a curve C’ transverse to

{67 (p)|p € C ~Ind ¢}

contained in H, and such that ¢(C') = C. Consider a parametrization s of C’; then
t = ¢ o s is a parametrization of C and
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t'w=(pos)'w=5'w=s5V(pw=V(p)os-s'w=0.

Assume now that S # Heo and C ¢ Heo. Set C = ¢(S). Let us consider a generic
point p of S. The germ ¢, is holomorphic and ¢(p) € C does not belong to Heo. In
particular the 3-form ¢*w A dw is thus holomorphic at p; in fact V(¢) , is holomorphic
and as we have seen

¢*w A dw =V (¢)’w A dw.

Since S is blown down by ¢, the jacobian determinant of ¢ is identically zero on S and
then V' (¢) vanishes on S.

Assume that C is not a legendrian curve, then the restriction of w to C in a neigh-
borhood of ¢(p) defines a 1-form O on C without zero (let us recall that p is generic). As
the restriction

¢ap|5,p : Svp - Ca¢(p)

is locally a submersion, gb*pls p@ is a nonzero 1-form on &§,,: contradiction with the fact
that ¢* w vanishes on S . O

There is no statement if ¢ € Bir(C?’)C(w) blows down H, onto a point. Indeed

K zZ1 21 o 22 + 32’021 zZ1 21

22723 ) \2a(ze —22021) 23" 23
contracts Hoo onto ez & Hoo but K (2129, 2123) contracts Heo onto es € Hoo. But we get
some result when ¢ € Bir((CB)C(w) blows down a surface distinct from H., onto a point.

DEFINITION. Let ¢ be a contact birational map of P2. Let S = (f = 0) be an
irreducible surface blown down by ¢, and let p be a smooth point of S such that ¢ and
V(¢) are holomorphic at p. The multiplicity of contraction of ¢ at p is the greatest
integer n such that f7 divides V(¢). One can check that n is independent on p. The
integer n is the multiplicity of contraction of ¢ on S.

REMARK 3.5.4. Let ¢ be a contact birational map of P3. If ¢ is holomorphic at
p € P2\ Hoo, then V() is too.

EXAMPLE 3.5.5. Let us consider the birational map ¢ defined in the affine chart
z1 =1 by

2
¢ = ( 0% PR 2% 723) )
(22 + 23)%7 (22 + 23)

in this chart w = dza — (20 + 2223)/22 d23 and one can check that V(¢) = 23 /(22 + 232).
Furthermore H, is blown down by ¢ onto the point (0,0,0) ; the multiplicity of con-
traction of ¢ on H, is thus 2.
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PROPOSITION 3.5.6. Let ¢ be a map of Bir(C?’)C(w) and let S be an irreducible sur-
face distinct from Hoo blown down by ¢ onto a point p. If the multiplicity of contraction
of  on S is 1, then p belongs to Huo.-

REMARK 3.5.7. As soon as the multiplicity of contraction of ¢ on S is > 1, the
point p can be in P3 \ Ho. Let us consider the map of Bir(C?’)C(w) given in the affine
chart z3 = 1 by

( 29(nzoz1 — 22)

n—1 n
—— " 212y , %1%y
) )
zo+ (1 —n)zoz1

with n € Z. The surface zo = 0 is blown down onto e3 € Hs,. One can check that
V(¢) = #2125 /(22 + (1 — n)zpz1) so the multiplicity of contraction of ¢ on z, = 0 is n if
n > 2 and 0 otherwise.

PROOF OF PROPOSITION 3.5.6. Assume by contradiction that p = (po,p1,p2)
does not belong to Heo. Let (f = 0) be an equation of S; as the multiplicity of con-
traction of ¢ on S is 1 one has V(¢) = fVi with Vs generically regular. There exists
a point m € S such that f,, is a submersion and ¢ is holomorphic at m. One has
ém = (po + fA,p1 + fB,p2 + fC) with A, B, C holomorphic and ¢%,w = V(¢)w can
be rewritten

(fA+po)(fdB + Bdf) + (fdC + Cdf) = fVi(zodz + dz). (3.6)

This implies that there exists C7 holomorphic such that pgB + C = fCi, ie. C =
fC1 — poB. Hence

(3.6) <= fAAB + ABAf + fdC, + 2C1df = Vi (z0d21 + dzs). (3.7)

The multiplicity of contraction of ¢ on S is 1 hence f does not divide V3. Then S is
invariant by w and this gives a contradiction with the fact that H, is the only invariant
surface of w. 0

For elements in Bir(C?),, we only have one statement that includes both cases of a
surface contracted onto a point and onto a curve. Let us remark that in the case of a point,
we don’t need the assumption about the multiplicity of contraction; in the other one the
statement shows that Proposition 3.5.1 applies to elements of Bir((C3)c(w) ~ Bir(C?),,.

