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Abstract. In this paper we define a graded structure induced by opera-

tors on a Hilbert space. Then we introduce several concepts which are related
to the graded structure and examine some of their basic properties. A theory
concerning minimal property and unitary equivalence is then developed. It

allows us to obtain a complete description of V∗(Mzk ) on any H2(ω). It also
helps us to find that a multiplication operator induced by a quasi-homogeneous
polynomial must have a minimal reducing subspace. After a brief review of
multiplication operator Mz+w on H2(ω, δ), we prove that the Toeplitz opera-

tor Tz+w on H2(D2), the Hardy space over the bidisk, is irreducible.

1. Introduction.

In operator theory, it is of special interest to develop some algebraic methods to

solve a variety of problems. There are the sophisticated classical theory of operator

algebra and the fascinating K-theory. In general, there is a huge obstacle between algebra

and topology, since the algebraic methods require many finiteness conditions, while the

spirit of topology is based on the concept of continuousness. However, there are many

structures that are not difficult to be handled. Once Douglas and Paulsen introduced

the concept of Hilbert module [16], many researches on this new field are springing up

[1], [2], [8], [9], [14], [15], [19], [21], [22], [23]. For a survey of Hilbert modules, one can

see [27], [28]. Brown, Douglas and Fillmore also developed techniques of homological

algebra to define an invariant called Ext, which is the cornerstone of the BDF theory [4].

On the other hand, the concept of Ext was also defined for Hilbert modules by Carlson

and Clark [5], [6], [7]. Recently, there is a tendency that combines algebraic geometry

and complex geometry with operator theory [11], [17]. As to commutative algebra,

Hilbert–Samuel polynomials that are a class of Hilbert polynomials were already defined

for Hilbert modules [18]. Intuitively, the graded structures of Hilbert spaces that Hilbert

polynomials can be defined on should attract some attentions. Lately, motivated by [12],

[25], [32], we find that graded structure can be very useful in operator theory.

Let L2
a(D2) be the Bergman space over the bidisk D2, Mz+αw the multiplication

operator induced by z + αw where α ̸= 0. Define Hn = span{zkwl : k + l = n} for each

natural number n. Then, it is easy to see that
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Mz+αwHn ⊆ Hn+1 and M∗
z+αwHn ⊆ Hn−1.

Together with L2
a(D2) =

⊕∞
n=0 Hn, this phenomenon leads us to an idea that we can

handle this operator with the concept of graded structure. By using this idea, it is proved

that Mz+αw is irreducible if and only if |α| ̸= 1 [12], [32]. The same procedure is also

effective for H2(D2), the Hardy space over the bidisk [25]. We will give the precise

definition of graded structure in Section 3.

Once we define a graded structure for a Hilbert module, we ask whether we can

characterize the minimal graded submodule, and how to define the isomorphism between

two graded structures. We will distinguish two different cases for graded structures. The

graded structure from the space L2
a(D2) and the operator Mz+αw is called truncated,

since the Hn is beginning at n = 0. The other case is said to be non-truncated. Instead

of minimality, we concentrate on the concept of stability, which is easier to be grasped

than minimality. At last, we prove that an isomorphism between two truncated stable

graded submodules is also graded in form.

Finally, we will give three important applications of this theory. First, we charac-

terize the unitary equivalence between the reducing subspaces of Mzk which have been

described in [31]. Second, we point out that a multiplication operator induced by a

quasi-polynomial always has a minimal reducing subspace. Finally, we prove that on

H2(D2), the Toeplitz operator induced by symbol z + w is irreducible.

2. Preliminaries.

2.1. Review of module theory.

To define a module structure on a Hilbert space, we start with the concept of module

first. Let A be a ring, recall that a (left) A-module M is an abelian group with a ring

homomorphism π : A → End(M), where End(M) is the endomorphism ring of the

abelian group M . It follows that if we want to take M a Hilbert space H, then it is

natural that we should consider a ring homomorphism π : A → B(H), where B(H) is the

bounded linear operator algebra on H. There are two things to consider. The first thing

is that there are many topologies on B(H). We choose a topological ring A to make

that the ring homomorphism π : A → (B(H), SOT) is continuous, where SOT means the

strong operator topology. This is equivalent to say that the map A×H → H, (a, x) 7→
π(a)x is separately continuous. The second thing is that B(H) has an involution ∗.
If A has also an involution ∗, then we require that π is a ∗-homomorphism. Since ∗ may

not be SOT-continuous, we further require that π(A) is an SOT-closed ∗-subalgebra of

B(H). However, the action of A on H is the same as π(A) on H as long as the structure

of H is concerned. In this paper, it will suffice that we restrict our attention to the case

that A is an SOT-closed subalgebra (or ∗-subalgebra) of B(H). Then we shall say that

H is an A-module.

A submodule M of an A-module H is defined by a closed subspace of H which

is closed under module operators. This is equivalent to say that M is an A-invariant

subspace of H. Therefore, there is a one-to-one correspondence between submodules

of H and A-invariant subspaces of H. Moreover, if A is a ∗-subalgebra, then it is

equivalent to say that M is an A-reducing subspace of H. In this case there is a one-to-
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one correspondence between submodules of H and A-reducing subspaces of H.

We now turn to the graded module theory. In commutative algebra, a graded ring

A is a commutative ring together with a direct sum decomposition

A =

+∞⊕
n=−∞

An

as abelian groups, such that

AnAm ⊆ An+m for all n,m.

Then, a graded A-module M is an A-module with decomposition

M =
+∞⊕

n=−∞
Mn

as abelian groups, such that

AnMm ⊆ Mn+m for all n,m.

We want to establish a graded structure on an A-module H in this paper. Although

A need not be commutative, this is not an essential obstacle, since we mainly concern

submodules of H. The formal definitions of these are given in Section 3.

2.2. S-calculus.

Let H be a Hilbert space and T ∈ B(H). Put W∗(T ) the von Neumann algebra

generated by T , and V∗(T ) = W∗(T )′. We know that there is a one-to-one correspon-

dence between reducing subspaces of T and projections in V∗(T ). In this paper, we

mainly study the W∗(T )-module H. It is not hard to see that there is also a one-to-one

correspondence between reducing subspaces of T and submodules of H.