PROPOSITION 3.5.8.  Let ¢ be a map of Bir(C?),,. If S is a surface distinct from
Heo contracted by ¢, then ¢(S) belongs to Hoo.

ProOOF. From ¢*w = w one gets ¢* (w A dw) =wAdw =dzyg Adz; Adze. Suppose
that for p € S generic ¢(p) does not belong to Hy,. As codimInd ¢ > 2, the map ¢ is
holomorphic at p. Since ¢ preserves the volume form, ¢ is a diffeomorphism; hence ¢
cannot blow down a subvariety onto a curve or a point not contained in H.. O

EXAMPLE 3.5.9. If ¢ = (¢1, ¢2) = (21249, 2725), with [2 9] € SL(2;Z), then
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_ _g —T22+ 82021
K(¢)= |21 "oy ' ——————, 2123, 212 | .
Pz2 — qzoz1

Note that for any [2 ] € SL(2;Z) the map K(¢) belongs to Bir(C?).(,) ~ Bir(C?),,.
For instance if [2 ] = [ ' °], Le. if 0 = (1/20,1/21) is the Cremona involution,
then
P11
Klo) =Ko\ =251, — —
(o) =Ko~ = (51 2.2

and Ind (o) = {20 = 20 = 0} U {20 = 23 = 0} U {21 = 20 = 0} U {21 = 23 = 0};
furthermore z5 = 0 and H,, are blown down onto e; and z; = 0 onto es.
4. Some common properties.

4.1. Invariant curves and surfaces.
The following statement is a local statement of contact analytic geometry.

PROPOSITION 4.1.1.  Let ¢ be an element of Aut(C3),, or Bir(C?),. Suppose that
m is a periodic point of ¢ and that there exists a germ of irreducible curve C invariant
by @, passing through m. Then

e cither C is a curve of periodic points (i.e. QS‘ZC =1id for some integer {),

e or C is a legendrian curve.

Let us note that according to Proposition 4.2.4 we know that such a situation often
occurs.

PROOF.  Assume that ¢ belongs to Aut(C?),. Up to considering a well-chosen it-
erate of ¢ let us assume that m is a fixed point of ¢. Let s — 7(s) be a local parametriza-
tion of C at m. Up to reparametrization one can suppose that v(0) = m. Let ¢ be the
“restriction” to C of ¢, that is the local map ¢: C g — C defined by ¢(0) = 0 and

Vs€Co o(v(s) =v(p(s))

On the one hand v*w = £(s)ds and on the other hand v*w = y*¢*w = (¢ 0 ¥)*w so

e(s)ds = p*(e(s)ds) = e(p)p'ds.

Let us set £(s) = [; £(t)dt. One has (&) = e(p)¢’ = e(s) = (£(s)) hence
g(gp):zs—l—ﬂforsomeﬂe(c As<p(0):07onegetsﬂ—0an g(¢) = €. Then:
e cither € = 0 therefore ¢ = 0 and C is a legendrian curve.
e or there exists some local coordinate for which & = 2¢, ¢ = e?7™*/¢ » and ¢fc =
id. O

If ¢ is a polynomial automorphism of C? that preserves a curve distinct from the
line at infinity, then ¢ is conjugate to a Jonquiéres polynomial automorphism ([8]); in
particular ¢ preserves a rational fibration. We have a similar statement in dimension 3:
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PROPOSITION 4.1.2.  If ¢ € Aut(C?),, preserves a surface, then

¢ = (¢(20,21), 22 + b(20, 21))
where ¢ is Aut(C?)-conjugate to a Jonquiéres polynomial automorphism.

PROOF. Let us write ¢ as (¢0(z0, 21), $1(20, 21), 22+b(20, 21)) and set ¢ = (¢o, ¢1).

First note that if b6 = 0 then ¢od¢1 — z0dz1 = 0; as a result ¢1 = ¢1(21) and ¢ is a
Jonquieres polynomial automorphism.

Let us now assume that the surface S preserved by ¢ is described by

ae(20,21) 75 + ap_1(20,21) 25 + ap_o(20,21)25 2 +--- =0
where a; € C[z, z1], or equivalently by
26+ Tp_1(20,21) 25 4 @_a(20, 21)2572 +---=0
where @; = a;/ap. Writing that S is invariant by ¢ one gets that

(22 + b(z0, zl))e + ao—1(p(20, 21)) (22 + b(z0, zl))e_1

~ —
+ ar—2(p(20, 21)) (22 + b(20, 21)) ~ + -+
= 25 +ar1(20,21) 28 "+ Ar—a(20,21)25 2+ -

Looking at terms in 25~ one gets that ¢b(zo,z1) = G—1(20, 21) — Ge—1(¢(20, 21)).
e If ay_; is constant, then b = 0 and as we just see ¢ is a Jonquiéres polynomial
automorphism.

e Otherwise ¢ is conjugate (in Bir(P?)) via (29, 21,22 + a¢—1/f) to 1 = (¢, 22). The
map 1) preserves W = zodz; + d(z2 + ay—_1/¢), the surface S given by

zﬁ + ar—2(20, zl)zg_z + a¢—3(20, zl)zﬁ_?’ +---=0

and thus @;(¢) = @;. If one of the @; is non-constant, then ¢ is a Jonquiéres polynomial
automorphism. Otherwise S = Uj(z2 = ¢;); up to take an iterate Y* of 1 one can
suppose that any zp = c; is invariant. Consider zp = cp; up to a well-chosen translation
(that belongs to Bir(C?),,) the hypersurface zo = 0 is invariant, that is ¢* is a Jonquieres
map and so does 1. O

EXAMPLE 4.1.3.  For any n > 1 consider ¢ = (2o + 2}, 21,22 — 21" /(n + 1)) in
Aut(C?),. The map ¢ = (29 + 27,21) is a Jonquiéres polynomial automorphism. The
surface S given by zo + z021/(n 4+ 1) = 0, is invariant by ¢. The foliation induced by w
on &S is described by the linear differential equation nzgdz; — z1dzg. In fact the functions
zo + z02z1/(n+ 1) and z; are invariant by ¢ and the commutative Lie algebra generated
by the vector fields 9/0zg + z1/(n+ 1) - /02 and 0/0zo are invariant by ¢.

In general an element of Aut(C?),, has no invariant surface. For instance there is no
polynomial solution to
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n+1
41

n+1

—a(p(z0,21)) +a(z0,21) = — +

with ¢ = (20 + 27", 21) as soon as 8 # 0.

REMARK 4.1.4. If ¢ € Bir(C?), preserves zo = 0, then ¢ belongs to the Klein
family; more precisely ¢ = (zo/v'(21),v(21), 22) with v € PGL(2;C(z1)). Indeed since ¢
belongs to Bir(C?),,

¢ = (6250(20»21)7 #1(20, 21), 22 + b(20, 21))

But ¢ preserves 2o = 0 s0 b = 0 and ¢*w = w implies that ¢1 = v(z1) with v €
PGL(2;C(z1)) and ¢g = 2zo/V'(21).

Of course there are more general contact maps that preserve zo = 0; let us give some
examples:

22

K|z, ———
<Zl a(z1)z2 +1
where a € C(z1)* and P € C[zs].

) , K(z1 + P(22), 22)

Let ¢ be an element of Bir(C?),. Suppose that ¢ preserves a surface S distinct
from Hoo. The contact form is non-zero on S so induces a foliation F on S, necessarily
invariant by ¢; let us describe (S, ¢s, F):

PROPOSITION 4.1.5. Let ¢ be an element of Bir(C3),, that preserves a surface
distinct from Hoo. Then ¢ is Bir(P3?)-conjugate to (p(20,21), 22) with ¢ in Bir(P?). The
map @ preserves a codimension 1 foliation given by a closed 1-form. As a consequence
¢ preserves a “vertical” foliation and a rational function zo + a(zg,21).

PROOF.  Let us denote by S the surface invariant by ¢ = (¢(z0, 21), 22 + b(20, 21))
with ¢ € Bir(P?). One can assume that S is given by

—1

25+ ap_1(20,21)25 L+ =0.

The fact that S is invariant by ¢ implies that as—1 (20, 21) — ar—1 (4,0(207 21)) =0b(z0,21).
Let us consider the map v = (2o, 21, 22 + (a¢—1(20, 21))/¢). One has

¢ =yt = <<P(zo,z1)322 + b(20,21) — a€71<;0’zl) + aél(@ézo’zl))>

= (np(zo,zl),zg).