Throughout the paper, we denote by Z the set of integers, Z+ the set of non-negative

integers, and N the set of positive integers. Let us divide W∗(T ) into many parts. For

each n ∈ Z, we let

Sn =

{
N∏

k=1

T ∗jkT ik , N ∈ N, ik, jk ∈ Z+ :
N∑

k=1

(ik − jk) = n

}
.

Note, I ∈ S0.

We have the following key lemma.

Lemma 2.1. Let n ≥ 0 and A =
∏N

k=1 T
∗jkT ik , N ∈ N, ik, jk ∈ Z+,

N∑
k=1

(ik − jk) = n.

Then for any integer m with 0 ≤ m ≤ n, there exists some B ∈ Sm and C ∈ Sn−m such

that A = BC.
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Proof. Note that the lemma is true when n = 0, m = 0 or m = n. For example, if

m = 0, then take B = I, C = A. Next we use induction on N . If N = 1, i.e. A = T ∗jT i.

In this case i− j = n, we can put B = T ∗jT i−n+m, C = Tn−m.

Now assume that the lemma is true for N = r and consider the case N = r + 1,

A =

(
r∏

k=1

T ∗jkT ik

)
(T ∗sT t),

r∑
k=1

(ik − jk) + (t− s) = n ≥ 0.

Set σ =
∑r

k=1(ik − jk). If σ ≥ m, by assumption, there exist B ∈ Sm, C ′ ∈ Sσ−m such

that
∏r

k=1 T
∗jkT ik = BC ′. Put C = C ′T ∗sT t, then C ∈ Sn−m and A = BC. If σ < m,

Put B =
(∏r

k=1 T
∗jkT ik

)
(T ∗sT t−n+m) ∈ Sm, C = Tn−m ∈ Sn−m, then A = BC.

This completes the lemma by induction. □

Before the proposition for Sn is given below, we introduce some notations. For any

F ⊆ H and A ⊂ B(H), denote by [F ] the closed subspace spanned by F . Define

AF = [{Af : A ∈ A, f ∈ F}].

If F = {f}, then write Af = AF . Note that if T ∈ B(H), then TF ⊆ {T}F , and the

equality holds if and only if TF is a closed subspace.

Proposition 2.2. We have the following

(a) S0 is a monoid, i.e., it is closed under the operator product and I is its identity.

(b) (Sn)∗ = S−n, n ∈ Z.

(c) SnSm ⊆ Sm+n, n,m ∈ Z.

(d) If nm ≥ 0, then SnSm = Sn+m.

(e) If F ⊆ H, then Sn(SmF ) = (SnSm)F , n,m ∈ Z.

Proof. (a), (b), (c) is trivial.

If both n and m are non-negative, then SnSm = Sn+m by (c) and Lemma 2.1.

Otherwise, it follows from (a) that

SnSm = (S−n)∗(S−m)∗ = (S−mS−n)∗ = (S−n−m)∗ = Sn+m.

Hence (d) is true.

(e) is the consequence of the SOT-continuousness of left multiplication by an oper-

ator. □

Now, for any operator T ∈ B(H), we can produce the set Sn for any integer n.

Henceforth, we will call this procedure the S-calculus for T .
We state here a result about a sufficient condition for a reducing subspace to be

minimal that is given by S-calculus.
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Proposition 2.3. Suppose that H is a Hilbert space, T ∈ B(H), and S-calculus
for T satisfies

∩
n∈Z+

SnH = 0. Let M be a reducing subspace of T . If dimM⊖S1M = 1,

then M is minimal.

Proof. First, we claim that for any non-zero subspace K, S1K ̸= K. Otherwise,

for any n > 0, we have SnK = K. It follows from S0K ⊇ K that

K =
∩

n∈Z+

SnK ⊆
∩

n∈Z+

SnH = {0}.

This contradicts the fact that K ̸= 0.

Now suppose that M is a reducing subspace of T satisfying dimM ⊖S1M = 1, then

S1M ⊆ M . If M = M1

⊕
M2, where M1 and M2 are two non-zero reducing subspace of

T . According to the claim above, dimMi ⊖ S1Mi ≥ 1, i = 1, 2. However,

dimM ⊖ S1M = dimM1 ⊖ S1M1 + dimM2 ⊖ S1M2 ≥ 2,

this is a contradiction. Thus M must be minimal. □

2.3. Weighted sequence spaces.

Let ω = {ω0, ω1, · · · , ωn, · · · } be a sequence of positive numbers. We consider the

space of sequences f = {f̂(n)} such that

∥f∥2 = ∥f∥2ω =
+∞∑
n=0

|f̂(n)|2ωn < ∞.

Let f(z) =
∑+∞

n=0 f̂(n)z
n be the formal power series in z. Then we shall denote the space

H2(ω). It is clear that H2(ω) is a Hilbert space with the inner product

⟨f, g⟩ =
+∞∑
n=0

f̂(n)ĝ(n)ωn.

It is easy to see that {zn/√ωn}n∈Z+ is an orthonormal basis for H2(ω). The proposition

below shows that H2(ω) can become a analytic function space over an open disc.

Proposition 2.4 ([30]). Let r2(ω) = lim infn→∞ ω(n)1/2n, then the disc

∆2(ω) = {z : |z| < r2(ω)}

is the largest open disc in which all the power series in H2(ω) converge.

Now consider the linear operator Mp of multiplication by a polynomial p on H2(ω):

(Mpf)(z) = f(z)p(z).

It is well known that Mz is bounded on H2(ω) if and only if supn (ωn+1)/ωn < ∞. In

this case Mp is bounded and Mp = p(Mz). Throughout the paper we assume that Mz
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is always bounded. If we let αn =
√

(ωn+1)/ωn, then Mz is unitarily equivalent to the

unilateral weighted shift with weight sequence α.