As S and w are invariant by ¢, the restriction ¢ s preserves the foliation induced by w

on S, and 5 preserves the “vertical” foliation given by zodz1 — das—1(20, 21). Therefore
 preserves a codimension 1 foliation given by a closed 1-form. O

EXAMPLE 4.1.6. If ¢ = (22,212%), then K(¢) = (— (25 /z0) + nz1, 212%, 22) belongs
to Bir(C?).( \ Bir(C?),,, preserves the surface z; = 0 and also z = cst.
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4.2. Dynamical properties.

Let us first focus on periodic points.

Let ¢ be a birational map of P™; a point p is a periodic point of ¢ of period £ if ¢ is
holomorphic on a neighborhood of any point of {¢7(¢q)|j =0, ..., —1} and if ¢*(¢) = ¢
and ¢?(q) #qfor 1 <j</l—1.

Recall that a polynomial automorphism of C? of Hénon type (see [19]) has an infinite
number of hyperbolic periodic points. For any of these points p of period ¢, there exists
a stable manifold W#(p) defined as the set of points that move towards the orbit of p
by positive iteration of ¢’»; such a W#*(p) is an immersion from C to C2. Remark that
even if W#(m) # W?*(p) are different as soon as p and m have distinct orbits one has
W#(m) = W5(p). The Julia set of ¢ is the topological boundary of the set of points with
bounded positive orbits. One can prove that the Julia set of ¢ is equal to the closure of
any of the stable manifold. Hence its topology is very complicated: this set contains an
infinite number of immersions of C and pairwise distinct ([19]).

ExAMPLE 4.2.1. Let us consider a polynomial automorphism ¢ of Hénon type
given by ¢ = (Bz1 + 22, —vz0). A ¢-lift of ¢ to Aut((CS)C(w) is

6= (821 + 28, —v20, 987 + 18702 + 344 ).

Take a periodic point (po,p1) of ¢ of period k; then as ¢* = (p*(z0,21), (v8)F22 +
f(z0, zl)) one gets, as soon as (3 is not a root of unity, that there exists po such that
¢*(po, p1,p2) = (po, p1,p2)-

More generally, one can state:

PROPOSITION 4.2.2.  Let ¢ the element of Bir(C?)c(.) of the following type

¢ = (¢, det jacpza + b(20, 21))

with ¢ in Bir(P?) and b in C(zg, 21).
If det jacp is not a root of unity, then any periodic point of ¢ can be lifted into a
periodic point of ¢.

COROLLARY 4.2.3. Let ¢ be a polynomial automorphism of C? of Hénon type. A
s-lift of v has an infinite number of periodic points that lift the hyperbolic periodic points

of .

QUESTION 3. Let ¢ be a Hénon automorphism and let ¢ be a ¢-lift of . The
closure of the hyperbolic periodic points of ¢ is the Julia set of ¢; in particular it is a
Cantor set. Is the closure of the set of periodic points of ¢ a Cantor set 7

Let us consider a Hénon automorphism ¢ = (1, p2) and let m be an hyperbolic
periodic point of ¢; then the matrix
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v O
821 62’2
o1 O
(92’1 62’2

is a non-parabolic one and so zy — (—0p2/0z1 + Opa/0z2 29)/(Op1/0z1 — Op1 /022 2p)
has two fixed points. We can thus state the following:

PROPOSITION 4.2.4. Let ¢ be an automorphism of C? of Hénon type; to any
periodic point of period £ of ¢ corresponds two periodic points of period £ of K(p) €
Bir(C3)C(w) .

A similar question as Question 3 is the following:

QUESTION 4. Let ¢ be a polynomial automorphism of C2? of Hénon type; what is
the topology of the distribution of periodic points of (¢) ? Is it a discrete set ? Is its
closure a Cantor set ?

REMARK 4.2.5. Let us consider an element (gbo (20, 21), 91(20, 21), 22 + b(20, zl)) of
Bir(C?),,. Then ¢; = (¢0(zo,zl),¢1(zo,zl)722 + b(z0,21) + t) belongs to Bir(C3),,. If
p = (po,p1,p2) is a fixed point of ¢, then (pg,p1) is a fixed point of ¢ = (¢g, 1) and
b(po,p1) +t = 0. In particular if ¢ only has isolated fixed points (that is ¢ has no curve
of fixed points, which is the case in general), then ¢; has no fixed points for ¢ generic.

Similarly, if ¢ has a countable number of periodic points, then for ¢ generic ¢; has
no periodic points.

We will look at degree and degree growths of some contact birational maps.
In the 2-dimensional case, that is if ¢ belongs to Aut(C?), or Bir(IP?), then degp =
deg ¢ 1. This equality is not true in higher dimension; for instance if

¢ = (25 + 25 + 21,25 + 20, 22),

then ¢! = (21 — 23,20 — (21 — 23)% — 23,22). What happens in our context ? The
equality degy = degp ! still does not hold; indeed if (¢o, ¢1, 22 + b(20, 21)) belongs
to Aut(C?),, then —db = ¢odd — 20dz; and degb = deg ¢ + deg ¢;. For instance if
o= (20 + (2§ — 20)%, 23 — 20), then

go_l = ((zo - z%)?’ — 21,20 — z%)

Hence the degree of the ¢-lifts of ¢ (resp. p=1) is 9 (resp. 8).
Let ¢ and v be two birational self-maps of P3. We will say that the degree growths
of ¢ and 1 are of the same order if one of the following holds

o (deg¢™), and (deg ™), are bounded,

e there exist an integer k such that lim,,_, o, deg ¢ /n* and lim,,_, ;o deg )™ /n* are
finite and nonzero,

o (deg ™), and (degy™),, grow exponentially.
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Let ¢ be a polynomial automorphism of C?; let us recall that ¢ has either a bounded
growth or an exponential one ([19]). Denote by ¢ a ¢-lift of ¢ to Aut(C?).(,

¢ = (i, det jacy 2o + b(20,21)).
Note that b belongs to C|zo, 21] and so deg b(¢?(29,21)) < degbdeg ¢’ for any j. Hence
deg " < deg ¢™ < max(deg ", degbdeg " 1)

and
o if (deg ™), is bounded, then (deg¢™),, is bounded,
o if (deg ™), grows exponentially, then (deg ¢™), grows exponentially.

Remark that if 1 is a polynomial automorphism of C? linear growth is also possible ([7])
and this eventuality does not appear when we look at elements of Aut(Cg’)C(w).

In the case of the ¢-lift of an exact element of Bir(C?), we cannot give formula
because we are not dealing with polynomials. But the degree growth of a ¢-lift ¢ of
an exact element ¢ of Bir(C?), and the degree growth of ¢ are the same. Indeed set
©" = (¢o,n,1,n) for any n > 1. On the one hand

¢" = (Po,n, P1,m> 22 + b(20, 21) + b(po,1, 01,1) + 00,2, 1,2) + -+ b(Lon—1, P1,n-1))

with db = z9dz; — @pdpy, but on the other hand ¢" = (gpom, D1, 22 +g(zo, zl)) with
db = zodz1 — @o,nde1,,. Using this last writing one gets the statement.

Let ¢ be a birational self-map of P2, For any n > 1 set ¢" = (¢1n,P2.0) =
(Pin/Qim, Pon/Q2n) With P; ,, Qi n € Clzo, 21] without common factor; denote by p; 4
(resp. ¢in) the degree of P;,, (resp. Q;n). Of course deg¢™ = max(p1n + ga,n,P2,n +
@1n, @1, + g2,n) and since

K(o)" = K(¢")
9Qa2,n OPs n OP3 n 9Q2,n
Q%,n P27" 0z1 QQ," 0z1 + (QZ’H 8za PQ;" Oza ) <0 P17n P2,n
2 OP1,y, 9Q1.n P, 9011 ’ ’
Ql,n Ql,n L Pl,n Din _ (Ql,n L Pl,n 241 ) 20 Ql,n QQ,TL

0z1 0z1 Oza 0z2

one gets deg ¢n S deg K((b)n S max(4q2)n +p2,n + 17 2pl,n + 2q17n + q2,n + 1; P2.n + 3q1,n +
pl,n + 1)

PROPOSITION 4.2.6. o Assume that G = Aut(C?) or G = Bir(C?),.. Let ¢ be
an element of G, and let ¢ be a s-lift of p. The degree growths of ¢ and ¢ are of
the same order.

o Let ¢ be a birational self-map of the complex projective plane, and let us consider
K(p) the image of ¢ by K. The degree growths of ¢ and K(p) are of the same
order.

Let us end this section by some considerations about centralisers of contact birational
maps.
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If G is a group and f an element of G, we denote by Cent(f, G) the centraliser of f
in G, that is

Cent(f,G) = {g € G| fg =g}
Let ¢ be a polynomial automorphism of C?, then ([19][26])
e cither ¢ is conjugate to an element of Jo and Cent (ga, Aut((CQ)) is uncountable;

e or ¢ is of Hénon type and the centraliser of ¢ is isomorphic to Z x Z/pZ for some
.