We can use these to construct some spaces of analytic functions of several vari-

ables. For two variables, let δ be another sequence of positive numbers satisfying

supn (δn+1)/δn < ∞, we define H2(ω, δ) = H2(ω) ⊗ H2(δ) as the Hilbert space con-

sisting of analytic functions

f(z, w) =

+∞∑
n,m=0

an,mznwm

in the bidisk ∆2(ω)×∆2(δ) such that

∥f∥2 = ∥f∥2ω,δ =
+∞∑

n,m=0

ωnδm|an,m|2 < ∞.

Then it is clear that Mp+q on H2(ω, δ) can be written as Mp ⊗ I + I ⊗ Mq if p is a

polynomial of z and q is a polynomial of w, where Mp is on H2(ω) and Mq is on H2(δ).

In Section 4, we will give a complete description of V∗(Mzk) on any H2(ω).

3. Graded structure.

3.1. Some definitions and examples.

Let H be a Hilbert space and A ⊆ B(H) be an SOT-closed subalgebra. Notice that

H is a left A-module. We begin the study of graded structures as follows.

Definition 3.1. We say that A is a graded ring and H is a graded A-module, if

we have

A =
+∞∑

n=−∞
An

SOT

with AnAm ⊆ An+m, n,m ∈ Z, where

+∞∑
n=−∞

An =

{
+∞∑

n=−∞
an : an ∈ An, an ̸= 0 for finitely many n

}

and

H =

+∞⊕
n=−∞

Hn, (1)

here all Hn are closed subspaces of H, satisfying the following condition

AnHm ⊆ Hn+m, n,m ∈ Z.

The members of An or Hn are called homogeneous elements of degree n. (1) is called a

homogeneous decomposition of H.
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From now on, when we say that H is a graded A-module, it means that H has a

homogeneous decomposition (1). Generally, there are two cases:

(a) There exists a sequence of integers {nk} such that Hnk
̸= 0 and nk → −∞;

(b) There exists an integer n0 such that Hn = 0 for all integers n < n0 and Hn0 ̸= 0.

If we define

n(H) = inf{n : Hn ̸= 0},

then for the case (a), n(H) = −∞ and for the case (b), n(H) = n0 ∈ Z. Let’s point

out that n(H) is dependent on the specific decomposition (1). We shall say that H is

truncated if n(H) ∈ Z. When H is truncated, we may rewrite (1) as follows

H =

+∞⊕
n=n0

Hn.

Next, we study graded submodule.

Definition 3.2. We say that a submoduleM of the graded A-moduleH is graded,

if M has the following decomposition

M =

+∞⊕
n=−∞

Mn, (2)

where Mn is a closed subspace of Hn for each n.

We have the following propositions whose proofs are easy.

Proposition 3.3. Let H be a graded A-module and let M be a graded submodule

of H. Then AnMm ⊆ Mn+m, n,m ∈ Z. Furthermore, we have

Mn = M ∩Hn, n ∈ Z.

Conversely, if

M =
+∞⊕

n=−∞
M ∩Hn,

then M is a graded submodule of H.

Proposition 3.4. Let H be a graded A-module and let M be a graded submodule

of H. Then for each m ∈ Z, we have

AmM =
+∞⊕

n=−∞
AmMn.

In this paper, we restrict our attention to graded modules and their graded submod-

ules. A few examples of graded rings will be given as follows.
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Example 3.5. Let {T1, · · · , Td} be a collection of commuting operators acting on

a Hilbert space H, C[T1, · · · , Td] be the space consisting of polynomials generated by

{T1, · · · , Td}, and A = C[T1, · · · , Td]
SOT

. Set

An = {p(T1, · · · , Td) : p is a homogeneous polynomial of degree n}

and An = 0 when n < 0. In this case,

A =

+∞∑
n=−∞

An

SOT

,

and AnAm ⊆ An+m, n,m ∈ Z.

Example 3.6. For any T ∈ B(H), we apply the S-calculus for T . Put A = W∗(T ),

and An = spanSn. It is easy to show that AnAm ⊆ An+m by Proposition 2.2, n,m ∈ Z.
Then,

A =
+∞∑

n=−∞
An

SOT

.

In this time, we call such graded A-module be a graded S-module. Note that for any

F ⊆ H and n ∈ Z, we have AnF = SnF .

A few examples of graded modules will be given as follows. In each example, we can

verify that

H =
+∞⊕

n=−∞
Hn,

and

SnHm ⊆ Hn+m, n,m ∈ Z.

So they are all graded S-modules.

Example 3.7. Let H = H2(ω), T = Mz. Put Hn = Czn if n ≥ 0, and Hn = 0 if

n < 0.

Example 3.8. Let H = H2(ω, δ), T = Mz+w. Put Hn = span{ziwj : i + j = n}
if n ≥ 0, and Hn = 0 if n < 0.

The above examples are all truncated. We mainly concern such type in the paper.

Next we give a non-truncated example, which is related to the operator Mz + M∗
w on

H2(ω, δ).

Example 3.9. Let H = H2(ω, δ), T = Mz +M∗
w. Put Hn = [{ziwj : i− j = n}].

It is easy to check that if a set E is consisting of homogeneous elements of same

degree, then a submodule generated by E is graded again, and it has the following form.
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Proposition 3.10. Let H be a graded A-module. If E ⊆ Hk for some k, then the

submodule [E]A generated by E is graded with the following homogeneous decomposition

[E]A =

+∞⊕
n=−∞

AnE.

Now, we will introduce a new important concept. Recall that we have already defined

the n(H) for a graded A-module H.

Definition 3.11. Let H be a graded A-module and n0 = n(H). Then H is said

to be stable if AnHm = Hn+m when m ≥ n0 and n ≥ 0. In this case, (1) is called a

stable decomposition of H.

There is an interesting connection between stable and truncated that will be shown

in the following proposition.

Proposition 3.12. If H is a stable graded A-module, then H has a truncated stable

decomposition if and only if H ⊖A1H ̸= 0. In this case, the H’s stable decomposition is

uniquely determined.