Let H be the set of polynomial automorphisms of C? of Hénon type.

PROPOSITION 4.2.7.  Let ¢ be a polynomial automorphism of C? and let ¢ be one
of its s-lift.

o [f detjacpy = 1, then Cent(¢7Aut((C3)w) is uncountable and isomorphic to
Cent(¢) x C.

o [fdetjacp # 1 and ¢ belongs to H, then Cent(qb, Aut((C?’)C(w)) is countable and
isomorphic to Cent(yp).

PROOF. One can look at the restriction of ¢ to Cent (QS, Aut((C3)C(w)):
S|Cent (¢, Aut(C3)o () © Cent(cﬁ,Aut((Cg)C(w)) — Cent(np,Aut((CQ))
Of course
ker §|Cent (¢, Aut(C?)o)) € {(20,21,22+ B) | B € C}.
If det jacp = 1, i.e. ¢ belongs to Aut(C?),, then
ker qjcent (6, Aut(C?). (o)) = { (20,21, 22 + B) | B € C}

and the centraliser of a ¢-lift of ¢ is always uncountable even if Cent(go,Aut(CQ)) is
countable.

If det jac ¢ # 1, i.e. ¢ belongs to Aut(C?)\ Aut(C?),, then ker S|Cent (¢, Aut(C3) (o)) =
{id} and

Cent ((b, Aut ((C3)C(w)) — Cent (ap, Aut ((CQ)) .

In particular if ¢ belongs to (Aut((CQ) ~ Aut((C2)n) N H, then Cent(qb, Aut((C?’)C(w)) is
countable. O

REMARK 4.2.8. Contrary to the 2-dimensional case there exist some ¢ in Aut(C?),,
such that

e Cent(¢, Aut(C?),) is uncountable,

e and (deg ¢™)nen grows exponentially.
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A similar reasoning leads to:

PROPOSITION 4.2.9. Let ¢ € Bir(C?),, be an exact map, and let ¢ be one of its
s-lifts. Then Cent (¢, Bir(C?),,) is uncountable.

Let G = Aut(C?) or G = Bir(C?),,. Let ¢ be an element of G, and let ¢ be one of
its ¢-lift. In the following examples we look at the links between the ¢-lift of Cent(y, G)
and Cent (¢, G') where G' = Aut(C?)(,,) or Bir(C?)y ().

ExXaMPLE 4.2.10. In this example we give a polynomial automorphism ¢ and
maps in Cent (ga, Aut((C2)) whose only one ¢-lift belongs to Aut ((;5, Aut((C?’)C(w)) where ¢
denotes a ¢-lift of ¢.

Let us now consider the Hénon automorphism ¢ given by

¢ = (021, 82f — y20)
where 9§, 3, v are complex numbers such that §8 # 0, 68 # 1 and k& > 4. The map

1)
o= (521, ﬁzf — 20,0722 + 02021 — kiflzllﬂ-l)
is a ¢-lift of ¢. One can check that (zo,(z1), where ¢ € C* such that ¢¥ = ¢, commutes
with ¢. Among the ¢-lifts (Czo, 21,222 + ), B € C, only one commutes with ¢.

ExamMpPLE 4.2.11. We consider a polynomial automorphism ¢, a subgroup G
of Cent(yp,Aut(C?)) and G its ¢-lift. In the first example the inclusion G, C
Cent (¢7 Aut((C?’)C(w)) holds whereas in the second example it doesn’t.

Let us consider the polynomial automorphism ¢ = (8% + B424Q(27), Bz1) with
B € C*, Q€ Clz] and d, » € N. One can check that

G = {(20 +7z{,21) | v € C} C Cent (i, Aut(C?)).

The map ¢ = (892 + B924Q(=1), B21, B+125 — BP(21)) with P'(21) = 0Q(=]) is a c-lift
of . Let G¢ be the ¢-lift of G; the group
v e (C}

d+1
vz
Ge = {(204-72?’21722 - d—1k1>
is here contained in Cent (¢, Aut(C?)¢(.,).

Let ¢ be the polynomial automorphism given by ¢ = (29 + 2%, A\z1) with A € C* and
A £ 1A ¢lift of o to Aut(C?)(,) is

3
¢ = (Zo + 27, A21, Az — 51 +M>

for some p € C. Note that
2

G= {(5zo+ ;}:27:(]5-«31 +6,721)

6,76@*,56@}
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is contained in Cent (¢, Aut(C?)). Let us denote by G the ¢-lift of G; a direct computa-
tion shows that
i (2 =)

G, = {<5ZO+ %Zl +e,721,072 —

zf—*yezl—l—ﬂ) ‘5, veC* B, e€e (C}.
The inclusion G N Cent (qS, Aut((C3)C(w)) C G is strict; indeed

3

1
G N Cent(¢, Aut((Cg)C(w)) = {('yzzo +e,v21,73 2 — vez1 + z\ — 5) "y eCee (C}.

4.3. Non-simplicity, Tits alternative.

Let us recall that a simple group is a non-trivial group G whose only normal sub-
groups are {id} and G.

Danilov proved that Aut(C?),, is not simple ([15]). More recently Cantat and Lamy
showed that Bir(P?) is not simple ([11]). As a consequence one has:

ProprOSITION 4.3.1.  The groups
Aut(C?),, Bir(C?)y,, Aut(C?)e), [Aut(C?)er), Aut(C?)e()], [Aut(C?),, Aut(C?),]
are not simple.

PROOF.  Since [Aut(C?).(,), Aut(C?)e(y] =~ Aut(C?), and [Aut(C3),, Aut(C?),]
~ Aut(C?), the first assertion follows from [15].

The exact sequence (2.1) implies in particular that there exists a morphism with a
non-trivial kernel from Aut(C?),, into Aut(C?),, hence Aut(C?),, is not simple. A similar
argument holds for Bir(C?),, and Aut(C?)c(,- O

The morphism
Bir(C*)’*¢ — Bir(P?)

that consists to take the restriction of ¢ € Bir(C?)'*® to H,, has a non-trivial kernel;

indeed
P(zl) ! P(Zl)
¢ = Zo—< 21,22 + =
Q(z1) Q(z1)
with P, @) two polynomials of degree p, ¢ such that p < g+ 1, is regular and induces the
identity on Hso. In particular one gets the following statement:

PROPOSITION 4.3.2.  The group Bir(C3)'® is not simple.

Let us consider the maps ¢ = (y2321,1/720, 22 + 2021) and ¢ = (20 + 1/23, 21, 20 +
1/22%). One can check that 1 belongs to Bir(C?),, \ Bir(C?)"® whereas ¢ is in Bir(C3)res.
A direct computation shows that ¥~ '¢) blows down H, onto es. Hence one can state:

PROPOSITION 4.3.3.  The subgroup Bir(C3?)'® of Bir(C?),, is not normal.
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We will end this section by establishing Tits Alternative for Aut(C?),, Aut(C?)e (.
and Bir(C?),,.
The derived series of a group G is defined as follows

DO(G> =G, DI(G) = [G’G]’ R DnJrl(G) = [G7DH(G)]

The group G is solvable if there exists an integer k such that Dy (G) = {id}. The least £
such that D, = {id} is called the derived length of G.

A group G satisfies the Tits alternative if any finitely generated subgroup of G
contains either a non-abelian free group, or a solvable subgroup of finite index. This
alternative has been established by Tits for linear groups GL(n;k) for any field k ([28]).
Lamy proves that the group of polynomial automorphisms of Aut(C?) satisfies the Tits
alternative ([26]), so does Cantat for the group of birational maps of a complex, compact,
kéhler surface (see [10]). Note that the automorphisms groups of complex, compact,
kéhler manifolds of any dimension also satisfy Tits alternative ([10][27]).

THEOREM 4.3.4.  The groups Aut(C?),, Aut((C?’)C(w) and Bir(C?),, satisfy the Tits
alternative.

PROOF. Let G be a finitely generated subgroup of Bir(C?),,. Set
Go = ¢(G) C Bir(C?),.

Since Bir(C?),, is a subgroup of Bir(P?) that satisfies the Tits alternative, either Go
contains a non-abelian free group, or a solvable subgroup of finite index.

Assume first that Gg contains two elements f and h such that (f, h) ~ Z*Z. Let us
denote by F, resp. H a lift of f, resp. h in Bir(P3). Suppose that there exists a non-trivial
word M such that M(F, H) = {id}. As ¢ is a morphism, one gets that M(f, h) = {id}:
contradiction.