Proof. If H has a truncated stable decomposition as follows

H =

+∞⊕
n=n0

Hn

where Hn0
̸= 0. Then by stability we have A1Hn = Hn+1 when n ≥ n0. Thus

A1H =
+∞⊕

n=n0+1

Hn,

hence

H ⊖A1H = Hn0 ̸= 0.

Notice that if n ≥ 0, then

Hn0+n = AnH ⊖An+1H.

We can conclude that the truncated stable decomposition, if it exists, is uniquely deter-

mined.

If any stable decomposition of H is not truncated, then a stable decomposition

H =
+∞⊕

n=−∞
Hn

has the property that n(H) = −∞. In this case, we have A1Hn−1 = Hn for any n ∈ Z.
It yields to H = A1H, i.e. H ⊖A1H = 0.
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In summary, it is proved that H has a truncated stable decomposition if and only if

H ⊖A1H ̸= 0.

At last, if H ⊖ A1H ̸= 0, then any stable decomposition of H must be truncated,

hence the stable decompostion of H is uniquely determined. □

Inspired by Proposition 2.3, we introduce the following concept.

Definition 3.13. We say that a graded A-module H is A-regular, if it satisfies

the following ∩
n∈Z+

AnH = 0.

It is easy to see that if H is A-regular, then all of its submodules are also A-regular.

Let’s point out that A-regularity can be guaranteed by truncatedness.

Proposition 3.14. A truncated graded A-module is A-regular.

Proof. Suppose that H is a truncated graded A-module, then there is a decom-

position as follows

H =

+∞⊕
n=n0

Hn.

For any m ≥ 0 we have

AmH ⊆
+∞⊕

n=n0+m

Hn.

It follows that ∩
m∈Z+

AmH = 0.

Thus H is A-regular. □

We conclude this subsection with a brief discussion of minimal graded submodules.

Definition 3.15. We say that a non-zero graded submodule M of a graded A-

module H is A-minimal, if M is minimal in the set of all non-zero graded submodules of

H. Furthermore, if H is its A-minimal graded submodule, then H is called A-irreducible.

Thus, an A-minimal graded submodule need not be a minimal submodule, and a

minimal submodule which is also graded is an A-minimal graded submodule.

3.2. Some results on graded S-modules.

In this subsection, we mainly study non-zero graded S-modules. Suppose T ∈ B(H)

and S-calculus for T is applied such that H is a graded S-module.
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Recall that an S-minimal graded submodule of a graded S-module H is a minimal

element in the set of all non-zero graded submodules of H. The next proposition points

out that all S-minimal graded submodules are stable submodules.

Proposition 3.16. Every S-minimal graded submodule of a graded S-module is

stable.

Proof. Suppose that H is a graded S-module, and M is an S-minimal graded

submodule of H. If M =
⊕+∞

n=−∞ Mn is a homogeneous decomposition of M , then by

minimal property of M , we have [Mm]S = M , where m ∈ Z, Mm ̸= 0. Denote by

n0 = n(M). We divide into two cases.

(a) n0 ̸= −∞, so Mn0 ̸= 0. By Proposition 3.10, we get

[Mn0 ]S =

+∞⊕
n=0

SnMn0 .

As [Mn0 ]S = M , for all n ≥ 0 we have SnMn0 = Mn+n0 . If m ≥ n0 and n ≥ 0, then

SnMm = SnMm−n0+n0 = SnSm−n0Mn0 = Sn+m−n0Mn0 = Mn+m,

hence M is stable.

(b) n0 = −∞. That is to say, for any m, there exists a k ≤ m such that Mk ̸= 0.

By Proposition 3.10, we get

[Mk]S =
+∞⊕

n=−∞
SnMk.

Since [Mk]S = M , we know SnMk = Mn+k for all n. If n ≥ 0, then

SnMm = SnMm−k+k = SnSm−kMk = Sn+m−kMk = Mn+m.

Since m was arbitrary, M is stable. □

Next we will look for an S-minimal graded submodule in stable graded submodules.

It follows from Propositions 3.12 and 3.16 that the truncated graded decomposition of a

truncated S-minimal graded submodule must be stable and be uniquely determined.

We already proved that all S-minimal graded submodules are stable. Then we

consider when a stable submodule is S-minimal.

Proposition 3.17. If H is a graded S-module, E ⊆ Hk, and E satisfies the

following

(a) There is an n0 such that if n < n0 then SnE = 0;

(b) If n ≥ n0, then S1(SnE) = Sn+1E ;

(c) dimSn0E = 1.

Then the submodule [E]S generated by E is a minimal S-submodule, hence is S-minimal.
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Proof. According to proposition 3.10,

[E]S =

+∞⊕
n=−∞

SnE.

By condition (a),

[E]S =

+∞⊕
n=n0

SnE.

By condition (b),

[E]S ⊖ S1[E]S = (
+∞⊕
n=n0

SnE)⊖ (
+∞⊕

n=n0+1

SnE) = Sn0E.

By conditon (c),

dim[E]S ⊖ S1[E]S = 1.

Since [E]S is surely truncated, [E]S is S-regular by Proposition 3.14. According to

Proposition 2.3, [E]S is minimal. □

Finally, we will discuss the isomorphism problem. Suppose that M (resp. N) is

an S-module, and the S-calculus is given by A (resp. B). M and N are said to be

S-isomorphic, if there is a unitary U : M → N such that UA = BU . In fact, this is just

the unitary module isomorphism in the theory of Hilbert modules [9].

Theorem 3.18. Suppose that M (resp. N) is a stable graded S-module, and the

S-calculus is given by A (resp. B). If M has a truncated stable decomposition as follows

M =
+∞⊕
n=n1

Mn

where n1 = n(M), then M and N are S-isomorphic if and only if N has the truncated

homogeneous decomposition as follows

N =
+∞⊕
n=n2

Nn,

where n2 = n(N), and for any n ≥ 0 there exists a unitary operator Un : Mn1+n → Nn2+n

such that

B|Nn2+nUn = Un+1A|Mn1+n .