Suppose now that up to finite index G is solvable, and let ¢ be its derived length;
in particular Dy(Go) = {id} and D(G) belongs to ker. Since

ker¢ = {(20, 21,22 + B) | B € C}
one gets Dyy1(G) = {id}. O

4.4. Non-conjugate isomorphic groups.
Let us denote by vy the trivial embedding from (Aut(C?),|0) into Aut(C?)

v (Aut(C?),[0) — Aut(C), (%0, #1) = (o, ¢1,22)
and by vy the trivial embedding from Bir(P?) into Bir(P?3)
vt Bir(P?) < Bir(P?), (1, ¢2) — (20, b1, d2).

Despite imvy (resp. imwvs) is isomorphic to im¢ (resp. im K) one has the following
statement:
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PROPOSITION 4.4.1.  The image of vi (resp. vg) is not Aut(C?)-conjugate (resp.
Bir(IP?)-conjugate) to a subgroup of Aut(C?)c(.) (resp. Bir(C?)c(,)).

PROOF. Let us assume that there exists ¢ in Aut(C?) (resp. Bir(IP?)) such that
for any ¢ = (¢o, 1) (resp. ¢ = (¢1,¢2)) in Aut(C?) (resp. Bir(IP?)) the map vy () ~—*
(resp. Yug(4)h~1) is a contact polynomial automorphism (resp. contact birational map);
as a result vy (¢) (resp. v2(¢)) preserves a polynomial form © = Adzg + Bdz; + Cdz,.
Looking at the restriction to any hyperplane zo = A\ (resp. zo = A) for A generic one gets
that all the ¢ preserve the foliation given by ©).,— (resp. ©),,—)): contradiction. g

5. Appendix: Automorphisms group of Aut(C?),,.

As we recalled Aut(C?) is generated by Jo and Affy. More precisely Aut(C?) has a
structure of amalgamated product ([25])

Aut((CQ) = Jo *3,nAf, Affa;
this is also the case for Aut(C?),, ([20, Proposition 9])

Aut(C?)y = (J2)n *(10),n(at), (Aff2)p.
Following [16] we prove that:

THEOREM 5.0.2.  The group Aut(Aut(C?),) is generated by the automorphisms of
the field C and the group of Aut(C?)-inner automorphisms.

IDEA OF THE PROOF. Let us set G = Aut(C?),. One can follow [16] and prove
that if ¢ is an automorphism of G, then

e ©((J2)y) = (J2),, up to conjugacy by an element of Aut(C?) ([16, Proposition 4.4]);

e for any integer k if R = U,<,((820, 21/8) | B n-th root of unity), then there exists
¥ in (Jz), such that p(R) = ¥Re¢~!. So one can suppose that ¢((J2),) = (J2),
and p(R) = R (see [16, Proposition 4.4]);

e set D, = {(B20,21/B) | B € C*} one can show that conjugating ¢ by an element of
(J2)n one has ©((Jz2)n) = (J2)y and p(Dy) = Dy,

o set
Ti={(20+8,21)|8€C},  To={(20,21+8)|B€C}
and
T = {(20+ 7,21+ B) |7, B € C}.

Since Ty C [[(32)a: (J2)y ) [(32)ys (J2), ), then Ty € {(z0 + P(21), 21) | P € Cla]}.
As

vneN¥EeC  (2na) (a0+B820)" (nao, ) = (20 + B, 21)



614

D. CERVEAU and J. DESERTI
and ¢(D,) = D,,, one gets

Z ¥4
Vn e N, vﬂ eC ¥ (;Oanzl) SO(ZO + ﬁazl)nsp (nZOa gl) = SD(ZO + /8,21)

that is

20

VneN (5

,5z1) (z0 + nP(z1),21)" (6,20, %1) = (z0+ P(2),21)

so P(z1) = n/dP(z1/8). The polynomial P is non-zero hence n = ¢ and P is a
constant. Therefore ¢(T;) C Tj.

The groups T; and Ty commute, that’s why
©(Ts) C {(zo + P(z1),21+B)|P€Clz], B € (C}.

The relation
z z
(;O,ml) (20,21 + B) (mo, ﬁ) = (20,21 + B)"

true for any integer n and for any 8 in C implies that ¢(Ts) C To. The group T
being a maximal abelian subgroup of G, one has ¢(T) = T and ¢(T;) = T;.

There exist &1, &2 two additive morphisms and ¢ a multiplicative one such that

ooty k) = (0t (1), m+6(B) & ¢ (7 7) - (cwm cm) |

The statement follows from [16, Proposition 1.4]. O
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