Proof. By the truncated stable decomposition given in the statement, it is clear

that
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Mn1+n = SnM ⊖ Sn+1M, n ∈ Z+.

If M and N are S-isomorphic, then there is a unitary U : M → N such that

UA = BU . Then

N = UM =
+∞⊕
n=n1

UMn.

Since N ⊖S1N = U(M ⊖S1M) = UMn1 ̸= 0, by Proposition 3.12, the stable decompo-

sition of N must be truncated and uniquely determined. Suppose

N =
+∞⊕
n=n2

Nn,

where n2 ∈ Z. Then if n ≥ 0,

Nn2+n = SnN ⊖ Sn+1N = U(SnM ⊖ Sn+1M) = UMn1+n

holds. Taking Un = U |Mn1+n , since UA = BU we get the require result.

Conversely, assume M and N have the truncated homogeneous decompositions as in

the statement, and for any n ∈ Z+ there exists a unitary Un from Mn1+n to Nn2+n such

that B|Nn2+nUn = Un+1A|Mn1+n . Define a linear operator U from M to N : U =
⊕

Un,

then U is unitary. This gives a required S-isomorphism between M and N . □

Hence, we find that under the stable condition the property of truncated is preserved

by an S-isomorphism. For the sake of brevity we can say that the unitary module

isomorphism between truncated stable graded S-modules is exactly the graded unitary

module isomorphism.

Next, we apply this to the submodules of an S-module. It is easy to see that

S-submodules and reducing subspaces are the same thing. Then we find that S-
isomorphism of submodules is exactly the unitary equivalence of reducing subspaces.

Let M and N be two submodules of S-module H, where S-calculus is given by T , M

and N are S-isomorphic via U . We can define a bounded operator V over H as follows:

V x = Ux if x ∈ M , V x = 0 if x ∈ M⊥. Then V is a partial isometry in V∗(T ) such that

the initial space is M and the final space is N . That is to say, the projections PM and

PN are equivalent in V∗(T ), where PM and PN have respective ranges M and N . Now

we state here a special case of Theorem 3.18.

Proposition 3.19. Suppose that H is a graded S-module, M and N are two stable

graded submodules. If M has a truncated stable decomposition as follows

M =

+∞⊕
n=n1

Mn

where n1 = n(M), then M and N are S-isomorphic if and only if N has the truncated

homogeneous decomposition as follows
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N =

+∞⊕
n=n2

Nn,

where n2 = n(N), and for any n ≥ 0 there exists a unitary operator Un : Mn1+n → Nn2+n

such that

T |Nn2+nUn = Un+1T |Mn1+n .

4. Applications.

We have developed the theory of graded structures for Hilbert spaces. As an ap-

plication of these ideas, we will discuss the multiplication operators induced by some

polynomials.

4.1. The V∗(Mzk) on H2(ω).

In this subsection, a complete description of V∗(Mzk) on H2(ω) is obtained. We

mention that all reducing subspaces of Mzk was described in [31]. To state our main

results, we need to introduce some notions and results that belong to Stessin and Zhu

(see [31]).

Fix a positive integer k, set Ω = {n ∈ Z+ : 0 ≤ n ≤ k − 1}. We can introduce a

equivalence relation ∼ on Ω as follows,

a ∼ b ⇔ ωa+nk

ωa
=

ωb+nk

ωb
, ∀n ∈ Z+.

Suppose p is a polynomial of degree less than k,

p(z) =
k−1∑
n=0

anz
n.

p will be called transparent if for any two non-zero coefficients ai and aj we have i ∼ j. It

is clear that each monomial of degree less than k is transparent. The following theorem

that belongs to Stessin and Zhu [31] shows that the concept of transparent polynomial

is related to the minimal reducing subspaces of Mzk .

Theorem 4.1 ([31]). Let X be a reducing subspace of Mzk on H2
ω. Then X is

minimal if and only if there is a transparent polynomial p such that

X = [{pznk : n ∈ Z+}].

Of course, if k = 1, then the only transparent polynomial is constant, thus we know

that Mz must be irreducible for any ω.

Next, we will give two new results. Denote by Xp the reducing subspace generated

by p for Mzk . The first result is the characterization of unitary equivalence between

minimal reducing subspaces. According to Theorem 4.1, we know that every minimal

reducing subspace of Mzk must has the form Xp for some transparent polynomial p. Now

we can prove the following theorem about unitary equivalence.
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Theorem 4.2. If p and q are two transparent polynomials, then Xp and Xq are

unitary equivalent if and only if p+ q is also a transparent polynomial.

Proof. Suppose

p(z) =
k−1∑
n=i

anz
n, q(z) =

k−1∑
n=j

bnz
n,

where ai ̸= 0 and bj ̸= 0. Then we have

Xp = C{p}
⊕

C{pzk}
⊕

· · · , Xq = C{q}
⊕

C{qzk}
⊕

· · · .

Applying S-calculus for Mzk , since p and q are both transparent polynomials, we can

check that Xp and Xq are both graded S-modules. Since Xp and Xq are both minimal,

both of them are stable by Proposition 3.16.

If Xp and Xq are unitarily equivalent, then according to Theorem 3.18, it follows

that for each n ∈ Z+, there exists a unitary operator Un : C{pznk} → C{qznk} such that

MzkUn = Un+1Mzk . Thus we obtain a non-zero constant c such that

U0p = cq.

Then

U0(M
∗
zk)

nMn
zkp = U0

ωi+nk

wi
p = c

ωi+nk

ωi
q, n ∈ Z+.

Also

U0(M
∗
zk)

nMn
zkp = (M∗

zk)
nUnM

n
zkp = (M∗

zk)
nMn

zkU0p = c(M∗
zk)

nMn
zkq = c

ωj+nk

ωj
q,

n ∈ Z+.

It follows that i ∼ j, this shows that p+ q is also transparent.

Conversely, if p + q is transparent, then i ∼ j. For each n ∈ Z+ we can define a

unitary Un : C{pznk} → C{qznk} as follows

Unpz
nk = cnqz

nk, n ∈ Z+.

We can assume that all cn are positive. Since ∥pznk∥ = cn∥qznk∥, a calculation using

the condition i ∼ j shows that

c2n =

∑k−1
s=i |as|2ωs∑k−1
s=j |bs|2ωs

.

We find that all cn are a same constant c. Then

Un+1Mzkpznk = Un+1pz
(n+1)k = cqz(n+1)k = MzkUnpz

nk, n ∈ Z+,

Thus MzkUn = Un+1Mzk . This implies that Xp and Xq are unitarily equivalent by
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Theorem 3.18 again. □

In order to obtain the second result about V∗(Mzk), we need the following key

proposition.

Proposition 4.3. V∗(Mzk) is ∗-isomorphic to a subalgebra of Mk(C).

Proof. Let Hk = span{zi : i ∈ Ω}. Then Hk is of dimension k, and B(Hk) ∼=
Mk(C). Let P be a projection from H2(ω) onto Hk. We define a liner map Φ from

V∗(Mzk) to B(Hk) as follows

Φ : V∗(Mzk) → B(Hk)

T 7→ PTP.

In fact, we can claim that P ∈ V∗(Mzk)′. For any f ∈ H2(ω), we can write f as following

form

f(z) = p0(z) + zkp1(z) + z2kp2(z) + · · · ,

where pi ∈ Hk for all i. Then Pf = p0. For every T ∈ V∗(Mzk), we have TPf = Tp0.

Then

PTf = PT (p0 +Mzkp1 +M2
zkp2 + · · · ) = P (Tp0 +MzkTp1 +M2

zkTp2 + · · · ) = PTp0.

Thus PT = PTP . Since T is arbitrary, we obtain PT ∗ = PT ∗P . It follows that

PT = (PT ∗P )∗ = (PT ∗)∗ = TP.

Hence we have P ∈ V∗(Mzk)′.

This shows that Φ is a well defined ∗-algebraic homomorphism. If Φ(T ) = 0, then

by T ∈ V∗(Mzk), it is easy to see that Tf = 0 by f ’s form. Thus Φ is injective. This

implies the desired result. □

Thus, V∗(Mzk) is of finite dimension, and is isomorphic to a direct sum of a finite

collect of matrix algebras. If we use the equivalence relation ∼ to parition the set Ω into

equivalence classes Ω1, · · · ,ΩK and let ni = |Ωi|, 1 ≤ i ≤ K, then we can prove the

following theorem.

Theorem 4.4.

V∗(Mzk) ∼=
K⊕
i=1

Mni(C).

Proof. By the theory of von Neumann algebra [24], we can write

V∗(Mzk) ∼=
n⊕

i=1

Mmi(C).
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We already see that every minimal reducing subspaces of Mzk has the form Xp

where p is a transparent polynomial, and for any two transparent polynomial p and

q, Xp and Xq are unitary equivalent if and only if p + q is transparent. This defines

a equivalence relation on the set of transparent polynomials. The equivalence relation

partitions them into equivalence classes ∆1, · · · ,∆K . On the other hand,
⊕n

i=1 Mmi(C)
implies that n must be K, since the unitary equivalence relation on the set of minimal

reducing subspaces is equivalent to the equivalence relation on the set of transparent

polynomials, hence the respective numbers of equivalence classes must be same.

By interchange of indices, we can assume that for each a ∈ Ω, when a ∈ Ωi we

have Xza ∈ ∆i and PXza
∈ Mmi(C). Then for each 1 ≤ i ≤ K, ∆i has ni minimal

reducing subspaces that have the form Xza and are orthogonal to each other. Hence we

find that ni ≤ mi. In fact, it is easy to see that any minimal reducing subspace Xp can

be contained in the direct sum of Xzlj where all lj belong to some Ωi. It forces that

ni = mi. This completes the proof. □

4.2. The multiplication operator induced by a quasi-homogeneous poly-

nomial.

Our second application of the theory of graded structures will be to a multiplication

operator induced by a quasi-homogeneous polynomial. Given an integer d ≥ 2 and a

weight

K = (K1,K2, · · · ,Kd) ∈ Nd,

we define the K-degree for every monomial zα ∈ C[z1, · · · , zd] by
∑d

i=1 αiKi. A poly-

nomial p ∈ C[z1, · · · , zd] is said to be K-quasi-homogeneous if its all monomials have

the same K-degree. We further define the K-degree of zero polynomial is −∞. If

K = (1, 1, · · · , 1), then K-quasi-homogeneous is homogeneous.

Fixed a weight K. Let H be the Hilbert space consisting of analytic functions in a

Reinhardt domain in Cd such that all monomials consist of a complete orthogonal set of

H, and every multiplication operator induced by a polynomial is bounded. Then H has

the following form

H =
∞⊕

n=0

Hn,

where Hn is the set consisting of all K-quasi-homogeneous polynomials of K-degree

n. Suppose that p is a K-quasi-homogeneous polynomial of K-degree k, we consider

the multiplication operator Mp on H. Let q be a K-quasi-homogeneous polynomial

of K-degree l. Applying S-calculus for multiplication operator Mp, we can check that

Snq ⊆ Hnk+l. We write l = ak + b, 0 ≤ b < k, then the reducing subspace [q]Mp of

Mp generated by q is a graded S-module, and it has the homogeneous decomposition as

follows

[q]Mp =
∞⊕

n=−a

Snq.
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We have the following theorem.

Theorem 4.5. [1]Mp must be a minimal reducing subspace of Mp.

Proof. In this case, l = 0, a = 0, b = 0, thus

[1]Mp =

∞⊕
n=0

Sn1.

Note that for each integer n ≥ 0, S1(Sn1) = Sn+11. Since S01 = C, it is true that

dimS01 = 1. By Proposition 3.17, the desired result is obtained. □

Thus, we quickly find that a multiplication operator induced by a quasi-homogeneous

polynomial must has a minimal reducing subspace generated by 1.

4.3. Mz+w on H2(ω, δ).

In the preceding subsections, we discussed monomials and quasi-homogeneous poly-

nomials. Now we will learn more on Mz+w on H2(ω, δ). Applying S-calculus for the

multiplication operator Mz+w and writing Hr = [{zkwl : k+ l = r}] for each r ∈ Z+, we

have H2(ω, δ) =
⊕∞

r=0 Hr and SnHr ⊆ Hn+r. Then H2(ω, δ) is a graded S-module, and

Theorem 4.5 reveals that [1]S is a minimal reducing subspace. In this section, we mainly

give a concise summary of the results in [12], [25]. There are two primary questions:

Question 1: When does [1]S = H2(ω, δ) hold?

Question 2: Given another two sequences of positive numbers ω′ and δ′, when are

Mz+w on H2(ω, δ) and Mz+w on H2(ω′, δ′) unitarily equivalent?

Note that H2(ω, δ) = H2(ω) ⊗ H2(δ) and Mz+w = Mz ⊗ I + I ⊗ Mw, where Mz

(resp. Mw) is a bounded operator on H2(ω) (resp. H2(δ)). In general, suppose that H

and K are two Hilbert spaces. If A ∈ B(H) and B ∈ B(K), then M = A ⊗ I + I ⊗ B

is a bounded operator on the Hilbert space H ⊗K. The two questions above then are

generalized to the following:

Question 3: If both A and B are irreducible, when is M irreducible?

Question 4: Given A′ ∈ B(H), B′ ∈ B(K), and M ′ = A′ ⊗ I + I ⊗B′, when are M

and M ′ unitarily equivalent?

For Question 3, the following proposition may be useful.

Proposition 4.6 ([25]). Suppose that H and K are both of dimensions at least

two. Let A ∈ B(H) and B ∈ B(K), if A and B are unitarily equivalent, then A⊗I+I⊗B

is reducible.

Remark 4.7. However, even if A and B are not unitarily equivalent, A⊗I+I⊗B

may be reducible. A simple example is given by putting H = K = C2, A =
(
1 1
0 1

)
,

B =
(
0 1
0 0

)
, and M = A⊗I+I⊗B. Then both A and B are irreducible and not unitarily

equivalent, while the one-dimensional subspace spanned by
(
1
0

)
⊗
(
0
1

)
−
(
0
1

)
⊗
(
1
0

)
is

reducing forM . The authors thank the referee for providing this example. In fact, we can

write M = I⊗ I+ I⊗B+B⊗ I and quickly find that M is reducible by Porposition 4.6.
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It is well known that Mz on H2(ω) and Mw on H2(δ) are unitarily equivalent if and

only if (ωn+1)/ωn = (δn+1)/δn for all n ∈ Z+. In this case, we write ω ∼ δ. Thus, if

ω ∼ δ, then the answer to the Question 1 is NO. Based on this, we proposed the following

conjecture.

Conjecture 4.8. Mz+w on H2(ω, δ) is reducible only if ω ∼ δ.

In [25], we proved that there is a class F of unilateral weighted shifts such that if

A and B are both in F , then A ⊗ I + I ⊗ B is irreducible if and only if A and B are

not unitarily equivalent. Can F be the whole class of unilateral weighted shifts, even a

larger class? The conjecture and the Question 2 are of course very complicated, we have

to do more research on these in future.

4.4. Mz + M∗
w on H2(D2).

In the previous sections, the examples we investigated are all truncated. Next we

will study a non-truncated example that already arose in Example 3.9. We will find that

the result provides a nontrivial example to the Question 3 that proposed in Subsection

4.3. That is, if A and B are two irreducible operators and not unitarily equivalent, then

is the operator A⊗ I + I ⊗B irreducible?

Let A = Mz be the unilateral shift on H2(D) and B = M∗
w be the unilateral

backward shift on H2(D). It is easy to see that A and B are not unitarily equivalent and

that A and B are irreducible. Specifically, the base space is H2(D)⊗H2(D) = H2(D2),

the Hardy space over the bidisk, and the operator that we concern is Mz +M∗
w, which

is exactly the Toeplitz operator with the symbol z + w on H2(D2).

Set M = Mz +M∗
w and the commutator C = [M∗,M ] = M∗M −MM∗. It is easy

to see that C = [M∗
z ,Mz] + [Mw,M

∗
w]. Then we have

Cznwm =


0, n = m = 0 or nm ̸= 0;

wm, n = 0,m ̸= 0;

−zn, n ̸= 0,m = 0.

Take Hn = [{ziwj : i− j = n}]. Then

H2(D2) =
∞⊕

n=−∞
Hn.

Applying S-calculus for M , we have

SnHm ⊆ Hn+m, n,m ∈ Z.

Hence H2(D2) is turned into a graded S-module that is non-truncated.

Next, we check that whether H2(D2) is stable. We begin with the following lemma.

Lemma 4.9. If n ̸= −1, then S1Hn = Hn+1.

Proof. If n ≥ 0, Hn = [{zn+kwk : k ∈ Z+}]. If k = 0, we have zn+1 = Mzn ∈
S1Hn. Suppose that a non-negative integer k such that zn+k+1wk ∈ S1Hn. Then
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Mzn+k+1wk+1 = zn+k+2wk+1 + zn+k+1wk ∈ S1Hn.

It follows that zn+k+2wk+1 ∈ S1Hn. By induction, we get S1Hn = Hn+1.

If n < −1, Hn = [{zkwk−n : k ∈ Z+}]. If k = 0, we have Mw−n = zw−n + w−n−1.

Since n < −1, we find that w−n−1 = CMw−n ∈ S1Hn. Hence, zw
−n ∈ S1Hn. If k > 0,

the similar argument as above will show that S1Hn = Hn+1. □

Take E0 = [{zkwk(1 + zw) : k ∈ Z+}]. Then we have the following lemma.

Lemma 4.10. H0 = E0.

Proof. It is clearly that H0 ⊇ E0. Suppose that a function f(z, w) ∈ H0 such

that f⊥E0. Write f =
∑

k akz
kwk. Since f⊥zkwk(1+zw), it follows that ak+ak+1 = 0.

We conclude that f = a0(1 − zw + z2w2 + · · · ). As f ∈ H2(D2), f must be zero. This

implies that H0 = E0. □

We are now in a position to prove that H2(D2) is stable.

Lemma 4.11. S1H−1 = H0.

Proof. H−1 = [{zkwk+1 : k ∈ Z+}]. For each k ∈ Z+, we have Mzkwk+1 =

zk+1wk+1 + zkwk = zkwk(1 + zw). Thus, we conclude that H0 ⊇ S1H−1 ⊇ E0 = H0, as

required. The last equality holds because of Lemma 4.10 □

Using similar argument as above, we can prove the following lemma.

Lemma 4.12. S−1Hn = Hn−1, for every integer n.

Next, we will show that H2(D2) is surely minimal. The following lemma establishes

the first step.

Lemma 4.13. If k, l ∈ Z+ and k ̸= l, then [zkwl]S = H2(D2).

Proof. To begin, we verify that S0{zkwl} = Hk−l. If k > l > 0, then

CM∗lCM lzkwl = CM∗lC(zk + lzk+1w + · · ·+ zk+lwl)

= −CM∗lzk

= −C(zk−l + lzk−l+1w + · · ·+ zkwl)

= zk−l.

It follows that zk−l ∈ S0{zkwl}. This result is also true if l = 0. If 0 < k < l, then

CMkCM∗kzkwl = CMkC(wl + kzwl+1 + · · ·+ zkwl+k)

= CMkwl

= C(wl−k + kzwl−k+1 + · · ·+ zkwl)

= wl−k.
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It follows that wl−k ∈ S0{zkwl}. This result is also true if k = 0.

If k > l, we have shown that zk−l ∈ S0{zkwl}. Then

M∗Mzk−l = M∗zk−l+1 = zk−l + zk−l+1w,

thus zk−l+1w ∈ S0{zkwl}. Suppose that an integer n ≥ 1 such that for all 0 ≤ m ≤ n,

zk−l+mwm ∈ S0{zkwl}. Then

M∗Mzk−l+nwn = M∗(zk−l+n+1wn + zk−l+nwn−1)

= zk−l+n−1wn−1 + 2zk−l+nwn + zk−l+n+1wn+1.

It follows that zk−l+n+1wn+1 ∈ S0{zkwl}. Thus S0{zkwl} = Hk−l by induction. The

argument for k < l is similar.

We have established that S0{zkwl} = Hk−l. By Lemma 4.9, Lemma 4.11 and

Lemma 4.12, we have Sn{zkwl} = SnHk−l = Hk−l+n for all integer n. It follows from

Proposition 3.10 that [zkwl]S = H2(D2). □

Finally, we need a definition. The order of an analytic function f(z, w) =∑
k,l aklz

kwl with respect to w, is by definition

ordw(f) = min{l : akl ̸= 0}.

Now, we can prove that M = Mz + M∗
w is irreducible. The reader is easy to verify

kerM = 0. In what following will need this fact.

Theorem 4.14. H2(D2) is minimal, that is, H2(D2) is the exactly unique, not

vanishing reducing subspace of Mz +M∗
w.

Proof. Let φ ∈ H2(D2) and φ ̸= 0. We must prove that [φ]S = H2(D2). Suppose

that φ(z, w) =
∑

k,l aklz
kwl. If φ ∈ H0, we can replace φ by Mφ and Mφ ∈ [φ]S because

Mφ ̸= 0. Hence, we can assume that φ ̸∈ H0. Then there exist integers i, j, r such that

i− j = r ̸= 0 and aij ̸= 0. Write φ(z, w) as φ(z, w) = s(z, w) + t(z, w) such that s ∈ Hr

and t⊥Hr. Notice that s ̸= 0. For simplicity, we may take j = ordws. In this case, it is

easy to see that i = ordzs. Take s1(z, w) = s(z, w)− aijz
iwj , then we have

CM jφ(z, w) = CM jaijz
iwj + CM js1(z, w) + CM jt(z, w)

= −aijz
i + CM jt(z, w).

Since CM jt⊥zi, CM jφ(z, w) ̸= 0, and hence we can replace φ by CM jφ(z, w). Therefore

we may assume that φ is such that there is an integer i > 0 satisfying ai0 ̸= 0.

Take f(z) =
∑

k>0 ak0z
k, g(w) =

∑
l>0 a0lw

l, and h(z, w) =
∑

k>0,l>0 aklz
k−1wl−1.

Then we have

φ(z, w) = a00 + f(z) + g(w) + zwh(z, w),

where f ̸= 0. It is easy to see that Cφ(z, w) = −f(z) + g(w). Thus
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a00 + 2f(z) + zwh(z, w) = φ(z, w)− Cφ(z, w) ∈ S0{φ}.

Applying C again for the above, we get that f(z) ∈ S0{φ}.
Since f(0) = 0, there is a positive integer n such that f(z) = znf0(z) and f0(0) ̸= 0.

We will now prove by induction that for all n ∈ N, [znf0(z)]S = H2(D2). If n = 1, then

MCM∗zf0(z) = MC(f0(z) + wzf0(z)) = M(f0(0)− f0(z)) = f0(0)z − zf0(z).

Thus, f0(0)z = zf0(z) + MCM∗zf0(z). Consequently, z ∈ [zf0(z)]S . By Lemma 4.13,

we conclude that [zf0(z)]S = [z]S = H2(D2). Next, assume that [znf0(z)]S = H2(D2)

for n. Then

CM∗zn+1f0(z) = C(znf0(z) + wzn+1f0(z)) = −znf0(z).

Thus by the induction hypothesis, [zn+1f0(z)]S = [znf0(z)]S = H2(D2), as required. We

have now established that [φ]S = [znf0(z)]S = H2(D2). □

Just recently, Deng, Lu and Shi completely characterized all reducing subspaces for

αMk
z +βM∗l

w on the Bergman space over bidisk [13]. Their work also shows thatMz+M∗
w

is irreducible in the case of Bergman space.
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